
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KLAY: ACCELERATING ARITHMETIC CIRCUITS FOR
NEUROSYMBOLIC AI

Anonymous authors
Paper under double-blind review

ABSTRACT

A popular approach to neurosymbolic AI involves mapping logic formulas to
arithmetic circuits (computation graphs consisting of sums and products) and
passing the outputs of a neural network through these circuits. This approach
enforces symbolic constraints onto a neural network in a principled and end-to-
end differentiable way. Unfortunately, arithmetic circuits are challenging to run on
modern tensor accelerators as they exhibit a high degree of irregular sparsity. To
address this limitation, we introduce knowledge layers (KLAY), a new data struc-
ture to represent arithmetic circuits that can be efficiently parallelized on GPUs.
Moreover, we contribute two algorithms used in the translation of traditional cir-
cuit representations to KLAY and a further algorithm that exploits parallelization
opportunities during circuit evaluations. We empirically show that KLAY achieves
speedups of multiple orders of magnitude over the state of the art, thereby paving
the way towards scaling neurosymbolic AI to larger real-world applications.

1 INTRODUCTION

Interest in neurosymbolic AI (Hitzler & Sarker, 2022) continues to grow as the integration of sym-
bolic reasoning and neural networks has been shown to increase reasoning capabilities (Yi et al.,
2018; Trinh et al., 2024), safety (Yang et al., 2023), controllability (Jiao et al., 2024), and inter-
pretability (Koh et al., 2020). Furthermore, neurosymbolic methods often require less data by
allowing a richer and more explicit set of priors (Diligenti et al., 2017; Manhaeve et al., 2018).

However, as the computational structure of many neurosymbolic models is partially dense (in its neu-
ral component) and partially sparse (in its symbolic component), efficiently learning neurosymbolic
models still presents a challenge (Wan et al., 2024). So far, the symbolic components of these
neurosymbolic models have struggled to fully exploit the potential of modern GPUs or TPUs. NEW

Our work focuses on a particular flavor of neurosymbolic AI, pioneered by Xu et al. (2018) and
Manhaeve et al. (2018), which performs probabilistic inference on the outputs of a neural network.
This is achieved by encoding the symbolic knowledge using arithmetic circuits. While arithmetic
circuits are end-to-end differentiable, they also pose certain challenges. In particular, arithmetic
circuits are ill-suited to be evaluated in terms of dense tensor operations due to their high degree of NEW
irregular sparsity. In this work, we address the challenge of optimizing neurosymbolic architectures
to efficiently leverage available widely available hardware. To this end, we present KLAY: a new
data structure representing arithmetic circuits as knowledge layers which can exploit the parallel
compute present in modern GPUs or TPUs. NEW

The main advantage of KLAY is that it reduces arithmetic circuit evaluations to index and scatter
operations – operations already present in popular tensor libraries. This allows for the embarrass-
ingly parallel nature of these knowledge layers to be harnessed. Importantly and in contrast to
alternative approaches that speed up sparse neurosymbolic computation graphs (Dadu et al., 2019;
Liu et al., 2024), we forego the need for custom hardware-specific implementations. This makes
KLAY completely agnostic towards the underlying hardware. By leveraging the compiler stacks of
open-source tensor libraries, KLAY can furthermore considerably outperform existing hand-written
CUDA kernels.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 ARITHMETIC CIRCUITS AND NEUROSYMBOLIC AI

The symbolic knowledge in neurosymbolic AI is commonly specified as Boolean logic. Boolean
circuits are a compact representation of Boolean logic using directed acyclic graphs (Darwiche,
2021). More specifically, the leaves in Boolean circuits correspond to Boolean variables (or their
negation), while inner nodes are either ∧-gates or ∨-gates. We make the usual assumption that
Boolean circuits do not contain negation, known as negation normal form (NNF). Figure 1a contains
an example of a Boolean circuit. A circuit can be evaluated for a set of inputs by a simple post-order
traversal of the graph, meaning children get evaluated before their parents. More formally, the value
v(n) of a node n is a defined as

v(n) =


ln if n is a leaf node,∧

c∈Cn
v(c) if n is a ∧-gate,∨

c∈Cn
v(c) if n is a ∨-gate.

(1)

We write ln for the Boolean input value of the leaf node n and Cn for the set of children of an inner
node n. The evaluation of a circuit is a function BN → B which maps the Boolean inputs of the
leaves to the value of the root node.

In order to render Boolean circuits useful in the context of neurosymbolic AI, we first need to
perform a so-called knowledge compilation step (Darwiche & Marquis, 2002). This compilation
step transforms an NNF circuit into deterministic decomposable negation normal form (d-DNNF).
Determinism (Darwiche, 2001b) and decomposability (Darwiche, 2001a) are two properties that
guarantee certain computations can be performed tractably, such as finding the number of satisfying
assignments. We refer the reader to Vergari et al. (2021) for an in-depth discussion on tractable com-
putations on circuits. Figure 1b contains the d-DNNF circuit resulting from knowledge-compiling
the circuit in Figure 1a.

The important advantage of d-DNNF circuits over general NNF circuits is that they allow linear
time probabilistic inference. Assume first that the Boolean variables are not deterministic anymore
but constitute Bernoulli random variables. We can then compute the probability of the d-DNNF
circuit evaluating to true under the input distribution by labeling the leaves of the circuit with the
probabilities of the Boolean variables and replacing ∧- and ∨-gates with × and + operations, re-
spectively. The resulting circuit is also called an arithmetic circuit (Darwiche, 2003) and is displayed
in Figure 1c. NEW

While probabilistic inference on d-DNNF circuits has linear time complexity, transforming a NNF
circuit into d-DNNF is #P-hard (Valiant, 1979). However, once the d-DNNF structure is obtained
we can re-evaluate the circuit with different probabilities for the Boolean variables in the leaves.
This approach has been very successful in probabilistic inference for a variety of models such as
Bayesian networks (Chavira & Darwiche, 2008) and more general probabilistic programs (Fierens
et al., 2015).

This compile once and evaluate often paradigm has also gained traction in neurosymbolic sys-
tems (Manhaeve et al., 2018; Ahmed et al., 2022b; De Smet et al., 2023). The high-level idea behind
these approaches is to compile the symbolic knowledge once into an arithmetic circuit and let a neu-
ral network predict the probabilities to be fed into the arithmetic circuit. Given that the arithmetic
circuit consists only of sum and product operations, the resulting computation graph (neural network
+ arithmetic circuit) is end-to-end differentiable and the parameters can be optimized using standard
gradient descent methods. Furthermore, as gradient descent is an iterative method, the circuit (and
its gradient) needs to be evaluated repeatedly. This yields a convenient return on investment for
the initial expensive knowledge compilation step, which now amortizes over multiple evaluations.
Appendix D explains in more detail how neural networks and circuits can be used together on a
simple example.

As discussed in the introduction, arithmetic circuits currently hinder the efficient application of
neurosymbolic methods as these circuits are not well-suited to be evaluated as parallel tensor op- NEW
erations. As a matter of fact, the standard way to evaluate an arithmetic circuit in a neurosymbolic
context is to naively evaluate every node one by one (Manhaeve et al., 2018; Ahmed et al., 2022a;b)
using a naive traversal of the arithmetic circuit. Although this naive traversal of the circuit allows
for a certain degree of data parallelism, it fails to fully utilize the capacity of modern GPUs. Con-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

∨

∧ ∧

¬a ∨

¬b ¬c d

a ∨

c ¬d

(a) NNF circuit.

∨

∧∧

¬b ¬a b ∨

¬c ∧

c d

∨

¬d

∧

a

(b) d-DNNF circuit.

+

××

p¬b p¬a pb +

p¬c ×

pc pd

+

p¬d

×

pa

(c) Arithmetic circuit.

Figure 1: Example of (a) a Boolean circuit, (b) its d-DNNF version, and (c) the corresponding
arithmetic circuit. The arithmetic circuit replaces Boolean variables with their probabilities. Con-
sequently, the arithmetic circuit computes the probability of the underlying Boolean circuit being
satisfied. In a neurosymbolic setting, the input probabilities are predicted by a neural network.

sequently, many existing frameworks in practice just evaluate the entire computation graph on the
CPU (Manhaeve et al., 2018; Ahmed et al., 2022b).

3 LAYERIZING CIRCUITS

In this section, we show how to map a d-DNNF circuit to our layerized KLAY representation. Af-
terward, in Section 4, we discuss how the resulting KLAY representation can be run efficiently on
GPUs. Although our exposition focuses on d-DNNF circuits, it is more generally applicable to NNF
circuits, meaning KLAY could also be of interest to neurosymbolic systems based on, e.g. fuzzy
logic (Badreddine et al., 2022) or grammars (Winters et al., 2022).

3.1 FROM LINKED NODES TOWARDS LAYERS NEW

In order to parallelize a d-DNNF circuit, we group the nodes into sets of nodes that can be evaluated
in parallel. We dub these groups layers – reminiscent of layers in neural networks. Concretely, for
each node n in a circuit C we compute its height in the circuit hn, and nodes with the same height
are assigned to the same layer.

Li = {n ∈ C | hn = i} where hn =

{
0, if n is a leaf,
maxc∈Cn hc + 1 otherwise.

(2)

Here, we use Cn to denote the set of children of a node n. Note that the height of all nodes can be
efficiently evaluated in a single post-order circuit traversal. The initial layer, L0, comprises all leaf
nodes, while the last layer comprises the root node.

Without loss of generality, we can assume that ∨-gates only have ∧-gates as children and that ∧-
gates have either ∨-gates or leaf nodes as children (Choi et al., 2020). This implies that ∧- and
∨-gates appear in an alternating fashion throughout the circuit, which can be observed in Figure 1b,
and that all nodes in the same layer have the same type.

If nodes are assigned to layers based on their height hn, the child of a node can be in any of the
previous layers. However, to transform the circuit evaluation into a sequence of parallel operations,
it is more convenient if all children are in the immediately preceding layer. In such a structure, the
next layer can be computed solely using the current layer.

We obtain this layer-by-layer structure by introducing additional unary nodes. Whenever a node
n ∈ Lhn

has a child c in a non-immediately preceding layer Lhc
, i.e. hc + 1 < hn, we introduce a

chain of unary nodes, one per layer between Lhc
and Lhn

, to connect n to c via these unary nodes.
This is illustrated in Figure 2, where the newly introduced nodes are indicated by dashed circles.
Note that the type of a unary node (∨ or ∧) is irrelevant and chosen to satisfy the assumption of
alternating node types. Algorithm 2 in Appendix C summarizes this layerization in pseudo-code.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

¬b ¬a b ¬c c d ¬d a

∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧

∨

layer L0

layer L1

Layer L2

layer L3

layer L4

Figure 2: A layered version of the d-DNNF in Figure 1b. Dashed nodes indicate nodes that are not
present in the original d-DNNF and which are introduced during the layerization of the circuit.

3.2 MULTI-ROOTED CIRCUITS AND NODE DEDUPLICATION

Suppose now that we have multiple circuits over a (partially) shared set of variables. A set of M
circuits effectively computes a Boolean function f : BN → BM . Such M -dimensional circuits
are also called multi-rooted circuits and are rather common in the standard neurosymbolic setting.
Indeed, unless all data has the same symbolic knowledge, batched training or inference requires
multi-rooted circuits. For instance, the widely-known MNIST addition problem (Manhaeve et al.,
2018) can be solved using a multi-rooted arithmetic circuit with 19 roots, as it has 19 different
possible outputs.

If all M circuits comprising the multi-rooted circuit have already been layerized according to Sec-
tion 3.1, we again have that nodes at the same height in different circuits are of the same type.
We can hence simply combine the layers of the different circuits to further exploit parallelization.
Additionally, different circuits might share equivalent sub-circuits amongst each other. By correctly
identifying and merging shared nodes, we avoid redundant computations. Figure 3 gives an example
of a multi-rooted d-DNNF circuit with shared nodes.

To merge all duplicate nodes, we need an efficient way to identify these nodes. We show that this is
possible in linear time.

Theorem 1. Given a set of circuits, all identical sub-circuits can be identified in linear expected
time complexity in the total number of edges in the circuits.

The proof is included in Appendix A. For canonical circuits, such as SDDs with the same variable
tree1, this result is strengthened from syntactically identical sub-circuits to semantic equivalence. We
realize Theorem 1 using Merkle hashes (Merkle, 1987). That is, we associate a hash hash(n) with
every node n in a recursive fashion. For each leaf node, we hash the associated (negated) variable.
For each internal node, we combine the hashes of the children using a permutation invariant function.

hash(n) =

{
mix hash(ln) if n is leaf.⊕

c∈Cn
mix hash(hash(c)) otherwise.

(3)

Here, ln is a unique identifier for the (negated) variable of the leaf node n,
⊕

is a permutation-
invariant operation such as XOR, and mix hash is a function that disperses the bits of the hash.

We can now merge all equivalent nodes in a multi-rooted circuit by computing the node hashes in a
bottom-up pass and merging all nodes with the same hash, e.g. by storing the nodes in a hash map.

The efficient deduplication via Merkle hashes is not only useful in the context of merging single-
rooted circuits; duplicate nodes may also occur within a single circuit. This can, for instance, happen
when the circuit is an SDD2. Another source of duplicate nodes stems from the layerization proce-
dure in Section 3.1. Concretely, the connection of a node n to a higher-up node through a chain of
unary nodes results in equivalent chains if node n has multiple higher-up parent nodes. Using Merkle

1A sentential decision diagram (SDD) is a subclass of d-DNNF circuits that are canonical given a variable
tree. We refer to Darwiche (2011) for more details.

2An SDD node represents an ∨-gate, and is defined as a set of tuples each representing ∧-gates. This
structure typically does not share tuples, and thus does not automatically reuse duplicate ∧-gates.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

c d ¬d a e ¬a

∧ ∧ ∧ ∧

∨ ∨ ∨

∧ ∧

∨

(a) Layered d-DNNF circuit.

¬b ¬a b ¬c c d ¬d a e

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧

∨ ∨

(b) Layered multi-rooted circuit.

Figure 3: (a) contains a layered d-DNNF circuit over the variables a, c, d, and e. The dashed
circles indicate again nodes introduced during the layerization process. (b) illustrates a multi-rooted
circuit where the upper left node computes the circuit from Figure 2 and where the upper right node
computes the circuit from Figure (a). Note how nodes at the same height in the multi-rooted circuit
are of the same type and how the sub-circuit colored in orange is used to compute both root nodes.

hashes resolves this issue as it automatically merges multiple equivalent node chains, limiting the
overhead of adding new nodes.

Lastly, we make sure that all circuits have the same height by artificially extending a circuit with
unary nodes at the root if necessary. This results in the last layer of our multi-rooted circuit contain-
ing the root nodes of every added circuit.

4 TENSORIZING LAYERED CIRCUITS

In the previous section, we organized d-DNNF circuits into layers by assigning each node n in the
circuit a height hn. We also avoided duplicate nodes by computing a unique Merkle hash hash(n)
for each node. We proceed in this section with mapping the layered linked nodes to a layered
computation graph where layers are evaluated sequentially and computations within a layer can be
parallelized.

To this end, we make a simple, yet powerful, observation: the current layer can be computed from
the output of the previous layer by only using indexing and aggregation. To see this, we first impose
an arbitrary order on the nodes within each layer. This means we can write the values of all nodes in
a layer Li as a vector Ni. For our running example, we simply pick the order already insinuated by
the graphical representation in Figure 2, except for the input layer where we order lexicographically:
N0 = [pa, p¬a, pb, p¬b, pc, p¬c, pd, p¬d]

⊺.

Now, in order to compute Nl from Nl−1 we use two vectors of indices: Sl and Rl. For each edge
between Nl−1 and Nl, Sl contains the index of the input node, while Rl contains the index of the
output node. We exemplify this for a single layer in Figure 4. By imposing an order on the input
nodes and by providing the set of vectors {S1 . . .SL} and {R1 . . .RL}, we entirely characterize an
arithmetic circuit. This means that we can use these vectors instead of a linked node representation
to evaluate the circuit.

To compute Nl, we first select relevant values from Nl−1 using as index Sl, giving us El = Nl−1[Sl].
The vector El essentially contains the values of all the edges between Nl and Nl−1. Next, we need
to correctly segment the edges El and aggregate the individual segments – either by using sums or
products, depending on the layer. This is done using Rl: all elements with the same index in Rl

are reduced together. Fortunately, such segment-reduce operations are implemented as primitives in
various tensor libraries such as Jax, TensorFlow, or PyTorch (Abadi et al., 2015; Paszke et al., 2019;
Bradbury et al., 2018). In Figure 4, these segments are indicated with alternating colors.

Algorithm 1 contains pseudo-code for the layerwise circuit evaluations, where we use the common
scatter function to segment and aggregate the El vectors. In Figure 5, we show the full tensorized
circuit representation of the arithmetic circuit in Figure 1c, which corresponds to the computation
graph induced by Algorithm 1. Although we depict the edge vectors El in Figure 5, we stress that

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

pa p¬a pb p¬b pc p¬c pd p¬d

3 1 1 2 5 4 6 7 0

0 0 1 2 3 4 4 5 6

× × × × × × ×

node values N0

edge indices S1

aggregation indices R1

node values N1

Figure 4: The evaluation of the first layer in Figure 1c, as an indexing and aggregation operation.
The symbols N0 and N1 denote the node values at layer L0 and L1 respectively. First, we index in
N0 using the edge indices S1, effectively creating a vector with the values of all edges in between
N0 and N1. Next, the aggregation indices R1 determine what edges are reduced together. As a result
we obtain the node values N1 = scatter(N0[S1],R1, reduce = ‘product’).

these do not need to be represented explicitly because modern tensor libraries in practice fuse the
indexing and segmentation operations together.

Algorithm 1: KLay Forward Evaluation
Input: N0, selection indices S1,S2, . . . ,SL, reduction indices R1,R2, . . . ,RL

for l← 1 to L do
El ← Nl−1[Sl];
if l mod 2 = 0 then

Nl ← scatter(El,Rl, reduce=‘sum’);
else

Nl ← scatter(El,Rl, reduce=‘product’);
end

end
return NL;

Finally, we note that in practice arithmetic circuits are usually evaluated in the logarithmic domain
for numerical stability. This means that the reduction uses logsumexp and sum operations instead
of the sum and product, respectively. We provide the pseudo-code in Algorithm 4 in Appendix C.
More generally, any pair of operations that forms a semiring may be used to evaluate the circuit
(Kimmig et al., 2017), as long as the semiring operations can be expressed as reduction operations
in the tensor library.

5 RELATED WORK

The closest related work is the arithmetic circuit layerization present in JUICE (Dang et al., 2021).
Similar to our circuit layerization scheme, JUICE takes a Boolean circuit and maps it to a set of
layers that can be evaluated sequentially, although not layer per layer. To this end, Dang et al. (2021)
implemented a custom SIMD implementation for the CPU and custom CUDA kernels for the GPU.
This is in contrast to KLAY where we reduce circuit evaluations to a sequence of index and scatter-
reduce operations, which are already efficiently implemented in the modern deep learning stack.
In our experiments, we show that KLAY dramatically outperforms JUICE in terms of run time on
CPU and more importantly on GPU as well. Noteworthy here is that our experimental evaluation
also shows that JUICE’s GPU implementation is slower than their CPU implementation – hinting at
missed parallelization opportunities.

The difficulty of running arithmetic circuits on GPUs was also pointed out by Shah et al. (2020;
2021). While Shah et al. (2020; 2021) focused on developing hardware accelerators for arithmetic
circuits, they also implemented custom circuit evaluations exploiting to a certain degree SIMD in-
structions and GPU parallelization. They found that CPU circuit evaluations outperformed the GPU

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

implementations. Shah et al. (2020) concluded that arithmetic circuits were simply too sparse to
be run efficiently on GPUs. By layerizing arithmetic circuits and interpreting the product and sum
layers as indexing and scatter-reduce operations, we are able to refute this claim. We provide exper-
imental evidence for this in Section 6.

Notable is also the work of Vasimuddin et al. (2018), who proposed an efficient CPU implementation
for evaluating arithmetic circuits deployed on multiple CPU cores. They deemed an efficient GPU
implementation to be impractical due to the high demands on memory bandwidth. We can again
refute this claim.

Arithmetic circuits are closely related to the model class of probabilistic circuits (Vergari et al.,
2021). The main difference is that the sum units for the latter are parameterized using mixture
weights, while the former does not contain such weights. In order to run probabilistic circuits
efficiently on the GPU, implementations usually rely on casting circuit evaluations as dense matrix-
vector product (Peharz et al., 2020b;a; Galindez Olascoaga et al., 2019; Mari et al., 2023; Sommer
et al., 2021). This idea has recently been generalized by Liu et al. (2024), who allow for the presence
of block-sparsity in the matrix that encodes a layer. By exploiting this sparsity via custom kernels,
they widened the class of probabilistic circuits that can be run efficiently on GPUs. Nevertheless,
probabilistic circuits are usually far more dense than arithmetic circuits that are compiled from a
logical theory. Unfortunately, this prevents the techniques developed for probabilistic circuits to be
effective in the context of arithmetic circuits. Similarly, having densely parameterized sum nodes
also limits the relevance of techniques developed for arithmetic circuits for probabilistic circuits,
e.g. the indexing and segmenting scheme of KLAY circuit evaluations.

Besides algorithmic advances, specialized hardware solutions have also been proposed to deal with
the irregularity of the computational graph of an arithmetic circuit (Dadu et al., 2019; Shah et al.,
2020; 2021). However, these approaches have the drawback that they would require the purchase
of non-commoditized hardware. While this could partially be remedied by the use of FPGAs, as
done by Sommer et al. (2018); Weber et al. (2022); Choi et al. (2023), any custom hardware retains
a communication overhead. Specifically, in the context of neurosymbolic AI, one needs to pass
the output of a neural network to an arithmetic circuit. If the neural net and the circuit are on two
different devices, e.g. a GPU and an FPGA, the latency of data transfer can counteract gains in
evaluation speed.

6 EXPERIMENTAL EVALUATION

We implement KLAY as a Python library supporting two popular tensor libraries: PyTorch and Jax.
We evaluate the runtime performance of KLAY on several synthetic benchmarks and neurosymbolic
experiments. All experiments were conducted on the same machine, which has an NVIDIA GeForce
RTX 4090 as GPU and an Intel i9-13900K as CPU.

6.1 SYNTHETIC BENCHMARKS

We first consider the performance of KLAY on a set of synthetic circuits, by randomly generating
logical formulas in 3-CNF. We compile the 3-CNF formulas into d-DNNF circuits, more specifically
SDD circuits, using the PySDD library3. By changing the number of variables and clauses in the
CNF, we vary the size of the compiled circuits over 5 orders of magnitude. Figure 6 compares
the performance of KLAY with the native post-order traversal from PySDD implemented in C. We
report results for both the real and logarithmic semiring. As JUICE does not support the logarithmic
semiring and Jax does not support backpropagation on scatter multiplication, these are excluded
from the respective comparisons. In Appendix B, we repeat the same experiment using the D4
knowledge compiler (Lagniez & Marquis, 2017) instead of PySDD.

Our results in Figure 6 indicate that on large circuits, KLAY on GPU outperforms all baselines with
over one order of magnitude. Due to SIMD and multi-core parallelization, KLAY on CPU is still
considerably faster than the baselines. JUICE does not include results for the largest instances due to
a timeout after 30 minutes. KLAY attains best results with Jax, due to its superior JIT compilation
and kernel fusion.

3https://github.com/wannesm/PySDD

7

https://github.com/wannesm/PySDD

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

pa p¬a pb p¬b pc p¬c pd p¬d

× × × × × × ×

+ + + + + +

× × ×

+

node values N0

edge values E1

node values N1

edge values E2

node values N2

edge values E3

node values N3

edge values E4

node values N4

Figure 5: Tensorized KLAY representation of the arithmetic circuit in Figure 1c. We depict the
segments of the edge vectors El with alternating colors.

0 20 40 60 80 100
Instances

10 1

100

101

102

103

104

Cu
m

ul
at

iv
e

Ti
m

e
(m

s)

Log Semiring

0 20 40 60 80 100
Instances

10 1

100

101

102

103

104

Real Semiring
KLay (torch, cpu)
KLay (torch, cuda)
KLay (jax, cpu)
KLay (jax, cuda)
Post-order (cpu)
Juice (cpu)
Juice (cuda)

Figure 6: Cumulative runtime in milliseconds for the forward and backward pass on a circuit. That
is, we plot the combined run time of the n fastest circuit evaluations against the number of n cir-
cuits. Timings are averaged over 10 runs per SDD. The SDDs are randomly generated from 3-CNF,
where the difficulty is varied by the number of variables and clauses. The left and right figure show
cumulative evaluation times for the logarithmic and real semiring, respectively.

In Figure 7, we display the size and sparsity of the circuits in our synthetic benchmark. Remarkably,
KLAY on average has fewer nodes than the original SDD, meaning the node deduplication outweighs
the overhead of introducing unary node chains. As we discuss in Appendix B, this is not the case
for circuits compiled by D4. Figure 7 (right) shows that larger circuits are increasingly sparse, with
less than one in a million edges being present for the largest circuits.

6.2 NEUROSYMBOLIC BENCHMARKS

Next, we consider the use of KLAY in neurosymbolic learning, by measuring the runtime of cal-
culating the gradient on the circuits of several neurosymbolic tasks. As a baseline, we consider the
naive evaluation in PyTorch, which is the standard approach performed by existing exact proba-
bilistic neurosymbolic approaches where each node is evaluated individually. We take four different
neurosymbolic benchmarks from the literature. The Sudoku benchmark is a classification problem,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Instances

103

104

105

106

107

108

Nb
 o

f N
od

es

Nb of Nodes in SDD
Nb of Nodes in KLay

0 20 40 60 80 100
Instances

10 6

10 5

10 4

10 3

10 2

Sp
ar

sit
y

Figure 7: (Left) Number of nodes in the original SDD, compared to the KLAY representation. The
instances are the same as in Figure 6. (Right) The sparsity of KLAY, meaning the number of edges
in the circuit divided by the number of edges in a dense interconnection of all layers.

Table 1: (Top) Number of nodes in the SDD circuits of various neurosymbolic benchmarks, and
the number of nodes and layers in the corresponding KLAY representation. (Middle) Runtime in
milliseconds for one forward and backward pass on the circuit with batch size 128, using PyTorch
autograd for both KLAY and the naive baseline. (Bottom) Runtime in milliseconds for one forward
and backward pass on the neural network of the neurosymbolic task.

Sudoku (4×4) Grid (4×4) HMLC Warcraft (12×12)

SDD Nodes 2 408 6 610 9 730 1 110 234
KLAY Nodes 3 926 6 590 26 306 1 155 063
KLAY Layers 30 24 84 84

Naive (cpu) 17.35± 0.05 46.12± 0.49 127.00± 140.03 11484.53± 251.94
Naive (cuda) 42.70± 2.76 107.78± 4.67 175.58± 1.26 18930.67± 496.16
KLAY (cpu) 0.45± 0.02 0.53± 0.03 1.41± 0.02 18.55± 0.14
KLAY (cuda) 0.46± 0.17 0.49± 0.19 1.03± 0.35 1.59± 0.25

Neural (cpu) 0.90± 0.63 0.17± 0.02 0.55± 0.29 242.60± 4.81
Neural (cuda) 0.51± 0.13 0.34± 0.12 0.20± 0.04 2.80± 0.07

determining whether a 4 × 4 grid of images forms a valid Sudoku (Augustine et al., 2022). The
Grid (Xu et al., 2018) and Warcraft (Pogančić et al., 2020) instances require the prediction of a
valid low-cost path. Finally, hierarchical multi-level classification (HMLC) concerns the consistent
classification of labels in a hierarchy (Giunchiglia & Lukasiewicz, 2020). The results in Table 1
demonstrate the drastic speedups of KLAY compared to the naive baseline, improving by as far as
four orders of magnitude for the Warcraft experiment.

As a last experiment, we demonstrate the integration of KLAY into a neurosymbolic framework.
Specifically, we use KLAY instead of conventional SDD circuits in DeepProbLog. We measure the
training time of the MNIST-addition task in Table 2. MNIST-addition is a common neurosymbolic
task where the input is two numbers represented as MNIST images and the model needs to predict
their sum. For more details, we refer to Manhaeve et al. (2018). As a reference, we also include
Scallop, which aims to improve the scalability of DeepProbLog by approximating using top-k prove-
nance (Li et al., 2023). While DeepProbLog and Scallop cannot perform batched inference, KLAY
can by using multi-rooted circuits. This is reflected in speed-ups of two orders of magnitude over the
existing DeepProbLog implementation, even on rather small circuits. Even though KLAY remains
exact unlike Scallop, KLAY also demonstrates large speedups here.

7 CONCLUSIONS

The success of neural networks has been largely attributed to their scale (Kaplan et al., 2020), which
is realized by their effective use of hardware accelerators. To compete, novel methods must run effi-
ciently on the available hardware or risk losing out due to what Hooker (2021) coined the hardware

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 2: MNIST-addition training time in seconds for one epoch. We report the average and standard
deviation over 10 epochs, using a batch size of 128. Both KLAY and the baselines use PyTorch as
autograd. T/O indicates a timeout after 2 hours.

Nb of Digits 1 2 3

KLAY Nodes 776 12 660 1 015 867

DeepProbLog (cpu) 241.63± 4.38 323.26± 22.20 T/O
Scallop (cpu, k = 3) 52.30± 0.37 601.20± 14.65 5345.78± 171.47
KLAY (cpu) 2.08± 0.12 2.10± 0.14 71.54± 0.46
KLAY (cuda) 1.26± 0.03 1.25± 0.01 8.85± 0.02

lottery. We tackled this issue for neurosymbolic AI by introducing KLAY– a new data structure to
represent arithmetic circuits that is amenable to efficient evaluations on modern GPUs or TPUs.
Along with this representation, we contributed three algorithms for KLAY. The first two algorithms
map the traditional linked node representation of arithmetic circuits to the corresponding KLAY
representation (Algorithm 2 and 3). This representation is efficiently evaluated using the third algo-
rithm, which exploits the parallelization opportunities (Algorithm 1).

Contrary to widely held belief, our experiments demonstrated that arithmetic circuits can be run
efficiently on GPUs, despite their high degree of sparsity. To this end, a key aspect is the reduction
of circuit evaluations to a sequence of indexing and scatter-reduce operations, as these can be im-
plemented using highly optimized primitives available in modern tensor libraries. Resolving circuit
evaluations as one of the major bottlenecks present in current neurosymbolic architectures allows to
further scale neurosymbolic models and tackle new problems that have been out of reach so far.

REPRODUCIBILITY

The functionality of KLAY has been described in pseudo-code (Algorithms 1, 2, and 3) and has
been implemented as a user-friendly Python library to easily replicate all experiments in the paper.
We will publicly release the source code upon acceptance.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Sriku-
mar, Guy Van den Broeck, and Sameer Singh. Pylon: A pytorch framework for learning with
constraints. In NeurIPS 2021 Competitions and Demonstrations Track, pp. 319–324. PMLR,
2022a.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari. Seman-
tic probabilistic layers for neuro-symbolic learning. Advances in Neural Information Processing
Systems, 35:29944–29959, 2022b.

Eriq Augustine, Connor Pryor, Charles Dickens, Jay Pujara, William Wang, and Lise Getoor. Vi-
sual sudoku puzzle classification: A suite of collective neuro-symbolic tasks. In International
Workshop on Neural-Symbolic Learning and Reasoning (NeSy), 2022.

Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael Spranger. Logic tensor
networks. Artificial Intelligence, 303:103649, 2022.

10

https://www.tensorflow.org/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Djamal Belazzougui, Fabiano C Botelho, and Martin Dietzfelbinger. Hash, displace, and compress.
In European Symposium on Algorithms, pp. 682–693. Springer, 2009.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting. Arti-
ficial Intelligence, 172(6-7):772–799, 2008.

YooJung Choi, Antonio Vergari, and Guy Van den Broeck. Probabilistic circuits: A unifying frame-
work for tractable probabilistic models. Technical report, University of California Los Angeles,
2020.

Young-kyu Choi, Carlos Santillana, Yujia Shen, Adnan Darwiche, and Jason Cong. Fpga accelera-
tion of probabilistic sentential decision diagrams with high-level synthesis. ACM Transactions on
Reconfigurable Technology and Systems, 16(2):1–22, 2023.

Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. Towards general purpose acceleration
by exploiting common data-dependence forms. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 924–939, 2019.

Meihua Dang, Pasha Khosravi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck. Juice:
A julia package for logic and probabilistic circuits. In Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 16020–16023, 2021.

Adnan Darwiche. Decomposable negation normal form. Journal of the ACM (JACM), 48(4):608–
647, 2001a.

Adnan Darwiche. On the tractable counting of theory models and its application to truth maintenance
and belief revision. Journal of Applied Non-Classical Logics, 11(1-2):11–34, 2001b.

Adnan Darwiche. A differential approach to inference in Bayesian networks. Journal of the ACM
(JACM), 50(3):280–305, 2003.

Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In
Twenty-Second International Joint Conference on Artificial Intelligence, 2011.

Adnan Darwiche. Tractable boolean and arithmetic circuits. In Neuro-Symbolic Artificial Intelli-
gence: The State of the Art, pp. 146–172. IOS Press, 2021.

Adnan Darwiche and Pierre Marquis. A knowledge compilation map. Journal of Artificial Intelli-
gence Research, 17:229–264, 2002.

Lennert De Smet, Pedro Zuidberg Dos Martires, Robin Manhaeve, Giuseppe Marra, Angelika Kim-
mig, and Luc De Readt. Neural probabilistic logic programming in discrete-continuous domains.
In Uncertainty in Artificial Intelligence, pp. 529–538. PMLR, 2023.

Michelangelo Diligenti, Marco Gori, and Claudio Sacca. Semantic-based regularization for learning
and inference. Artificial Intelligence, 244:143–165, 2017.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon,
Gerda Janssens, and Luc De Raedt. Inference and learning in probabilistic logic programs using
weighted boolean formulas. Theory and Practice of Logic Programming, 15(3):358–401, 2015.

Laura I Galindez Olascoaga, Wannes Meert, Nimish Shah, Marian Verhelst, and Guy Van den
Broeck. Towards hardware-aware tractable learning of probabilistic models. Advances in Neural
Information Processing Systems, 32, 2019.

Eleonora Giunchiglia and Thomas Lukasiewicz. Coherent hierarchical multi-label classification
networks. Advances in neural information processing systems, 33:9662–9673, 2020.

Pascal Hitzler and Md Kamruzzaman Sarker. Neuro-symbolic artificial intelligence: The state of the
art. IOS press, 2022.

11

http://github.com/google/jax
http://github.com/google/jax

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sara Hooker. The hardware lottery. Communications of the ACM, 64(12):58–65, 2021.

Ying Jiao, Luc De Raedt, and Giuseppe Marra. Valid text-to-sql generation with unification-based
deepstochlog. In Processings of the 18th International Conference on Neural-Symbolic Learning
and Reasoning, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. Algebraic model counting. Journal of
Applied Logic, 22:46–62, 2017.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. In International conference on machine learning, pp.
5338–5348. PMLR, 2020.

Jean-Marie Lagniez and Pierre Marquis. An Improved Decision-DNNF Compiler. In IJCAI, vol-
ume 17, pp. 667–673, 2017.

Ziyang Li, Jiani Huang, and Mayur Naik. Scallop: A language for neurosymbolic programming.
Proceedings of the ACM on Programming Languages, 7(PLDI):1463–1487, 2023.

Anji Liu, Kareem Ahmed, and Guy Van den Broeck. Scaling tractable probabilistic circuits: A
systems perspective. In Forty-first International Conference on Machine Learning, 2024.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc De Raedt.
Deepproblog: Neural probabilistic logic programming. Advances in neural information process-
ing systems, 31, 2018.

Antonio Mari, Gennaro Vessio, and Antonio Vergari. Unifying and understanding overparame-
terized circuit representations via low-rank tensor decompositions. In The 6th Workshop on
Tractable Probabilistic Modeling, 2023.

Ralph C Merkle. A digital signature based on a conventional encryption function. In Conference on
the theory and application of cryptographic techniques, pp. 369–378. Springer, 1987.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy
Van den Broeck, Kristian Kersting, and Zoubin Ghahramani. Einsum networks: Fast and scalable
learning of tractable probabilistic circuits. In International Conference on Machine Learning, pp.
7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp,
Kristian Kersting, and Zoubin Ghahramani. Random sum-product networks: A simple and effec-
tive approach to probabilistic deep learning. In Uncertainty in Artificial Intelligence, pp. 334–344.
PMLR, 2020b.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In International Conference on Learning Represen-
tations, 2020.

Nimish Shah, Laura I Galindez Olascoaga, Wannes Meert, and Marian Verhelst. Acceleration of
probabilistic reasoning through custom processor architecture. In 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 322–325. IEEE, 2020.

Nimish Shah, Laura Isabel Galindez Olascoaga, Shirui Zhao, Wannes Meert, and Marian Verhelst.
Dpu: Dag processing unit for irregular graphs with precision-scalable posit arithmetic in 28 nm.
IEEE Journal of Solid-State Circuits, 57(8):2586–2596, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lukas Sommer, Julian Oppermann, Alejandro Molina, Carsten Binnig, Kristian Kersting, and An-
dreas Koch. Automatic mapping of the sum-product network inference problem to fpga-based
accelerators. In 2018 IEEE 36th International Conference on Computer Design (ICCD), pp.
350–357. IEEE, 2018.

Lukas Sommer, Michael Halkenhäuser, Cristian Axenie, and Andreas Koch. Spnc: Accelerating
sum-product network inference on cpus and gpus. In 2021 IEEE 32nd International Conference
on Application-specific Systems, Architectures and Processors (ASAP), pp. 53–56. IEEE, 2021.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Leslie G Valiant. The complexity of computing the permanent. Theoretical computer science, 8(2):
189–201, 1979.

Md Vasimuddin, Sriram P Chockalingam, and Srinivas Aluru. A parallel algorithm for Bayesian
network inference using arithmetic circuits. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 34–43. IEEE, 2018.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck. A compositional
atlas of tractable circuit operations for probabilistic inference. In Advances in Neural Information
Processing Systems, 2021.

Zishen Wan, Che-Kai Liu, Hanchen Yang, Ritik Raj, Chaojian Li, Haoran You, Yonggan Fu, Cheng
Wan, Sixu Li, Youbin Kim, et al. Towards Efficient Neuro-Symbolic AI: From Workload Char-
acterization to Hardware Architecture. IEEE Transactions on Circuits and Systems for Artificial
Intelligence, 2024.

Lukas Weber, Johannes Wirth, Lukas Sommer, and Andreas Koch. Exploiting high-bandwidth
memory for fpga-acceleration of inference on sum-product networks. In 2022 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 112–119. IEEE, 2022.

Thomas Winters, Giuseppe Marra, Robin Manhaeve, and Luc De Raedt. Deepstochlog: Neural
stochastic logic programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10090–10100, 2022.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Broeck. A semantic loss function for
deep learning with symbolic knowledge. In International conference on machine learning, pp.
5502–5511. PMLR, 2018.

Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. Safe reinforcement learning via
probabilistic logic shields. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 5739–5749, 2023.

Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. Advances in
neural information processing systems, 31, 2018.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX
A PROOF OF THEOREM 1

Theorem 1. Given a set of circuits, all identical sub-circuits can be identified in linear expected
time complexity in the total number of edges in the circuits.

Proof. We provide a constructive proof. First, observe that nodes representing syntactically identical
sub-circuits have the same height and are therefore members of the same layer. Second, observe that
nodes within a layer are identified by their set of children. Combining these two observations, we can
rely on the following inductive property: by ensuring deduplication of all nodes in layer Ln−1, it is
trivial to check equivalence for the nodes in layer Ln. In conclusion, we can identify and deduplicate
all equivalent nodes by iterating over all nodes bottom-up. To detect equivalent nodes within a layer,
we employ an efficient hashing scheme where each node n is hashed as the set of the hashes of its
children Cn (see Equation 3). As the set of nodes is fixed, we can assume a perfect hashing scheme
devoid of any hashing conflicts (Belazzougui et al., 2009). As this algorithm considers each edge
precisely once, it is indeed linear in the number of edges. Moreover, the hash tables requires linear
memory in the number of nodes.

B ADDITIONAL EXPERIMENTAL DETAILS
NEW

Synthetic Benchmarks To generate the circuits, we randomly generate 3-CNF formulas. This
requires 2 parameters, the number of clauses k and the number of variables v. The generated 3-CNF
formulas contains k clauses with 3 randomly picked variables from the v variables. To vary the
difficulty, we generate 3-CNF with 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, and 80 variables. For each
variable count, we generate 10 random instances, resulting in a total of 110 instances. The clause
count is also taken as half the number of variables for the SDD benchmarks and twice the number of
variables for the D4 benchmarks. This difference can be attributed to D4 generating smaller circuits,
so we make the instances harder.

Extra Experiments In Figure 8, we repeat the same synthetic experiment as in Figure 6 but us-
ing a top-down d-DNNF knowledge compiler, D4, instead of a bottom-up SDD compiler. As a
baseline, we use an optimized Rust implementation of the node-by-node post-order evaluation algo-
rithm. These circuits do not contain duplicate nodes and are somewhat less balanced, leading to a
larger overhead in terms of extra nodes, as is visible on the right of Figure 8. Nonetheless, KLAY
still outperforms the baseline by a large margin. Finally, in Table 1 we repeat the neurosymbolic
experiments from Table 1 with batch size 128 instead of 1.

0 20 40 60 80 100
Instances

103

104

105

106

107

108

Nb
 o

f N
od

es

Nb of Nodes in d-DNNF
Nb of Nodes in KLay

0 20 40 60 80 100
Instances

10 1

100

101

102

103

104
KLay (torch, cpu)
KLay (torch, cuda)
KLay (jax, cpu)
KLay (jax, cuda)
Post-order (cpu)

Figure 8: (Left) Number of nodes in the original d-DNNF, compared to KLAY’s layerized circuit.
(Right) Cumulative runtime in milliseconds for the forward and backward pass on a d-DNNF circuit
in the log semiring. Timings for each individual circuit are averaged over 10 runs. Each instance
is a randomly generated logical formula in 3-CNF, compiled into a d-DNNF circuit using D4. The
number of variables and clauses in the CNF was varied to achieve different levels of difficulty.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: (Top) Number of nodes in the SDD circuits of various neurosymbolic benchmarks, and
the number of nodes and layers in the corresponding KLAY representation. (Middle) Runtime in
milliseconds for one forward and backward pass on the circuit with batch size 128, using PyTorch
autograd for both KLAY and the naive baseline. (Bottom) Runtime in milliseconds for one forward
and backward pass on the neural network of the neurosymbolic task.

Sudoku (4×4) Path (4×4) HMLC Warcraft (12×12)

SDD Nodes 2 408 6 610 9 730 1 110 234
KLAY Nodes 3 926 6 590 26 306 1 155 063
KLAY Layers 30 24 84 84

Naive (cpu) 21.55± 0.83 55.46± 5.83 122.37± 35.33 12225.93± 626.03
Naive (cuda) 47.20± 5.29 112.86± 2.49 201.07± 18.62 19324.75± 74.16
KLAY (cpu) 5.64± 0.06 4.96± 0.15 15.43± 0.17 514.20± 22.14
KLAY (cuda) 3.03± 0.05 2.47± 0.03 8.76± 1.56 72.59± 0.16

Neural (cpu) 23.05± 3.63 0.72± 0.02 0.63± 0.15 17420.27± 202.31
Neural (cuda) 1.24± 0.21 0.30± 0.02 0.21± 0.04 73.20± 0.02

C PSEUDO-CODE

Algorithm 2 and 3 contains pseudo-code of the previously discussed layerization and tensorization
procedures. Algorithm 4 contains the pseudo-code for the evaluation of KLAY in the logarithmic
semiring instead of the real semiring.

Algorithm 2: KLay Layerization
Input: Boolean Circuit C as linked nodes.
layers← [];
height← [];
hashes← [];
for node n in the nodes of C, children before parents do

if n is a leaf node then
height[n]← 0 ;
hashes[n]← hash(n);

else
height[n]← 1 + maxc∈children(n) height[c];
/* Bring children to the prior layer */
for child node c in children(n) do

while height[c]+1 ̸= height[n] do
c← new unary node with child c;
height[c]← height[child(c)] + 1;
hashes[c]← hash(hashes[child(c)]);
layers[height[c]][hashes[c]]← c;

end
end
hashes[n]←

⊕
c∈children(n) hash(hashes[c])

end
/* Add node to its layer */
layers[height[n]][hashes[n]]← n;

end
return layers;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 3: KLay Tensorization
Input: layers.
/* We assume the nodes in each layer are ordered, such that index(n) is the index of node n in

its layer. */
for layer l in layers do

Sl ← [];
Rl ← [];
for node n in layer l do

for child c of node n do
Rl.push(index(n));
Sl.push(index(c));

end
end

end
return {S1, . . . ,SL}, {R1, . . . ,RL};

Algorithm 4: KLay Forward Evaluation in the Logarithmic Semiring
Input: N0, selection indices S1,S2, . . . ,SL, reduction indices R1,R2, . . . ,RL, epsilon ϵ
for l← 1 to L do

El ← Nl−1[Sl];
if l mod 2 = 0 then

/* As logsumexp reduction is not always implemented for scatter, we perform it using
max and sum scatter operations. */

M← scatter(El,Rl, reduce=‘max’);
T← scatter(exp(El −M[Rl]),Rl, reduce=‘sum’);
Nl ← log(T + ϵ) + M;

else
Nl ← scatter(El,Rl, reduce=‘sum’);

end
end
return NL;

D NEUROSYMBOLIC EXAMPLE
NEW

We demonstrate how neural networks can be combined with circuits on a simplified variant of the
canonical MNIST-addition task (Manhaeve et al., 2018). In this task, two MNIST images are given
containing either the digit zero or one, and the goal is to predict the sum of the two digits. Note that
the labels of the individual digits are not given. There are four distinct possibilities for the ground
truth labels of the images. Either both images are zero and the sum is also zero, or one image is zero
and the other is one resulting in a sum of one, or both are one and the sum is two.

Let us write p(Imgi = j) for the probability that image i contains the digit j, and p(Sum = k) for
the probability that the sum equals k. Now it follows that

p(Sum = 0) = p(Img0 = 0) · p(Img1 = 0)

p(Sum = 1) = p(Img0 = 0) · p(Img1 = 1) + p(Img0 = 1) · p(Img1 = 0)

p(Sum = 2) = p(Img0 = 1) · p(Img1 = 1)

We can now encode the above probabilities in a multi-rooted circuit, which we visualize in Figure 9.
Observe that each root computes one of the probabilities for p(Sum = k).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

p(Sum = 0) p(Sum = 1) p(Sum = 2)

+

× × × ×

p(Img0 = 0) p(Img0 = 1) p(Img1 = 0) p(Img1 = 1)

Figure 9: A simple neurosymbolic model for the MNIST-addition task. Two MNIST images are
given as input. First, a vision model classifies the probability of the image containing a zero or one.
Next, a circuit uses these probabilities to calculate the probabilities of the different possible sums.

17

	Introduction
	Arithmetic Circuits and Neurosymbolic AI
	Layerizing Circuits
	From Linked Nodes towards Layers
	Multi-Rooted Circuits and Node Deduplication

	Tensorizing Layered Circuits
	Related Work
	Experimental Evaluation
	Synthetic Benchmarks
	Neurosymbolic Benchmarks

	Conclusions
	Proof of Theorem 1
	Additional Experimental Details
	Pseudo-code
	tealNeurosymbolic Example

