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Abstract

Information extraction (IE) encounters chal-001
lenges due to the variety of schemas and ob-002
jectives that differ across tasks. Recent ad-003
vancements hint at the potential for universal004
approaches to model such tasks, referred to as005
Universal Information Extraction (UIE). While006
handling diverse tasks in one model, their gen-007
eralization is limited since they are actually008
learning task-specific knowledge. In this study,009
we introduce an innovative paradigm known010
as TRUE-UIE, wherein all IE tasks are aligned011
to learn the same goals: extracting mention012
spans and two universal relations named NEXT013
and IS. During the decoding process, the NEXT014
relation is utilized to group related elements,015
while the IS relation, in conjunction with struc-016
tured language prompts, undertakes the role of017
type recognition. Additionally, we consider018
the sequential dependency of tokens during019
span extraction, an aspect often overlooked in020
prevalent models. Our empirical experiments021
indicate that TRUE-UIE achieves state-of-the-022
art performance on established benchmarks en-023
compassing 16 datasets, spanning 7 diverse IE024
tasks. Further evaluations reveal that our ap-025
proach effectively share knowledge between026
different IE tasks, showcasing significant trans-027
ferability in zero-shot and few-shot scenarios.028

1 Introduction029

Information Extraction (IE) refers to the task of030

automatically extracting structured knowledge, in-031

cluding entities, relations, events, and sentiments,032

from unstructured textual data. The primary aim is033

to condense text into structured, machine-friendly034

formats, aiding downstream tasks such as question035

answering (Allam and Haggag, 2012) and senti-036

ment analysis (Medhat et al., 2014).037

In the era of Large Language Models (LLMs),038

structured knowledge enhances, validates, and039

grounds LLM outputs (Pan et al., 2023). Re-040

searchers are increasingly focusing on Universal041

Figure 1: TRUE-UIE’s superiority over USM: unify-
ing its framework with (1) structure language prompts
and (2) only two relations, IS (yellow) and NEXT (blue),
circumventing the inconsistent learning objectives en-
countered by USM.

Information Extraction (UIE), aiming to develop 042

unified frameworks for various IE tasks. Two pri- 043

mary approaches have gained prominence: gener- 044

ative methods and linking-based methods. Gen- 045

erative methods generate a unified Structure Ex- 046

traction Language to express various extraction 047

targets (Lu et al., 2022; Cong et al., 2023). Linking- 048

based methods, on the other hand, devise a set of 049

directed token linking operations to break down 050

information extraction tasks into multiple token 051

pair labeling problems (Lou et al., 2023; Yan et al., 052

2023; Ping et al., 2023). Although both claim to 053

be universal information extraction methods, We 054

hold the belief that a true UIE should maintain 055

a uniform learning objective for all IE tasks, en- 056

abling comprehensive knowledge sharing. Gener- 057

ative methods deviate from this criterion, gener- 058

ating specific structure languages for different IE 059

tasks (Lu et al., 2022). For instance, structures gen- 060

erated for Named Entity Recognition tasks (NER) 061

lack the use of nesting“()”, while those for rela- 062

tion and event extraction structures involve varying 063
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degrees of nesting “()”. Existing linking-based064

methods also fail to meet this criterion. Take the065

prominent work USM (Lou et al., 2023) as an ex-066

ample (Figure 1): both the dashed and solid yellow067

arrows are defined identically but serve different068

purposes in NER and RE tasks. This leads to dis-069

tinct learning objectives and limited knowledge070

sharing. Furthermore, the relations represented by071

green and blue arrows are only used in the RE task072

and receive no training in the NER task. Similar073

inconsistencies are evident in other linking-based074

methods (Yan et al., 2023; Ping et al., 2023). Addi-075

tionally, all existing UIE methods face challenges076

in handling complex IE tasks, like discontinuous077

NER and open information extraction.078

In this paper, we introduce TRUE-UIE, Two079

Universal RElations Unify Information Extraction080

Tasks, a novel approach distinguishes itself from081

prior work by modeling all information extraction082

tasks as a common task, with the aim of conducting083

two universal relation extractions. This achieve-084

ment marks a paradigm shift towards the applica-085

bility of universal model outputs, moving away086

from outputs tailored to specific tasks. The suc-087

cess of TRUE-UIE hinges on two distinct designs:088

(1) Structure Language Prompt: The structured089

information of schemes is preserved, and place-090

holders for the IS relation are left for target men-091

tions in the text. For instance, in the task of rela-092

tion extraction, we organize prompts as <subject093

type> <relation type> <object type> as shown094

in Figure 1, in contrast to USM which separately095

enumerate entity and relation types. (2) Only two096

relations are employed: IS and NEXT. The IS rela-097

tion aligns spans with corresponding placeholders098

in the prompt. As depicted in Figure 1, the entity099

"Hartwig Fischer" is linked to the entity type “peo-100

ple” in the triplet scheme people work for organiza-101

tion, indicating that "Hartwig Fischer" is involved102

in a relation of type work for and is categorized103

as “people”. On the other hand, the NEXT relation104

establishes a connection between the current span105

and the subsequent span within the same structural106

knowledge instance. For instance, "Hartwig Fis-107

cher" is linked to "Hamburg" through the NEXT108

relation, indicating their membership in the same109

triplet. Using this approach, the IS relation is uti-110

lized to identify span types, while the NEXT relation111

groups these spans effectively. Additionally, this112

method tackles the challenge of a span appearing113

in several instances of the same knowledge type, a114

common challenge in overlapping relation extrac-115

tion. (Wang et al., 2020). This is also why USM 116

must employ the green relation in the RE task. 117

We conducted comprehensive experiments on 16 118

datasets covering 7 IE tasks, including flat NER, re- 119

lation extraction, event extraction, sentiment extrac- 120

tion, nested NER, discontinuous NER, and open 121

information extraction. These experiments demon- 122

strate that TRUE-UIE surpasses both state-of-the- 123

art task-specific and universal IE models across all 124

datasets. Additionally, further zero-shot and few- 125

shot experiments indicate that TRUE-UIE’s uni- 126

versal relations enable more effective knowledge 127

transfer across tasks. The source code is provided 128

in the supplementary materials and will be avail- 129

able at https://github.com/xxxx/xxx 130

2 Related Work 131

Information Extraction (IE) is the task of extract- 132

ing relevant spans or tuples of spans from plain 133

text. There are various specific IE tasks, including 134

Flat/Nested/Discontinuous Named Entity Recog- 135

nition (Nadeau and Sekine, 2007), Relation Ex- 136

traction (Nasar et al., 2021), Event Extraction (Li 137

et al., 2022b), Sentiment Extraction (Schouten and 138

Frasincar, 2015), and Open Information Extrac- 139

tion (Zhou et al., 2022). For an extended period, 140

researchers have focused on devising task-specific 141

and independent methods to address these diverse 142

IE tasks. However, in recent years, the emergence 143

of pretraining techniques has sparked considerable 144

interest in pretraining a versatile model capable of 145

handling multiple IE tasks. Yan et al.2021b were 146

the first to propose a universal approach to tack- 147

ling different NER tasks. Yan et al.2021a unified 148

various aspect-based sentiment analysis tasks. Lu 149

et al.2022 introduced UIE, which employs a Struc- 150

tured Extraction Language to frame all IE tasks. 151

Building upon UIE, Cong et al.2023 incorporated 152

meta-pretraining to enhance the model’s ability to 153

extract complex structures. In contrast to UIE’s 154

use of a sequence-to-sequence structure to directly 155

generate diverse target information structures, bor- 156

rowing the idea from token pair linking (Wang 157

et al., 2020, 2021b; Yu et al., 2022), USM (Lou 158

et al., 2023) introduces three unified token linking 159

operations to capture the skills of structuring and 160

conceptualizing. Similarly, UTC-IE (Yan et al., 161

2023) decomposes several IE tasks into token pair 162

classification tasks, utilizing the starting and end- 163

ing tokens to locate spans, and using start-to-start 164

and end-to-end token pairs to establish relations. 165
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UniEX (Ping et al., 2023) also uniformly dissects166

all extraction objectives into joint span detection,167

classification, and association problems through a168

unified extractive framework. However, existing169

generative or token pair linking methods still strug-170

gle to unifying all Information Extraction (IE) tasks171

into a single learning objective, thus maximizing172

knowledge sharing and generalization. In contrast,173

our proposed True-UIE utilizes two universal rela-174

tions to harmonize all tasks.175

3 Methodology176

Information extraction is the process of extracting177

knowledge from unstructured textual sources. The178

primary objective of UIE is to establish a single,179

universal model that can handle various informa-180

tion extraction tasks. The challenges of current181

SOTA method USM encompass two main dimen-182

sions: (1) Adapting the model to address the con-183

tinually evolving complexities of information ex-184

traction, particularly in contexts where discontinu-185

ities and overlapping issues emerge; (2) Enhancing186

the model’s generalization capabilities to ensure187

a broader degree of knowledge transferability and188

sharing across diverse tasks.189

In this section, we begin by outlining the overall190

architecture and core principles of TRUE-UIE. Due191

to space constraints, the overview figure has been192

relocated to the Appendix. Subsequently, we eluci-193

date how TRUE-UIE addresses the aforementioned194

challenges. This entails two pivotal ideas: First,195

the introduction of a structural language prompt.196

By incorporating structured information from the197

schema into the prompt, we aim to enhance the198

model’s comprehension of tasks and alleviate its199

learning burden. Second, utilizing two universal200

relational edges in conjunction with the structural201

prompt, we manage to unify seven IE tasks, trans-202

muting them into a unified linking task with uni-203

versal scheme. This strategy seeks to maximize the204

potential for knowledge to be shared seamlessly205

across tasks. Lastly, we introduce the main mathe-206

matical formulas and training objectives involved207

in the model.208

3.1 Linking Scheme209

Given an input text, TRUE-UIE combines the struc-210

ture language prompt with the text to cater to vary-211

ing extraction requirements. The adoption of this212

particular prompt arises from a notable distinction213

from previous work, where the structured informa-214

tion from the schema was not incorporated into the 215

prompt. This forced the model to learn the intricate 216

structure for each individual task. Regrettably, this 217

knowledge could not be easily transferred across 218

tasks, as each task possessed its unique structure. 219

The combined text is then input into the model, 220

leading to the creation of a linking matrix that 221

captures the relationships between tokens. In this 222

framework, the IS relation aligns spans with their 223

corresponding concept placeholders in the prompt, 224

while the NEXT relation establishes a connection be- 225

tween a current span and the following span within 226

the same instance of structural knowledge, such as 227

within a triplet, an event, or an open fact. Next, we 228

will provide a detailed presentation of the linking 229

specifics for each IE task. 230

Relation Extraction: As illustrated in Figure 1, 231

entity types and a relation type are amalgamated 232

into a triplet prompt in the format of <subject 233

type> <relation type> <object type>. Given that 234

relation types often function as predicates, this de- 235

sign renders the prompt akin to a natural language 236

expression, which facilitates semantic matching 237

by the model. In cases of pure relation extraction 238

where entity type annotations are absent, entity 239

types default to “subject” or “object.” When two 240

utterance spans are connected by a NEXT relation 241

and individually link to the subject type and object 242

type surrounding the same relation type, a triplet 243

is ascertained. Throughout this process, both en- 244

tity types and the relation type are simultaneously 245

determined. Even when a triplet involves multiple 246

identified entity types, this decoding method does 247

not introduce errors. Conversely, models with naive 248

prompts struggle as they cannot discern which en- 249

tity type(s) correspond to the recognized relation 250

triplet, as they identify the entity type and relation 251

type separately. 252

Sentiment Extraction: As illustrated in Fig- 253

ure 2.A, TRUE-UIE constructs a prompt for 254

each sentiment type using the format aspect → 255

<polarity>.This approach is analogous to relation 256

extraction. When two spans are connected by a 257

NEXT relation, and individually link to the “aspect” 258

and the <polarity> surrounding the same →, a 259

sentiment triplet is thereby determined. 260

Event Extraction: For representing an event, 261

TRUE-UIE constructs a prompt using the format 262

<event type>: [argument role1, argument role2, 263

...], where the trigger is also considered as an argu- 264

ment, as depicted in Figure 2.B. During the decod- 265

ing process, all spans that are linked to argument 266
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Figure 2: Unify different knowledge structures as two universal relations: IS (yellow lines) and NEXT (blue lines).

roles by the IS relation are grouped according to267

the preceding event type. Within the entire event268

span (indicated by the long red line above the text),269

only those paths that consist of argument spans se-270

quentially linked by the NEXT relation and extend-271

ing from one boundary to the other are outputted as272

individual event instances. Through this decoding273

logic, the model can effortlessly ascertain to which274

event type and trigger an argument span belongs,275

thereby smoothly resolving the event overlapping276

issue, where an argument may serve different roles277

within different instances of the same event type.278

Conversely, models employing naive prompts grap-279

ple with this overlapping problem.280

Nested and Discontinuous NER: For this task,281

TRUE-UIE employs a prompt similar to the naive282

one used in previous models. However, by utilizing283

the relation NEXT, TRUE-UIE gains the ability to284

handle discontinuous entities. Specifically, TRUE-285

UIE examines every span linked to an entity type to286

determine if there exists a continuous path within287

it, comprised of shorter spans, stretching from one288

boundary to the other. If such a path is found, it289

is output as a discontinuous entity, and the longer290

span is disregarded, as illustrated by ankle pain in291

Figure 2.C. If no path is found, the span is consid-292

ered as a continuous entity. Additionally, if a short293

span is encompassed within a longer one without294

a connecting path, both are recognized as entities,295

reflecting a nested situation. An example of this296

is the term thigh, which appears within the spans297

ankle and thigh pain and thigh pain, but is not part298

of any path. As a result, thigh is identified as a299

body entity based on the IS relation, thigh pain300

is recognized as a symptom entity, and ankle and 301

thigh pain is omitted, as previously described. 302

Open Information Extraction: This task in- 303

volves identifying common role types such as sub- 304

ject, predicate, object, place, time, qualifier, etc., as 305

demonstrated in Figure 2.D. This task faces chal- 306

lenges such as discontinuous arguments and role 307

overlapping (e.g., "the names" serving as both ob- 308

ject and subject). To tackle these complexities, 309

TRUE-UIE uses the path decoding method with 310

long spans and NEXT relations, as previously men- 311

tioned in discontinuous NER and event extraction. 312

It avoids linking spans to a singular role through the 313

IS relation, as this would not resolve the overlap- 314

ping issue. Instead, TRUE-UIE recognizes roles in 315

pairs like <role1>→ <role2>, where two spans 316

sequentially linked by NEXT and associated with 317

role1 and role2 nearby the same → determine the 318

roles. This ensures that every begin-to-end path 319

within a long span is outputted as a fact instance. 320

In situations where a predicate is missing, TRUE- 321

UIE checks if subject and object spans are linked 322

to predefined predicates, adding them to the fact in- 323

stance if needed. An example of this can be found 324

in the descriptive (DESC) fact in Figure 2.D. 325

3.2 Model Architecture 326

In previous linking-based UIE methods, span ex- 327

traction often focuses only on the beginning and 328

ending tokens of a span, neglecting the information 329

embedded within the inner tokens. This can leave 330

valuable sequential dependencies unexploited, par- 331

ticularly those crucial to the extraction of spans. 332

In contrast, TRUE-UIE explicitly utilizes all to- 333
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kens within a span. By employing semi-matrix334

LSTM operations to efficiently embeds this infor-335

mation into the span features. Given a sequence of336

n tokens [t1, . . . , tn], each token ti is initially trans-337

formed into a low-dimensional contextual vector338

hj utilizing a pretrained language model encoder339

such as BERT (Devlin et al., 2019) or RoBERTa340

(Liu et al., 2019). Subsequently, two distinct rep-341

resentations, hbj and hej , are computed to serve as342

features, specifically denoting the beginning and343

ending tokens of span boundaries:344

hbj = Wb · hj + bb, (1)345

hej = We · hj + be. (2)346

Herein, W∗ represents a parameter matrix, and b∗347

is a bias vector, both of which are subject to opti-348

mization during the training process.349

For both hb and he, TRUE-UIE constructs two350

matrices B and E by repeating each vector n times,351

each of dimensions n× n, where n is the number352

of tokens. Next, TRUE-UIE employs a forward353

LSTM to encode the upper triangular region of E354

and a backward LSTM to encode the lower trian-355

gular region of B. The result is two new matrices356

B′ and E′, both of dimensions n × n. In these357

matrices, the element B′
i,j comprises the sequen-358

tial information extending from token j to token359

i, while the corresponding element E′
i,j embodies360

the sequential information extending from token i361

to token j. Subsequently, TRUE-UIE transposes362

B′, and the sum of B′ and E′ yields a new matrix,363

denoted as S, where only the upper triangular re-364

gion is saved, and the element Si,j encompasses365

the sequential information from token i to j as well366

as from j to i. This structured transformation fa-367

cilitates TRUE-UIE’s capacity to discern intricate368

dependencies between the tokens, thereby aligning369

with the overarching objective of span extraction.370

The mathematical formulations for scoring a span371

are provided as follows:372

Si,j = BiLSTM([hi, . . . , hj ]), (3)373

spi,j = Ws · Si,j + bs. (4)374

Herein, the BiLSTM serves as a succinct expres-375

sion for encoding the sequential information men-376

tioned above. The score spi,j represents the output377

score for the span extending from token i to token378

j.379

Additionally, when decoding the relations be-380

tween two spans, a relation (IS or NEXT) is deter-381

mined to exist only if both the beginning and end- 382

ing tokens of the spans share this relation. TRUE- 383

UIE adopts a multiplicative attention operation to 384

fuse the features of these token pairs, feeding the 385

integrated information to relation scorers: 386

s∗i,j = h∗i · h∗Tj , (5) 387

where h∗ denotes the previously described features 388

associated with the span boundaries, as expressed 389

in Equations 1 and 2, the asterisk (*) symbolizes 390

either b for beginning or e for ending of a span. 391

The score s∗i,j signifies the relation score between 392

the two boundary tokens i and j. 393

3.3 Learning Objective 394

The training process encounters a class imbalance 395

issue, where the relation IS tends to occur more fre- 396

quently than NEXT across all tasks. This dispropor- 397

tion is particularly pronounced in NER tasks, where 398

discontinuous entities make up a small proportion, 399

resulting in the relative sparsity of the NEXT re- 400

lationship. To address this challenge, following 401

USM (Lou et al., 2023), we implement optimiza- 402

tion on class imbalance loss (Su et al., 2022): 403

L =
∑
t∈T

log

1 +
∑

(i,j)∈t+
e
−s∗

(i,j)

 (6) 404

+ log

1 +
∑

(i,j)∈t−
e
s∗
(i,j)

 (7) 405

In this part, let T denote the set of label types, 406

where t+ corresponds to the target class, and t− rep- 407

resents the non-target class. In this context, s∗(i,j) 408

designates the scores as defined in Equations 4 and 409

5, with the asterisk (*) symbol taking on the values 410

p for a span, b for the beginning pair, and e for the 411

ending pair. 412

4 Experiment 413

In this section, comprehensive experiments are un- 414

dertaken in both the supervised setting and few- 415

shot/zero-shot scenarios. We also provide ablation 416

study on each component of TRUE-UIE in Ap- 417

pendix. 418

4.1 Experimental Setup 419

In the supervised setting, we conduct experiments 420

across 4 information extraction tasks commonly 421

utilized in previous research (Yan et al., 2023; Lou 422

et al., 2023; Ping et al., 2023), including namely, 423
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Dataset Tailored Model UIE UniEX UTC-IE USM⋆ USM† USMu TRUE⋆ TRUE† TRUEu

ACE04 P-NER 88.72 86.89 87.12 87.54 87.79 87.62 87.34 88.92 89.34 89.91
ACE05-Ent P-NER 88.26 85.78 87.02 87.75 86.98 87.14 - 88.31 90.10 -
CoNLL03 BS 93.65 92.99 92.65 93.45 92.76 93.16 92.97 92.88 93.51 94.13
Genia PIQN 81.77 - 76.69− 80.45 - - - 80.46 81.83 82.56
Cadec W2NER 73.21 - - - - - - 72.06 73.25 73.83
CadecD Mac 44.40 - - - - - - 46.31 47.15 47.51

ACE05-Rel PURE 69.40 66.06 66.06 67.79+ 66.54 67.88 - 67.93 70.84 -
CoNLL04 REBEL 75.40 75.00 73.40 - 75.40 75.86 78.84 73.05 77.84 78.94
NYT UniRel 93.70 93.54 - - 93.96 94.07 94.01 93.98 94.33 94.83
SciERC PFN 38.40 36.53 38.00 38.77+ 37.05 37.36 37.42 37.40 38.06 38.85

ACE05-EvtT QE 73.60 73.36 74.08 73.44+ 71.68 72.41 72.31 72.51 74.63 76.42
ACE05-EvtA QE 55.10 54.79 53.92 57.68+ 55.37 55.83 55.57 55.21 56.41 56.81
CASIET Txt2Evt 68.98 69.33 71.46 - 70.77 71.73 71.56 71.32 72.53 73.02
CASIEA Txt2Evt 60.37 61.30 62.91 - 63.05 63.26 63.00 62.78 63.66 63.90

14-res GAS 72.16 74.52 74.77 - 76.35 77.26 77.29 77.11 77.82 78.13
14-lap GAS 60.78 63.88 65.23 - 65.46 65.51 66.60 66.03 66.94 67.07
15-res Sp-ASTE 63.27 67.15 68.58 - 68.80 69.86 - 69.92 70.78 -
16-res Sp-ASTE 70.26 75.07 76.02 - 76.73 78.25 - 77.76 78.83 -

SAOKE DragonIE 46.10 - - - - - - 43.34 46.51 47.11

Table 1: The main results in the supervised setting. TRUE-UIE employs RoBERTa-large for English tasks and
employs XLM-RoBERTa-large for SAOKE, as the latter needs to be trained on both Chinese and English datasets.
The symbol ⋆ indicates that the model is initialized from the original pre-trained language model, † and u separately
denote the models that were pre-trained on Dtask,dist,ind and fine-tuned on a single task and multi-task except for
overlapped datasets: ACE05-Ent/Rel and 15/16-res. The symbol + is used to represent results derived from models
that are domain-specific or larger in size compared to RoBERTa-large. CadecD refers to the subset of entities that
are discontinuous.

Unseen/All 10/12 7/9 6/7 8/9 7/8 8/9 4/5 12/17 Avg Improv

Dtask 32.1/ 33.9 2.5/ 4.3 1.6/ 2.8 10.7/ 12.2 52.4/ 53.9 45.9/ 47.4 11.2/ 12.7 14.1/ 15.4 21.3/ 23.1 + 1.8
Dtask,ind 39.8/ 41.9 14.7/ 16.2 20.6/ 22.5 24.1/ 26.1 56.2/ 57.9 44.2/ 46.1 32.9/ 34.5 44.3/ 45.9 34.6/ 36.3 + 1.7
Dtask,dist 35.4/ 38.6 21.1/ 24.2 40.6/ 43.0 27.6/ 30.3 57.0/ 60.2 49.3/ 52.1 43.7/ 46.1 44.1/ 47.3 39.8/ 42.7 + 2.9
Dtask,ind,dist 42.1/ 45.3 26.0/ 29.1 44.4/ 47.3 34.9/ 38.1 65.7/ 68.9 60.1/ 63.1 56.7/ 59.9 55.3/ 58.5 48.1/ 51.3 + 3.2

∆ 10.0/ 11.4 23.5/ 24.8 42.7/ 44.5 24.2/ 25.9 13.3/ 15.0 14.1/ 15.7 45.5/ 47.2 41.1/ 43.1 26.8/ 28.2 -

Table 2: Comparison of zero-shot transfer performance on unseen entity label subset with different supervision
signals between USM and TRUE-UIE, with two scores separated by “/”. “Unseen” indicates label types that do not
appear in the pre-training dataset. “Avg” represents average scores under pretraining; “Improv” indicates average
improvement against USM; ∆ signifies the enhancement difference from Dtask,ind,dist to Dtask.

Placeholder CoNLL04 Model Size

GPT-3 18.10 137B
DEEPSTRUCT 25.80 10B
USM 25.95 356M

TRUE-UIE 27.13 374M

Table 3: Zero-shot performance on relation extraction.

flat named entity recognition, relation extraction,424

event extraction, and sentiment extraction. More-425

over, to further substantiate TRUE-UIE’s scalabil-426

ity and effectiveness, we have added 3 additional427

tasks (nested, discontinuous named entity recog-428

nition, and open information extraction). Thus,429

this part of the experimentation covers seven in- 430

formation extraction tasks and utilizes 16 publicly 431

available benchmark datasets only for research pur- 432

poses, consistent with their intended use. The 433

datasets employed include ACE04 (Mitchell et al., 434

2005), ACE05 (Walker et al., 2006); CoNLL03 435

(Sang and De Meulder, 2003), GENIA (Kim et al., 436

2003), Cadec (Karimi et al., 2015), CoNLL04 437

(Roth and Yih, 2004), SciERC (Luan et al., 2018), 438

NYT (Riedel et al., 2010), CASIE (Satyapanich 439

et al., 2020), SemEval-14/15/16 (Pontiki et al., 440

2014, 2015, 2016), and Saoke (Sun et al., 2018). 441

The evaluation metrics align with those employed 442

by Lu et al. (2022). 443
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We primarily contrast TRUE-UIE with the previ-444

ous SOTA model, USM (Lou et al., 2023), adhering445

to the same settings they employ for experiments.446

During the pretraining phase, we follow USM to447

use three corpus:448

• Dtask refers to Ontonotes (Pradhan et al.,449

2013), a widely used IE dataset. Each instance450

comes with a gold annotation, enabling the ac-451

quisition of in-task knowledge.452

• Ddist represents the datasets obtained through453

distant supervision, wherein each instance454

aligns the text with Wikidata and Freebase455

(Cabot and Navigli, 2021; Riedel et al., 2013).456

Distant supervision is employed to gather457

large-scale training signals (Mintz et al.,458

2009), supplementing in-task supervised sig-459

nals.460

• Dind denotes the indirect supervision dataset,461

comprising instances derived from sources462

outside the IE tasks. Following the USM463

setting, we leverage comprehension datasets464

from MRQA (Fisch et al., 2019) to offer a465

more enriched label semantic context for pre-466

training. Within this setting, questions are467

treated as labels.468

In addition to USM, we also make comparisons469

with two other linking-based UIE models (Yan470

et al., 2023; Ping et al., 2023) and a Generative471

UIE model (Lu et al., 2022). Towards providing a472

thorough evaluation of TRUE-UIE’s performance473

relative to contemporary approaches, task-tailored474

models are also in comparison: PIQN (Shen et al.,475

2022), W2NER (Li et al., 2022a), Mac (Wang et al.,476

2021b), Txt2Evt (Lu et al., 2021), PURE (Zhong477

and Chen, 2021), DragonIE (Yu et al., 2022), BS478

(Zhu and Li, 2022), P-NER (Shen et al., 2023),479

REBEL (Huguet Cabot and Navigli, 2021), UniRel480

(Tang et al., 2022), PFN (Yan et al., 2021c), QE481

(Wang et al., 2021a), GAS (Zhang et al., 2021),482

Sp-ASTE (Xu et al., 2021).483

For additional details regarding the datasets, met-484

rics, and training implementation, please consult485

Appendix A.486

4.2 Experiments in the Supervised Setting487

Table1 presents the performance of TRUE-UIE and488

strong baselines. Through the observation of ex-489

perimental results, we identify several advantages490

of the TRUE-UIE framework, setting new state-of-491

the-art in the field of UIE.492

1) TRUE-UIE offers a universal design that facil- 493

itates seamless sharing of learned knowledge across 494

tasks. USM’s decline in performance on several 495

datasets after multi-task training (USM† vs. USMu) 496

suggests that its design may hinder proper knowl- 497

edge sharing across tasks, potentially leading to 498

conflicts among them. TRUE-UIE overcomes this 499

by transforming multi-tasks into a unified common 500

task, demonstrating more stable growth under the 501

same experimental settings (TRUE† vs. TRUEu). 502

2) TRUE-UIE is not merely a more universal frame- 503

work but also exhibits a strong advantage in initial 504

performance before pretraining. It surpasses other 505

pretrained UIE methods even before pre-training. 506

Particularly in NER tasks, where TRUE-UIE’s 507

prompt and linking style are almost identical to 508

USM’s design, it still significantly outperforms 509

USM on various datasets. This improvement is 510

attributed to the token sequential information em- 511

bedded in the span features, which, apart from the 512

prompt and linking style, is the main distinction 513

from USM. 3) TRUE-UIE showcases the ability to 514

tackle discontinuous and overlapping issues, a ca- 515

pability lacking in earlier linking-based UIE mod- 516

els. Although the initial performance of TRUE- 517

UIE falls short of task-specific state-of-the-art mod- 518

els, after pre-training, it attains improvements of 519

3.11 on CadecD and 1.01 on SAOKE, respectively. 520

TRUE-UIE’s universal design, prioritizing overall 521

performance across all tasks, explains why it might 522

not excel in specific tasks without prior pre-training. 523

4) It is noteworthy that after multi-task fine-tuning 524

on English datasets, TRUE-UIE demonstrates a 525

slight improvement on SAOKE (+0.6), a Chinese 526

dataset. This reveals TRUE-UIE’s promising abil- 527

ity to generalize knowledge across languages. 528

4.3 Experiments in the Zero-shot Setting 529

In zero-shot NER setting, aligned with USM, 530

TRUE-UIE is trained using 4 different combina- 531

tions of pretraining datasets and then evaluated 532

across 8 diverse NER datasets (Liu et al., 2013; 533

Strauss et al., 2016; Liu et al., 2021). As illustrated 534

in Table 2, in four pre-training settings, TRUE-UIE 535

consistently outperforms USM across all datasets, 536

highlighting its strong zero-shot transferability 537

across various domains. This shows a more ro- 538

bust generalization capability than USM. Moreover, 539

comparative analysis reveals a notable expansion 540

in the performance growth gap for TRUE-UIE un- 541

der the Dtask,dist and Dtask,ind,dist configurations, 542

with average improvements of 2.9 and 3.2 percent- 543
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age points over USM, respectively. This indicates544

that TRUE-UIE can adeptly generalize knowledge545

learned from relation extraction tasks to NER tasks546

within pre-training settings involving Ddist, despite547

the absence of annotated entity types.548

Regarding zero-shot relation extraction, follow-549

ing USM, TRUE-UIE is trained on all available pre-550

training datasets, and benchmarked against GPT-3551

175B (Brown et al., 2020) and DEEPSTRUCT 10B552

(Wang et al., 2022) on the Conll04 dataset. As553

shown in Table 3, despite having a smaller model554

size, TRUE-UIE not only surpasses robust zero-555

shot baselines such as GPT-3 and DEEPSTRUC-556

TURE, but also demonstrates competitive perfor-557

mance compared to USM, which is of a compa-558

rable size. These findings robustly affirm the effi-559

cacy of the TRUE-UIE framework. Compared to560

multi-task models like USM, common task models561

manifest a superior capacity for generalization.562

4.4 Experiments in the Few-shot Setting563

Title Model 1-Shot 5-Shot 10-Shot Avg.

CoNLL03
UIE 57.53 75.32 79.12 70.66

USM 71.11 83.25 84.58 79.65
TRUE-UIE 73.56 84.78 85.66 81.33

CoNLL04
UIE 34.88 51.64 58.98 48.50

USM 36.17 53.20 60.99 50.12
TRUE-UIE 36.77 53.94 62.21 50.97

ACE05-Evt
(trigger)

UIE 42.37 53.07 54.35 49.93
USM 40.86 55.61 58.79 51.75

TRUE-UIE 41.33 56.88 59.93 52.71

ACE05-Evt
(argument)

UIE 14.56 31.20 35.19 26.98
USM 19.01 36.69 42.48 32.73

TRUE-UIE 19.64 37.10 43.55 33.43

Sentiment
(16res)

UIE 23.04 42.67 53.28 39.66
USM 30.81 52.06 58.29 47.05

TRUE-UIE 32.03 54.02 60.12 48.72

Genia TRUE-UIE⋆ 6.10 29.33 33.44 22.96
TRUE-UIE 37.34 55.54 57.97 50.28

CadecD TRUE-UIE⋆ 2.01 9.63 15.81 9.15
TRUE-UIE 10.17 20.13 27.64 19.31

SAOKE TRUE-UIE⋆ 2.32 5.74 7.61 5.22
TRUE-UIE 5.61 10.34 17.44 11.13

Table 4: Comparison of few-shot perfromace across
various tasks. TRUE-UIE⋆ indicates that the model is
initialized from the original pre-trained language model.

In our few-shot transfer experiments, we fol-564

lowed the data preprocessing and experimental set-565

tings from previous studies (Lu et al., 2022; Lou566

et al., 2023). Table 4 shows the performance of567

7 IE tasks in few-shot scenarios, with the average568

results from 1/5/10-shot experiments labeled as569

"Avg." TRUE-UIE⋆, representing the initial model 570

without IE pretraining, is used as the baseline for 571

discontinuous NER and Open IE tasks where UIE 572

and USM are not applicable. The results indicate 573

that TRUE-UIE outperforms both baseline models, 574

achieving an average improvement of 6.29 and 1.17 575

on the first five datasets. This suggests a superior 576

generalization ability over the other two baseline 577

models. Moreover, TRUE-UIE surpasses its pre- 578

liminary model, TRUE-UIE⋆, by an average score 579

of 14.46 for the final three tasks. This demonstrates 580

that TRUE-UIE is not only capable of expanding 581

to more complex IE tasks but also effectively gen- 582

eralizes the knowledge gained during pretraining 583

to novel tasks. These remarkable results stem from 584

its architecture, which models IE tasks as a shared 585

task using two universal relation extraction pro- 586

cesses, maximizing knowledge sharing and robust 587

scalability for various tasks. Contrastingly, UIE’s 588

need to learn varied schema structure languages 589

leads to a large decoding search space and restricted 590

knowledge sharing, presenting substantial learning 591

challenges in low-resource settings. While USM 592

reduces this search space via semantic matching, it 593

fails to learn more universal relations, resulting in 594

varied knowledge acquisition across tasks. 595

5 Conclusion 596

In this study, we’ve introduced an innovative ap- 597

proach called TRUE-UIE, which presents a uni- 598

fied framework for various information extraction 599

(IE) tasks. By leveraging only two universal rela- 600

tions, namely IS and NEXT, we have established a 601

consistent methodology across all IE tasks. This 602

ensures that all components and definitions within 603

the method remain uniform for different IE tasks, 604

and can be applied to tasks such as discontinuous 605

NER and open information extraction that are chal- 606

lenging for existing top-performing methods. The 607

experimental results demonstrate that TRUE-UIE 608

achieves state-of-the-art performance across 7 IE 609

tasks and 16 datasets. It also showcases robust gen- 610

eralization capabilities in scenarios involving zero- 611

shot and few-shot transfers. Notably, TRUE-UIE 612

offers both adaptable task scalability and the abil- 613

ity to seamlessly transfer pre-trained knowledge to 614

novel tasks. We hope that TRUE-UIE can drive 615

further development in the field of UIE to better 616

explore the relevant knowledge between tasks. 617
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A The Overall Architecture956

As illustrated in Figure 1, TRUE-UIE creates a957

structural prompt (enclosed in a purple dashed line)958

based on the extraction demands of the task, and959

concatenates it with the input text. The combined960

input is first passed through an encoder to obtain961

hidden states. These output hidden states are then962

processed by two fully connected layers, resulting963

in two distinct representations. Both representa-964

tions are fed into the Semi-Matrix BiLSTM mod-965

ule and the Multiplicative Attention module. The966

operations of these two modules, shown on the967

right, produce presentations of spans and the cor-968

responding relation scores. The span presentations969

are further used to compute the scores of spans970

through a fully connected layer.971

B More Dataset Details972

B.1 Datasets for Evaluation973

We carry out evaluations on 7 information extrac-974

tion tasks, spanning 16 distinct datasets. Com-975

prehensive statistics for each of these datasets are976

presented in Table 5. We follow the pre-processing977

steps and data split of previous works (Lu et al.,978

2022; Lou et al., 2023).979

Datasets Ent Rel/Pol Evt #Train #Val #Test

ACE04 7 - - 6,202 745 812
ACE05-Ent 7 - - 7,299 971 1,060
CoNLL03 4 - - 14,041 3,250 3,453

Genia 5 - - 16,692 1,854 1,854

Cadec 1 - - 5,340 1,097 1,160

ACE05-Rel 7 6 - 10,051 2,420 2,050
CoNLL04 4 5 - 922 231 288
NYT 3 24 - 56,196 5,000 5,000
SciERC 6 7 - 1,861 275 551

ACE05-Evt 7 - 33 19,216 901 676
CASIE 21 - 5 11,189 1,778 3,208

14res 2 3 - 1,266 310 492
14lap 2 3 - 906 219 328
15res 2 3 - 605 148 322
16res 2 3 - 857 210 326

SAOKE 6 7 - 37,544 4,693 4,693

Table 5: The statistics for evaluation datasets

B.2 Datasets for Pretraining 980

Details regarding the pretraining datasets are out- 981

lined as follows: 982

• For Dtask, all 60K samples are utilized. 983

• Ddist consists of 356K samples. From this, 984

the Rebel dataset is narrowed down to the 230 985

most frequently occurring relation types, and 986

300K instances are randomly selected for pre- 987

training, in accordance with Lou et al. (2023). 988

• Dind contains 195K samples, drawn from sev- 989

eral datasets: HotpotQA (Yang et al., 2018), 990

Natural Questions (Kwiatkowski et al., 2019), 991

NewsQA (Trischler et al., 2016), SQuAD (Ra- 992

jpurkar et al., 2016), and TriviaQA (Joshi 993

et al., 2017). For each instance, the selection 994

is restricted to a maximum of 5 questions, and 995

any samples where the combined text length 996

exceeds 500 tokens are excluded. 997

• For the Chinese open information extraction 998

(IE) dataset, Saoke, we deviate from the above 999

datasets for pretraining. Instead, we assemble 1000

a large-scale distant supervision dataset by 1001

aligning Wikidata with the Chinese version of 1002

Wikipedia. 1003

C Implementation Details 1004

In all our experiments, the optimization of our 1005

model is performed using the Adam algorithm 1006

(Kingma and Ba, 2014). During the pretraining 1007

phase, we set the learning rate at 2 × 10−5, the 1008

global batch size at 96, and run the process for 5 1009

epochs. For the fine-tuning phase, we explore a 1010

variety of hyper-parameters, adjusting the learning 1011

rate within the range {1 × 10−5, 2 × 10−5, 3 × 1012

10−5, 4 × 10−5, 5 × 10−5} and the batch size 1013

from among {8, 12, 16, 32, 64, 96}. With 3 random 1014

seeds, we select the optimal hyper-parameter con- 1015

figuration based on the performance on the devel- 1016

opment set. For multi-task learning, we choose the 1017

best checkpoint based on the average performance 1018

across all datasets. All experiments are carried 1019

out on NVIDIA A100 (80G) GPUs and repeated 3 1020

times to reported the averaged F1 scores. 1021

We evaluate the model using span-based offset 1022

Micro-F1 as the primary metric, with different cri- 1023

teria for different aspects of the information extrac- 1024

tion task: 1025
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Figure 3: The overall architecture of TRUE-UIE.

• Entity: An entity mention is deemed correct1026

if both its offsets and type correspond to a1027

reference entity.1028

• Relation (Strict Match): A relation is consid-1029

ered correct if its type matches and both the1030

offsets and entity types of the related entity1031

mentions are correct.1032

• Relation (Triplet Match): A relation is con-1033

sidered correct if its type matches, and the1034

offsets of the subject and object are correct.1035

• Event Trigger: An event trigger is considered1036

correct if its offsets and event type align with1037

a reference trigger.1038

• Event Argument: An event argument is1039

marked as correct if its offsets, role type, and1040

event type match a reference argument men-1041

tion.1042

• Sentiment Triplet: To consider a sentiment1043

triplet correct, the offsets boundaries of both1044

the aspect and the opinion span must be cor-1045

rect, and the sentiment polarity must also be1046

accurate.1047

These criteria ensure a comprehensive evaluation1048

of the model’s ability to correctly identify various1049

elements of information extraction tasks.1050

D Ablation Study1051

In Table 6, we performed ablation studies on three1052

components: token sequential dependency (Seq1053

Dep) in span features, structure language prompt 1054

(SLP), and novel linking style for two universal re- 1055

lation extraction (TUR). We replaced span features 1056

with multiplicative attention and substituted SLP 1057

and TUR with USM’s naive prompt and linking 1058

style, excluding discontinuous NER and Open IE 1059

from the experiments since the naive method can 1060

not extend to these two tasks. Our conclusions: 1061

1) Token sequential dependency is vital for all 1062

four IE tasks. Its removal led to a substantial per- 1063

formance decline, confirming its effectiveness. 1064

2) Ablating SP & TUR didn’t affect NER, as our 1065

prompt and linking style are similar to USM on 1066

the NER task. Other tasks showed declines, high- 1067

lighting TRUE-UIE’s prompt and linking style’s 1068

effectiveness on IE tasks. The relatively notice- 1069

able performance decline in relation extraction and 1070

event extraction demonstrates that this design ef- 1071

fectively enhances the unification of learning ob- 1072

jectives, allowing knowledge gained in NER to 1073

be shared across the relation extraction and event 1074

extraction tasks. 1075

Task Ent Rel Evt-Tri Evt-Arg Senti.

TRUE-UIE 96.89 68.91 73.12 58.33 81.73
w/o Seq Dep 95.26 67.52 72.79 57.34 80.91
w/o SP & TUR 95.18 66.48 71.97 56.83 80.53

Table 6: Ablation study for TRUE-UIE on 4 tasks: entity
recognition (CoNLL03), relation extraction (ACE-Rel),
event extraction (ACE05-Evt), and sentiment analysis
(16res).
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E Limitations1076

The Structure Language Prompt might lead to per-1077

formance decline in certain datasets where default1078

entity types or coarse entity types are commonly1079

used in many triplet schemes. This occurs as the1080

same type of text, such as “people”, appears in dif-1081

ferent schemes, causing confusion. For instance, in1082

Figure 1, “people” is used in both “work for” and1083

“born in” relations, but an entity of the type “people”1084

may not always be involved in both relations. If the1085

model, post-training, represents “people” similarly1086

across different schemes, it could lead to confusion,1087

resulting in high recall but low precision. Our so-1088

lution is to employ an attention mask strategy as1089

following Figure 4, enabling the model to focus1090

only on text within the scheme group. For exam-1091

ple, the first “people” would only pay attention to1092

“work for organization”, and the second “people”1093

to “born in place”.1094

Figure 4: The figure illustrates TRUE-UIE’s attention
mask approach for handling datasets with numerous
duplicate entity/role types.

F Help from AI assistants1095

When necessary, we use ChatGPT or Copilot for1096

guidance on how to write regular expressions, like1097

the tokenize_uni function in utils.py.1098
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