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ABSTRACT

Using a quantum processor to embed and process classical data enables the gen-
eration of correlations between variables that are inefficient to represent through
classical computation. A fundamental question is whether these correlations could
be harnessed to enhance learning performances on real datasets. Here, we report
the use of a neutral atom quantum processor comprising up to 32 qubits to imple-
ment machine learning tasks on graph-structured data. To that end, we introduce a
quantum feature map to encode the information about graphs in the parameters of
a tunable Hamiltonian acting on an array of qubits. Using this tool, we first show
that interactions in the quantum system can be used to distinguish non-isomorphic
graphs that are locally equivalent. We then realize a toxicity screening experiment,
consisting of a binary classification protocol on a biochemistry dataset comprising
286 molecules of sizes ranging from 2 to 32 nodes, and obtain results which are
comparable to the implementation of the best classical kernels on the same dataset.
Using techniques to compare the geometry of the feature spaces associated with
kernel methods, we then show evidence that the quantum feature map perceives
data in an original way, which is hard to replicate using classical kernels.

INTRODUCTION

Representing data in the form of graphs is ubiquitous in many domains of sciences. Using the
exponentially large Hilbert space accessible to a quantum computer in order to generate graph
embeddings is an appealing idea, with many proposals and theoretical studies over the past few
years Schuld & Killoran (2019); Havlı́ček et al. (2019); Schuld et al. (2020); Kishi et al. (2021).
With the recent advances in geometric quantum machine learning Larocca et al. (2022); Skolik
et al. (2022), works have shown how graph-structured data could be encoded into quantum states
and manipulated for classification, clustering or regression tasks. The Quantum Evolution Kernel
(QEK) approach was introduced in 2021 Henry et al. (2021), which is based on evolving a quantum
register over alternating layers of (graph-encoding) Hamiltonians, and training for classification
tasks. Here, we specifically focus on a QEK-type quantum feature map Henry et al. (2021) for
graph-structured data that we experimentally investigate for various learning tasks on a 32-qubit
neutral atom Quantum Processing Unit (QPU).
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†Also affiliated at Université Paris-Saclay, Institut d’Optique Graduate School,CNRS, Laboratoire Charles

Fabry, 91127 Palaiseau, France
‡loic@pasqal.com

1



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

1 QUANTUM FEATURE MAP FOR GRAPH-STRUCTURED DATA
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Figure 1: a. We seek to find a binary classifier enabling the separation of the two data classes by a
hyperplane (purple). After a transformation ϕ((x, y)) = (x, y, x2+y2) mapping the data point from
R2 to R3, the transformed data points become linearly separable. b. Illustration of the hardware-
implemented quantum feature map U(G; t) and subsequent measurements for graph-structured data.
A parameterized quantum unitary U is applied to atomic registers arranged under the form of UD
graphs. Experimentally measured observable distributions are then used for learning tasks.

In many classical machine learning methods, one seeks to map input data into a different space
called the feature space using a transform called the feature map, making it easier to work with. In
Quantum Machine Learning Schuld & Killoran (2019); Havlı́ček et al. (2019), the embedding is
usually done on a quantum feature space which is a Hilbert space associated with a set of qubits.
Such an embedding is usually built from the dynamics of a quantum system depending on the input
data as well as external variational parameters.

In this paper, we use a neutral-atom based QPU made of single 87Rb atoms trapped in arrays of
optical tweezers Barredo et al. (2018); Nogrette et al. (2014); Browaeys & Lahaye (2020); Henriet
et al. (2020); Morgado & Whitlock (2021). The ability to modify the spatial arrangement of the
atoms allow us to create a quantum system whose Hamiltonian reflects the topology of various
graphs. More details are given in the appendix A. We will restrict ourselves to a set of graphs called
Unit Disk (UD) graphs, for which two nodes in the plane are connected by an edge if the distance
between them is smaller than a given threshold Starting from a UD graph G reproduced in the array
of tweezers with qubits all starting in |0⟩, we apply a parameterized laser pulse onto the atoms in
order to generate a wavefunction |ψG⟩ of the form |ψG⟩ = U(G; t) |0⟩⊗|G|, where we define the
time-evolution operator U(G; t) = T

[
exp

(
−i/ℏ

∫ t

s=0
ĤG(s)ds

)]
to be our quantum feature map

unitary for graph-structured data with ĤG the hamiltonian of the system dependent on G
The graph quantum feature map already shows interesting properties when associated with single-
body observables ⟨Ôj=1,...,|G|⟩. The measured values are not only affected by local graph properties
such as node degrees, but also by more global ones such as the presence of cycles. This enrich-
ment provided by the quantum dynamics contrasts with the locality of node representations in many
classical graph machine learning. This key feature comes from the fact that the quantum dynam-
ics of a given spin model (e.g. an Ising model) will be significantly influenced by the complete
structure of the graph. We illustrate experimentally this behavior for two graphs G1 and G2 that
are non-isomorphic but locally identical. In these graphs, nodes can be separated into two equiva-
lence classes according to their neighborhood: border nodes B have one degree-3 neighbor and one
degree-2 neighbor, while center nodes C have two degree-2 neighbors and one degree-3 neighbor
(see Fig. 2a). We will see that the presence of interactions will enable us to discriminate between
G1 and G2 by comparing the dynamics of local observables on border and center nodes.

By looking at Ô =
∑6

i=1 n̂i, we can quantify the difference in the dynamics between the two graphs.
We first compute the histogram Pi of number of excitations observed in each shot on graph Gi. The
difference between those graphs is then estimated via the Jensen-Shannon divergence JS of their
respective histograms Bai & Hancock (2013), which is defined as JS(P1,P2) = H

(P1+P2

2

)
−

H(P1)+H(P2)
2 . Here H(P) = −

∑
k pk log pk is the Shannon entropy of P = (p1, . . . p|G|).
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Figure 2: a. G1 (red) and G2 (blue) are two different graphs with identical local structure. Based
on their neighborhood, the nodes either belong to the border B (circle) or to the center C (square).
b. We plot the evolution of the mean occupation ⟨ni⟩ of the two regions B (left) and C (right) for
both graphs G1 (red) and G2 (blue). The dots represent the experimental results while the full curves
show noisy simulation results. Horizontal error bars account for the sequence-trigger uncertainty
(≈ 40ns) while the vertical ones account for the sampling noise. The insets show the corresponding
mean field dynamics (dashed) with only NN (black) or full (colored) interactions. c. The evolution
of the Jensen-Shannon divergence obtained experimentally (dot) is compared to the noisy simulation
(plain). At each point in time, JS(P1,P2) is computed using the excitation distributions P1/2 =
{Pn(G1/2)}n=0...6 obtained either numerically (bar) or experimentally (dot). The inset depicts P1/2

obtained at t ≈ 0.57 µs which yields the maximum value JSmax ≈ 0.28 reached.
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Figure 3: a. A dataset of graphs G is mapped onto atomic registers r(G), and split between a training
and a test set Gtraining,Gtest. We use the training set to determine numerically the optimal pulse
sequence to be applied on the hardware using a grid search algorithm for optimizing F1(t) (see b).
This training phase outputs the optimal parameter T used to design the laser-pulse sequence applied
experimentally on each register of the test set. The resulting dynamics performed on the QPU
generates U(G;T ), driving the system from |0⟩⊗G to |ψG⟩. F1 is then derived from the measured
probability distributions {P(G)}G∈Gtest

. b. The optimization of the score function F1 during the
training includes several steps. The input t, taken from the parameter space [tmin, tmax] defines
a laser sequence with Ω and δ fixed parameters followed by a measurement. The dynamics of
the system is emulated and enables us to compute the probability distributions associated to this
particular value of t for the whole training part of the dataset. Finally, F1(t) is obtained by fitting
the SVM with the kernel constructed from those probability distributions.

2 BINARY CLASSIFICATION TASK

We now use the graph distance metric introduced in the previous section to tackle a binary clas-
sification task on a dataset of chemical compounds called PTC-FM (Predictive Toxicity Challenge
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on Female Mice) Helma et al. (2001); Siglidis et al. (2018). We use this metric as a graph kernel,
and we feed this kernel to a Support Vector Machine (SVM) algorithm. The pipeline is described
figure 3. More details can be found in the appendix B.After a training of our model, we experimen-
tally obtain an F1-score of 60.4 ± 5.1%. For comparison purposes, we examine the performances
of other kernels on this dataset: the Graphlet Sampling (GS), Random Walk (RW), Shortest Path
(SP) and SVM-ϑ kernels, the size kernel, all these kernels being described in detail in Appendix H.
The F1-scores reached by the various kernels are collected in Table 1. Obtained scores range from
49.8± 6.0% up to 58.2± 5.5%. Those results show that the Quantum Evolution Kernel is compet-
itive with standard classical kernels on this dataset. We briefly describe the rest of our analysis and
experiments, which are detailed in the appendix B. Since the size of the graph is an important fea-
ture of the dataset, we also construct a version of the kernel insensitive to it, called size-compensated
(B.1). Although it achieves a poor score, we show that it is competitive compared to other kernels
with respect to a metric called geometric difference (B.4, I) and introduced by Huang et al. (2021).
We finally construct a synthetic dataset for which QEK supersedes all other classical kernels with
the same procedure (B.5).

Kernel F1-score (%) Kernel F1-score (%)
QEK 60.4± 5.1 Graphlet Sampling 56.9± 5.0

QEK (size-compensated) 45.1± 3.7 Random Walk 55.1± 6.9
SVM-ϑ 58.2± 5.5 Shortest Path 49.8± 6.0

Size 56.7± 5.6

Table 1: F1-score reached experimentally on the PTC-FM dataset by QEK (± std. on the splits) and
other classical kernels. The values are the average over a 5-fold cross-validation repeated 10 times.

CONCLUSION

In this paper, we reported the implementation of a quantum feature map for graph-structured data
on a neutral atom quantum processor with up to 32 qubits. We experimentally showed that this
embedding was not only sensitive to local graph properties but was also able to probe more global
structures such as cycles. This property offers a promising way to expand the capabilities of standard
GNN architectures, which have been shown to have the same expressiveness as the Weisfeiler-
Lehman (WL) Isomorphism test in terms of distinguishing non-isomorphic graphs Morris et al.
(2019); Xu et al. (2019). For example, a standard GNN architecture will treat G1 and G2 shown
in Fig. 2a in the same way, as they have the same local structure. Some properties of quantum-
enhanced version of GNNs have been explored in Thabet et al. (2022).

We then used the quantum graph feature map for a toxicity screening procedure on a standard bio-
chemistry dataset comprising 286 graphs of sizes ranging from 2 to 32 nodes. This procedure
achieved a F1-score of 60.4 ± 5.1%, on par with the best classical kernels. We intentionally did
not include GNNs in the benchmark, as they belong to another distinct family of models. Beyond
this pure performance assessment, we showcased the potential advantage of using a quantum feature
map through the computation of geometric differences with respect to said classical kernels, which
are metrics evaluating the degree of similarity between the kernels’ feature spaces, and by artificially
constructing a dataset for which the quantum procedure exhibited superior performances.

This proof-of-concept illustrates the potential of quantum-enhanced methods for graph machine
learning tasks. Our study paves the way for the incorporation of quantum-enhanced algorithms
with standard ML solutions, aiming at constructing better tools for graph data analysis and predic-
tion. Further work on more diverse datasets will be required to assess the viability of the approach
compared to powerful state-of-the-art GNN architectures (Gilmer et al., 2017; Ying et al., 2021;
Rampášek et al., 2022; Kreuzer et al., 2021). Additionally, our results showcase the power and ver-
satility of neutral atom QPUs, with their ability to change the register geometry from run to run.
Going forward, the implementation of similar methods on non-local graphs could be envisaged by
embedding them into three-dimensional registers Dalyac & Henriet (2022a) or moving the qubits
throughout the course of the computation Bluvstein et al. (2021).
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Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561(7721):79–
82, September 2018. ISSN 1476-4687. doi: 10.1038/s41586-018-0450-2. URL https://
www.nature.com/articles/s41586-018-0450-2.
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A QUANTUM FEATURE MAP FOR GRAPH-STRUCTURED DATA

In this paper, we use a neutral-atom based QPU made of single 87Rb atoms trapped in arrays of
optical tweezers Barredo et al. (2018); Nogrette et al. (2014); Browaeys & Lahaye (2020); Henriet
et al. (2020); Morgado & Whitlock (2021). The qubits are encoded into the ground state |0⟩ =∣∣5S1/2, F = 2,mF = 2

〉
and a Rydberg state |1⟩ =

∣∣60S1/2,mJ = 1/2
〉
.

When promoted to Rydberg states, the atoms behave as large electric dipoles and thus experience
dipole-dipole interactions which boils down, for the chosen Rydberg level, to Van der Waals terms
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only. The dynamics of a set of N qubits at positions {ri}i=1...N is thus governed by the following
Hamiltonian:

Ĥ = ℏ
N∑
i=1

(
Ω

2
σ̂x
i − δ n̂i

)
+

∑
i<j

C6

|ri − rj |6
n̂in̂j (1)

where σ̂α
i are Pauli matrices and n̂i = (1 + σ̂z

i ) /2. |ri − rj | is the distance between qubits i and
j, and C6/h ≃ 138 GHz·µm6 for the Rydberg state considered Bé guin et al. (2013); Šibalić et al.
(2017). Controlling both intensities and frequencies of each laser field, we can effectively drive the
qubit register uniformly with time-dependent tunable Rabi frequency Ω and detuning δ.

Key to our study is the programmability of the qubit register’s geometry. In neutral atom processors,
one can modify the spatial arrangement of qubits Barredo et al. (2016; 2018) and reproduce the
geometrical shape of various graphs with atoms in tweezers. We will restrict ourselves to a set of
graphs called Unit Disk (UD) graphs, for which two nodes in the plane are connected by an edge if
the distance between them is smaller than a given threshold. UD graphs are intimately related to
Rydberg physics through the mechanism of Rydberg blockade Jaksch et al. (2000); Gaëtan et al.
(2009); Browaeys & Lahaye (2020), where an atom excited to a Rydberg state prevents other
neighboring atoms to be excited within a certain blockade radius. For an atomic register reproducing
a UD graph G, the 1/r6 power law of the van der Waals interactions effectively restricts, in a good
approximation, the summation in the third term of Eq. equation 1 to pairs of indices (i, j) sharing
an edge in G. The topology of the interaction term in Eq. equation 1 then becomes the one of the
graph under consideration, giving rise to a graph-dependent Hamiltonian ĤG . This property has
notably been harnessed for solving combinatorial graph optimization problems Pichler et al. (2018);
Henriet (2020); Dalyac et al. (2021); Nguyen et al. (2022); Ebadi et al. (2022); Kim et al. (2022);
Byun et al. (2022); Wurtz et al. (2022); Dalyac & Henriet (2022b).

Starting from a UD graph G reproduced in the array of tweezers with qubits all starting in |0⟩, we
apply a parameterized laser pulse onto the atoms in order to generate a wavefunction |ψG⟩ of the
form

|ψG⟩ = U(G; t) |0⟩⊗|G|, (2)

where we define the time-evolution operator U(G; t) = T
[
exp

(
−i/ℏ

∫ t

s=0
ĤG(s)ds

)]
to be our

quantum feature map unitary for graph-structured data. Throughout this paper, we will restrict our-
selves to laser pulses with constant detuning δ and Rabi frequency Ω, with an adjustable duration
t. Depending on the task at hand, we consider various observables Ô to evaluate on |ψG⟩. Mea-
surements of a site-dependent (respectively global) observable give rise to a probability distribution
P which is node (graph) specific and can be used for various machine learning tasks at the node
(graph) level. In the following, we show theoretically and experimentally that the graph quantum
feature map already shows interesting properties when associated with local or global observables
built from single-body expectation values ⟨Ôj=1,...,|G|⟩.

B BINARY CLASSIFICATION TASK

B.1 QEK AND SIZE-COMPENSATED QEK

In order to realize the classification task on this dataset, we need to turn the quantum graph embed-
ding introduced in Sec. 1 into a kernel K, the Quantum Evolution Kernel by following the approach
originally proposed in Ref. Henry et al. (2021). We compute the distributions P of the total number
of Rydberg excitations

∑
j n̂j measured in the final state on graph G and we use again the Jensen-

Shannon divergence from section ??sec:embeddings to build a kernel out of those distributions.

K(G,G′) = exp [−JS(P,P ′)] . (3)

This kernel is well-defined, i.e. the kernel matrix is always positive definite Bai & Hancock (2013).

Going forward, we modify the QEK procedure in order to make the kernel insensitive to size. To
that end, we compare the measurement distributions obtained for different graph sizes using a con-
volution operation. Let us consider two graphs Gi and Gj of Ni and Nj = Ni + ∆N > Ni nodes
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Figure 4: Each kernel is represented by a M × M matrix where Ki,j = K(Gi,Gj) as defined
in Eq. equation 3. The graph indices are sorted by increasing size. A separation (black line) is
drawn between numerically simulated (top right) and experimentally measured (bottom left) QEK
matrices. a. QEK kernel obtained using directly the raw distributions Pi and Pj . b. Kernel obtained
via SVM-ϑ method. c. Size kernel obtained with Ksize(Gi,Gj) = exp

(
−γ(|Gi| − |Gj |)2

)
with

γ = 0.1. d. QEK kernel obtained using modified distributions P̃i and Pj , where graphs of smaller
sizes are convoluted with binomial distributions when compared to larger graphs.

Figure 5: The PTC-FM dataset exhibits a strong size imbalance. For small number of nodes ( 10)
more graphs are labeled as harmless (blue) while it is the opposite for larger graphs, more prone to
be labeled as toxic (red).

respectively; and note their respective observable distributions Pi and Pj . From Pi we construct
P̃i = Pi ⋆ b

(i/j)
∆N the convolution of Pi and a binomial distribution :

b
(p)
∆N (n) =

(
∆N

n

)
pn(1− p)∆N−n. (4)

P̃i corresponds to the distribution one would get by adding to the graph ∆N non-interacting qubits,
submitted to the same laser pulse as the other. Each of these isolated qubits undergoes Rabi os-
cillations, induced by the applied pulse sequence. They are therefore measured either in |0⟩ with
probability p or in |1⟩ with probability 1 − p, where p = sin2(πΩT ) (≈ 0.768 here). We finally
define the modified graph kernel as

Kconv(Gi,Gj) = exp
[
−JS(P̃i,Pj)

]
. (5)

Using this procedure on the data obtained experimentally, we obtain the kernel matrix shown in
Fig. 4d, with a corresponding F1-score of 45.1 ± 3.7%. If this size-compensated version of QEK
had been implemented without interaction between atoms, its score would be 42%, which is the
lowest score reachable by any kernel. We therefore see that this version of QEK cannot capture
useful features beyond the graph size, meaning that the presence of interactions by itself is not
sufficient to produce an interesting kernel for the task at hand. While the size-compensated QEK
does not give results that are comparable with classical kernels, we study in the following part its
expressive power, and show that the geometry induced by this method is hardly reproducible by a
classical kernel.

We show in Fig. 4a the kernel matrix associated with QEK, with indices sorted by increasing size
of the graphs. Using the same noise model as in the previous section, we find adequate agreement
between the numerically Pnum and experimentally Pexp obtained data.
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B.2 DATASET AND MAPPING ON HARDWARE

In the original PTC-FM dataset, the 349 molecules are represented under the form of graphs where
each node is labeled by atomic type and each edge is labeled according to its bond type. We first
truncate the dataset to small graph sizes in order to be able to train the kernel in reasonable time.
For the M = 286 remaining graphs of this dataset, we take into account the adjacency matrix of
the graphs representing the compounds and discard the nodes and edges labels. Note that the results
of our implementation are therefore not directly comparable to kernel results in the literature which
take into account edge and node labels (see Ref. Kriege et al. (2020) for example).

Each node of a graph will be represented by a qubit in the QPU. We first need to determine the
positions of these qubits, in order to implement an interaction term in Eq. equation 1 that effectively
reflects the graph topology. To this end we design a local optimizer detailed in Appendix G to esti-
mate in free space a preliminary 2D layout for each graph. Starting from a Reingold-Fruchterman
layout Fruchterman & Reingold (1991), our optimizer minimizes the average distance between two
connected nodes while maximizing the distances between unconnected nodes. Then taking ad-
vantage of our ability to tailor the spatial disposition of the tweezers generated by a Spatial Light
Modulator (SLM) to fit the optimized layout, we can replicate the graph in the hardware. Following
a batching method also detailed in Appendix G, we group similar graphs and superimpose them on
the same SLM pattern, effectively mapping the whole dataset on only 6 different SLM patterns over
a triangular grid. We therefore reduce the time needed to implement the whole dataset on the QPU.

B.3 MODEL TRAINING

To test the performance of our implementation, we perform a standard procedure called cross-
validation. Cross-validation consists of dividing the dataset in 5 equal parts called ‘splits’, and
using each split for testing while the rest of the dataset is used for training. During the training
phase, we construct for each pulse duration t the corresponding kernel and train a SVM model with
it. We then evaluate the F1-score on the part of the dataset that was left as a test set. We repeat the
splitting 10 times, and the cross-validation score is defined as the average of the F1-score of each
split (50 splits in total). We perform a grid search on the penalty hyperparameter C of the SVM
on the range [10−3, 103] such that the final score of a given pulse is the best cross-validation score
among the tested values of C, see Appendix F for details.

Including graphs with sizes |G| ≤ 20, we numerically compute the score for a nearest-neighbor
distance of rNN = 5.6µm and a resonant constant pulse with fixed Ω/2π = 1 MHz, and we vary
its duration between tmin = 0.1µs and tmax = 2.5µs. We select the optimal duration T = 0.66µs
that exhibits the maximum F1-score. We then implement this pulse on the QPU. The whole process
is illustrated in Fig. 3.

B.4 GEOMETRIC TEST WITH RESPECT TO CLASSICAL KERNELS

In order to obtain an advantage over classical approaches it is not sufficient to implement a quantum
feature map based on quantum dynamics that are hard to simulate classically. As shown in Huang
et al. (2021), classical ML algorithms can in certain instances learn efficiently from intractable
quantum evolutions if they are allowed to be trained on data. The authors consequently propose
another metric between kernels in the form of an asymmetric metric function called the geometric
difference g12. It compares two kernels K1 and K2 in the following way:

g12 =

√
||
√
K2 (K1)

−1
√
K2||∞ (6)

where ||.||∞ is the spectral norm. Intuitively, g12 measures the difference between how kernels K1

and K2 perceive the relation between data. Precisely, it characterizes the disparity regarding how
each of them maps data points to their respective feature spaces. In our case, we take K1 to be the
size-compensated QEK Kconv , and K2 is selected from a set of classical kernels. If the geometric
difference is small, it means that there exists no underlying function mapping the data to the targets
for which Kconv outperforms the classical kernel. On the other hand, a high geometric difference
between a quantum and a classical kernel guarantees that there exists such a function for which the
quantum model outperforms the classical one. Estimating the geometric difference is therefore a
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sanity check to stating that the encoding of data to the feature space through the Quantum Evolution
Kernel could not be closely replicated by a classical model.

We compute the geometric difference between QEK and various classical kernels over the PTC-FM
dataset and report the results in Table 2. The threshold for a high geometric difference is typically
taken to be

√
M , where M is the size of the dataset. Here, the obtained g12 is always far beyond√

M ∼ 101, indicating that the embedding of data through our quantum-enhanced kernel is not
trivial and cannot be replicated by a classical machine learning algorithm.

To summarize, while the F1-score on PTC-FM is rather similar using quantum or classical models,
we see nonetheless that the geometry created by our quantum model is non-trivial. A possible inter-
pretation of the non-superiority of quantum approaches on PTC-FM would be that the relationship
between the data and the targets is not better captured by our quantum model, although its feature
space is not reproducible by classical means. To further confirm this understanding, we find a func-
tion that increases and even maximizes the utility of our rich quantum feature space. We build such
a function by artificially relabeling the targets according to a procedure presented in Huang et al.
(2021) and outlined in Appendix I. We observe that QEK, without retraining, retains an F1-score of
around 99% on the relabeled dataset, while the closest classical kernel reaches a score of at most
82% even after retraining it on the new labels. The results are summarized in Table 3, where the
difference in F1-score between QEK and the various classical kernels is shown.

Geometric Difference w.r.t. QEK
SVM-ϑ 103

Size 105

Graphlet Sampling 104

Random Walk 105

Shortest Path 105

Table 2: Order of magnitude of the geometric difference between QEK and various classical kernels.

F1-score gap (%) w.r.t. QEK (relabeled)
SVM-ϑ 17.2± 4.5

Size 17.8± 4.2
Graphlet Sampling 20.1± 4.5

Random Walk 17.3± 4.3
Shortest Path 18.2± 4.4

Table 3: Gap in F1-score between QEK and various classical kernels after relabeling the dataset.

In light of the geometric difference assessment and the observed gap of F1-score between QEK and
classical kernels on an artificial function, it remains an open question to generally characterize which
types of dataset naturally offer a structure that better exploits the geometry offered by our quantum
model, without requiring artificial tweaking of the labels. In the following section, we present a
synthetic dataset on which QEK is able to outperform classical methods without any relabeling.

B.5 SYNTHETIC DATASET

This binary classification dataset is created by sampling weighted random walks on a triangular lat-
tice. In class A, sites belonging to a honeycomb-type sublattice are favored. They are explored with
a weight p0 = 1 while the rest of the triangular lattice sites are explored with a weight p < 1. Class
B is constructed in a similar fashion, but taking a kagome instead of a honeycomb sublattice. The
construction of this artificial dataset is illustrated in Fig. 6. In the case where p = 0, the differences
in their local structure make the two classes easily distinguishable. However, with increasing p, their
local structure becomes more and more similar, as additional triangular lattice sites are incorporated.
When p is large enough, a lot of triangular local substructures are shared by the two classes, render-
ing them potentially hard to distinguish by classical methods. At p = 1, the underlying triangular
lattice is explored uniformly, rendering the datasets indistinguishable.
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Building on our ability to distinguish between graphs with similar local structure but globally dis-
tinct, we apply QEK on this synthetic dataset. We expect our method to be hardly affected by the
presence of sparse defects and therefore be able to outperform classical approaches.

Weighted 
random
walks

Class A Class B

𝑝 < 1 𝑝! = 1

Figure 6: Graphs in Class A contains honeycomb sites (blue) with inclusions of non-honeycomb
sites (red) with probability p. Graphs in Class B contains kagome sites (blue) with inclusions of
non-kagome sites (red) with probability p. We show examples of generated graph with the afore-
mentioned process.

We investigate numerically this assumption, for several values of p. In each case, we create 200
graphs of 20 nodes each, 100 in each class. The graphs are mapped to a triangular lattice with 5
µm spacing. Here, we consider two alternative schemes of pulse sequences. The first one remains
almost the same as the experimentally implemented one, i.e. a unique resonant pulse of Ω/2π = 2
MHz with parameterized duration up to 8µs. The second one is an alternate layer scheme with 4
parameters as described in Henry et al. (2021), where we evaluate 500 random values of the parame-
ters and select the best one. The procedure is designed such that it would be directly implementable
on the hardware, as we did for the PTC-FM dataset. We then compare the F1-score reached by QEK
to those reached by other classical kernels, namely: SVM-ϑ, GS, RW and SP. The results are sum-
marized in Fig. 7. With decreasing proportion of defects, all methods perform increasingly better, as
expected. Overall, regarding the mean F1-score reached, the two QEK schemes outperform the four
other classical kernels tested for all p ≤ 0.5. Noticeably, at p = 0.1 (resp p = 0.2), the mean gap
in F1-score between the QEK scheme and the the best classical scheme is 4.5% (resp 7.1%) while
the mean gap obtained with the alternate QEK scheme is even larger with 13.7% (resp 21%), thus
showing that QEK can significantly surpass classical approaches on certain types of datasets. When
adding too many defects, i.e. p = 0.5, our Quantum Evolution Kernel exhibits similar performance
to the SVM-ϑ.

C EXPERIMENTAL SETUP

The experimental setup is shown schematically in Fig. 8. It features a magneto-optical trap (MOT),
able to cool down and confine a cloud of 87Rb atoms in order to load an array of optical tweezers.
They are created by shining a 849 nm laser beam on a Spatial Light Modulator (SLM), and then
focusing the beam to a small waist of ∼ 1 µm with a high numerical aperture (NA) optical system
inside the vacuum chamber. The loading of the optical tweezers is stochastic with a probability
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Figure 7: F1-score (%) reached on the synthetic dataset for different probabilities p of including
non-sublattice sites, by the Quantum Evolution Kernel (the alternate scheme is noted QEK layer)
as well as by the best SVM-ϑ, GS, RW and SP kernels. The values reported are the average over a
5-fold cross-validation repeated 10 times. Each kernel reaches a F1-score of 100% when p = 0.

η ≈ 0.55 of obtaining one atom per trap. Hence, at each repetition cycle of the experiment, we use
a dynamical optical tweezer to move the atoms one by one in order to generate the targeted graph.

The atoms are embedded into a 10G magnetic field that sets the quantization axis. The qubits
are encoded into the ground state |0⟩ =

∣∣5S1/2, F = 2,mF = 2
〉

and a Rydberg state |1⟩ =∣∣60S1/2,mJ = 1/2
〉

of the atoms. They are initialized in the ground state by optical pumping.
The qubit transition is then addressed by a two-photon laser excitation, via an intermediate state
6P3/2. The first (respectively second) photon excitation is generated by a 420 nm (1013 nm) σ+-
polarized (σ−-polarized) laser beam with a 1/e2 waist radius of 260µm (180µm). The two lasers
being far-detuned from the intermediate state by 700MHz, we avoid spurious populating of this
state and the three-level system can be faithfully approximated by an effective two-level system.
The qubits state is readout in a single step by fluorescence imaging close to resonance at 780 nm,
using an EMCCD camera with an integration time of 20 ms.

Figure 8: Figure from Nogrette et al. (2014). Microtraps for capturing single atoms are generated
by using a SLM. A calculated phase pattern is printed on the 849 nm laser beam and then focused
by the first of two high numerical aperture lenses on the middle of a MOT. The atomic fluorescence
at 780 nm is reflected by a dichroic mirror (DM) and detected with an EMCCD camera. A second
aspheric lens (identical to the first) collects the 849 nm light for, three kind of images, layout loading
(tweezers loading quality), register validation (rearrangement successfulness) and register readout
(Rydberg excitation discrimination results). The transmitted beam is used for trap diagnostics via a
CCD camera or a Shack-Hartmann wavefront sensor (SH).
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A set of eight electrodes in an octupole configuration provides active control of the electric field
environment around the Rydberg atoms. The durations and shapes of the Rydberg pulses are defined
using acousto- and electro-optic modulators, in order to ensure the correct pulse-length used on the
measurements.

D NOISE MODEL

Despite the precise calibration of the control devices which enable to monitor quantities such as
the SLM pattern spacing or the pulse shapes, several experimental imperfections may alter the data
measured on the experiment. All experimental data obtained during this study, including those
presented in Fig. 2 and Fig. 4, are uncorrected and thus needs to be benchmarked with respect to
their simulated counterpart, taking into account the following main sources of noise.

First and foremost, due to the probabilistic nature of the quantum state and the limited budget of
shots, measurements are subject to sampling noise. For instance, on average, each of the 25 experi-
mental points on Fig. 2 is obtained using 600 shots and the uncertainty related to this effect (vertical
error bars) can be estimated using the Jackknife resampling method SHAO & TU (1995).

The finite sampling is also inherently flawed by several physical processes like atoms thermal mo-
tion, background-gas collisions or Rydberg state finite lifetime, whose effects can all be encom-
passed as first approximation into two detection error terms, ε and ε′. ε (resp ε′) yield the probability
to get false positive (resp negative), i.e. measure an atom in |0⟩ (resp |1⟩) as being in |0⟩ (resp |1⟩).
ε can be measured with a regular release-and-recapture experiment and ε′ with a more advanced
method Leseleuc de kerouara (2018) involving π and pushout pulses. To replicate the probabilistic
effect of detection errors, the simulated distributions of bitstrings are altered using the following rule
to compute the probability of measuring j instead of i:

Pj|i =
∏
k

(1− |i− j|k)− (−1)|i−j|k [(1− ik)ε+ ikε
′] . (7)

i, j ∈ BN , ik = 0 (resp 1) if atom k is in |0⟩ (resp |1⟩). On our device, we measure ε ≈ 3% and
ε′ ≈ 8%; thus as an example, we can compute P1001|0101 = εε′(1 − ε)(1 − ε′) ≈ 0.2%. Those
detection errors can deeply modify the measured excitation distributions, with a noticeable effect
shown on Fig. 2b at t = 0 where the simulated ⟨nj⟩ does not start at 0 despite |ψ(t = 0)⟩ = |0 . . . 0⟩.
Additional errors can also lead to decoherence in the system de Lé séleuc et al. (2018), affecting
the atom dynamics in ways costly to emulate. For instance, since the Rydberg transition used is
addressed by a two-photon process, misalignments and power fluctuations of the two lasers are
twice as likely to occur. Atoms are subject to positional disorder between each shot and their finite
velocities make them sensitive to the Doppler effect. Since taking all those effects into consideration
becomes quickly intractable, they were only individually simulated in order to assess their limited
action on the implemented protocols. However, in order to replicate the experimental data presented
in Fig. 2, we resort to an effective decoherence model in the form of solving the Master equation
with a relaxation rate of 2π × 0.06 MHz Bé guin et al. (2013). This value was obtained by fitting
with the above model damped Rabi oscillations measured on the same device. Thus, reaching
similar behaviour within error bars between numerically simulated and experimentally obtained
JS(P1,P2) was achieved with no free parameter.

E MESSAGE PASSING NEURAL NETWORKS

Message passing neural networks (MPNN) Gilmer et al. (2017) is a widely used family of graph
neural networks. It was one of the first ones to be developed for graph-structured data, and is still
one of the most successful Maskey et al. (2022). It consists of GNNs where the update is made only
by aggregating the features of nearest neighbors. In this scheme, the nodes features are multiplied
by a trainable weight matrix at each layer, and each node aggregates as a ’message’ the features of
its neighbors, as illustrated in Fig. 9.

MPNN are closely related to Weisfeiler-Lehman algorithms. In particular, they have been proven to
be at most as powerful in distinguishing graph structures Xu et al. (2019). In their standard form,
they are then also limited to capture only local features of graphs.
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Figure 9: In message passing neural networks, node features vector hli are iteratively updated, from
one layer l to the next l+ 1, using only neighboring nodes, similarly to what is done in the WL test.

F SUPPORT VECTOR MACHINE (SVM) ALGORITHM

The SVM algorithm aims at splitting a dataset into two classes by finding the best hyperplane that
separates the data points in the feature space, in which the coordinates of each data point (here each
graph) is determined according to the kernel K.

For a training graph dataset {Gi}i=1...M , and a set of labels y = {yi}i=1...M (where yi = ±1 de-
pending on which class the graph Gi belongs to), the dual formulation of the SVM problem consists
in finding α̃ ∈ AC(y) =

{
α ∈ [0, C]M

∣∣αTy = 0} such that

1

2
α̃TQα̃− eT α̃ = min

α∈AC(y)

{
1

2
αTQα− eTα

}
(8)

where e is the vector of all ones,Q is aM×M matrix such thatQij = yiyjK(Gi,Gj), and C > 0 is
the penalty hyperparameter, to be adjusted. Setting C to a large value increases the range of possible
values of α and therefore the flexibility of the model. But it also increases the training time and the
risk of overfitting.

The data points for which α̃i > 0 are called support vectors (SV). Once the αi are trained, the class
of a new graph G is predicted by the decision function, given by:

y(G) = sgn {⟨ϕ(G)|ϕ0|ϕ(G)|ϕ0⟩} (9)

= sgn

{ ∑
i∈SV

yiα̃iK(G,Gi)

}
, (10)

with
ϕ0 =

∑
i∈SV

yiα̃iϕ(Gi). (11)

In this case, the training of the kernel amounts to finding the optimal feature vector ϕ0. It is worth
noting that in many cases, Eq. equation 10 is evaluated directly, without explicitly computing ϕ0.

G MAPPING AND BATCHING

a b

Figure 10: Histograms of normalised pairwise distances between atoms in the 286 graphs of the
truncated dataset when performing the embedding with a. only a Fruchterman-Reingold layout or
b. when adding a local optimization step afterwards. For a given graph (insets), two atoms forming
a pair ∈ E (blue) can be close enough to form a bond via interaction (plain) or too far, creating a
missing bond (dotted). Likewise, two atoms forming a pair /∈ E can be placed too close and form a
fake edge (thick line).

We present in detail our method to embed the graphs of the PTC-FM dataset. Let G = (V, E) be
a graph of the dataset for which we have a layout of the nodes. Embedding the graph amounts to
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replace its nodes with atoms, the latter interacting between themselves with the 1/R6 dependence.
Moving two atoms slightly apart can therefore drastically reduce their interaction strength but it
remains non-zero. In order for the Hamiltonian to reflect the topology of G, this 1/R6 dependence
needs to be approximated by the Heaviside function defined as:

h(r) =

{
∞ if r ≤ rb
0 else (12)

For the Heaviside approximation to be correct, we have to ensure that the largest distance between
a pair sharing an edge in the graph is always far less than the shortest distance between a pair not
sharing an edge. In other words, in theory, min{Uij , (i, j) ∈ E}/max{Uij , (i, j) /∈ E} ≫ 1.

We use a local optimizer to maximize this ratio and find good solutions in polynomial time. The
method optimizes the position of each node in turn, depending on the previously mapped nodes
and the presence of cycles in the graph. For the dataset used in this study, we achieve a significant
increase of the mean ratio up to 16.8, starting from 5.9 with the classical Fruchterman-Reingold
layout. We report that more than half the dataset exhibits a ratio higher than 10 and less than 5% of
the dataset is embedded with some defects, i.e. a ratio smaller than 1. We also assess the benefit of
this approach in Fig. 10 by comparing the distributions of distance of pairs ∈ E and pairs /∈ E (a)
before and (b) after the optimization. While some defects, such as fake or missing bonds, frequently
appear in the pre-optimisation embedding, the optimised positions are constrained such that a clear
cut is visible between the two distributions, easing the approximation.

In principle, we can program a different SLM pattern for the layout of each graph from the dataset.
In practice however the SLM calibration step can be quite time-consuming, i.e. of the order of the
minute. We can compare it to the duration of hundreds of shot, each of which consisting in applying
a sequence and measuring a quantum state, performed at a frequency of 1 Hz. Then for each graph,
calibrating the SLM and obtaining the probability distribution take approximately the same order of
time.

We therefore seek to regroup many graphs onto the same SLM pattern, to be able to reduce the
number of calibrations needed for the whole dataset. We do so by clustering the graphs according to
similarities in their structures. Because the dataset consists in representations of organic molecules,
many of the graphs share common structures. We thus focus on retrieving the presence and multi-
plicity of pentagons and hexagons. We then build a similarity measure between the graphs. For the
pentagons for example, the similarity can be written under the form:

s(G1,G2) = 1− exp
(
−α|NP

1 −NP
2 |

)
(13)

where NP represents the number of pentagons in G and α is a hyper-parameter. We then use a
linear combination of similarity measures in order to build a similarity matrix between all graphs of
the dataset. We then apply a k-means clustering algorithm C. (2004) using the similarity matrix in
order to separate the graphs into different batches. Furthermore, since the laser power is distributed
over all the traps, we want to reduce the total number of traps, in order to maximize the intensity
provided to each trap. This ensures that the traps are deep enough to obtain a satisfying filling
efficiency (∼ 55%) over the whole pattern. For each batch, we thus apply the following mapping
algorithm

[H] Creating a triangular SLM pattern by batching M graphs [1] Graphs {G1, . . . ,GM} in sorted
sizes and optimized positions {x1, . . . , xM} Single SLM pattern that embedsM graphs with optimal
positions on a triangular lattice. traps = {} for i in range 1, · · · ,M :
find rGi = {r1, . . . , r|Gi|} triangular grid points that best conserve the pairwise distances between
points in xi and maximizes overlap with existing traps.
traps ← traps + rGi \traps if |traps| < 2|GM |, add additional random triangular grid points to
guarantee the filling property for re-arrangement.

We successfully map the entire dataset of 286 graphs into only 6 SLM patterns. For example, we
batch 66 graphs together onto the 71-trap SLM pattern presented in Fig. 11. On average, the 6 SLM
patterns use 70 traps each to encode 48 graphs each.
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Figure 11: A family of 66 graphs, ranging in sizes from 4 to 19 nodes, is mapped and batched to
the same SLM pattern (white dots) over a triangular grid with spacing 5.6µm. The traps used when
implementing G1 (G2) are colored in red (blue). The bi-colored traps are those used for both graphs.

H CLASSICAL GRAPH KERNELS

A variety of classical kernels that do not require node or edge attributes are used in the main text to
compare the performance of QEK on the PTC-FM dataset. In the following, a brief description of
each is given.

H.1 SVM-ϑ KERNEL

The SVM-ϑ kernel was proposed as an alternative to the more computationally intensive Lovasz-ϑ
kernel. Both ϑ kernels leverage the so-called orthogonal representation of a graph. Given a graph
G = (V, E), the orthogonal representation is an assignment of unit vectors {ui} to each node of the
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graph, subject to the constraint that unit vectors associated to vertices that are not joined by an edge
are orthogonal: ⟨ui,uj⟩ = 0 if {i, j} /∈ E .

Orthogonal representations are not unique, but there is a particular representation associated with
the ϑ number Lovasz (1979) of a graph. Given a graph G = (V, E) with n vertices, denote UG an
orthogonal representation of G, and C the space of unit vectors in Rn. The ϑ number is defined as:

ϑ(G) := min
c∈C

min
UG

max
ui∈UG

1

⟨c,ui⟩2
. (14)

From now on, we will always be referring to the particular orthogonal representation UG that mini-
mizes (14).

Now consider a subset of vertices B ⊂ V , and call UG|B the orthogonal representation obtained
from UG by removing the vectors that are not in B:

UG|B := {ui ∈ UG : i ∈ B}. (15)

Note that UG|B preserves the global properties encoded in UG through the orthogonal constraint, and
that UG|B is not in general the orthogonal representation of the subgraph of G containing only the
vertices in B. Define the ϑB number:

ϑB(G) := min
c∈C

max
ui∈UG|B

1

⟨c,ui⟩2
. (16)

We are ready now to give the definition of the Lovasz-ϑ kernel. Given two graphs G1 = (V1, E1),
G2 = (V2, E2), define:

KLo(G1,G2) :=
∑

B1⊂V1

∑
B2⊂V2

δ|B1|,|B2|
1

Z
k (ϑB1

, ϑB2
) (17)

where Z =
(|V1|
|B1|

)(|V2|
|B2|

)
, δ is the Kronecker delta, and k is a freely specifiable kernel (called base

kernel) from R× R to R.

The SVM-ϑ kernel is defined as (17), but it uses an approximation for the ϑ numbers. Consider a
graph G with n vertices and adjacency matrixA, and let ρ ≥ −λ, where λ is the minimum eigenvalue
of A. The matrix

κ :=
1

ρ
A+ I (18)

is positive semi-definite. Define the maximization problem:

max
αi≥0

2

n∑
i=1

αi −
n∑

i,j=1

αiαjκij . (19)

If {α∗
i } are the maximizers of (19), then it can be proven that on certain families of graphs the

quantity
∑

i α
∗
i is with high probability a constant factor approximation to ϑ(G):

ϑ(G) ≤
n∑

i=1

α∗
i ≤ γϑ(G) (20)

for some γ. The SVM-ϑ kernel then replaces the ϑB numbers on subgraphs with:

ϑB(G)→
∑
j∈B

α∗
j . (21)

The SVM-ϑ kernel requires a choice of base kernel k : R × R → R. We choose a translation
invariant universal kernel Micchelli et al. (2006) k(x, y) = (β + ||x − y||2)−α, where α and β are
two trainable hyperparameters.

H.2 SIZE KERNEL

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the Size kernel is defined as:

Ksize(G1,G2) := e−γ(|V1|−|V2|)2 (22)

with a choice of hyperparameter γ > 0.
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H.3 GRAPHLET SAMPLING KERNEL

Let G = (V, E) and H = (VH , EH) be two graphs. We say that H is a subgraph of G if there exists
an injective map α : VH → V such that (u, v) ∈ EH ⇐⇒ (α(u), α(v)) ∈ E . In general it might be
possible to mapH into G in several different ways, i.e. the mapping α, if it exists, is not necessarily
unique.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea behind the Graphlet kernel is to pick
an integer k < min{|V1|, |V2|}, enumerate all possible graphs of size k and find the number of ways
they can be mapped to G1 and G2. Denote by f (k)Gi

the vector where each entry counts the way a
specific graph of size k can be mapped as a subgraph of Gi. A kernel can then be defined as the dot
product f (k)G1

· f (k)G2
between the two vectors.

The complexity of computing such a kernel scales as O(nk), as there are
(
n
k

)
size-k subgraphs

in a graph of size n. For this reason it is preferable to resort to sampling rather than complete
enumeration Shervashidze et al. (2009). Given a choice of integer N , graphs g1, . . . , gN of size
between 3 and k are randomly sampled. The number of ways each gi can be mapped as a subgraph
of Gj is computed and stored in a vector fGj , and the Graphlet Sampling kernel is defined as the dot
product:

KGS(G1,G2) := fG1 · fG2 (23)

To account for the different size of G1 and G2, each vector can be normalized by the total number of
its subgraphs.

H.4 RANDOM WALK KERNEL

The Random Walk kernel is one of the oldest and most studied graph kernels Gärtner et al. (2003).
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the idea is to measure the probability of
simultaneous random walks of a certain length between two vertices in G1 and G2.

Simultaneous random walks can be conveniently encoded in powers of the adjacency matrix on the
product graph. The product graph G1 × G2 = G× = (V×, E×) is defined as follows:

V× := {(ui, ur) | ui ∈ V1, ur ∈ V2} (24)

E× := {
(
(ui, ur), (vj , vs)

)
| (ui, vj) ∈ E1,

(ur, vs) ∈ E2}. (25)

In other words, an edge in the product graph indicates that an edge exists between the endpoints in
both G1 and G2. If A× is the adjacency matrix of the product graph, then the entries of Ak

× indicate
the probability of a simultaneous random walk of length k between two vertices ui, vj ∈ V1 and
ur, vs ∈ V2.

If p, q ∈ R|V×| are vectors representing the probability distribution of respectively starting or stop-
ping the walk at a certain node of V×, the first idea for a kernel would be to compute the sum∑

k q
TAk

×p, which however may fail to converge. A simple modification to make the sum conver-
gent is to choose an appropriate length-dependent weight µ(k):

K(G1,G2) :=
∞∑
k=0

µ(k) qTAk
×p. (26)

The Geometric Random Walk kernel is obtained by choosing the weights to be the coefficients of a
geometric series µ(k) = λk, and p, q to be uniform. If λ is tuned in such a way as to make the series
convergent, the kernel reads:

KRW(G1,G2) :=
∞∑
k=0

λk eTAk
×e = eT (I − λA×)

−1
e (27)

where e denote vectors with all the entries equal to 1.

The cost of matrix inversion scales as the cube of the matrix size. If |V1| = |V2| = n, then the cost
of the algorithm scales as O(n6), as it involves the inversion of an adjacency matrix of size n2×n2.
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Several methods are proposed in Vishwanathan et al. (2010) to make the computation faster. The
Spectral Decomposition method in particular allows to reduce the complexity for unlabeled graphs
to O(n3). Essentially, one exploits the fact that the adjacency matrix of the product graph can be
decomposed in the tensor product of the individual adjacency matrices:

A× = A1 ⊗A2 (28)

which allows to diagonalize each n × n adjacency matrix in O(n3) time and perform the inversion
only on the diagonal components.

H.5 SHORTEST PATH KERNEL

Given a graph G = (V, E), an edge path between two vertices u, v ∈ V is a sequence of edges
(e1, . . . , en) such that u ∈ e1, v ∈ en, ei and ei+1 are contiguous (i.e. they have one of the endpoints
in common) and ei ̸= ej for i ̸= j. Computing the shortest edge path between any two nodes of
a graph can be done in polynomial time with the Dijkstra Dijkstra (1959) or Floyd-Warshall Floyd
(1962) algorithms, which makes it a viable feature to be probed by a graph kernel.

The first step of the Shortest Path kernel is to transform the graphs into shortest path graphs. Given
a graph G = (V, E), the shortest path graph GS = (VS , ES) associated to G is defined as:

VS = V (29)

ES = {(u, v) | ∃ an edge path (e1, . . . , en)

between u and v in G} (30)

In addition, to each edge e ∈ ES a label l(e) is assigned given by the length of the shortest path in G
between its endpoints. The Shortest Path kernel is then defined as:

KSP(G1,G2) :=
∑
e∈ES

1

∑
p∈ES

2

k(e, p) (31)

with k being a kernel between edge paths such as the Brownian bridge kernel:

k(e, p) := max{0, c− |l(e)− l(p)|} (32)

for a choice of c.

I GEOMETRIC DIFFERENCE AND MAXIMUM QUANTUM-CLASSICAL
SEPARATION

Given two kernel functions K1 and K2, the geometric difference g(K1||K2) = g12 described in
Huang et al. (2021) is an asymmetric distance function that quantifies whether or not the kernel K2

has the potential to resolve data better than K1 on some dataset. In its simplest form, the geometric
difference is defined as:

g12 =

√
||
√
K2 (K1)

−1
√
K2||∞ (33)

where || · ||∞ denotes the spectral norm.

The geometric difference becomes an especially useful metric when K1 = KC is a classical kernel
and K2 = KQ is a quantum kernel. If N is the size of the dataset, a value of gCQ of order

√
N

or greater indicates that the geometry of the feature space induced by the quantum kernel is rich
enough to be hard to learn classically, and the quantum kernel can potentially perform better than
classical kernels. In that case, it is possible to artificially relabel the dataset in order to maximally
separate the kernels’ performance. Such a relabeling process is a constructive proof of the existence
of a certain dataset on which one kernel performs much better than the other. If v is the eigenvector
of
√
K2 (K1)

−1√
K2 corresponding to the eigenvalue g212, the vector of new labels is given by

ynew =
√
K2v.

When dealing with a finite amount of training data, equation (33) should be regularized in order to
stabilize the inversion of K1. The regularized expression reads:

g12(λ) =

√
||
√
K2

√
K1 (K1 + λI)

−2
√
K1

√
K2||∞ (34)
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where λ is the regularization parameter. The geometric difference g12(λ) has a plateau for small
λ, when the regularization parameter becomes smaller than the smallest eigenvalue of K1, and
decreases for increasing λ. The effect of λ is to introduce a certain amount of training error. The
training error can be upper bounded by a quantity proportional to:

gtra(λ)
2 = λ2||

√
K2 (K1 + λI)

−2
√
K2||∞. (35)

Practically, one should look at the regime where g12 has not plateaued but the training error is still
small enough.

A regularization should be introduced also in the relabeling procedure. The new labels are taken to
be ynew =

√
KQv, where v is the eigenvector of the regularized matrix√

KQ

√
KC (KC + λI)

−2
√
KC

√
KQ

corresponding to the eigenvalue g12(λ)2.
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