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ABSTRACT

Federated Learning (FL) is a cutting-edge distributed machine learning framework
that enables multiple devices to collaboratively train a shared model without ex-
posing their own data. In the scenario of device heterogeneity, the synchronous FL
suffers from a latency bottleneck induced by network stragglers, which hampers
the training efficiency significantly. In addition, due to the diverse structures and
sizes of local models, simple and fast averaging aggregation is not feasible any-
more. Instead, complicated aggregation operations, such as knowledge distilla-
tion, are required. The time cost for complicated aggregation becomes a new bot-
tleneck that limits the computational efficiency of FL. In this work, we claim that
the root cause of training latency actually lies in the aggregation-then-broadcasting
workflow of the server. By swapping the computational order of aggregation and
broadcasting, we propose a new parallel federated learning (PFL) framework that
unlocks the edge nodes during global computation and the central server during
local computation. This fully asynchronous and parallel pipeline enables handling
device heterogeneity and network stragglers, allowing flexible device participation
as well as achieving scalability in computation. We theoretically prove that syn-
chronous and asynchronous PFL can achieve a similar convergence rate as FL.
Extensive experiments empirically show that our framework can tolerate both net-
work stragglers and complicated aggregation, which brings up to 5.56× speedup
compared with traditional FL.

1 INTRODUCTION

Federated Learning (FL) is an emerging distributed machine learning framework that enables nu-
merous devices to collaboratively train a shared model without exposing their private data (Shokri
& Shmatikov, 2015; Konečnỳ et al., 2016; Kairouz et al., 2019; Li et al., 2020). The main advantage
of FL is the decoupling of model training from the necessity of directly accessing to the training
data. Thus, in many data-sensitive scenarios, such as applications in biomedicine (Xu et al., 2021;
Courtiol et al., 2019; Xu et al., 2021) and finance (Long et al., 2021; Pfitzner et al., 2021), FL can
significantly reduce the concern of privacy and security.

The most popular FL system FedAvg (McMahan et al., 2017) works in synchronous training, in
which each round includes the following steps (Kairouz et al., 2019): 1) the central server broadcasts
the latest global model to edge devices; 2) each edge device then updates its local model with the
private data, and uploads the local model update to the central server; 3) once all local updates are
received, the central server conducts the aggregation operation to produce the next global model.
FedAvg works in a serial computation manner, in which no local model optimization is allowed
during communication and aggregation while no global computation is allowed during local training
and local updates transmission, as shown in Fig.1-(a).

Synchronous FL (SyncFL) faces two main challenges that hinder the training efficiency. First, device
heterogeneity inevitably introduces network stragglers, which take much longer time to complete
local training than common ones. According to the rule that aggregation is conducted after all
local updates are received, the slowest-responding client, due to either the slowest training speed or
dropping out mid-round, becomes the bottleneck of SyncFL system. Second, the weighted average
manner is widely applied for global aggregation, which is simple and fast. As a result, in most
existing FL schemes, the aggregation time spent in the central server is ignored. However, for
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Figure 1: The pipeline of FedAvg and DGA. (a) FedAvg works in a synchronous manner, in which local and
global computation are conducted serially. (b) Sync PFL exchange the execution order of global aggregation
and broadcasting. As can be seen, Sync PFL achieves a significant speedup under the same conditions.

the scenario of FL over heterogeneous devices, directly averaging of local models is not feasible
anymore, since local models may have diverse structures and sizes. Recently, some methods attempt
to address the model heterogeneity by performing knowledge distillation in the server side (Zhu
et al., 2021b; Lin et al., 2020), leading to complicated aggregation operation. When the time cost
for aggregation is significant, in SyncFL, as shown in Fig.1-(a), devices are blocked to wait for the
central server, which limits the utilization (i.e., the fraction of processors actively computing at any
time) of the system. Accordingly, the time cost for global aggregation becomes another key factor
influencing the training efficiency of FL.

The network latency induced by straggler has been well-studied, while the training latency induced
by complicated aggregation is overlooked by the literature. The state-of-the-art synchronous and
asynchronous FL training strategies attempt to remedy the network latency issue from the edge side.
A solution called DGA is offered in (Zhu et al., 2021a), which allows extra local optimization during
the process of communication, and thus saves the overall time cost to some extent. However, as a
synchronous approach, DGA still suffers from the high network latency induced by network strag-
glers. An alternative strategy is to allow clients to update the global model asynchronously by di-
viding fast and slow clients into different subsets. Avdyukhin et al. (Avdiukhin & Kasiviswanathan,
2021b) propose an asynchronous local SGD model, where all the client iterates evolve in synchrony
with respect to the global clock, but communicate with the server in asynchrony at arbitrary time
intervals. Instead, we claim that the bottleneck of training latency actually lies in the workflow of
the server. In the literature, this research line has not been explored yet.

In this paper, we propose a simple yet efficient scheme called parallel federated learning (PFL) to
achieve training efficiency over heterogeneous devices, which can solve the above challenges simul-
taneously. We claim that the bottleneck of training efficiency actually lies in the workflow of the
server. The popular FedAvg conducts serial computation between edge nodes and the central server:
uploading→ global aggregation→ broadcasting→ local optimization . In this pipeline, as shown
in Fig.1-(a), the server would be blocked to wait for receiving all local updates in order to perform
the global aggregation; the edge nodes would be blocked to wait for receiving the broadcasted global
model and then can begin the next local optimization. By carefully examining the above process, it
can be found that the cause of training inefficiency actually lies in the dependency of server on all
local updates uploading and the dependency of clients on global aggregation. An intuitive idea is to
decouple these dependencies such that the edge clients and server can run in parallel.

Without redesigning the whole FL framework, we propose a very simple operation—exchange the
execution order of global aggregation and broadcasting. The new workflow of the server becomes:
uploading (server receives only the completed local updates) → broadcasting (server broadcasts
the stale global model in the buffer) → global aggregation (server averages the currently received
local updates to get the next global model). Under this setup, for an edge device, once the local
optimization is completed, it uploads the local update to the server; right after the server receives
the new local update, it immediately broadcasts the current global model (stale one) in the buffer
to the edge device; the edge device no longer needs to wait for the aggregation result but starts
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Figure 2: The pipeline of PFL. The local training process of the edge device and the aggregation
process of the central server can be carried out simultaneously, thus greatly improving the training
efficiency of FL.

the next local optimization upon the received global model; the global aggregation on new updates
are then carried out. In this way, the global aggregation is decoupled from the communication and
can be performed in parallel with local training. PFL includes both synchronous and asynchronous
versions, as shown in Fig. 1-(b) and Fig. 2. We theoretically prove that PFL can achieve the similar
convergence rate as FedAvg, and empirically show that our framework can tolerate both stragglers
and complicated aggregation tasks, which brings 1.77× to 5.56× speedup. In summary , PFL enjoys
the following merits:

• Handling Device Heterogeneity and Network Stragglers. The server and edge clients
conduct model updates in a fully asynchronous fashion, which is favorable in handling
device heterogeneity. Moreover, the server no longer needs to wait for the straggling de-
vices, which contribute their local updates to aggregation whenever they are available to
the server.

• Flexible Device Participation. In cross-device FL, it is expected that each client would
only participate in an arbitrary number of update rounds. Our PFL can achieve flexible
device participation naturally. Once a local client gets disconnected, it can download the
global model into the buffer, upon which it can conduct a local model update and rejoin the
collaborative training circle.

• Scalability in Computation. In PFL, the global aggregation is executed in parallel with
communication and local updates, thus it can be generalized to conduct more complicated
operations beyond simple averaging. For instance, we can employ knowledge distillation
to deal with the model heterogeneity; use homomorphic encryption to boost security.

2 METHODOLOGY

We consider federated learning with N edge devices. Each device i has access to a private dataset
Si = {(xi

j , y
i
j)}

mi
j=1 including mi training samples from an unknown and fixed distribution Pi over

X ×Y . The sample number mi and the data distribution Pi can be diverse across edge devices. The
overall goal is to train a global model f(ω) using m =

∑N
i=1 mi from all the edge nodes, where ω is

denoted as the model parameters to be optimized. Formally, for each device i, an objective function
F (i)(ω) is defined for optimization over Si:

F (i)(ω) = E(x,y)∈Si
[L(f(x, ω), y)], (1)

2.1 PARALLEL FEDERATED LEARNING

The proposed PFL can be conducted in both synchronous and asynchronous modes. For the syn-
chronous mode, in each round, the server needs to wait until receiving all updates of edge devices
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Algorithm 1: Parallel Federated Learning

Input: N edge devices with private datasets {Si}Ni=1, the maximum global clock number T .
Output: The final global model ω(g)

T

1 Initialization: ω(g)
0 ;

2 for global clock t = 1, ...T in parallel do
3 for edge device i corresponding to global clock t

4 – Received global models: get ω(g)
t−1

5 – Local Update: ω(i)
t ← ω

(g)
t−1 − γG

(i)
t−1;

6 – Uploading: Uploading the gradient updates δ(i) to the central server;
7 Global Computation on Server
8 – Communication:
9 • Receive the gradient update δ(i) of arriving device i at global clock (t+ n+ 1);

10 • Send back the stale global model ω(g)
t+n−r to device i;

11 – Aggregation:
12 • Update the global model: ω(g)

t+n+1 ← ω
(g)
t+n+1−p +

1
N

∑
i∈Ct

δ(i),

prior to conducting the global aggregation; while for the asynchronous mode, the server allows
asynchronous updates.

2.1.1 SYNCHRONOUS PFL

Due to the limitation of synchronized aggregation, our synchronous PFL (SPFL) cannot handle the
bottleneck induced by network stragglers, which instead is tailored to alleviate the training latency
induced by complicated aggregation. Specifically, for the t-th round, SPFL works as follows:

• Local Update: Based on the received global model ω(g)
t−1, each edge node i updates the

local model by stochastic gradient descent using its private data:

ω
(i)
t ← ω

(g)
t−1 − γG

(i)
t−1, t = 1, ..., T, (2)

where G
(i)
t−1 represents the gradient updates computed by the i-th node based on ω

(g)
t−1.

• Uploading: Once the edge node i finishes the local training, it uploads the gradient update
δ(i) to the central server.

• Broadcasting: Right after receiving the uploaded signals {δ(i)}Ni=1 from all edge devices,
the central server sends back to them the stale global model in the buffer. Note that it is the
aggregation result of the last round but not the up-to-date one. If the aggregation procedure
of the last round has not yet completed, the server needs to wait until its completion prior
to broadcasting the global model.

• Global Aggregation: Along with broadcasting, the central server performs the aggregation
operation based on the received local updates:

ω
(g)
t+1 = ω

(g)
t +

1

N

∑N

i=1
δ(i), t = 1, ..., T, (3)

When the central server is performing aggregation, the edge nodes are performing local
training. Accordingly, by exchanging the execution order of broadcasting and aggregation,
we decouple local training and global aggregation and achieve parallel speedup.

2.1.2 ASYNCHRONOUS PFL

Compared with the synchronous mode, the asynchronous mode enjoys more degree of freedom. In
the proposed asynchronous PFL (APFL), we attempt to simultaneously remedy the training latency
induced by network stragglers on the edge side and complicated aggregation operation on the server
side. In APFL, each edge device and the central server have different clocks. To handle this issue, we
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define the global clock: whenever any device communicates with the central server, the global clock
will increase by 1. In other words, each global clock corresponds to only one device. Specifically,
for the t-th global clock, the proposed PFL works as follows:

• Local Update: Edge device i completes the communication with the central server, which
receives the global model denoted as ω(g)

t−1. Based on ω
(g)
t−1, edge device i updates the local

model by stochastic gradient descent using its private data:

ωt ← ω
(g)
t−1 − γG

(i)
t−1, t = 1, ..., T. (4)

• Uploading: After completing the local training, edge device i then uploads the gradient
update δ(i) to the central server. During the local training and the uploading process of
device i, there would be n other devices communicating with the central server. Therefore,
when the central server receives the local update of the device i, the global clock becomes
t+ n+ 1.

• Broadcasting: Right after receiving the uploaded signal δ(i) from edge device i, the central
server sends back to it the stale global model in the buffer, which is the most recent aggre-
gation result. It would be ω

(g)
t+n if the central server is idle, or ω(g)

t+n−r if the central server
is performing aggregation, where r denotes the number of local devices that previously
arrived at the server but did not participate in aggregation. The former is a special case of
the latter with r = 0. For simplicity, we denote the stale global model as ω

(g)
t+n−r. If the

local model uploaded in the previous clock by that device has not completed aggregation,
then the device must wait until it has. Note that the local signal δ(i) received this time does
not participate in the current aggregation process. Therefore, the edge device i no longer
needs to wait for the global aggregation, which immediately starts the next local training
relying on ω

(g)
t+n−r. The central server then performs the next aggregation in parallel with

the broadcasting and the new local training on device i.

• Global Aggregation: The new broadcasting-then-aggregation mechanism, which sends
to clients the stale global models but not the latest ones, makes the global aggregation
decoupled from the communication. However, this fully asynchronous manner leads to a
scenario that, when the global aggregation is being executed, there are some local updates
arriving. This situation is easy to handle: the arrivals just wait for the current aggregation
to be done and then launch a new aggregation. The averaging operation is thus performed
on the updates of the new received edge devices:

ω
(g)
t+n+1 ← ω

(g)
t+n+1−p +

1

N

∑
i∈Ct

δ(i), t = 1, ..., T, (5)

where Ct represents the devices that arrived during the last aggregation, p is the number of
devices in Ct. Normally, Ct contains only one device.

2.1.3 COMPARISON OF SYNCHRONOUS PFL AND ASYNCHRONOUS PFL

The main difference between SPFL and APFL is whether the central server needs to wait for all
devices. SPFL is subject to the requirement of synchronized aggregation, while APFL is not. This
results in SPFL and APFL having different speed-up ratios compared to standard federated learning.
Specifically, we divide the training time of federated learning into four parts: the time cost Tl for
local training, the time cost Tc for communication, the time cost Tw for waiting, and the time cost Tg

for global aggregation. Standard federated learning works in a serial manner, for which the training
time of each round is T = Tl + Tc + Tw + Tg . In SPFL, the aggregation of the central server is
performed in parallel with the local training of the edge nodes and the communication process, the
training time for each round is T = max(Tl + Tc + Tw, Tg). In APFL, there is no waiting time, we
have T = max(Tl + Tc, Tg).

2.2 CONVERGENCE ANALYSIS

In this subsection, we present the convergence analysis to demonstrate in theory that the proposed
synchronous/asynchronous PFL both can get a similar convergence as FedAvg. It is worth noting
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Figure 3: The speedup ratio comparison under different setting. Tw/Tl represents the ratio of the
straggler device’s dropout time to the local training time. Ratio of Tg/Tl is associated with the
number of devices and the computing power of the central server. Experimental results show that
PFL yields the highest speedup ratios in both situations.

that there is a standard routine for FL convergence analysis, thus we just follow it without the ne-
cessity of creating a new one. We take the following standard assumptions (Stich, 2018; Avdiukhin
& Kasiviswanathan, 2021a; Nguyen et al., 2022):

• Smoothness: All local functions f i(i ∈ [N ]) are L-smooth.
• Bounded second moment: There exists a constant Gmax > 0 such that:

E
[
||∇F (i)(x)||2

]
≤ G2

max, ∀i ∈ [N ], ∀x ∈ Rd, (6)

where ∇F (i)(x) is an unbiased stochastic gradient of f (i) at x.
• Bounded variance: There exists a constant σ ≥ 0 such that:

Eξ∼Si ∥∇Fi(x)−∇fi(x)∥ ≤ σ2, ∀i ∈ [N ],∀x ∈ Rd. (7)

Analysis for Synchronous PFL. In synchronous PFL, we only exchange the execution order of
global aggregation and broadcasting, which makes each edge device receive the stale global model.
At first glance, it looks a bit like asynchronous FL. The difference is that in asynchronous FL, only
part of the devices (stragglers) upload the stale gradient updates. In synchronous PFL, the global
model received by the devices is only from the last round. Due to the above similarities, we can
analyze the convergence of synchronous PFL with the help of existing studies on asynchronous FL.
Here, we follow (Avdiukhin & Kasiviswanathan, 2021a), but give a sharper bound.

Definition 1 (Synchronous PFL Sequence) Let ω(g)
t represents the global model of synchronous

PFL, G(i)
t represents the uploaded gradient updates computed by the i-th client based on ω

(g)
t , the

global model ω(g)
t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=2

γ avgi

(
G

(i)
τ−2

)
, t = 2, ..., T, (8)

where ω
(g)
0 and ω

(g)
1 are two different initialized models.

Definition 2 (Virtual Sequence) We construct a virtual sequence in which each device at round t

uses the ω
(g)
t−1 to calculate the uploaded gradient updates, this virtual sequence’s global model can

be expressed as:

ζt = ω
(g)
0 −

t∑
τ=1

γ avgi

(
G

(i)
τ−1

)
, t = 1, ..., T. (9)

Similar virtual sequences have been used before in decentralized optimization in various contexts
(Lian et al., 2017; Yuan et al., 2016; Nedić et al., 2018; Stich, 2018; Avdiukhin & Kasiviswanathan,
2021a).

Proposition 3 (Distance Bound) For ζt of virtual sequence and ω
(g)
t , ω

(i)
t in synchronous PFL we

have:

max

(
E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] ,E [∥∥∥ζt − ω
(g)
t

∥∥∥2]) ≤ 4γ2G2
max (10)

6



Under review as a conference paper at ICLR 2023

Table 1: Comparison of synchronous FedAvg and our PFL’s accuracy (%) on 3 datasets with both
i.i.d and non-i.i.d data partitions. Speed-up is measured for each global clock, normalized by the
run-time of FedAvg. The best result is boldfaced.

Method
MNIST CIFAR-10 Tiny-ImageNet

Time for per global clock
i.i.d non-i.i.d i.i.d non-i.i.d i.i.d non-i.i.d

FedAvg
93.21 85.31 85.41 75.26 59.52 48.14

T = Tl + Tc + Tw + Tg
1× 1× 1×

DGA
92.12 83.72 83,72 73.24 58.11 46.26 T = Tl + (Tc + Tw + Tg)

1× 1× 1× = Tl + TE

MIFA
92.88 84.73 85.14 74.78 59.24 47.12

T = Tl + Tc + Tg
1.57× 1.86× 1.98×

SPFL
93.14 85.26 85.57 75.31 60.21 48.31

T = max(Tl + Tc, Tg) + Tw
1.22× 1.30× 1.33×

PFL
93.08 85.13 85.34 75.46 60.18 48.07

T = max(Tl + Tc, Tg)
2.20× 3.28× 3.91×

This Proposition shows that ζt are close to ω
(g)
t and ω

(i)
t for all devices. Its proof can be seen in

Appendix.

Theorem 4 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , γ =

√
N/
√
T we

have:
1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
1√
NT

+
N

T

)
. (11)

Compared to the corresponding result for Basu et al. (2019) and Avdiukhin & Kasiviswanathan
(2021a), O

(
1√
NT

)
, when N is fixed, our results get a sharper convergence rate. And illustrates

a clearer relationship between T and N , i.e. as the number of nodes N increases, the number of
communication rounds T should be larger as well.

Analysis for Asynchronous PFL. Convergence of asynchronous PFL can be demonstrated in a
similar way as above, with the difference that in asynchronous PFL, the global model received by
the device will be more than one clock staler than the current global model when aggregated. For
asynchronous PFL, we can use almost the same method of Avdiukhin & Kasiviswanathan (2021a)
to prove the convergence of our method. Our contribution does not lie in the novelty of the method
of proof, but rather in pointing out that our approach can be fully accommodated in existing proofs
of asynchronous FL and achieve greater speed-up ratios. For convenience, we use a notion similar
to that used in synchronous PFL to describe the global model and the local model. Except for local
models, we use wt to represent the local model, since each global clock only corresponds to one
device.

Definition 5 (Asynchronous PFL Sequence) Let ω(g)
t represents the global model of asynchronous

PFL, G(i)
t represents the uploaded gradient updates computed by the i-th client based on ω

(g)
t , the

global model ω(g)
t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=1

γG
(i)
τ−δt

, t = 1, ..., T, (12)

where τ − δt denotes the clock of the global model received by the device participating in the t-th
round of aggregation, and δt can represent the degree of asynchrony.

Proposition 6 (Distance Bound) For ζt of virtual sequence and ω
(g)
t , ωt, we have:

max
(
E
[
∥ζt − ωt∥2

]
,E
[∥∥∥ζt − ω

(g)
t

∥∥∥)2]) ≤ 4(δ − 1)2γ2G2
max, (13)

Theorem 7 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , if T > N3 and

δ ≤ T 1/4/N3/4 we have:

1

T

T∑
t=0

E
[∥∥∥∇f

(
ω

(g)
t

)∥∥∥2
]
= O

(
Lfmax√
NT

+
G2

max√
NT

+
Lσ2

√
NT

)
, (14)

where δ = max(δt).
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Table 2: Comparison of FedAvg and our PFL’s training efficiency (%) on 3 datasets with different
local epochs under distillation-based aggregation. The communication time Tc and the stragglers
are ignored, the times in the table are the average times for each training between edge device and
central server.

Dataset Local epoch Tl (s) Tg (s) Fedavg PFL SpeedupTime(s) Acc. Time(s) Acc.

MNIST
5 4 5 9 99.31 5 99.18 1.80 ×
10 7 5 12 98.17 7 98.09 1.71 ×
15 11 5 16 96.13 11 96.24 1.45 ×

CIFAR-10
5 19 20 39 89.22 20 89.13 1.95 ×
10 38 20 58 87.81 38 87.76 1.53 ×
15 60 20 80 86.48 60 86.37 1.33 ×

Tiny-ImageNet
5 185 180 365 62.88 185 62.79 1.97 ×
10 375 180 555 60.13 375 60.06 1.48 ×
15 563 180 743 57.25 563 57.22 1.32 ×

3 EXPERIMENTS
In this section, we provide a thorough evaluation of the proposed PFL over heterogeneous devices.
We first compare the convergence speed and accuracy of the PFL under average-based aggregation.
Next, to investigate the speedup ratio of the PFL under different scenarios, experiments are carried
out with different Tw/Tl and Tg/Tl, where Tw represents the reconnection time of the straggler
devices, Tl represents the local training time, and Tg represents the aggregation time. We then show
that our method is also feasible for distillation-based aggregation. Experimental results show that
our method is resilient to stragglers and can achieve a parallel pipeline to improve computational
efficiency without sacrificing accuracy.

3.1 EXPERIMENTAL SETUP

Straggler Devices and Sample Rate. Following the previous study (So et al., 2022), we randomly
select p × N devices where p is the dropout rate. To constrain the asynchronous level between
devices, we set Tw/Tl = 3, which represents the ratio of waiting time to local training time. We
consider the worst-case scenario (Bonawitz et al., 2017), where the straggler devices artificially drop
after receiving the global model. According to the realistic FL system (Bonawitz et al., 2019), we
set p = 0.2.

Datasets and Models. We conduct experiments on three datasets, including MNIST, CIFAR-10,
and Tiny-Imagenet (100,000 images with 200 classes). For all three datasets, we use the same
ResNet-18 architecture for a fair and clear comparison.

Number of devices and Communication bandwidth. In our experiments, we train up to N = 100
devices. We are particularly focused on mobile devices in FL, the real measured bandwidth of a
mobile phone is 4MB/s. The cost of time to upload and broadcast updated local and global models,
denoted as Tc.

Baselines. We analyze and compare the performance of PFL with three baseline schemes: FedAvg
(McMahan et al., 2017), DGA (Zhu et al., 2021a), and MIFA (Gu et al., 2021). DGA allows extra
local optimization during the communication process to implicitly reduce wasted computing power
during communication. MIFA is an asynchronous communication FL method to solve straggler
problems. These two methods address the challenge of training efficiency in FL from two different
perspectives.

Data Partition: Following Avdiukhin & Kasiviswanathan (2021a), for IID setup, we randomly
split the data equally into N sub-datasets; for Non-IID setup, each device has a corresponding class,
where µ fraction of local data is from the corresponding class, while the rest are randomly selected
from other classes. In our experiments, µ = 0.3.

3.2 PERFORMANCE EVALUATION

To fully explore the communication efficiency of FL, we simulate all the three scenarios mentioned
in the above section, concretely, 1) devices will randomly drop out, 2) the upload and download time
of the models is measured by bandwidth 4Mb/s, and 3) the central server needs to perform additional
complex computations such as knowledge distillation or toxic device identification.

Average-based Aggregation. Although various novel aggregation methods have been proposed,
FedAvg is still the most widely used method, so we first investigate the performance of our method
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under the average-based approach. To simulate complex operations on the central server in the real
environment without introducing additional effects, we perform additional complex tasks on the
central server to demonstrate the superiority of the training efficiency of our approach. Specifically,
an additional stage of toxic device identification is added before the central server performs the
aggregation. The local models uploaded from each device need to be validated by the public dataset
on the central server before participating in aggregation. This is a very efficient but time-consuming
detection method and, therefore, is rarely used in real-world scenarios. As can be seen in Table 1,
our method can achieve almost the same accuracy as FedAvg, while achieving a speed increase of
approximately 3.91×. Speed-up is measured in run time per global clock between device and central
server, normalized by the run time of FedAvg. DGA does not reduce the computation time for each
communication but rather speeds up convergence by allowing the nodes to perform local training
while communicating. Therefore, it has an acceleration ratio of only 1×. MIFA can get good
speedups in the presence of straggler, e.g. 1.86× faster on the CIFAR-10 dataset. Our approach can
improve the computational efficiency of federated learning in three dimensions simultaneously, the
time for per global clock is T = max(Tl + Tc, Tg), for example, when on the CIFAR-10 dataset,
our method can obtain a 3.28× speedup.

Impact of Tw/Tl on speedup ratio. Tw/Tl represents the ratio of reconnection time of straggler
devices to local training time. The longer the dropout time, the greater its impact on the overall com-
putational efficiency of SyncFL and the greater its impact on the accuracy of AsyncFL. Therefore,
it is necessary to investigate the effect of different Tw/Tl on computational efficiency, here we set
Tw/Tl = 1 and Tw/T l = 1, 2, 3, 4, 5, and the experiment is carried out on the CIFAR-10 with 100
devices. As can be seen in Fig. 3, as Tw/Tl increases, the computational speed-up ratio between
our method and MIFA’s method gets higher and higher, and when Tw/Tl = 5, the computational
efficiency of our PFL can be improved by up to 5.56×, while MIFA can only improve the speed-up
ratio by 3.16×.

Impact of Tg/Tl on speedup ratio. Tg/Tl represents the ratio of the central server’s computation
time to the local device’s training time, which is related to the number of devices and the computation
capacity of the central server, and is further complicated when the computation power of the edge
devices is different from each other. To simplify the computational model, we assume that the
local training time is the same for each edge device. Here, we set Tg/Tl = 1 and Tw/T l =
0.25, 0.5, 1, 2, 4, and the experiment is carried out on the CIFAR-10 with 100 devices. As can
be seen in Fig. 3, the speed-up ratio of our method reaches its maximum 2.52× when Tg/Tl = 1.

Distillation-based Aggregation. To verify the effectiveness of our method for complex aggre-
gations, we have chosen the first distillation-based aggregation method (Lin et al., 2020). The
distillation-based approach makes better use of information from edge devices, but introduces seri-
ous computational reductions in efficiency that make it difficult to apply to real-world applications.
Following (Lin et al., 2020), we added additional public datasets to the central server and then
fine-tuned the global model by distillation after coarse aggregation was completed by averaging op-
erations. In this experiment, the straggler node is ignored. As can be seen from Table 2, our method
is still feasible under distillation-based aggregation and can improve the computational efficiency
of federated learning without sacrificing accuracy, achieving 2× speedup when the training time for
edge devices is the same as the aggregation time for the central server.

4 CONCLUSION

The traditional FL works in a serial computation manner, in which communication is deemed a
major bottleneck, leading to poor training efficiency. Most existing methods attempt to improve
training efficiency either by performing additional computations or by reducing the communication
frequency or data amount. In this paper, alternatively, we propose a simple yet efficient scheme
called parallel federated learning (PFL). Instead of remedying the efficiency issue from the edge
side as done in existing methods, we claim that the bottleneck of computational efficiency actually
lies in the workflow of the server. Through exchanging the execution order of global aggregation
and broadcasting, global aggregation is decoupled from the communication and can be performed
in parallel with local training. We theoretically prove that PFL can achieve the same convergence
rate as FedAvg. The proposed scheme has the potential to serve as a new baseline FL framework
enabling a wide range of applications.
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A APPENDIX

In the Appendix, we first give the details of the convergence analysis that are missing in the text
Section 2.2. And conduct an experiment to investigate the influence of stale global model.

B CONVERGENCE ANALYSIS OF PFL

Proof for Synchronous PFL.

Proposition 3 (Distance Bound) For ζt of full synchronous FL and ω
(g)
t , ω

(i)
t of Algorithm 1, we

have:

max

(
E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] ,E [∥∥∥ζt − ω
(g)
t

∥∥∥2]) ≤ 4γ2G2
max. (15)

Proof:

E
[∥∥∥ζt − ω

(g)
t

∥∥∥2] = E

∥∥∥∥∥
t∑

τ=2

γ avgi

(
G

(i)
τ−2

)
−

t∑
τ=1

γ avgi

(
G

(i)
τ−1

)∥∥∥∥∥
2


≤ γ2E

∥∥∥∥∥
t∑

τ=2

avgi

(
G

(i)
τ−2 −G

(i)
τ−1

)
− γ avgi G

(i)
0

∥∥∥∥∥
2


≤ γ2G2
max.

(16)
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Similarly, E
[∥∥∥ω(g)

t − ω
(i)
t

∥∥∥2] ≤ γ2G2
max. Combining these bounds, we have the following.

E
[∥∥∥ζt − ω

(i)
t

∥∥∥2] = E
[∥∥∥ζt − ω

(g)
t + ω

(g)
t − ω

(i)
t

∥∥∥2]
≤ 2

(
E
[∥∥∥ζt − ω

(g)
t

∥∥∥2]+ E
[∥∥∥ω(g)

t − ω
(i)
t

∥∥∥2])
≤ 4γ2G2

max.

(17)

Theorem 4 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , we have:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
1√
NT

+
N

T

)
. (18)

Proof: Similar to Avdiukhin & Kasiviswanathan (2021a) Theorem 2.4.

From smoothness Lipschitz condition on the gradients:

E
[∥∥∥∇f (ω(g)

t

)
−∇f (ζt)

∥∥∥2] ≤ L2E
[∥∥∥ω(g)

t − ζt

∥∥∥2] ≤ L2γ2G2
max, and

E
[∥∥∥∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

∥∥∥2] ≤ L2E
[∥∥∥ω(i)

t − ζt

∥∥∥2] ≤ 4L2γ2G2
max.

(19)

First, we bound ζt, for ζt, we have:

ζt+1 = ζt − γ avgi

(
G(i)

τ

)
. (20)

By the smoothness property:

E [f (ζt+1)] ≤ E [f (ζt)]− E
[〈
∇f (ζt) , γ avgi

(
G

(i)
t

)〉]
+

L

2
E
[∥∥∥γ avgi (G(i)

t

)∥∥∥2] . (21)

The last term in Eq. 21 can be rewritten as:
L

2
E
[∥∥∥γ avgi (G(i)

t

)∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (G(i)

t +∇f (i)
(
ω
(i)
t

)
−∇f (i)

(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

)
+
(
G

(i)
t −∇f (i)

(
ω
(i)
t

)))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2L

2
E
[∥∥∥avgi (G(i)

t −∇f (i)
(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2
.

(22)

Substituting this into the Eq. 21, get:

E [f (ζt+1)] ≤E [f (ζt)]− E
[〈
∇f (ζt) , γ avgi

(
∇f (i)

(
ω
(i)
t

))〉]
+

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2

≤E [f (ζt)]− γE
[〈
∇f (ζt) , avgi

(
∇f (i) (ζt)

)〉]
− γE

[〈
∇f (ζt) , avgi

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)〉]
+

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]+ γ2Lσ
2

2
.

(23)
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The second term in Eq. 23 can be simplified by avgi
(
f (i) (ζt)

)
= f (ζt):

γE
[〈
∇f (ζt) , avgi

(
∇f (i) (ζt)

)〉]
= γE

[
∥∇f (ζt)∥2

]
. (24)

For the third term in Eq. 23 we have:

γE
[〈
∇f (ζt) , avgi

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)〉]
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ E

[∥∥∥avgi (∇f (i)
(
ω
(i)
t

)
−∇f (i) (ζt)

)∥∥∥2])
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ avgi

(
E
[∥∥∥∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

∥∥∥2]))
≤ γ

2

(
E
[
∥∇f (ζt)∥2

]
+ 4L2γ2G2

max

)
. (According to Eq. 19)

(25)

For the fourth term in Eq. 23 we have:

γ2L

2
E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

))∥∥∥2]
=

γ2L

2
E
[∥∥∥avgi (∇f (i) (ζt) +

(
∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

))∥∥∥2]
≤ γ2L

(
E
[∥∥∥avgi (∇f (i) (ζt)

)∥∥∥2]+ E
[∥∥∥avgi (∇f (i)

(
ω
(i)
t

)
−∇f (i) (ζt)

)∥∥∥2])
≤ γ2L

(
E
[
∥∇f (ζt)∥2

]
+ 4L2γ2G2

max

)
. (According to Eq. 19)

(26)

Substituting Eq. 24, 25, 26 into the Eq. 23, get:

E [f (ζt+1)] ≤ E [f (ζt)]− γ

(
1 +

1

2
− γL

)
E
[
∥∇f (ζt)∥2

]
− 2γ3L2G2

max + 4γ4L3G2
max

+ γ2Lσ
2

2N
(Assume γ ≤ 1/(2L))

≤ E [f (ζt)]− γE
[
∥∇f (ζt)∥2

]
+ γ2Lσ

2

2N
.

(27)

Move E
[
|| ∇f(ζt) ||2

]
to the left of the inequality;

E
[
∥∇f (ζt)∥2

]
≤ (E [f (ζt)]− E [f (ζt+1)])

γ
+ γ

Lσ2

2N
. (28)

Taking the sum over all iterations:

1

T

T∑
t=0

E
[
∥∇f (ζt)∥2

]
≤ (E [f (ζ0)]− E [f (ζT+1)])

γT
+ γ

Lσ2

2N
. (29)

Finally, we can bound || ∇f(ω(g)
t ) || in terms of || ∇f(ζt) || as:

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] ≤ 2

(
E
[∥∥∥∇f (ω(g)

t

)
−∇f (ζt)

∥∥∥2]+ E
[
∥∇f (ζt)∥2

])
≤ 2E

[
∥∇f (ζt)∥2

]
+ 2L2E

[∥∥∥ω(g)
t − ζt

∥∥∥2]
≤ 2E

[
∥∇f (ζt)∥2

]
+ γ2L2G2

max.

(30)

Substituting this into the inequality above on 1
T

∑T
t=0 E

[
∥∇f (ζt)∥2

]
gives the claimed bound:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
fmax

γT
+ γ2L2G2

max + γ
Lσ2

N

)
. (31)
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Using the step size γ =
√
N/
√
T , we get:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2]
= O

(
fmax√
NT

+
N

T
L2G2

max +
Lσ2

√
NT

)
.

(32)

Proof for Asynchronous PFL. We use the same notation in synchronous PFL for convenience. In
asynchronous PFL, we can use almost the same method of Avdiukhin & Kasiviswanathan (2021a)
to prove the convergence of our method. Our contribution does not lie in the novelty of the method
of proof, but rather in pointing out that our approach can be fully accommodated in existing proofs
of asynchronous FL and achieve greater speed-up ratios.

Definition 5 (Asynchronous PFL Sequence) Let ω(g)
t represents the global model of asynchronous

PFL, G(i)
t represents the uploaded gradient updates computed by the i-th client based on ω

(g)
t , the

global model ω(g)
t can be expressed as:

ω
(g)
t = ω

(g)
0 −

t∑
τ=1

γG
(i)
τ−δ. (33)

Proposition 6 (Distance Bound) For ζt of virtual sequence and ω
(g)
t , ωt of Algorithm 1, we have:

max
(
E
[
∥ζt − ωt∥2

]
,E
[∥∥∥ζt − ω

(g)
t

∥∥∥)2]) ≤ 4(δ − 1)2γ2G2
max (34)

Proof:

E
[∥∥∥ζt − ω

(g)
t

∥∥∥2] = E

∥∥∥∥∥
t∑

τ=1

γ
(
G

(j)
τ−δ

)
−

(
t∑

τ=1

γG
(i)
τ−1

)∥∥∥∥∥
2


≤ γ2E

∥∥∥∥∥
t∑

τ=1

(
G

(i)
τ−δ −G

(i)
τ−1

)∥∥∥∥∥
2


≤ γ2(δ − 1)2G2
max.

(35)

Similarly, E
[∥∥∥ω(g)

t − ωt

∥∥∥2] ≤ γ2(δ− 1)2G2
max. Combining these bounds, we have the following.

E
[
∥ζt − ωt∥2

]
= E

[∥∥∥ζt − ω
(g)
t + ω

(g)
t − ωt

∥∥∥2]
≤ 2

(
E
[∥∥∥ζt − ω(g)

∥∥∥2]+ E
[∥∥∥ω(g) − ωt

∥∥∥2])
≤ 4γ2(δ − 1)2G2

max.

(36)

Theorem 7 Let fmax = f
(
ω
(g)
0

)
− f (ω⋆), where ω⋆ is the minimizer for f , we have:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
fmax

γT
+ γ2L2G2

maxδ
2 + γ

Lσ2

N

)
. (37)

Proof: Similar to Theorem 4 B.

If T > N3 and δ ≤ T 1/4/N3/4, we get:

1

T

T∑
t=0

E
[∥∥∥∇f (ω(g)

t

)∥∥∥2] = O

(
Lfmax√
NT

+
G2

max√
NT

+
Lσ2

√
NT

)
. (38)

14



Under review as a conference paper at ICLR 2023

C STUDY ON THE INFLUENCE OF THE STALE GLOBAL MODEL

In our scheme, the key to achieving parallel federated learning is to send the stale global model to
the edge devices. It would be interesting to investigate the influence of the stale global model on
the final performance. In this section, we conduct a convergence analysis through empirical exper-
iments with respect to both accuracy and communication rounds on the CIFAR-10 dataset with 20
edge devices. The convergence curve is provided in Fig. 4. It can be found that, in the early training
stage, the proposed PFL suffers from lower accuracy and stronger oscillations compared with Fe-
dAvg; while with the communication round increases, the PFL finally achieves similar performance
to FedAvg. This is consistent with the intuition that, when the algorithm converges, there is no
significant difference between using the stale global model or using the up-to-date global model.

Figure 4: The convergence curve of PFL and FedAvg on CIFAR-10.

D SPECIAL CASE IN SYNCHRONOUS PFL FOR Tg = Tl + Tc + Tw

Here we give a timing diagram for a special case in synchronous PFL when Tg = Tl + Tc + Tw. As
can be seen in Fig. 5, in this setting, the time spent on each round is Tg .

Server:

Node 1:

Node 2 :

Node 3 :

Upload / Broadcast / Receive

AggregationNo actions    Waiting time

Local Training

Figure 5: The timing diagram when the aggregation time is Tg = Tl + Tc + Tw.
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