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ABSTRACT

Membership inference attacks (MIAs) on machine learning models, which try to
infer whether an example is in the training dataset of a target model, are widely
studied in recent years as data privacy attracts increasing attention. One unignorable
problem in the traditional MIA threat model is that it assumes the attacker can
obtain exactly the same example as in the training dataset. In reality, however, the
attacker is more likely to collect only a transformed version of the original example.
For instance, the attacker may download a down-scaled image from a website,
while the smaller image has the same content as the original image used for model
training. Generally, after transformations that would not affect its semantics, a
transformed training member should still be treated the same as the original one
regarding privacy leakage. In this paper, we propose extending the concept of MIAs
into more realistic scenarios by considering data transformations and derive two
MIAs for transformed examples: one follows the efficient loss-thresholding ideas,
and the other tries to approximately reverse the transformations. We demonstrated
the effectiveness of our attacks by extensive evaluations on multiple common data
transformations and comparison with other state-of-the-art attacks. Moreover,
we also studied the coverage difference between our two attacks to show their
limitations and advantages.

1 INTRODUCTION

Privacy issues in machine learning models have been attracting more concerns in recent years.
Membership inference attacks (MIA) (Shokri et al., 2017) are one of the most studied ones, designed
to infer whether an example owned by the attacker is from the training dataset. MIA can cause severe
privacy leakage in privacy-critical domains, such as medical models trained on patients’ medical
records or facial recognition systems trained on a particular set of identities.

However, though empirical studies (Hu et al., 2021) show that undefended machine learning models
are extremely vulnerable to MIAs, realistic MIAs are hardly reported in the industry. We notice
an unignorable problem in the threat model of all current MIA research, which comes from the
assumption that the attacker can always obtain the original member that appears in the training
dataset. However, in the real world, examples collected by the attacker from different sources may
have been transformed. For example, images downloaded from the Internet may have been re-scaled
or compressed; stolen medical records might have missing features. More importantly, examples
with small transformations that preserve their semantics would still leak private information. It is
natural to ask: can adversaries infer the membership, even if they only have a transformed version of
a training member? In this paper, we show that the answer is yes, and the current MIAs assumptions
may underestimate attackers’ capability and lead to a biased privacy risk assessment.

We aim to extend the original MIAs’ targets space by considering semantic-preserving data trans-
formations. Assuming the attacker can have partial knowledge about the transformation functions,
we propose two MIAs to infer the membership of transformed examples. The first attack improves
the traditional loss-thresholding attacks, which try to set a threshold by leveraging the different loss
distribution of training and testing examples of the target model. The second attack is based on the
assumption that the transformed training members would be closer to their ε-robust areas (defined
in Definition3.1) than those non-members, and it infers membership via comparing the distances
required to reverse transformed examples back to their robust areas.
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In our evaluations, we studied datasets in both Image and non-Image domains: CIFAR-10 (Krizhevsky
et al., 2009), SVHN (Netzer et al., 2011), Purchase-100 (Kaggle, 2014). For images, we evaluated
six commonly seen transformations: Gaussian noise, adversarial noise (Szegedy et al., 2013), JPEG
compression (Wallace, 1992), scaling, photo filtering, and rotation. For Purchase-100, which has
binary feature vectors, we considered the scenario that a part of the entries is randomly flipped. Our
experiments show that our attacks can achieve higher accuracy than traditional attacks, indicating the
risk of underestimating privacy leakage in the real world caused by ignoring data transformations.
Additionally, we compared the coverage difference rate between our two attacks to show how different
the two attacks can be in terms of individuals training members discovered. We show that while
the loss-thresholding attack is efficient and straightforward, the second attack can successfully infer
examples with large loss values. As a result, we hope our work can broaden the scope of current
MIAs and help ML service providers better assess the actual privacy risks under a more realistic
threat model.

2 RELATED WORK

In recent years, researchers thoroughly explored the domain of MIA, such as strategies for black-box
attacks (Shokri et al., 2017; Yeom et al., 2018), label-only attacks (Choo et al., 2020; Chen et al.,
2020; Li & Zhang, 2020; Rahimian et al., 2020), white-box attacks (Leino & Fredrikson, 2020;
Sablayrolles et al., 2019), attacks on generative models (Hayes et al., 2019; Hilprecht et al., 2019; Liu
et al., 2019), attacks on federated learning (Melis et al., 2019; Nasr et al., 2019); defense mechanisms
from the perspective of privacy-preserving algorithms (Abadi et al., 2016; Chen et al., 2018; Xie
et al., 2018), regularization (Shokri et al., 2017; Nasr et al., 2018; Chen et al., 2021), and output
obfuscation (Shokri et al., 2017; Jia et al., 2019; Rahimian et al., 2020); and also the root cause of
MIA (Yeom et al., 2018).

The label-only attack (Choo et al., 2020) shares a similar intuition with ours. Their core assumption
is that training members should be more robust to small noises and lie farther from the decision
boundary than non-members. In Section 3, we assume that it is easier to move training members
towards some loss boundaries defined as ε-robust areas. Both assumptions are based on the fact that
the models more or less overfit training data.

Yu et al. (2021) discussed the MIAs on models that are trained with augmented data, where the
original training data do not directly participate. Though their goal is different from ours, our problem
settings share a similar condition: what the attacker obtains is not in model training. However, the
core difference between our attack scenarios comes from the transformation knowledge of the attacker.
While they assume that the attacker knows how the MIA target data produce the data in training, we
assume the attacker knows the opposite, partially. We will make further discussions in Appendix B.

3 METHODOLOGY

3.1 THREAT MODEL

Below is the threat model we assume for the attackers. Note that besides the assumptions for data
transformations, the other assumptions are commonly applied in other MIA research (Hu et al., 2021).
We also limit the discussion to classification models in this paper.

Data distribution: The attacker can access and sample from the underlying data distribution D, but
does not know any specific members of the training set. The target example for inference might be a
transformed version. However, the attacker can guess the family of transformations G. The attacker
always has the correct label for the target examples.

Target model: The attacker has full knowledge of the model architectures, training methods, and
hyper-parameters. The attacker does not know the detailed model parameters but can query the model
as a black box and obtain confidence scores for each class label.

The attacker’s goal: The attacker wants to obtain an inference functionM for the target model f , so
thatMf (x′) = 1(x ∈ D0), where x ∈ D0 is the original training example, x′ = g(x) for some g ∈
G is the transformed example, and D0 ⊂ D is the training set for f .
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3.2 MIAS ON TRANSFORMED DATA

The foundation of all current MIAs is the statistics’ difference between training and testing examples
caused by overfitting. A simple yet effective attack proposed by Yeom et al. (2018) is to place a
threshold and classify all examples whose losses are lower than the threshold as training examples.
However, the loss distributions of training and testing examples change significantly after data
transformations so that the threshold set for original training data can no longer optimally distinguish
transformed data. We illustrated the problem in Figure 1 by showing the loss CDFs of the original
CIFAR-10 dataset and the dataset after JPEG compression. Similarly, all current attacks face the same
problem. In order to compute the statistics for MIAs, current attacks apply some functions that input
the target model’s output logits. For example, the loss function in Yeom et al. (2018), the entropy
metric in Song & Mittal (2021) or the binary classifier in Shokri et al. (2017). These function’s output
can significantly change when facing transformed logits, especially when the model is sensitive to
those transformations, resulting in a loss of attack accuracy. Evaluations of state-of-the-art MIAs on
transformed examples can be found in Table 1 and Table 3. In this section, we propose two attacks
to deal with the problem above: the first one improves the loss-thresholding attack, and the other is
based on reverse transforming the target example.

Figure 1: Loss CDFs for original and JPEG com-
pressed CIFAR-10 images (q = 10).

Figure 2: Intuition illustration for reverse trans-
formation attacks.

Our first attack algorithm is in Algorithm 1. In order to accommodate the change in the loss
distribution, it is straightforward to set a better threshold τ . Instead of obtaining a threshold from the
original training data, our attack transforms the training data and testing data based on the attacker’s
transformation knowledge and produces a loss threshold for transformed data distributions.

Thresholds in MIAs are commonly obtained from shadow models. Shadow models are proposed by
Shokri et al. (2017), which are models trained with data sampled from the same data distribution as
the target model. The attacker trains shadow models to mimic the behavior of the target model and
transfer the attack threshold from the shadow models to the target model. Specifically, the threshold
is selected to maximize the accuracy of the MIA on the shadow model since the attacker knows the
exact data membership for the shadow model.

Algorithm 1: Loss-thresholding with transformations
Input: transformed example x′, true label y, target model f , loss function L, threshold τ
Output: membership m ∈ {True,False}
l← L(f(x′), y);
return l < τ ;

Loss-thresholding is simple yet effective when a large generalization gap exists between the training
and testing examples. By its nature, it would fail on training members with large losses. However,
can we find transformed training members with large losses? The question leads to our second attack.
We will start by the definition of an ε-robust area, where ε serves as an important hyper-parameter to
control the area range:

Definition 3.1 (ε-robust area) An ε-robust areaRε(x, f,G) of a given example x and a target model
f and a family of transformation G is defined as:

Rε(x, f,G) = {g(x, δ)|L(f(g(x, δ)), y) < ε, g ∈ G, δ ∈ ∆}
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where g(·, δ) is some transformation function from a family of functions G parametrized by δ from
the parameter space ∆, L is the loss function w.r.t. label y, and ε ∈ R+ is the radius of the area.

Training members tend to be local minima of the model, especially for an overfitted model. So moving
a transformed training example with a large loss towards its original version could decrease its loss
more significantly than a testing example. An ε-robust area essentially represents the neighborhood
of the original example via some transformations with a loss lower than ε. Our core assumption for
the second attack is that a transformed training member is more likely to have smaller distances to
the original one’s ε-robust areas. We illustrate the intuition with a toy model in Figure 2. We train a
linear binary classifier to learn f(x, y) = 1(x > y) with and without the data point in ’x’ marker,
respectively. The blue and red regions are their robust areas of linear transformations with the same ε.
Considering a linear transformation that adds L2-bounded noise in the black circle, we can see that
the ’x’ and its transformed set are closer to the blue region as the model overfitted to the example.

In order to search for the minimum distance of a transformed example to its ε-robust area, we define
the reverse transformation function g−1(·, θ) in Definition 3.2. In our paper, we limit the search of
the parameter θ of G′ in a metric space (Θ, d) with a distance metric d, such that we can measure the
amount of reverse transformation we applied to the example via d(θ).

Definition 3.2 (Reverse transformation function) A reverse transformation function g−1θ =
g−1(·, θ) of a transformation gδ = g(·, δ) is a function from a family of transformations G′ pa-
rameterized by θ such that:

∀δ ∈ ∆,∃θ ∈ Θ, g−1θ ◦ gδ = I
where ∆ and Θ are parameter spaces for δ and θ, respectively. I(x) = x is the identity function.

Our attack algorithm is described in Algorithm 2, which tries to solve the optimization problem:

min d(θ)

s.t. L(f(g−1(x′, θ)), y) < ε

Note that the reverse transformation function g−1 is not necessarily the mathematical inverse of
transformation g since not all transformations are invertible. We abuse the notation of mathematical
inverse for convenience. Generally, the reverse transformation can be any operation that can undo
the transformation. For example, to undo transformations that modify pixel values such as Gaussian
noises, we can simply select g−1(x′, θ) = x′ + θ as linear functions. The algorithm searches for the
minimum distance (in terms of metric d) required to reversely transform a transformed data point into
its original one’s ε-robust area. Though the reverse transformation function is only an approximation
and does not guarantee the resulting example to strictly satisfy the definition of ε-robust area (i.e.,
g−1(x′, θ0) = g(x, δ0) for some θ0 ∈ Θ and δ0 ∈ ∆), we will show its effectiveness in Section 4.

The update function u in Algorithm 2 is a function that can update the reverse transformation function
parameter θ in order to decrease the loss. Since the target model’s parameters are unknown to
the attacker according to the threat model, the attacker cannot directly update θ via gradient-based
optimizations. For different datasets and transformations, we need to design different update functions.
Detailed discussions on transformations and their corresponding update functions are in Section 4.

After the minimum distance is found, the attack strategy is the same as loss-thresholding: if the
distance is smaller than a preset threshold τ , the attacker will classify the corresponding example as a
training member. The threshold is also selected via shadow models: the attacker finds the reverse
transformation distances for the transformed training and testing data and then selects a threshold to
maximize the inference accuracy on the shadow model.

4 EVALUATION

4.1 EXPERIMENT SETTINGS

4.1.1 DATASETS

In this section, we consider the following two datasets. Additional experiments on SVHN (Netzer
et al., 2011) dataset can be found in Appendix E.2.

4



Under review as a conference paper at ICLR 2022

Algorithm 2: Reverse transformation
Input: transformed example x′, true label y, target model f , loss function L, robust area radius ε,

reverse transformation function g−1, update function u, attack threshold τ , maximum
iteration n, metric d

Output: membership m ∈ {True,False}
θ ← 0;
i← 0;
while L(f(g−1(x′, θ)), y) >= ε and i < n do

θ ← u(θ);
i← i+ 1;

end
return d(θ) < τ & i < n; . False if number of iterations exceeded n

CIFAR-10 CIFAR-10 (Krizhevsky et al., 2009) is an image dataset consists of 10 classes of different
natural objects. The dataset contains 60k of 32× 32 images.

Purchase-100: The Purchase-100 (Kaggle, 2014) dataset is generated from Kaggle’s "Acquire
Valued Shoppers Challenge, Predict which shoppers will become repeat buyers" competition. The
dataset consists of 60k customer records. Each record contains 600 binary features indicating each
customer’s purchase history, and all records are distributed in 100 classes.

In order to simulate the attacker’s capability of accessing the real data distribution, we train the target
model and shadow models by randomly selecting a training set of size 10000 and also a testing set of
size 10000. Note that the training set for the target model and the shadow models are independent.

4.1.2 TRANSFORMATIONS

Image datasets such as CIFAR-10 lie in a continuous space and also have spatial information among
features. Since privacy usually resides in the semantics, we consider six kinds of semantic-preserving
transformations for images:

Gaussian noise: Gaussian noise is one of the most common noises that would appear in images. In
this case, the transformed example is x′ = x+ δ, where δ ∼ N(µ, σ2). We set µ = 0 and assume
the attacker knows the range of the standard deviation σ ∈ (σmin, σmax).

Adversarial noise: Adversarial noise (Szegedy et al., 2013) is defined as noises crafted to change
the model output significantly. Compared with Gaussian noises, a tiny amount of adversarial noise
can cause model misclassifications. We apply adversarial noises generated by PGD attacks (Madry
et al., 2017) with a fixed L0-norm of 0.05. We assume that the attacker knows the attack algorithm,
and we consider three different adversarial settings: 1-step PGD, 10-step PGD, and targeted-loss
PGD (which runs until the loss exceeds the target loss).

JPEG compression: JPEG (Wallace, 1992) is a popular compression method for digital images.
Since JPEG is a lossy compression method, the attacker cannot recover the image even knowing the
algorithm and parameters. Our experiments assume that the attacker knows the compression quality
parameter q (q ∈ [0, 100], higher q means better image quality).

Scaling: Scaling is a common image processing operation when placing an image into a larger or
smaller placeholder. We assume that the attacker does not know what interpolation strategy is applied.
However, we also assume that the attacker knows the size of the original image (or the scaling factor
r). In our experiment, we will consider both down-scaling (r < 1) and up-scaling (r > 1) scenarios.

Filtering: Photo filtering appears everywhere in social media applications when people share their
photos. We assume the attacker can guess which filter the image applied to generate new images with
the same filter. Our experiments evaluate attacks on several popular filters embedded in Instagram–a
well-known photo-sharing social media. Detailed about the filters can be found in Appendix D.

Rotation: Rotation is a common spatial transformation that keep the image semantics. Since rotation
is a fixed transformation once the degree of the rotation δ is given. So we only consider the scenario
where the attacker does not know the exact rotation angle but can guess its range δ ∈ (δmin, δmax).
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Customer records in Purchase-100 lie in discrete space and have no explicit relationship among
features. So noises and spatial transformations for images are unavailable and not worth considering
for such datasets. Instead, we consider the following scenario for Purchase-100:

Missing features: Some (binary) features in the data records are corrupted and randomly flipped. We
assume that the attacker knows the ratio γ of flipped features in the original records, but the attacker
does not know their exact positions. Note that for all records, the flipped positions may not be the
same ones.

For the cases where there exists randomness in the transformations (e.g., Gaussian noise with a range
of σ), we transform each example by a randomly selected parameter in the parameter space multiple
times and compute the average loss or reverse transformation distance to select the threshold.

4.1.3 TARGET MODELS

For CIFAR-10, we apply the VGG-19 (Simonyan & Zisserman, 2014) architecture. We apply an
SGD optimizer with a learning rate of 1e-3 and weight decay rate of 5e-4 and trained for 100 epochs.
The final model of CIFAR-10 has a training accuracy of 99% and testing accuracy of 69%.

For Purchase-100, we apply the same architecture used by Shokri et al. (2017), which is a fully
connected neural network with one hidden layer of width 128, and tanh as the activation function.
We apply an SGD optimizer with a learning rate of 1e-2 and weight decay rate of 1e-7 and trained for
200 epochs. The final model has a 98% training accuracy and 72% testing accuracy.

We did not apply any data augmentations in training for variable control. Also, all the models are
undefended in this section. For evaluations on defended models, please refer to Appendix E.3.

4.1.4 EVALUATION METRICS

To show the effectiveness of each attack, we report the accuracy, which is the average of the true
positive rate and the true negative rate as we have the same amount of training and testing data.
Additionally, to compare the set of training examples successfully discovered by our two attacks, we
also compute a metric which we refer to as coverage difference rate, defined by:

ω =
|M1 ∪M2−M1 ∩M2|

|M |
where M1 and M2 are training members discovered by the two attacks, and M is the entire training
set. The value represents the ratio of uniquely found training members in each attack.

4.2 EVALUATION ON CIFAR-10

Firstly, we evaluate how current MIAs performs against transformed examples. We evaluated five
state-of-the-art attacks (Hu et al., 2021):(1) Classification correctness (CC) (Yeom et al., 2018), (2)
Loss thresholding (LT) (Yeom et al., 2018), (3) Confidence score thresholding (ST) (Salem et al.,
2018), (4) Entropy thresholding (ET) (Song & Mittal, 2021), and (5) NN-based attack (NN) (Shokri
et al., 2017). Details of these attacks can be found in Appendix C.

Table 1: Accuracies of current attacks on CIFAR-10

Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ)

[0,0.1] [0,0.3] 1-step loss=10 50 1 0.5 10 Clarendon Moon [0◦, 10◦] [0◦, 30◦]

CC 65.64% 66.21% 63.48% 78.89% 50.22% 66.68% 56.15% 58.65% 67.97% 66.72% 64.41% 66.10% 60.09%

LT 80.47% 77.32% 64.78% 62.63% 50.02% 74.13% 51.98% 53.46% 70.32% 72.78% 60.56% 69.51% 59.03%

ST 78.32% 75.84% 64.57% 64.86% 50.10% 73.40% 52.06% 53.64% 70.38% 72.04% 60.69% 68.99% 58.97%

ET 77.58% 76.44% 65.50% 68.49% 50.03% 75.59% 52.93% 54.94% 73.11% 73.81% 63.20% 71.32% 60.51%

NN 79.46% 76.33% 63.14% 54.23% 53.25% 73.10% 51.37% 51.90% 68.33% 72.18% 59.75% 67.94% 58.14%

Table 1 shows the results of current attacks. When the transformations are small, we can see that all
these attacks can still achieve a decent performance without considering data transformations due
to the model’s robustness to small transformations. However, when the transformation is large or
adversarially designed, current attacks’ accuracy would drop significantly. One observation worth
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mentioning is that the classification correctness attack’s accuracy gets better when the transformations
are small, especially for adversarial noises. It directly results from the robustness difference of
training and testing examples: a small adversarial noise can cause more misclassifications in the
testing set than the training set, which is aligned with our intuition. The attack results of 10-step
PGD (omitted) and fixed-loss PGD are nearly the same and very close to 50%, indicating that current
attacks are ineffective in such cases.

For the evaluation of reverse transformation attacks, we apply a linear reverse transformation function
g−1(x′, θ) = x′ + θ for all Gaussian noises, adversarial noises, JPEG compression, scaling, and
filtering, since all these transformations are applied to pixel values. The update function u is defined
in Algorithm 3, which minimizes the loss l w.r.t. the transformation parameter θ via gradient descent.
Since the model is a black box assumed in the threat model, we apply zeroth-order optimization via
gradient estimation. Note that we control the gradient via the gradient sign and a step size λ at each
update iteration. After reaching the ε-robust area, we apply L2-norm d(θ) = ||θ||2 as the distance
metric for membership inference.

Algorithm 3: Update function u for transformations on pixel values
Input: transformed example x′, true label y, target model f , loss function L, reverse

transformation function g−1 parameterized by the noise θ, step size λ, small constant σ0
Output: updated noise θ
η ← sample(N(0, σ2

0));

g ← L(f(g−1(x′,θ+η)),y)−L(f(g−1(x′,θ)),y)
η ; . Gradient estimation

θ ← θ − λ · sign(g);
return θ;

The reverse transformation function g−1 in our experiment for rotations is also the rotation operation,
with the parameter θ being the rotation degree required for rotating the example backward into the
ε-robust area. Since rotation is a fixed operation without randomness, we simply initialize θ = δmin
as the lower bound of the transformation parameter δ and define the update function as a linear
function that increase the backward rotation angle by a constant every time: u(θ, c) = θ + c. Then
Algorithm 2 becomes looking for the first angle that makes the reversed example inside the robust
area. In the extreme case, the algorithm would find the real rotation angle, which should be the local
minimum of the target model and have the lowest loss among all rotation degrees.

Results of the loss-thresholding with transformation attack (LTT), the reverse transformation attack
(RT), and their coverage difference rates (ω) are shown in Table 2. We also collect the best accuracy
among all five current attacks (CA) in Table 1 for comparison. As highlighted in the table, we can
see that our attacks have higher accuracy than current attacks in all transformations. By evaluating
three ε-robust areas, we found that a proper ε can significantly help the reverse transformation.
Sometimes a tiny ε can result in a low attack accuracy (e.g., 55.57% for loss=10 adversarial noises
with ε=0.001). The reason likely comes from the gradient estimation falling into some local minima
since the transformation is too large. Furthermore, we observed a high coverage difference rate ω in
many attacks, supporting our assumption that the reverse transformation attack can find transformed
training members with large loss values. Note that some experiment results are omitted in Table 1
and Table 2 due to the page limit. Full tables can be found in Appendix E.1.

4.3 EVALUATION ON PURCHASE-100

Table 3 shows the performance of five state-of-the-art attacks on Purchase-100. Similar to the results
of CIFAR-10, these attacks can still achieve a decent accuracy when facing a small missing ratio γ.
However, the success rate decrease quickly as γ increases.

Data in Purchase-100 have binary features. Therefore, the gradient estimation of the model loss
with respect to each feature would be inaccurate. Instead, we design a greedy update function for
the reverse transformation attack. The reverse transformation function g−1(x′,S) is defined as
flipping x′ by all the binary features whose indices are in the set S. The update function is defined
in Algorithm 4. Whenever we call the update function on a given record, we flip the single feature
that can decrease loss values the most. We repeat this process until the data record is moved back to
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Table 2: Accuracies and coverage difference rates ω of our attacks on CIFAR-10

(a) Gaussian noise, σ– range of standard deviation

σ [0, 0.1] [0, 0.3]

LTT 77.34% 65.68%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.02% 75.04% 77.35% 65.58% 64.14% 65.91%
ω 8.37% 6.96% 1.35% 7.63% 2.52% 8.51%

CA 77.32% 65.50%

(b) Adversarial noise

PGD 1-step loss=10

LTT 78.87% 56.17%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 79.20% 79.19% 77.92% 64.45% 61.30% 55.57%

ω 2.49% 5.62% 10.33% 42.47% 42.90% 47.45%

CA 78.89% 53.25%

(c) JPEG compression, q–compression quality

q 50 1

LTT 75.43% 57.00%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.10% 74.68% 75.31% 57.31% 57.51% 56.95%

ω 9.02% 5.62% 2.17% 10.97% 18.88% 23.11%

CA 75.59% 56.15%

(d) Scaling, r–scaling factor

r 0.5 10.0

LTT 58.87% 73.78%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 61.09% 61.46% 61.09% 71.98% 73.88% 74.28%
ω 13.53% 18.68% 23.41% 7.11% 1.23% 6.00%

CA 58.65% 73.11%

(e) Filtering

Filter Clarendon Moon

LTT 74.49% 65.49%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.00% 74.03% 74.15% 65.51% 65.56% 64.85%

ω 7.59% 3.70% 4.47% 0.80% 5.21% 10.58%

CA 73.81% 64.41%

(f) Rotation, δ–range of rotation degree

δ [0◦, 10◦] [0◦, 30◦]

LTT 70.73% 60.93%

ε 0.1 0.01 0.001 0.1 0.01 0.001

RT 69.13% 72.26% 77.32% 61.52% 66.44% 75.57%
ω 8.47% 9.84% 14.2% 13.69% 18.72% 39.47%

CA 71.32% 60.51%

Table 3: Accuracies of current attacks on Purchase-100

γ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

CC 63.33% 61.72% 57.54% 53.74% 51.61% 50.54% 50.18% 50.17% 50.13%

LT 70.68% 61.15% 55.47% 52.42% 51.11% 50.37% 50.20% 50.12% 50.10%

ST 59.36% 56.51% 53.78% 52.26% 51.30% 50.64% 50.32% 50.39% 50.21%

ET 70.99% 61.46% 55.62% 52.47% 51.09% 50.38% 50.20% 50.11% 50.09%

NN 65.65% 60.58% 56.01% 52.93% 51.37% 50.63% 50.28% 50.16% 50.09%

the ε-robust area. Finally, we define d(S) = |S|, which is the number of features flipped during the
reverse transformation process, as the distance metric for membership inference.

Algorithm 4: Update function u for missing features
Input: transformed example x′, true label y, target model f , loss function L, reverse

transformation function g−1, set of flipped feature indices S, number of features n
Output: updated set of flipped features S
l← L(f(g−1(x′,S)), y);
k ← −1;
for i← 0 to n do

if i /∈ S and L(f(g−1(x′,S + {i})), y) < l then
l← L(f(g−1(x′,S + {i})), y);
k ← i; . Store the current best index

end
end
S ← S + {k}; . Update the flipped feature set
return S;
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Table 4 shows the results of our attacks–LTT, RT, and their coverage difference rate–on Purchase-100.
The best accuracy among current attacks is in row CA, and the best accuracy among all attacks is
highlighted. In the experiment, we select a fixed ε = 0.5 for the reverse transformation attack, but we
vary the missing ratio γ from 0.05 to 0.40 to see how it would affect our attacks. We can see that
our attack can still successfully infer training members when the missing ratio is around 0.3, while
all current attacks drop to random guesses when the missing ratio is 0.25. Similar to the results of
CIFAR-10, there also exist large coverage difference rates between our two attacks.

Table 4: Accuracies and coverage difference rates ω of our attacks on Purchase-100

γ 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

LTT 64.09% 58.03% 55.40% 52.79% 51.96% 50.70% 50.11% 49.83%

RT 61.94% 57.27% 55.49% 53.70% 52.90% 52.02% 50.57% 50.41%
ω 21.08% 24.27% 25.06% 24.44% 24.85% 22.93% 20.64% 19.09%

CA 61.72% 57.54% 53.74% 51.61% 50.64% 50.32% 50.39% 50.21%

5 DISCUSSION

Combination of attacks: From the coverage difference rate shown in Section 4, we find that the
members successfully inferred by the two attacks are not highly overlapped sometimes. Specifically,
the reverse transformation attacks can find some transformed training examples with relatively high
loss. The finding indicates that real-world attackers may combine different attack strategies to
increase their attack success rate in the future.

Knowledge of transformations: One core assumption, and also limitation, in our threat model, is that
the attacker needs to know partial information about the transformations applied to the data. However,
is it possible to attack transformed examples without any information about the transformations?
In the future, we hope to see that if the attacker can perform the attack by approximating the
transformation without knowledge of parameters.

Generalize to current attacks: Our first attack is based on loss-thresholding. However, as we
mentioned in Section 3.2, all current attacks share the same foundation so that the simple idea of our
first attack can be generalized. For example, we can collect logits from transformed inputs and train
an attack model similar to the NN-based attack. Since the main goal of our paper is to identify the
transformation problem in the real world and show feasible solutions but not to evaluate all possible
attacks, we will leave the discussions of those possibilities in the future.

6 CONCLUSION

In this paper, we identify a problem ignored by previous MIA works: transformed data, even if the
target classifier misclassifies them, still are of the same value to attackers if they contain the same
semantics information as the original ones. To solve the problem, we extend the assumptions in
the traditional threat model by considering data transformations. We design two attacks outperform
current state-of-the-art attacks on transformed data: loss-thresholding on transformed examples and
reverse transformations. The former attack directly improves traditional loss-thresholding attacks
by setting an optimal threshold based on the knowledge of transformations. The latter leverages
the robustness difference between training and testing examples and tries to distinguish them by
reversing the transformations. We show that our attacks can still be effective even when all the current
attacks become random guesses through extensive evaluations. Additionally, we compare the two
attacks via coverage difference rate and show that the reverse transformation attack can identify
transformed training examples with high losses. As a result, we hope our work can broaden the scope
of membership inference attacks and help improve the understanding of the privacy risk in reality.
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ETHICS STATEMENT

This paper discusses membership inference attacks on examples with transformations and shows
that current threat models may cause underestimation of privacy risks in realistic scenarios. As we
point out that privacy risks exist in all transformed examples semantically close to the model’s actual
training data, resulting in a broadened attack space, attackers may have a higher chance of inferring
information from data with insufficient desensitization. On the other hand, our goal is to help the
industry build a better privacy risk understanding. Specifically, machine learning service providers
may reconsider how they share their data and how much information should be made public in the
future.

REPRODUCIBILITY STATEMENT

We provided detailed experiment settings in Section 4 and in Appendices. We submitted our source
code inside the supplementary materials and will make the source code publicly available after paper
publication.
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Appendices
A EXPERIMENT ENVIRONMENT

Experiments are implemented with Python 3.7.5/Pytorch 1.6.0/CUDA 10.1 and run on two servers
with (1) Intel(R) Xeon(R) Gold 6230 CPU @ 2.10GHz CPU and NVIDIA Quadro RTX 8000 GPU
and (2) Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz CPU and NVIDIA TITAN RTX GPU,
respectively. Codes will be open-sourced once the paper is published.

B COMPARISON WITH MIAS ON DATA AUGMENTED MODELS

Yu et al. (2021) consider the scenario of data augmentation in model training. Specifically, the attacker
has the original data, but only some augmented (transformed) versions are in the model training. On
the other hand, we consider the scenario where the data that the attacker collects are transformed.

Suppose x is the original data, and x′ = g(x) is transformed data with transformation g. If g is
invertible, and x = h(x′) where h is the mathematical inverse of g, we can switch the role of x
and x′, that is, x′ is now regarded as the original example and x is the transformed version of x′
via transformation h. In such cases, our scenario is equivalent to the scenario where the model is
trained with single-time data augmentation. However, the assumption is not applicable for most
transformations as they lose information, especially for those strictly lossy transformations (e.g.,
JPEG, down-scaling, feature-missing). In addition, for data with bounded values such as images,
even invertible transformations can result in information loss due to value clipping. As a result, it is
hard to apply Yu et al.’s attack in our scenario since they must know the exact form of the (inverse)
transformation h.

On the contrary, both of our attacks can easily apply to any transformation. More importantly,
the reverse transformation attack applies to all situations where the attacker gets slightly different
examples from those in model training. In other words, the reverse transformation attack can also
apply to data augmentation scenarios or even the combination of both scenarios discussed above. We
will leave this topic in our future work.

C DETAILS OF CURRENT MIAS

Here we provide detailed information for the five current attacks we evaluated in Section 4. Four
of them are metric-based attacks, and the other one is an NN-based attack. Suppose f is the target
model, x is the target example, τ is a real number represents the threshold, then the membership
inference functionsM for the five attacks are:

Classification correctness (CC) Classification correctness attack (Yeom et al., 2018) simply treats
all correctly classified examples as training members.

MCC(x, f) = 1(argmaxf(x) = y)

Loss thresholding (LT) Loss thresholding attack (Yeom et al., 2018) treats all examples with
losses lower than a preset threshold as training members.

MLT(x, f) = 1(L(f(x), y) < τLT)

where L is the loss function of the target model.

Confidence score thresholding (ST) Confidence score thresholding attack (Salem et al., 2018)
treats all examples whose confidence score of the true label (the original attack selects the maximum
confidence score) is larger than a preset threshold as training members.

MST(x, f) = 1(f(x)y > τST)
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Entropy thresholding (ET) Entropy thresholding attack (Song & Mittal, 2021) treats all examples
whose output’s entropy is smaller than a preset threshold as training members.

MET(x, f) = 1(E(f(x), y) < τET)

where E(f, y) = −(1− fy) · log(fy)−
∑
i 6=y fi · log(1− fi) is the entropy metric.

NN-based attack (NN) NN-based attack (Shokri et al., 2017) collects an attack dataset containing
output logits from shadow models and then trains a binary classifier for membership inference.

MNN(x, f) = argmaxA(f(x))

where A is the binary classifier.

D DETAILS OF IMAGE FILTERS

The three filters we applied in our experiments are Clarendon, Gingham, and Moon. They are the
first three image filters implemented inside Instagram, a most popular photo-sharing platform with
one billion active users (version 207.0 by the time of the current submission). The effects of the three
filters are shown in Figure 3. The three filters are pretty different and represent various styles of image
filtering. For example, Clarendon increases image saturation while Gingham reduces it; Clarendon
and Gingham keep color while Moon goes grayscale. For experiment, we apply the implementation
from pilgram library (Kamakura, 2019).

Our experiments assume that the attacker applies the filters as a black box, which means they do
not need to know the detailed filter algorithm. Theoretically, for filters that only contain linear
transformations, such as only increasing brightness, attackers can obtain the original image by
applying the inverses of those linear transformations. However, in reality, image pixel values are
strictly bounded. Even if many filters only contain linear transformations, most filtered images lose
information during value clipping and cannot be reverted. On the other hand, we can apply our
attacks to any black-box filters with a unified reverse transformation function.

(a) Original (b) Clarendon (c) Gingham (d) Moon

Figure 3: Image filters

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 FULL EVALUATION RESULTS ON CIFAR-10

Table 5 and Table 6 are the full tables of Table 1 and Table 2, respectively.

Table 5: Accuracies of current attacks on CIFAR-10

Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ)

[0,0.1] [0,0.2] [0,0.3] 1-step 10-step loss=10 50 10 1 0.5 1.5 10 Clarendon Gingham Moon [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

CC 65.64% 66.21% 65.53% 63.48% 78.89% 50.22% 50.22% 66.68% 66.07% 56.15% 58.65% 68.02% 67.97% 66.72% 63.60% 64.41% 66.10% 63.11% 60.09%

LT 80.47% 77.32% 69.66% 64.78% 62.63% 50.02% 50.02% 74.13% 61.13% 51.98% 53.46% 69.54% 70.32% 72.78% 59.13% 60.56% 69.51% 62.78% 59.03%

ST 78.32% 75.84% 69.19% 64.57% 64.86% 50.10% 50.10% 73.40% 61.42% 52.06% 53.64% 69.61% 70.38% 72.04% 59.29% 60.69% 68.99% 62.63% 58.97%

ET 77.58% 76.44% 70.33% 65.50% 68.49% 50.03% 50.03% 75.59% 64.41% 52.93% 54.94% 72.30% 73.11% 73.81% 61.50% 63.20% 71.32% 64.67% 60.51%

NN 79.46% 76.33% 68.87% 63.14% 54.23% 48.71% 53.25% 73.10% 59.48% 51.37% 51.90% 67.56% 68.33% 72.18% 57.56% 59.75% 67.94% 61.63% 58.14%
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Table 6: Accuracies and coverage difference rates ω of our attacks on CIFAR-10

(a) Gaussian noise, σ– range of standard deviation

σ [0, 0.1] [0, 0.2] [0, 0.3]

LTT 77.34% 71.13% 65.68%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.02% 75.04% 77.35% 68.92% 70.00% 70.93% 65.58% 64.14% 65.91%

ω 8.37% 6.96% 1.35% 9.27% 4.14% 3.81% 7.63% 2.52% 8.51%

(b) Adversarial noise

PGD 1-step 10-step loss=10

LTT 78.87% 64.32% 56.17%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 79.20% 79.19% 77.92% 60.26% 55.37% 52.81% 64.45% 61.30% 55.57%

ω 2.49% 5.62% 10.33% 38.28% 42.76% 44.85% 42.47% 42.90% 47.45%

(c) JPEG compression, q–compression quality

q 50 10 1

LTT 75.43% 66.37% 57.00%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.10% 74.68% 75.31% 66.57% 67.08% 66.81% 57.31% 57.51% 56.95%

ω 9.02% 5.62% 2.17% 1.66% 7.47% 12.46% 10.97% 18.88% 23.11%

(d) Scaling, r–scaling factor

r 0.5 1.5 10.0

LTT 58.87% 73.27% 73.78%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 61.09% 61.46% 61.09% 71.81% 73.40% 73.84% 71.98% 73.88% 74.28%

ω 13.53% 18.68% 23.41% 6.93% 2.06% 6.60% 7.11% 1.23% 6.00%

(e) Filtering

Filter Clarendon Gingham Moon

LTT 74.49% 64.05% 65.49%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 71.00% 74.03% 74.15% 64.11% 64.00% 63.47% 65.51% 65.56% 64.85%

ω 7.59% 3.70% 4.47% 1.66% 5.53% 10.72% 0.80% 5.21% 10.58%

(f) Rotation, δ–range of rotation degree

δ [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

LTT 70.73% 64.79% 60.93%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 69.13% 72.26% 77.32% 64.58% 68.64% 76.38% 61.52% 66.44% 75.57%

ω 8.47% 9.84% 14.2% 6.26% 13.73% 29.68% 13.69% 18.72% 39.47%

E.2 EVALUATION ON SVHN

SVHN (Netzer et al., 2011) is an image dataset for street house numbers. We use the cropped version
of the original dataset that contains around 70k of 32× 32 images of digits from 0 to 9.

For training SVHN models, we apply the same architecture and training settings as CIFAR-10 in
Section 4. The final model of SVHN has a training accuracy of 99% and a testing accuracy of 89%.
For MIAs, we also evaluated the six image transformations.

Table 7 and Table 8 show the results of current attacks and our attacks on SVHN with transformations.
Similar to the results of CIFAR-10 and Purchase-100, we can see that our attacks can achieve better
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accuracies with a properly selected ε-robust area, and our two attacks discover different sets of
transformed training examples.

Table 7: Accuracies of current attacks on SVHN

Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ)

[0,0.1] [0,0.2] [0,0.3] 1-step 10-step loss=10 50 10 1 0.5 1.5 10 Clarendon Gingham Moon [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

CC 55.65% 55.82% 55.99% 55.68% 63.90% 50.29% 50.29% 55.71% 56.14% 50.99% 56.40% 55.75% 55.72% 56.08% 55.58% 55.72% 55.84% 54.43% 52.55%

LT 65.21% 63.24% 60.02% 58.38% 52.96% 49.99% 49.99% 63.39% 56.27% 50.47% 59.39% 64.11% 64.23% 61.77% 56.85% 59.74% 59.30% 55.10% 53.05%

ST 64.54% 62.90% 59.97% 58.39% 53.26% 49.99% 49.99% 62.94% 56.39% 50.49% 59.24% 63.70% 63.80% 61.44% 57.17% 59.59% 59.07% 55.10% 53.10%

ET 65.39% 63.43% 60.14% 58.44% 53.01% 49.99% 49.99% 63.53% 56.33% 50.47% 59.47% 64.25% 64.38% 61.90% 56.87% 59.86% 59.37% 55.13% 53.12%

NN 65.89% 64.37% 60.45% 58.11% 50.46% 50.84% 50.59% 64.27% 56.25% 50.41% 59.48% 65.32% 65.13% 62.76% 55.50% 60.10% 59.97% 56.03% 53.73%

Table 8: Accuracies and coverage difference rates ω of our attacks on SVHN

(a) Gaussian noise, σ– range of standard deviation

σ [0, 0.1] [0, 0.2] [0, 0.3]

LTT 63.49% 61.65% 60.09%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 58.38% 61.50% 65.06% 58.29% 60.49% 62.45% 57.47% 59.25% 60.03%

ω 21.33% 21.35% 19.31% 22.93% 19.67% 14.82% 20.52% 15.31% 7.32%

(b) Adversarial noise

PGD 1-step 10-step loss=10

LTT 61.39% 52.03% 50.72%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 63.33% 61.52% 62.10% 56.02% 53.18% 51.35% 56.76% 56.98% 55.51%

ω 11.86% 1.29% 8.15% 25.55% 32.16% 39.61% 40.71% 43.60% 45.09%

(c) JPEG compression, q–compression quality

q 50 10 1

LTT 63.55% 57.47% 50.92%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 58.28% 61.44% 65.22% 57.69% 58.74% 58.67% 51.62% 52.21% 52.68%

ω 21.52% 21.42% 19.89% 27.25% 21.69% 11.78% 6.09% 9.94% 13.56%

(d) Scaling, r–scaling factor

δ 0.5 1.5 10

LTT 59.81% 64.00% 64.10%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 58.85% 61.09% 62.03% 58.40% 61.78% 66.16% 58.38% 61.76% 66.21%

ω 28.61% 25.91% 18.50% 21.87% 21.86% 21.38% 21.68% 21.67% 21.29%

(e) Filtering

δ Clarendon Gingham Moon

LTT 63.04% 57.45% 60.16%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 58.79% 62.13% 65.00% 57.25% 58.38% 58.46% 58.17% 60.83% 62.55%

ω 23.65% 22.96% 18.78% 29.72% 24.30% 14.65% 28.35% 26.68% 20.49%

(f) Rotation, δ–range of rotation degree

δ [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

LTT 59.77% 56.34% 53.74%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 57.69% 59.58% 61.11% 55.19% 56.07% 56.53% 52.91% 53.51% 54.87%

ω 26.24% 23.06% 16.88% 23.33% 15.91% 5.67% 17.82% 11.84% 6.29%
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E.3 EVALUATION ON DEFENDED MODELS

We mainly evaluate our attacks on undefended models in Section 4. Here we provide evaluation
results of CIFAR-10 models trained with two popular defense strategies: (1) large weight decay
rate (Shokri et al., 2017), and (2) deferentially-private (DP) training (Abadi et al., 2016). We assume
that the attacker knows the defense algorithms and the parameters so that the attacker can also train
shadow models with the same defenses. Note that we only evaluate two defenses as our goal is not to
evaluate the performance of state-of-the-art defenses but to show the effectiveness of current defenses
against all MIAs.

For the first defense, we set the weight decay rate to 0.1 (target model trained with 5e-4) and trained
the model until convergence. For DP, we applied the implementation from Opacus (Facebook, 2020)
with an RMSprop optimizer for better convergence, a gradient clipping value of 1.2, a noise multiplier
of 2.3, and trained for 100 epochs, which achieves (5, 1e-5)-differential privacy. All the other training
settings are the same as in Section 4.1 in order to control variates. The final models trained with a
large weight decay rate have an average of 85% training accuracy and 64% testing accuracy, and the
final models trained with DP have an average of 40% training accuracy and 39% testing accuracy.

Table 9, Table 10 and Table 11 show the attack results of current attacks and our attacks on the
defended models. We can see that both defenses are effective against all MIAs, including ours. DP
with a small privacy budget provides the best privacy guarantee, reducing all attacks to random
guesses, with a trade-off between utility as the model accuracy is considerably lower than undefended
ones.

While loss-thresholding with transformations is still working better than the current attacks, we notice
that the performance of reverse transformation attack is ineffective under the defenses when the ε
settings are the same with attacking undefended models in Section 4. This is due to the defenses
increasing the average loss so that both training and testing examples are far away from the robust area
of a small ε. However, an adaptive attacker can always select a better ε for the reverse transformation
attack. In Figure 4, we compare reverse transformation attacks with different ε-robust areas on the
model with weight decay defense. We can see that a proper selection of ε = 0.5 can still lead to a
better attack accuracy than the random guessing baseline and the loss-thresholding attacks. How to
optimally select ε is an interesting topic and is left as our future work.

Table 9: Accuracies of current attacks on defended models

(a) Weight decay

Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ)

[0,0.1] [0,0.2] [0,0.3] 1-step 10-step loss=10 50 10 1 0.5 1.5 10 Clarendon Gingham Moon [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

CC 60.98% 60.50% 58.59% 57.03% 58.54% 50.13% 50.13% 58.60% 54.54% 51.17% 52.55% 59.16% 59.35% 60.67% 59.54% 59.73% 58.63% 56.16% 54.60%

LT 61.33% 60.53% 58.19% 56.34% 56.01% 50.11% 50.11% 57.94% 53.52% 50.78% 51.86% 58.61% 58.90% 61.11% 59.31% 59.26% 58.32% 55.81% 54.23%

ST 61.35% 60.55% 58.20% 56.34% 56.06% 50.12% 50.12% 57.92% 53.52% 50.78% 51.90% 58.63% 58.90% 61.02% 59.30% 59.27% 58.32% 55.78% 54.23%

ET 61.33% 60.55% 58.19% 56.32% 56.02% 50.11% 50.11% 57.95% 53.54% 50.79% 51.86% 58.63% 58.89% 61.11% 59.33% 59.24% 58.33% 55.81% 54.23%

NN 57.81% 57.21% 55.41% 53.53% 46.96% 49.86% 49.89% 54.76% 51.14% 49.88% 50.32% 54.83% 55.26% 57.26% 55.71% 55.73% 55.09% 53.23% 52.29%

(b) DP

Original Gaussian(σ) Adversarial JPEG(q) Scaling(r) Filtering Rotation(δ)

[0,0.1] [0,0.2] [0,0.3] 1-step 10-step loss=10 50 10 1 0.5 1.5 10 Clarendon Gingham Moon [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

CC 50.67% 50.70% 50.62% 50.48% 50.15% 50.00% 50.00% 50.63% 50.50% 50.24% 50.34% 50.59% 50.58% 50.70% 50.52% 50.62% 50.63% 50.70% 50.51%

LT 50.79% 50.72% 50.79% 50.53% 50.18% 50.01% 50.01% 50.72% 50.46% 50.30% 50.27% 50.70% 50.74% 50.88% 50.68% 50.68% 50.70% 50.66% 50.53%

ST 50.55% 50.54% 50.45% 50.32% 50.17% 50.04% 50.04% 50.31% 50.26% 50.08% 50.25% 50.61% 50.65% 50.59% 50.43% 50.50% 50.46% 50.28% 50.19%

ET 50.86% 50.73% 50.82% 50.53% 50.23% 50.00% 50.00% 50.72% 50.49% 50.28% 50.35% 50.79% 50.81% 50.94% 50.69% 50.69% 50.74% 50.68% 50.57%

NN 49.82% 49.93% 50.10% 50.14% 49.63% 50.07% 50.17% 49.90% 50.05% 50.18% 49.97% 50.23% 50.09% 49.92% 50.01% 50.08% 50.13% 50.14% 50.18%
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Table 10: Accuracies and coverage difference rates ω of our attacks on CIFAR-10 models trained
with large weight decay rate

(a) Gaussian noise, σ– range of standard deviation

σ [0, 0.1] [0, 0.2] [0, 0.3]

LTT 60.57% 58.50% 56.88%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.08% 50.07% 50.09% 49.91% 50.02% 50.08% 50.27% 50.06% 50.07%

ω 49.40% 49.66% 49.83% 48.86% 49.82% 50.28% 49.33% 50.43% 50.12%

(b) Adversarial noise

PGD 1-step 10-step loss=10

LTT 60.33% 50.75% 50.75%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.06% 49.82% 50.04% 50.05% 50.06% 50.10% 50.04% 49.77% 49.74%

ω 48.98% 50.19% 50.26% 50.04% 49.98% 50.21% 50.30% 50.34% 49.82%

(c) JPEG compression, q–compression quality

q 50 10 1

LTT 58.50% 54.65% 51.39%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.26% 50.27% 49.74% 49.90% 50.17% 49.95% 50.27% 50.11% 50.07%

ω 48.94% 50.48% 49.82% 48.97% 49.64% 49.72% 49.81% 50.17% 50.10%

(d) Scaling, r–scaling factor

δ 0.5 1.5 10

LTT 52.98% 59.13% 59.38%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.14% 49.89% 50.23% 50.33% 50.25% 50.09% 50.13% 50.20% 49.92%

ω 49.03% 50.27% 50.28% 48.66% 49.67% 49.90% 48.87% 50.31% 49.83%

(e) Filtering

δ Clarendon Gingham Moon

LTT 61.03% 59.55% 59.75%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 49.98% 49.96% 49.76% 50.13% 49.72% 49.89% 50.03% 49.70% 50.08%

ω 49.13% 50.01% 49.95% 49.08% 50.51% 49.83% 48.79% 50.09% 49.99%

(f) Rotation, δ–range of rotation degree

δ [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

LTT 58.64% 56.28% 54.63%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.17% 50.01% 49.89% 49.88% 50.01% 49.81% 49.86% 49.95% 49.97%

ω 43.00% 43.20% 43.70% 38.79% 39.28% 39.15% 34.65% 34.91% 34.93%
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Table 11: Accuracies and coverage difference rates ω of our attacks on CIFAR-10 models trained
with DP

(a) Gaussian noise, σ– range of standard deviation

σ [0, 0.1] [0, 0.2] [0, 0.3]

LTT 50.76% 50.64% 50.61%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.22% 50.25% 50.02% 49.95% 50.01% 50.37% 50.19% 49.96% 50.04%

ω 47.32% 50.06% 49.92% 47.61% 50.18% 49.62% 48.22% 50.05% 49.99%

(b) Adversarial noise

PGD 1-step 10-step loss=10

LTT 50.76% 50.67% 50.67%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.14% 50.06% 49.96% 50.04% 50.11% 49.79% 50.08% 49.96% 50.07%

ω 47.98% 49.57% 49.79% 49.47% 49.93% 50.07% 49.05% 49.86% 49.76%

(c) JPEG compression, q–compression quality

q 50 10 1

LTT 50.70% 50.50% 50.27%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 49.96% 50.08% 50.05% 50.17% 50.05% 50.28% 49.98% 50.11% 50.12%

ω 46.91% 49.38% 50.12% 47.48% 50.05% 49.52% 47.81% 50.25% 49.71%

(d) Scaling, r–scaling factor

δ 0.5 1.5 10

LTT 50.39% 50.70% 50.73%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 49.96% 49.92% 50.07% 49.99% 50.12% 49.93% 50.09% 49.90% 50.00%

ω 48.04% 50.21% 50.02% 47.00% 49.86% 49.89% 47.33% 49.70% 50.00%

(e) Filtering

δ Clarendon Gingham Moon

LTT 50.86% 50.68% 50.70%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.25% 49.71% 50.04% 49.94% 50.28% 49.78% 49.90% 50.16% 49.89%

ω 46.54% 49.79% 49.97% 46.94% 49.71% 49.96% 47.67% 49.88% 50.07%

(f) Rotation, δ–range of rotation degree

δ [0◦, 10◦] [0◦, 20◦] [0◦, 30◦]

LTT 50.66% 50.52% 50.46%

ε 0.1 0.01 0.001 0.1 0.01 0.001 0.1 0.01 0.001

RT 50.35% 50.07% 50.16% 49.56% 49.91% 50.14% 49.70% 50.12% 49.90%

ω 48.28% 49.37% 49.63% 47.58% 48.77% 48.86% 46.64% 48.10% 48.34%
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Figure 4: Comparison of different ε-robust areas for RT attack (CIFAR-10 with weight-decay defense,
Rotation of [0◦, 30◦]). The x-axis represents the ε, and the y-axis represents the attack accuracy.
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