ARM: Discovering Agentic Reasoning Modules for
Mathematical Problem-Solving

Bohan Yao* Shiva Krishna Reddy Malay
University of Washington ServiceNow
ServiceNow
Vikas Yadav
ServiceNow

{vikas.yadav}@servicenow.com

Abstract

Large Language Model (LLM)-powered Multi-agent systems (MAS) have achieved
state-of-the-art results on complex mathematical reasoning tasks. Recent works
have proposed techniques to automate the design of these systems, but they often
perform poorly and require computationally expensive re-discovery of architectures
for other domains. A critical insight is that simple Chain of Thought (CoT)
reasoning often performs competitively with these complex systems, suggesting
that the fundamental reasoning unit warrants further investigation. To this end,
we present a new paradigm for automatic MAS design that pivots the focus to
optimizing CoT reasoning. We introduce the Agentic Reasoning Module (ARM),
an agentic generalization of CoT where each granular reasoning step is executed
by a specialized reasoning module discovered through an evolutionary tree search.
The resulting ARM acts as a versatile reasoning building block for solving multi-
step math problems. On challenging math benchmarks, including MATHS00,
AIME25, and HMMT?25, our approach significantly outperforms both manually
designed MASes and state-of-the-art automatic MAS design methods. Crucially,
reasoning systems built with ARM exhibit strong generalization across different
foundation models, maintaining high performance without requiring model-specific
re-optimization.

1 Introduction

While Multi-Agent Systems (MAS) leveraging Large Language Models (LLMs) have achieved
state-of-the-art results on complex mathematical reasoning benchmarks (Park et al., 2023} |Qian et al.}
2023} Hong et al.}|2023)), recent studies reveal a surprising trend: a well-prompted single-agent Chain-
of-Thought (CoT)Wei et al.|(2022) baseline often performs on par with, or even outperforms, these
complex architectures on frontier models (Wang et al.| [2024}|Yao & Yadav},|2025)). These advanced
systems orchestrate multiple agents that adopt specialized roles—such as a “problem decomposer”,
“symbolic calculator”, or “proof verifier”"—to collaboratively solve problems (Wu et al., 2023)), with
a trend towards their automatic discovery (Zhang et al.| 2025} |Kim et al.| [2024). The continued
competitiveness of the foundational CoT method (Wei et al.l 2022) suggests that the core reasoning
unit—the individual deductive step—is of paramount importance for mathematical problem-solving.
However, recent work in automated MAS design has centered on discovering optimal agent roles
and interaction topologies, while the underlying deductive step, the core of the CoT baseline, has

*Work done during internship at ServiceNow

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MATH-AL

largely remained unchanged (Hu et al.| 2025} [Zhang et al.| [2025). Our work pivots from this trend to
fundamentally enhance the CoT paradigm.

We introduce the Agentic Reasoning Module (ARM), a novel approach that elevates each reasoning
step from a simple textual continuation into a structured, agentic block discovered via reflection-
guided evolutionary search (Fernando et all,[2024}; [Agrawal et al,[2025)). This work presents ARM
as an evolved version of CoT for complex mathematical reasoning, demonstrating state-of-the-art
performance on challenging benchmarks including MATH500 [Lightman et al.| (2023)), AIME25 and
HMMT?25. Furthermore, we show that ARM is a generalizable module for step-by-step reasoning
that is effective in other analytical domains such as science and logical reasoning (Appendix [D)), and
provide a rigorous justification with detailed ablations for our effective search strategy.

2 Methodology: Discovering the Agentic Reasoning Module

Agentic Reasoning
Module (ARM)

Generate Generate Generate Generate
Step Step Step Step

Meta Policy

Rerank and Weighted
Aggregate
Self-refine

Aggregate

Problem Solution

A= [p1,p2,*, P

Figure 1: An illustration of the proposed ARM module on the left and the meta policy on the right using "Self
refine" as an example MAS. The ARM module takes a question and previous reasoning steps and executes
a MAS to get the next step. The meta policy uses ARM as a sub-module and orchestrates the overarching
global strategy. Note that this is for illustration only, the actual step generator and the meta policy discovered
by Algorithm-1 is more complex. See Appendix [E]for the Python implementation of the best discovered ARM
by our algorithm. See Appendix [F]for the Python implementation of the best discovered meta-policy by our
algorithm.

We introduce the Agentic Reasoning Module (ARM), a structured, agentic replacement for a single
step in a Chain of Thought (CoT) sequence 2022). We model the problem-solving process
by decomposing it into two key components: a Step-Generator (m € M) and a Meta-Policy
(m € II). The step-generator, with signature m : Q x P* — P, takes a question ¢ and a history of
previous reasoning steps (p; € P) to produce the next step. The meta-policy, 7 : @ Xx M — A, isa
higher-order program that orchestrates calls to a generator m to form a complete solution. Our work
discovers ARM as a powerful, code-based implementation of the step-generator. Following prior

work (Hu et al} 2025} [Zhang et al.,[2025)), ARM is implemented as a self-contained Python class.

Within this framework, standard CoT can be viewed as a simple baseline pairing of a basic step
generator (simple LLM call m¢,r) and a simple recursive policy (7 re.) Which iteratively calls moor
until completion. Our core motivation is to independently discover more powerful modules m* (the
ARM) and more powerful meta-policies 7* to significantly improve upon this baseline.

Discovering the Optimal Step-Generator (m™*): Our goal is to discover a superior step-generator,
m*, to replace the simple text generation step in m¢oor. Ideally, we would find m* (ARM) by
directly maximizing the expected reward R (final answer accuracy) over a full problem-solving trace
generated by a recursive policy Trec(q,m) = Uy, (1), where U is the single step update operator
Um,q(h) = h - [m(q, h)] that appends the newly generated step to the reasoning history:

m* = argmj\a/llx E(g,a)~D [R (TRec (g, m) ; a)]
me

However, this objective is intractable due to severe challenges in credit assignment over long
sequence of steps and the unconstrained search space M. To address this, we introduce a scaffolded
surrogate objective. Instead of evaluating m on a full rollout generated by itself, we evaluate it
within the stable context of a reference trace from the baseline m¢c,r. We replace a small, contiguous
block of I steps within this trace with our candidate module m, reformulating the problem as:

m* = argmax E(Qaa)ND [R (U:;"COTvq °© Uj”"wq ° UTZﬂ&:T,(I(m)’ a)}
meM

where the starting index ¢ is chosen randomly. This isolates the performance contribution of m
to a small window, enabling direct credit assignment. Moreover, the surrounding CoT context
provides a powerful inductive bias, constraining the search to modules that behave as effective,
incremental reasoning step generators. We use [= 3, as it is sufficient to expose the module to
critical compositional patterns (e.g., interactions with itself and the baseline m¢c,7) while keeping
the optimization computationally tractable.

Discovering the Optimal Meta-Policy (7*): While an optimized step-generator m* improves
individual reasoning steps, the high-level meta-policy 7 that orchestrates them is equally critical.
Searching for an optimal policy 7* by repeatedly evaluating candidates with the computationally
expensive m* is prohibitive. We therefore adopt a surrogate-based approach, searching for 7* using
the fast, inexpensive baseline generator, m¢,7, as a proxy for m*. This zero-shot transfer is effective
because our discovery process is explicitly designed to produce an m* that functions as a superior,
“drop-in” replacement for mc,r. A meta-policy that effectively orchestrates the simple steps of
moor 18 thus highly likely to generalize to the more powerful, but functionally analogous, steps
of m*. This enables the efficient discovery of sophisticated strategies, such as self-consistency
or iterative refinement loops (Wang et al., 2023} [Madaan et al., |2023)), without incurring the high
computational cost of executing the full m* module.

Reflection-Guided Evolutionary Search: We discover both the optimal step-generator m* and
meta-policy 7* using a unified Reflection-Guided Evolutionary Search. This method performs
a tree search over the programmatic space, beginning with a root node representing the baseline
program (mgor O TRee). The search iteratively refines this tree through a three-step process: 1)
Selection: a promising parent program is chosen based on its validation performance. 2) Expansion:
a two-stage Reviewer Agent intelligently mutates the parent. A Critic first analyzes execution traces
to identify logical errors or inefficiencies, then a Designer uses this critique to generate a new,
syntactically valid program with a targeted modification. 3) Evaluation: the new program’s average
reward, R, is computed using the appropriate surrogate objective (the scaffolded objective for a step-
generator m, or a full rollout with m¢c,r for a meta-policy). This reflection-driven process ensures
the search evolves programs purposefully, leading to a more efficient discovery of high-performance
modules and policies (see Algorithm|[T).

3 Experiments

Benchmarks: We evaluate our discovered modules on several challenging math benchmarks:
MATHS00 Lightman et al.| (2023), American Invitational Mathematics Examination (AIME25EI)

https://huggingface.co/datasets/MathArena/aime_2025

https://huggingface.co/datasets/MathArena/aime_2025

and the February Harvard-MIT Mathematics Tournament (HMMT25EI) . Additionally, we found
that ARM generalizes to other domains requiring rigorous, step-wise deduction such as science and
logical reasoning. We report these results in Appendix [D}

ARM: Our optimization process discovers the optimal step-generator module (m™*) and meta-policy
(7*) in two independent phases. We use a 1000-sample subset of the Open-R1-Mixture-of-Thoughts
HuggingFace| (2025) dataset for validation. To create this subset, we take the math and science
splits of the original dataset, filter to samples where the provided Deepseek-R1 |DeepSeek-Al et al.
(2025)) reasoning trace had a length of between 8k and 10k tokens (to filter to samples of appropriate
difficulty), and randomly sample 1000 problems from the filtered problems.

First, we discover the ARM module (m*) by employing our Reflection-Guided Evolutionary Search
(Algorithm [T)) to optimize the scaffolded surrogate objective. We then independently discover the
meta-policy (7*) using the same evolutionary search algorithm. For computational tractability, this
second search uses the simple baseline module, m ¢, as an efficient surrogate for the more complex
m™, as justified previously. We evaluate the discovered m* and 7* with maximal validation accuracies
across all benchmarks, without any task-specific re-optimization.

We run both the ARM module optimization and the meta-policy optimization for 20 iterations. Both
optimizations are performed using GPT-4.1-nano as the MAS executor model. Whenever sampling
from the MAS executor model, we use a temperature of 1.0 with a top_p of 0.95.

Baselines: We compare our methodology against two categories of multi-agent systems (MAS):
prominent handcrafted systems and leading automated MAS generation approaches. Our handcrafted
baselines include Chain of Thought (CoT) Wei et al.[(2022), its ensemble variant CoT-Self Consis-
tency (CoT-SC) (Wang et al.|[2023), the iterative Self-RefineMadaan et al.| (2023)) method, and the
multi-perspective LLM-Debate Du et al.|(2023). For automated MAS generation, we benchmark
against ADAS Hu et al.| (2025) and AFlow [Zhang et al.| (2025)), which search for optimal agent
roles and interaction topologies. We evaluate the performance of ADAS and AFlow using both the
original optimization configuration of using a 20% split of the test dataset as the validation dataset
(resulting in a benchmark-optimized MAS for each benchmark) and using the ARM optimization
configuration of using the 1000-sample subset of Open-R1-Mixture-of-Thoughts HuggingFace| (2025)
as the validation dataset (resulting in a single MAS which we evaluate across all benchmarks without
benchmark-specific re-optimization). We denote baselines of the former configuration using "(test
set)" and baselines of the latter configuration using "(1000-sample)" in the main results below. See
Appendix [G] for more details on the baseline implementations.

Models: We use OpenAl’s 04-mini-high |OpenAl|(2025b) reasoning model as the MAS designer
for both the baselines ADAS, AFlow, and our method ARM, as MAS generation requires frontier
performance in coding and instruction following. We test three models as backbone LLMs executing
the MAS: two closed source models GPT-4.1-nano (OpenAll (2025a), GPT-40|OpenAl et al.| (2024)
and one open source model Llama-3.3-70B |[Meta (2024).

4 Results
Method GPT-4.1-nano ‘ GPT-40 ‘ LLaMA-3.3-70B
MATHS500 AIME25 HMMT25 Average | MATH500 AIME25 HMMT25 Average | MATH500 AIME25 HMMT25 Average

CoT 82.0 15.1 9.9 35.7 75.0 7.3 0.5 27.6 75.0 6.8 3.1 28.3
CoT-SC 86.2 21.9 135 40.5 81.8 12.5 2.1 32.1 78.5 42 57 29.5
Self-Refine 84.2 17.2 9.4 369 712 6.8 2.6 28.9 77.8 6.8 42 29.6
LLM-Debate 84.2 15.1 16.7 38.7 81.8 9.9 3.1 31.6 79.0 5.7 4.2 29.6
ADAS (test set) 79.8 12.0 52 323 65.5 1.0 0.0 222 67.2 3.1 0.0 234
ADAS (1000-sample) 71.3 0.0 6.8 28.0 69.0 0.0 0.5 233 222 3.1 0.5 8.6
AFlow (test set) 745 18.8 12.0 35.1 75.5 9.9 3.6 29.7 65.2 4.7 0.0 233
AFlow (1000-sample) 77.0 16.7 10.4 34.7 48.8 9.4 0.0 19.4 63.2 72 3.1 24.5
ARM (Ours) 82.0 18.2 14.6 383 78.3 135 57 32.5 80.0 8.3 5.2 31.2
ARM + MP (Ours) 86.0 234 224 43.9 82.0 17.2 9.4 36.2 80.8 1.8 6.8 31.8

Table 1: Main results on three complex math reasoning benchmarks across three foundation models. We
compare against two groups of baselines: (1) foundational reasoning strategies used to build agentic systems
(CoT, CoT-SC, Self-Refine, and LLM-Debate), and (2) existing state-of-the-art automatic MAS design methods
(ADAS and AFlow). Our approach is presented in two variants: ARM, which recursively applies the discovered
reasoning module, and our full method, ARM + MP, which combines the ARM with a learned Meta-Policy
(MP). Best score in each category is bolded and second best score is underlined.

*https://huggingface.co/datasets/MathArena/hmmt_feb_2025

https://huggingface.co/datasets/MathArena/hmmt_feb_2025

We summarize our results in Table[T]and the key findings are as follows:

(1) Foundational Operators outperform MAS: Our results reveal a crucial insight: foundational
reasoning methods like Chain-of-Thought (CoT) consistently outperform complex, automatically-
generated multi-agent systems (MAS) such as AFlow and ADAS. This strongly suggests that the
primary driver of performance is the quality of the granular, step-by-step reasoning, not just the
complexity of the high-level architecture. A sophisticated orchestration layer cannot compensate
for—and may even hinder—a flawed deductive process.

(2) ARM achieving top performance: ARM consistently outperforms all of the operator baselines
especially in two harder datasets: AIME and HMMT. This can be attributed to our ARM-based
approach revitalizing the powerful CoT paradigm by augmenting its core deductive step with a
powerful agentic block. This demonstrates the effectiveness of enhancing the core deductive step
rather than focusing solely on high-level architectural complexity. Consequently, ARM consistently
achieves state-of-the-art performance, outperforming both handcrafted operators and automatic MAS
baselines across all evaluated mathematical datasets.

5 Analyses

We performed two analyses to empirically validate our discovery process, with theoretical justifi-
cations in Appendix{B] Firstly, to confirm the scaffolded objective improves per-step competence
(Appendix{B.4), a targeted ablation executed the top five discovered modules for a single step from
critical junctures within m¢,r traces, as identified by an LLM-judge (openai/gpt-oss-20b). The
results (Figure[3) show a module’s rank strongly correlates with a lower per-step error rate, confirming
our search discovers granularly robust modules. Secondly, we validate our decoupled training strategy
by showing the meta-policy’s zero-shot transfer from the m¢, surrogate to the final ARM (m*). To
disentangle the two theoretical sources of gain (Appendix{B-5)—a superior module and its ability to
find a better reasoning path—we compare the meta-policy with (1) the baseline mc,p, (2) m* taking
over from baseline-generated states, and (3) the full system with m*. The full system’s superior
performance (Figure[2) confirms gains from both factors, validating our decoupled search.

ation era‘ \‘e(a‘. \te(a(‘ \te(a‘ (ano

Meta Policy Name (abbreviated) CoT Baseline CoT—Meta Meta Policy

VWASCCoT 35.1% 33.7% 42.0%
CWDCWACCCoT 37.2% 39.3% 41.8% ©
RVDCCWASCCoT 33.7% 40.0% 41.8% 8

DRWASCCoT 35.5% 34.9% 41.8% .

MBECDCCWASCCoT 36.3% 39.2% 41.4%

Figure 2: Validation of the meta-policy transfer for
top discovered policies. The *CoT Baseline’ column
shows the performance of the discovered meta-policy
when paired with the simple mcor surrogate module.
The *Meta Policy’ column shows the performance of
that same meta-policy when paired with the powerful
ARM module m*. The intermediate CoT—Meta col-
umn isolates the performance gain from the superior
m™ module by evaluating it on states (progress) gen-
erated by *CoT Baseline’.

LLM Judged Per-Step Success Rate (%

ot ter
Figure 3: Comparlson of LLM Judged per—step success
rates between the baseline Chain-of-Thought (CoT) and
multiple ARM variants. CoT appears first, followed by
ARM variants ordered by final performance.

6 Conclusion

We introduced ARM, a modular agentic reasoning framework that revitalizes the traditional Chain-of-
Thought (CoT) paradigm by augmenting it with multi-agentic system modules. Through extensive
experiments, we demonstrated that ARM consistently advances the performance of CoT on math
reasoning tasks, especially when combined with a strong meta-policy orchestrating the ARM calls.
Beyond empirical improvements, ARM sheds light on an important perspective: improving the
granular step by step reasoning process holds the key to progress in this domain. By preserving the
simplicity and generality of CoT steps, while enhancing its reasoning depth and modularity, ARM
provides a versatile and powerful foundation that can be applied across tasks and models. ARM
represents a step toward a robust and broadly applicable modular reasoning approach with LLMs,
paving the way for future research to focus on discovering powerful, reusable reasoning units as a
core component of agentic systems.

References

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik Sen,
Alexandros G Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab. GEPA: Reflective
prompt evolution can outperform reinforcement learning. arXiv preprint arXiv:2507.19457, 2025.

Fu-Chieh Chang, Yu-Ting Lee, Hui-Ying Shih, Yi Hsuan Tseng, and Pei-Yuan Wu. Rl-star: The-
oretical analysis of reinforcement learning frameworks for self-taught reasoner, 2025. URL
https://arxiv.org/abs/2410.23912

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiagi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948,

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325,

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
taschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Proceedings
of the 41st International Conference on Machine Learning (ICML), volume 235, pp. 8370-8386.
PMLR, 2024. URL https://proceedings.mlr.press/v235/fernando24a.html,

Sirui Hong, Xiawu Zheng, Jonathan Chen, K Yang, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In International
Conference on Learning Representations (ICLR), 2025.

HuggingFace. Open rl: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-rl.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint, 2024.

https://arxiv.org/abs/2410.23912
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://proceedings.mlr.press/v235/fernando24a.html
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, ICML °02, pp.
267-274, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc. ISBN 1558608737.

Juno Kim, Denny Wu, Jason Lee, and Taiji Suzuki. Metastable dynamics of chain-of-thought
reasoning: Provable benefits of search, 1l and distillation, 2025. URL https://arxiv.org/abs/
2502.01694.

Sungwoo Kim, Lin Xu, Yifan Guo, Arif Rahman, and Shiyi Wang. Aflow: Automating agentic
workflow generation for large language models. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2024. Accessed: YYYY-MM-DD.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Aman Madaan, Niket Tandon, Prakhar Gupta, Kevin Hall, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Pengcheng Cair, et al. Self-refine: Iterative refinement with self-feedback. arXiv preprint
arXiv:2303.17651, 2023.

Meta. Llama 3.3 model card. https://www.llama.com/docs/
model-cards-and-prompt-formats/1lama3_3/, December 2024. Accessed: 2025-09-27.

OpenAl. Introducing gpt-4.1 in the api. https://openai.com/index/gpt-4-1/, April 2025a.
Accessed: 2025-09-27.

OpenAl. Introducing openai 03 and o04-mini. https://openai.com/index/
introducing-o03-and-o4-mini/, April 2025b. Accessed: 2025-09-27.

OpenAl, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Madry, Alex Baker-
Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braunstein,
Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
Lugaresi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
Ian Kivlichan, Ian O’Connell, Ian O’Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
Kiros, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh

https://arxiv.org/abs/2502.01694
https://arxiv.org/abs/2502.01694
https://arxiv.org/abs/2305.20050
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_3/
https://openai.com/index/gpt-4-1/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
Cunninghman, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
URL https://arxiv.org/abs/2410.21276,

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Chen Qian, Xin Cong Wang, Yufan Zheng, Cheng Wang, Yequan Cen, Weize Wang, et al. Commu-
nicative agents for software development. arXiv preprint arXiv:2307.07924, 2023.

David Rein, Ansh Raichur, Caleb Riddoch, Andrew Andreassen, Ben Jones, Zihui Wu, Shufan Jiang,
Kevin Chen, Cong Jiang, Andy Zhao, Lucy Yuan, Jerry Li, Yaofeng Zhang, R Arjun Gopalakr-
ishnan, Andrew Pan, Yapei Zhou, Leon Tang, Thomas Lee, Tom Brown, and Jacob Steinhardt.
GPQA: A graduate-level google-proof q&a benchmark. arXiv preprint arXiv:2311.12022, 2023.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds of
Ilm reasoning: Are multi-agent discussions the key? In arXiv preprint arXiv:2402.18272, 2024.
Accessed: YYYY-MM-DD.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In International Conference on Learning Representations (ICLR), March 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

https://arxiv.org/abs/2410.21276

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, et al. Autogen: Enabling next-gen
IIm applications via multi-agent conversation framework. arXiv preprint arXiv:2308.08155, 2023.

Bohan Yao and Vikas Yadav. A toolbox, not a hammer—multi-tag: Scaling math reasoning with
multi-tool aggregation. arXiv preprint arXiv:2507.18973, 2025.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation. In International Conference on Learning
Representations (ICLR), 2025. Oral Presentation (Top 1.8%).

A ARM Search Algorithm

Algorithm |I| provides the full pseudocode of the reflection-guided search algorithm for evolving
ARM modules.

Algorithm 1 Reflection-Guided Search

1: Input: Initial program p,...¢ (€.g., Mcor OF TRec), evaluation function EVALUATE(:), total
iterations K, exploration constant C'.

2: Initialize:

3: Tree 7 with a single node for p,o¢.

4: Proot-R < EVALUATE(Droot) > Evaluate the baseline program on a validation batch
5. Proot-IN <1 > Initialize visit count for the root
6. fort =1to K do

7: > 1. Select a parent program to mutate

exp(piﬂi/T)
ZjeTexp(pj.’R/T)
9: Pparent <— Sample(T, P)

8 P(p)

10: > 2. Expand the tree via reflection
11: traces <— EXECUTE(Pparent) > Collect execution traces
12: history <= GETMUTATIONHISTORY (Pparent)

13: Prew ¢ REVIEWERAGENT(Ppqrent, traces, history)

14: ~ > 3. Evaluate the new program
15: Prew-R < EVALUATE (Dpew)

16: Prew-N <1

17: > 4. Update tree and statistics

18: T .ADDCHILD (Pparent, Prew)

19: pparent-N — pparent-N + 1

20: end for

21: B

22: return argmax (p;.R) > Return the program with the highest empirical reward
pi€T

B Theoretical Analysis

A complete theoretical analysis of the multi-agentic system ARM powered by LLMs is intractable
due to the complex, high-dimensional nature of language generation and the non-stationary of the
generation process. Recent research (Chang et al.| 2025} [Kim et al.l 2025)) models sequential CoT
reasoning steps as a Markov Decision Process by abstracting away the underlying complexities of the
text generation process and focusing on higher level reasoning states. Therefore, to build a formal
intuition for the design choices in our scaffolded search for the step-generator, and the decoupled
search for the meta-policy (AlgorithnI]), we also analyze an idealized formulation of the problem as
a Markov Decision Process (MDP).

Our analysis is particularly inspired by recent work on self taught reasoners (RL-Star) by (Chang
et al.[(2025)), where they introduce a step indexed competence parameter J; ,, which quantifies the
advantage in probability of a correct reasoning step at step n during training iteration ¢ over a baseline
random reasoner. They show the conditions under which a bootstrapped RL learning algorithm
based on rejection sampling shows monotonic improvement and convergence. While our goals are
similar (improving the reasoning process), our problem statement has critical differences which
makes a straight forward adaption infeasible: RL-Star analyses a system where the LLM’s parametric
weights are updated via reinforcement learning. On the other hand, ARM treats the LLM as a black
box and performs discrete, evolutionary search (Fernando et al.| 2024; Agrawal et al.| [2025) over
programming modules that orchestrate calls to the LLM. Consequently, our search is inherently
discrete, so smoothness-based guarantees do not apply. Hence we do not assume or prove convergence
guarantees, and instead motivate the intuition of our scaffolded search process as a conservative
policy improvement (CPI) (Kakade & Langford, 2002) that preferentially selects modules with higher
competence leading to improved reasoning process.

10

B.1 An Idealized MDP Model of Step-wise Reasoning

We model the reasoning process as a Markov decision process (MDP) [Sutton & Barto| (2018))
M= (S,N,A,P,R,~):

« State Space (S): The state space S = U/ U G U F is partitioned into three disjoint subsets:

— U: A state s € U represents a partial reasoning trace g, p1, ...px that is not yet termi-
nated.

— G: A state s € G represents a reasoning path that has successfully ended on the right
answer. In our setting this is when the module emits the /boxed{correct answer}.
This is an absorbing region.

— JF: A state s € F represents a reasoning path that has terminated at the wrong answer.
In our setting this is when the module emits the /boxed{incorrect answer}. This
is an absorbing region.

* Verification Predicate (solved): A predicate function S — 0,1 judging if the right
answer is already derivable from the given partial reasoning state. Note that this is a simple
formatting action, and is independent of the module m.

0Vse F

1Vse g

* Maximum Reasoning Steps (N): We rollout the reasoning process up to N steps. After
N steps of reasoning, we enforce a model-independent termination rule where the state

deterministically goes into s’ € G if solved(s) =1 and into s’ € F if solved(s) = 0. For
simplicity of notation, we assume the total trajectory length to be N + 1.

— solved(s)

— solved(s)

 Action Space (A): For a fixed meta-policy 7. that recursively generates steps until
termination (such as the one used by baseline CoT or the ARM-only variant), the meta
policy executes a single action at any give state s € U: i.e., invokes a step-generator
module m to produce the next reasoning step. Thus, the action space is a singleton A =
{generate_step}. For terminal states G U F, this is a no-op. Hence, the choice of the
module m fully defines the transition dynamics of the MDP.

* Reward Function (R): The one-shot terminal reward is sparse:

1, s'e€g,
0, otherwise.

R(s — ') = {

* Transition Dynamics (P): We denote the state transition probability P(.|s,m) with the
Markov assumption. This simplification is the core foundation for our MDP analysis.

* Value Function: Forn € {0,..., N}, let V"(s) denote the value with n reasoning steps
remaining before the formatting step. The Bellman recursion can be written as

1, seg,

" 0, s e F,
Vi'(s) = {solved(s)} + {—solved(s)} Eyp,, (s[Vat1(s)], s€lU,n>1,
{solved(s)}, selU,n=0.

Within this MDP framework, the ideal objective is to discover a module m*, that maximizes the
expected value from the initial state distribution d(s)

m* = arg maxE g, 5) [VA' (50)]
meM

This objective poses several major optimization challenges: 1) credit assignment problem over long
sequence of steps and 2) unconstrained search space of code modules.

11

B.2 Definitions
We introduce the following quantities to characterize module’s performance and search strategy:

* Per-step competence 0., (s): This represents the competence of the module m at a reasoning
state s € U analogous to d; ,, term in|Chang et al.[(2025). The probability that a one step
update s € U is valid can be viewed as a monotonically increasing function over d,,(.), but
for simplicity of notation, we assume this to be J,,(s) itself.

* Recovery r,,(s): The probability that, conditioned on an invalid one-step update from s,
the next step returns to a valid state. This term captures the recovery possibility of a mistake
in the immediate next turn. While recovery can happen at any turn following the mistake in
areal LLM, we limit the window to 1 for simplicity.

+ Composite Validity ¢,,(s): The total probability that the next step is valid for a step s € U,
either by being immediately valid, or by being successfully repaired on the next step:

Gm(8) = dm(s) + (1 = 0m(8))rm(s) (D

* Window W = (n,l): A block of | consecutive steps starting at step index n where all
states remain in ¢/{. The ARM module replaces the baseline module m ¢, with a candidate
module m only on this window.

* Visitation Weights w™ (17): The probability under baseline policy (7, m¢c,r) that the
window W occurs. This measures the frequency with which the meta-policy starts the
module at a given window.

B.3 Key Simplifying Assumptions

The rest of our analysis relies on the following key assumptions.

Assumption 1. [Local competence lift in the scaffolding window] Within any given window W =
(n, 1), for all states s visited, the candidate model satisfies ¢ (5) > Pmeop(s) + Ac for some lift
A, €10,1).

Rationale: This is the empirical premise that our scaffolded search objective (Section[2) is designed
to optimize for. Our Algorithm|T|directly measures and selects for modules that improve local validity
and recovery rates over the CoT within a constrained context at random locations.

Assumption 2. [Compatibility Loss] We define 3;(W) a bound on the probability that replacing the
baseline m¢o,r with ARM module m at a window W yields a context which is unusable for the rest
of the baseline reasoning trace. We refer to (1 — 5;(W)) as the compatibility factor. Furthermore,
we define 3; := supy ¢y, 51 (W) as the supremum of incompatibility probabilities across all valid
windows, representing the worst-case incompatibility bound.

Rationale: Swapping the baseline module m¢,r with m can introduce a “context drift” or “semantic
drift” which could amplify at deployment time when the ARM module m is used through the entire
trajectory. Our approach minimizes this drift by two means: 1) the few shot examples of the progress,
as well as the provided partial progress acts as a powerful inductive bias to constrain the next step to
states that preserve usefulness, for example by adopting the same notation, logical continuity, etc. 2)
the reviewer agent which proposes mutations to the module (starting from baseline CoT) is prompted
to generate modules which solve one step at a time starting from the given partial progress.

Assumption 3. [Module-invariant termination] We assume that the reward is terminal, and is provided
under the condition that the extracted answer matches the right answer. Furthermore, the last step in
the MDP is reserved for this extraction, which is considered module-invariant, i.e. both CoT or any
other module can do this final syntax step (equally) perfectly.

B.4 Theoretical Grounding for the Scaffolded Step-Generator Search

The scaffolded objective evaluates a candidate m by splicing it into a baseline rollout for a short
window t € {i,...,i+ £ — 1} while keeping mcor before and after:

U © (U)o UL

McoT mcor *

“baseline—candidate-baseline”

12

This section formalizes the link between local module improvements and global performance gains.
Under our simplified MDP framework and assumptions|[I] 2} we establish the following lemmas:

Lemma 1. [Window lift from local competence] The probability of remaining in U/ after the window
increases by at least [.C'~1. A, for some constant C € (0, 1).

Proof: The [step window survival (being in /) is at least ¢,,,(s)’. Under Assumption 1} the per-step
composite validity improves by at least A.. Hence, the survival probability improves by at least
¢

(pcor(s) + Ac)l — ¢cor(s)!. Applying the mean value theorem on f(z) = x¢, we get
(z+ A =z =0 TA > 4 min pcor(s))TTA
seUr
for some £ € [z, z + A], where UR represents states reachable by baseline C'oT module. Further, let
C' := minsey, dcor(8) be a constant.

Lemma 2. [Accounting for Compatibility] The probability of a sample surviving the window W and
remain usable after the module swap is lower bounded by (1 — 8;(W)).(I.C'~1.A.) where C is the
constant from Lemma/[Tl

Proof: From Assumption 2] the usability probability is at least (1 — 3,(W)). Multiplying this by the
probability of surviving the window from Lemma] yields the result.

Lemma 3. [From window survival to finite-horizon success] Any increase in the probability of
staying within U/ across a window W (while remaining usable) weakly increases the probability of
reaching G within the horizon N.

Proof: Under assumption [3] the termination rule is module-invariant, and reaching the goal state only
depends on being in state s € &/ U G and solved(s)=1. Thus a higher probability of preserving
valid, in-progress states across a window cannot decrease (and generally increases) the likelihood
that subsequent steps will generate such a solvable state before the horizon is exhausted. This follows
from standard monotonicity arguments on absorbing Markov chains.

Theorem 1 (Gain from Scaffolded Module Substitution in recursive meta policy). Let J(7ree, m) =
E [V"™ (s0)] denote the expected terminal reward (success probability) obtained when recursively
applying the step-generator module m under a fixed baseline meta-policy 7. for horizon N. The
improvement of the ARM module m* over mc,r is at least:

J(TRee,m*) = J(TReeymcor) = Y we(W) k(W) (1= Bi(W))IC'™TA,. 2
w

where each term represents:
» w, (W): visitation probability of a window W under a baseline rollout;

* x(W): probability that a usable post-window state leads to terminal success within the
remaining horizon.

* C € (0,1]: a constant from Lemmacapturing compounding survival over steps.
In particular, if (W) > Ky > 0 for all W, then
J(TRee,m*) = J(TRec, Mcor) = Kmin (1= BI(W))LCT™ D " we (W) 3)
w
Proof: From Lemma , the probability of surviving the window is lower bounded by (1 — 3;)IC'~ 1.
Let (W) represent the probability of success upon starting from a good state, post the window. By
Lemmal|3] the increase in usable post-window mass translates to atleast a (W) fraction improvement

in terminal success within the remaining horizon. Thus the expected gain from the window is
k(W)(1 — B,(W))IC!~1. Taking expectation over window visitation probabilities yields the result:

J(TRee; m*) — J(TRee, Meot) = Z wy (W) - Gain(WW)
w
= ;wﬂ(W) (W) (1= B(W))1C. @)

=z ZwW(W) Kmin (1= BI(W))1CTL
w

13

where k,,;, > 0 is the lowest probability of success from a valid, usable intermediate reasoning trace.

B.5 Theoretical Justification for zero-shot policy transfer

The learned meta policy 7* uses mcor as the step generator during the learning phase and is
deployed zero-shot using the discovered ARM module m*. Below, we justify why this transfer is
effective.

Theorem 2 (Validity of Zero-shot step generator swap in Meta policy). Let J(7n*,m*) =
Es,~D VJE,W ™) (so)} denote the expected terminal reward obtained when applying the discov-
ered meta-policy 7* (from Section [2)), with the step-generator module m* under horizon N. If

A > Blﬁ then the transfer is valid, i.e., J(7*, m*) > J(7*, mcor)

Let’s define per-step advantage of a module m over m¢,7 With n more steps to go as the expected
difference in value when taking one step with m and the rest with m¢o,7:

An(Sn,m) L Es Py (. ‘q)[v(ﬂ mCoT)()] — ES/NPT"'COT("S) [Vrfilvm,CoT)(S/)] (5)

Now let’s consider the difference in expected value starting from a given state sg sampled from the
data distribution D. For simplicity, we drop 7* from notation as it is the common meta policy in both
terms.

V' (s0) = V" (s0)

Rolling out for one step yields
Esi P (1s0) Va1 (51)] = VT (s0)

Adding an subtracting B, p,.(.
we get:

150) [V G°" (51)] (i.e., sampling from m but continue with mcor)

Esim P (150) Ve (s1)] — E91~PchT(150) [V q°” (51)]

m (6)
+ Egiop(1s0) [Visa (51) = V977 (s1)]

By Equation-5, this can be written as
ARt (s0,m) + Egy wp(1so) Vi1 (s1) = V29" (51)]

This is a recursive equation in n since the second term is the difference in value between the module
with n — 1 steps to horizon. Hence:

VA (s0) = Voo™ (s0) = D [ARCT (80, m)] @

n=0

Thus we can conservatively guarantee module improvement, if each of the the advantage term is
positive. Suppose that U represents the event that one step rollout using our discovered module m*
is usable (i.e. no errors, and usable context) in the next turn, then by law of total expectation the
advantage term can be written as:

P(U | s,m") - (E[VN,n | s,m*, U] = E[VN_y | s,mCQT,U])
+ P(=U | s,m") - (E[VN_n | s,m*,=U] — E[VN_n | s,mCOT,—\U]) 8

By Assumption E] and Assumption [2| the first term is at least (1 — ;) - A.. The second term is
lower bounded in the worst case by 3; - (—1) since the probability of non-useful state is 3; and the
difference in reward is at most —1 (when m™* fails where m¢,r succeeds). Thus a conservative lower
bound is:

AmeeT (s om) > (1 —By) - A — By)

ﬂ
-8’
effective when this condition is satisfied.

14

Corrolary 1. The meta policy, paired with ARM, (7*, m*) yields the highest performance when A..
is large and f3; is small.

Remark: From Equation-8, the claim holds. Our scaffolded objective function is precisely designed
to maximize A. while reducing the probability of state drift leading to mismatched compatibility.
In 3] we can empirically see that better performance is associated with improvement in per-step
competence. And in Q], we see that the ARM module is compatible with m¢,7 and can act as a
superior drop-in replacement for CoT. Furthermore, the examples shown in Section [C]show that both
CoT and ARM rollouts are empirically non-discriminable.

C Step Generator roll out Examples

C.1 Example-1

Step 2
> Express the sides in terms of the common ratio \(2R\):
5\ [
a = 2R \sin 60~\circ = 2R \times \frac{\sqrt{3}}{2} = R \sqrt{3},
\1]
\ [
7 b = 2R \sin 45-\circ = 2R \times \frac{\sqrt{2}}{2} = R \sqrt{2},
\1]
\[
¢ = 2R \sin 75~ \circ.
\1]

> Recall that \(\sin 75-\circ = \sin(45-\circ + 30~\circ)\):
3\ [

\sin 75~\circ = \sin 45-\circ \cos 30"\circ + \cos 45-\circ \sin 30"\
circ = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt
{2}}{2} \times \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt
{2}}{4} = \frac{\sqrt{6} + \sqrt{2}3}{4}.

\1]

Hence,

\ [

c = 2R \times \frac{\sqrt{6} + \sqrt{2}}{4} = R \times \frac{\sqrt{6}
+ \sqrt{2}3}{2}.

\1]

Listing 1: ARM rollout

Step 2

> Expressing the sides in terms of the circumradius \(R \):

=

3\ [
a = 2R \sin A = 2R \sin 60"\circ = 2R \times \frac{\sqrt{3}}{2} = R \
sqrt {3},
\1]
\ [
7b = 2R \sin B = 2R \times \frac{\sqrt{2}}{2} = R \sqrt{2},
\1]
\ [
c = 2R \sin C = 2R \times \sin 75~\circ.
\1]
Recall that:
\ [

\sin 75°\circ = \sin (45~\circ + 30~\circ) = \sin 45~\circ \cos 30~\
circ + \cos 45-\circ \sin 30"\circ = \frac{\sqrt{2}}{2} \times \
frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac
{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt

{2}3{4}.
\1]
Therefore:
\ [

c = 2R \times \frac{\sqrt{6} + \sqrt{2}}{4} = R \times \frac{\sqrt{6}
+ \sqrt{2}3}{2}.

15

\]
Listing 2: CoT rollout

C.2 Example-2

Step 3
Now, determine the new temperature after doubling the kinetic energy:

s\ [

o -

11

T_2 = 526.3\,K

\]

Convert this back to Celsius:

\ [

T_2~{\circ} C = 526.3 - 273.15 = 253.15"\circ C

\]

This is a significant increase from the initial \(-10"\circ C\),
indicating the molecules now have enough energy corresponding to
about \(253~\circ C\).

Listing 3: ARM rollout

Step 3
Determine the new temperature after doubling the kinetic energy:
Since kinetic energy \(\propto T \),

\ [

T_2 = 2 \times T_1 = 526.3 \, K

\1]

Convert this back to Celsius:

\ [

T_2 (“\circ C) = T_2 (K) - 273.15 = 526.3 - 273.15 \approx 253.15"\
circ C

\1]

This temperature is well above the boiling point of water at 1 atm
(100C) . Therefore, the molecules’ kinetic energy would be
sufficient to overcome intermolecular forces and convert the water

from the solid phase (ice) into the gas phase (vapor).

Listing 4: CoT rollout

C.3 Example-3
Step 1

To determine the correct substitution from equation 12.9 to equation
12.10, we need to understand the context of these equations and
the variables involved. Equation 12.9 likely involves a momentum-
like variable \(P"+ \) or a gamma matrix that acts on spinors,
and the goal is to simplify or rewrite this expression into a form

involving gamma matrices or energy-momentum components.

Typically, in relativistic quantum mechanics or quantum field theory,
the transformation from the light-cone momentum \(P~+ \) to gamma
matrices involves choosing a specific gamma matrix to project or
decompose spinor components. The options provided suggest that the
substitution involves gamma matrices and possibly the momentum
operator or gamma matrices related to time.

Given that, the known structures are:

- \(P°+ \): light-cone momentum component, usually \(P+ = P~0 + P~3
\) .
- \(\gamma~u \): a gamma matrix with a specific index \(u \),
possibly a spatial index.
- \(\gamma~0 \): the gamma matrix corresponding to time.

16

12

13
14

- \(\gamma~0 P \): a product of \(\gamma~0 \) with some momentum
operator \(P \).

Since the transformation is from equation 12.9 to 12.10, and the
options involve gamma matrices and momenta, the typical approach
in such derivations involves rewriting the projection operator or
the momentum in terms of gamma matrices.

Listing 5: ARM rollout

Step 1

3 To determine the correct substitution, first understand the context:

equation 12.9 involves the momentum operator \(P~\mu \), and
equation 12.10 is likely a transformed version involving gamma
matrices. In relativistic quantum mechanics, transformations often

involve gamma matrices \(\gamma~\mu \) and the gamma matrices’
role in formulating Dirac equations.

Given the options:

\NC P+ \)

\(\gamma~u \)
\(\gamma~0 \)
\(\gamma~0 P \)

1
OaQwre=

and based on the typical transformations, the substitution from \(P~\
mu \) to a form involving gamma matrices usually involves \(\
gamma~0 \) because it relates to the time component of the gamma
matrices and appears frequently in the Dirac formalism.

In particular, if the original equation involves \(P~\mu \), and the
transformed equation involves a gamma matrix, then the key is
recognizing the common substitution that converts momentum
operators into gamma matrix expressions, especially the time
component \(P~0 \).

Therefore, the step is to analyze which gamma matrix substitution
correctly transforms the operator form in equation 12.9 into the
one in 12.10.

Listing 6: CoT rollout

17

D Additional Evaluations

To demonstrate the generalizablilty of the discovered ARM module and the meta policy, we evaluate
our approach zero-shot on two other benchmarks. For reasoning evaluations on specialized scientific
knowledge, we used GPQA, a benchmark containing graduate-level questions in physics, chemistry,
and biology designed to be challenging even for human experts (Rein et al.|[2023)). Finally, to measure
practical, up-to-date reasoning on Code, Data Analysis, Common Sense Reasoning, and robustness
against data contamination, we used LiveBench Reasoningﬂ a dynamic benchmark with continuously
evolving questions (Jain et al., 2024).

Model Method GPQA LiveBench
CoT 50.0% 33.1%
° CoT-SC 50.6% 36.9%
g Self-Refine 50.0% 28.1%
D LLM-Debate 52.5% 33.8%
hj ADAS (test set) 48.1% 31.2%
% ADAS (1000-sample) 46.8% 29.4%
AFlow (test set) 39.9% 30.6%
AFlow (1000-sample) 51.3% 30.6%
ARM (Ours) 60.1% 39.4%
ARM + MP (Ours) 61.4% 45.6 %
CoT 53.8% 46.2%
CoT-SC 53.2% 42.5%
° Self-Refine 53.8% 37.5%
E LLM-Debate 56.3% 47.5%
% ADAS (test set) 46.2% 38.8%
ADAS (1000-sample) 46.8% 41.9%
AFlow (test set) 53.8% 41.9%
AFlow (1000-sample) 50.6% 45.0%
ARM (Ours) 59.5% 47.5%
ARM + MP (Ours) 60.1% 51.9%
CoT 50.0% 38.1%
A CoT-SC 53.2% 45.0%
E Self-Refine 51.3% 46.9%
o LLM-Debate 50.6% 46.2%
= ADAS (test set) 475% 37.5%
S ADAS (1000-sample) 42.4% 46.2%
— AFlow (test set) 46.8% 38.1%
AFlow (1000-sample) 46.8% 15.6%
ARM (Ours) 49.6% 46.2%

ARM + MP (Ours) 50.0% 50.0%

Table 2: Additional results on two complex reasoning benchmarks in analytical domains across three foundation
models. We compare against two groups of baselines: (1) foundational reasoning strategies used to build agentic
systems (CoT, CoT-SC, Self-Refine, and LLM-Debate), and (2) existing state-of-the-art automatic MAS design
methods (ADAS and AFlow). Our approach is presented in two variants: ARM, which recursively applies the
discovered reasoning module, and our full method, ARM + MP, which combines the ARM with a learned
Meta-Policy (MP). Best score in each category is bolded and second best score is underlined.

*https://huggingface.co/datasets/livebench/reasoning

18

https://huggingface.co/datasets/livebench/reasoning

E Best ARM discovered: CriticChainOfThoughtV7

The following is the Python implementation of the best ARM discovered by our algorithm.

I import asyncio

N

3 class CriticChainOfThoughtV7:

4 def __init__(self, 1llm):

5 self .1lm = 1lm

6

7 async def forward(self, problem, partial_progress):

8

9 candidate_tasks = [

10 self .1llm.generate_step(problem, partial_progress)
1 for _ in range (4)

12]

13 candidates = await asyncio.gather (xcandidate_tasks)

14

15

16 critique_tasks = []

17 groups = [

18 (0, 2, ("rating_1", "rating_2"), ("critique_1", "

critique_2")),
19 (2, 4, ("rating_3", "rating_4"), ("critique_3", "
critique_4"))

20 1

21 for start, end, rating_names, critique_names in groups:

2 context = [

23 {

24 "name": "Problem",

25 "data": problem,

26 "description": "The problem to solve."

27 }!

28 {

29 "name": "Partial Progress",

30 "data": partial_progress,

31 "description": "The partial solution so far."

2 P

33 {

34 "name": "Candidate Next Steps",

35 "data": "\n\n".join(

36 f"### Candidate Next Step {i+i1}\n{candidates[i
13"

37 for i in range(start, end)

38),

39 "description": "Two candidate next steps formatted
with markdown subheaders."

40 }

41]

) instructions = (

43 "You are given a problem, the current partial solution
, and two candidate next reasoning steps.\n"

44 "For each candidate, provide:\n"

45 f"- {rating_names [0]} and {rating_names[1]}: a single

integer rating from 1 to 10 indicating its fit as the next
reasoning step (10 is best).\n"

46 f"- {critique_names [0]} and {critique_names[1]}: a one
-sentence critique highlighting each candidate’s strengths and
weaknesses.\n"

47 f"Name the fields exactly {rating_names[0]}, {
critique_names [0]}, {rating_names[1]}, {critique_names[1]}."

43)

49 response_format = [
50 {
51 "name": rating_names [0],

19

60

61
62
63

64

66
67
68

69
70
71
72

73

74
75
76
77
78
79

80

90
91
92
93
94
95

96

98
99
100
101
102
103

104
105
106

"description": f"Integer rating (1-10)
Candidate Next Step {start+1}."

}!

{
"name": critique_names [0],
"description": f"One-sentence critique

Candidate Next Step {start+1}."

}’

{
"name": rating_names[1],

"description": f"Integer rating (1-10)
Candidate Next Step {start+2}."

} b
{
"name": critique_names[1],
"description": f"One-sentence critique
Candidate Next Step {start+2}."
}

1
critique_tasks.append/(

for

of

for

of

self.1llm.chat_completion(context, instructions,

response_format)

)
critiques = await asyncio.gather (*critique_tasks)
ratings = [
int (critiques [0] ["rating_1"]),
int (critiques [0] ["rating_2"]),
int(critiques [1]["rating_3"1),
int (critiques [1]["rating_4"])
]
sorted_indices = sorted(range(4), key=lambda i: ratings[i],

reverse=True)

topl_idx, top2_idx = sorted_indices[0], sorted_indices[1]

topl_candidate = candidates[topl_idx]
top2_candidate = candidates[top2_idx]

context_final = [
{
"name": "Problem",
"data": problem,
"description": "The problem to solve."
}’
{
"name": "Partial Progress",
"data": partial_progress,
"description": "The partial solution so far."
}1
{
"name": "Candidate Next Steps",
"data": (

f"### Candidate A\n{topl_candidate}\n\n"

f"### Candidate B\n{top2_candidatel}"
),

"description": "Two top candidate next steps formatted

with markdown subheaders."
¥
]

instructions_final = (

20

107

145
146
147

148

149
150
151

152

153

156
157
158
159

160

"Compare Candidate A and Candidate B as the next reasoning
step for the given problem and partial progress.\n"

"Provide:\n"

"- winner: choose either ’Candidate A’ or ’Candidate B’
indicating which step is better.\n"

"- justification: one-sentence justification for your

choice."
)
response_format_final = [
{
"name": "winner",
"description": "Either ’Candidate A’ or ’Candidate B’
indicating the better next step."
} 3
{
"name": "justification",
"description": "One-sentence justification for the
choice."
}
]
final_decision = await self.llm.chat_completion(
context_final, instructions_final, response_format_final
)
if final_decision["winner"].strip() == "Candidate A":
selected_candidate = topl_candidate
runnerup_candidate = top2_candidate
else:
selected_candidate = top2_candidate
runnerup_candidate = topl_candidate

5. Post-selection adversarial critique with severity rating

context_flaw = [
{
"name": "Problem",
"data": problem,
"description": "The problem to solve."
}’
{
"name": "Partial Progress",
"data": partial_progress,
"description": "The partial solution so far."
}1
{
"name": "Selected Candidate Next Step",

"data": f"### Selected Candidate Next Step\n{
selected_candidatel}",

"description": "The final chosen candidate next
reasoning step formatted with a markdown subheader."
}
]
instructions_flaw = (

"You are given a problem, the current partial solution,
and a selected next reasoning step.\n"
"Identify any major flaw or missing piece of reasoning in
the selected step.\n"
"Provide:\n"
"- flaw: either the single word ’None’ if there is no flaw
, or a brief description of the flaw.\n"
"- severity: a single integer rating from 1 to 10
indicating how severe the flaw is (10 is critical)."
)
response_format_flaw = [
{

"name": "flaw",

21

161

162
163
164

165

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

183

184
185

186

5

"description": "Either the single word ’None’ if there
is no flaw, or a brief description of a major flaw in the
selected step."

} b
{
"name": "severity",
"description": "Integer rating (1-10) indicating
severity of the flaw (10 is most severe)."
}
]
flaw_response = await self.llm.chat_completion(
context_flaw, instructions_flaw, response_format_flaw
)
flaw = flaw_response["flaw"].strip()
severity = int(flaw_response["severity"])

gap = ratings[topl_idx] - ratings[top2_idx]
if gap <= 1:

threshold = 5
elif gap == 2:
threshold = 6
else:
threshold = 7
if flaw.lower () != "none" and severity >= threshold:

return runnerup_candidate
return selected_candidate

Listing 7: "Code for CriticChainOfThoughtV7 with performance 38.0"

F Best Meta-Policy Discovered:

Verified Weighted AdaptiveSelfConsistentChainOf Thought

The following is the Python implementation of the best meta-policy discovered by our algorithm.

import asyncio
from agent.solution import Solution, Step

3 from judge_utils import judge_equality

16

class VerifiedWeightedAdaptiveSelfConsistentChainOfThought:

def __init__(self, 1lm, block):

self.1llm = 1lm
self .block = block

async def forward(self, problem):

async def generate_chain():
solution = Solution ()
for _ in range(8):
next_step = await self.block.forward(problem, str(
solution))
solution.add_step(Step(str(next_step)))
if solution.is_completed():
return solution
completion = await self.llm.complete_solution(problem, str
(solution))
solution.add_step(Step(str(completion)))
return solution

22

24
25

26

28
29

30

47

48

49

50

51

60
61

62

66

async def score_chain(chain):

context = [
"name": "Problem", "data": problem, "descriptiomn": "
The original problem statement."},
"name": "Chain", "data": str(chain), "description":
"Full chain-of-thought reasoning plus final answer."}
]
instructions = (

"You are evaluating the chain-of-thought solution for
the given problem. "

"On a scale from 1 (very uncertain) to 5 (very
confident), rate your confidence "

"that the final answer is correct. Output ONLY the
integer confidence (1-5)."

)

response_format = [{"name": "Confidence", "description": "
Integer from 1 to 5"}]

resp = await self.llm.chat_completion(context,

instructions, response_format)

try:

conf = int(resp["Confidence"].strip())
except Exception:

conf = 1

return max (1, min(conf, 5))

async def verify_chain(chain):

context = [
{"name": "Problem", "data": problem, "description": "
The original problem statement."},
{"name": "Chain", "data": str(chain), "description":
"Full chain-of-thought reasoning plus final answer."}
]
instructions = (

"Review the chain-of-thought reasoning for the given
problem. "

"Is the reasoning free of logical errors or
contradictions? "

"Output ONLY ’Yes’ if it is fully logical, otherwise
output ’No’."

)

response_format = [{"name": "Valid", "description": "Yes
or No"1}]

resp = await self.llm.chat_completion(context,

instructions, response_format)
valid = resp.get("Valid", "").strip().lower().startswith("
yll)

return valid

def find_best_weighted(chains_list, conf_list):
weight_sums = {}

total = sum(conf_list)
for chain, c¢f in zip(chains_list, conf_list):

ans = chain.answer ()

weight_sums[ans] = weight_sums.get(ans, 0) + cf
best_ans, best_w = None, -1

for ans, w in weight_sums.items():
if w > best_w:
best_ans, best_w = ans, w
return best_ans, best_w, total

initial = [generate_chain() for in range (3)]

23

74 chains = await asyncio.gather (*initial)

77 score_tasks = [score_chain(ch) for ch in chains]

78 verify_tasks = [verify_chain(ch) for ch in chains]

79 confidences = await asyncio.gather (xscore_tasks)

80 valids = await asyncio.gather (*xverify_tasks)

8

82 max_chains = 7

83

84

85 while True:

86

87 if any(valids):

88 considered_chains = [ch for ch, v in zip(chains,
valids) if v]

89 considered_confs = [cf for cf, v in zip(confidences,

valids) if v]

90 else:

91 considered_chains = chains

92 considered_confs = confidences

93

94 best_ans, best_weight, total_weight = find_best_weighted(

considered_chains, considered_confs)

95

96 if best_weight > total_weight / 2 or len(chains) >=
max_chains:

97 break

98

99

100 new_chain = await generate_chain ()

101 chains.append (new_chain)

102 new_conf = await score_chain(new_chain)

103 confidences.append(new_conf)

104 new_valid = await verify_chain(new_chain)

105 valids.append(new_valid)

106

107

108 if any(valids):

109 final_pool = [(ch, cf) for ch, cf, v in zip(chains,
confidences, valids) if v and judge_equality(ch.answer (), best_ans

) 1

110 else:

111 final_pool = [(ch, cf) for ch, cf in zip(chains,
confidences) if judge_equality(ch.answer (), best_ans)]

1
113 selected_chain = None

114 top_conf = -1

115 for ch, cf in final_pool:

116 if cf > top_conf:

11 selected_chain, top_conf = ch, cf
11

120 if selected_chain is None:
121 selected_chain = chains[-1]

123 return selected_chain

Listing 8: "Code for VerifiedWeightedAdaptiveSelfConsistentChainOfThought with performance
42.0"

24

G Reproducibility Statement

Upon publication, we commit to releasing the open-source code for our framework, including all
discovered Agentic Reasoning Modules, meta-policies, and the specific prompts used for the Reviewer
Agent. Our experiments were conducted using a mix of closed and open-source models. The MAS
designer utilized 04-mini-high. The reasoning modules were executed on GPT-4.1-nano, GPT-40,
and the open-source Llama-3.3-70B. All evaluation benchmarks, including MATH500, AIME, and

HMMT,

are publicly available.

G.1 Baseline Implementation Details

As in the ARM implementation, whenever sampling from the MAS executor model, we use a
temperature of 1.0 with a top_p of 0.95.

CoT: We use a simple CoT prompt that instructs the model to reason step-by-step and follow
the final answer format.

CoT-SC: We use n = 12 parallel reasoning traces.
Self-Refine: We limit to a maximum of 5 self refining iterations.
LLM-Debate: We use 4 LLM agents debating for a maximum of 3 rounds.

ADAS: We use the provided codebase, following the recommended run configuration. For a
fair comparison to other baselines, we make a one line addition to the optimizer prompt to
disallow arbitrary Python code execution within the discovered MASes, since other baselines
do not utilize code execution. For the 1000-sample optimization, we use GPT-4.1-nano as
the MAS executor model during optimization, following ARM’s implementation.

AFlow: We use the provided codebase, following the recommended run configuration. We
allow the optimizer to utilize the Custom, AnswerGenerate, and ScEnsemble operators. For
the 1000-sample optimization, we use GPT-4.1-nano as the MAS executor model during
optimization, following ARM’s implementation.

25

	Introduction
	Methodology: Discovering the Agentic Reasoning Module
	Experiments
	Results
	Analyses
	Conclusion
	ARM Search Algorithm
	Theoretical Analysis
	An Idealized MDP Model of Step-wise Reasoning
	Definitions
	Key Simplifying Assumptions
	Theoretical Grounding for the Scaffolded Step-Generator Search
	Theoretical Justification for zero-shot policy transfer

	Step Generator roll out Examples
	Example-1
	Example-2
	Example-3

	Additional Evaluations
	Best ARM discovered: CriticChainOfThoughtV7
	Best Meta-Policy Discovered: VerifiedWeightedAdaptiveSelfConsistentChainOfThought
	Reproducibility Statement
	Baseline Implementation Details

