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Abstract

The dissemination of true and fake news is of-001
ten driven by distinct user motivations, yet ex-002
isting detection methods predominantly focus003
on news content or propagation structures, of-004
ten overlooking these underlying intents. This005
oversight can make such methods vulnerable006
to sophisticated adversarial strategies, such as007
crafted fake content or deceptive user engage-008
ment. While large language models (LLMs)009
provide rich, multi-dimensional behavioral in-010
sights, their standalone performance in detec-011
tion often lags behind supervised models. To012
bridge this gap, we propose a novel computa-013
tional framework that integrates the Theory of014
Planned Behavior (TPB) with LLM-generated015
user intent, enabling a deeper understanding016
of users’ decision-making processes in news017
sharing. We employ a two-layer contrastive fea-018
ture fusion mechanism to construct comprehen-019
sive behavioral representations, significantly020
enhancing fake news detection. Extensive ex-021
periments across four diverse datasets demon-022
strate that our method also exhibits remarkable023
robustness against adversarial attacks.024

1 Introduction025

In the era of large language models (LLMs), infor-026

mation fabrication is becoming increasingly sophis-027

ticated (Huang and Sun, 2024; Lucas et al., 2023).028

Traditional detection approaches have primarily re-029

lied on semantic or stylistic features extracted from030

news content (Vlachos and Riedel, 2014; Wu et al.,031

2020a). However, unlike traditional fake news,032

which often displays discernible inconsistencies,033

LLM-generated content exhibits human-like co-034

herence and adaptability (Sun et al., 2024), which035

undermines the performance of detectors (Sadasi-036

van et al., 2024). Experiments have shown that data037

rewritten by LLMs can lead to a reduction of up to038

38.3% in the F1 score (Wu et al., 2024).039

Therefore, recent fact-checking research has at-040

tempted to identify deceptive evidence from re-041

lated sources, such as user comments (Shu et al., 042

2019) and relevant articles (Wu et al., 2020b). So- 043

cial engagement-based approaches then introduce 044

propagation features such as diffusion graphs (Bian 045

et al., 2020) and propagation patterns (Sun et al., 046

2023). While these strategies have enhanced the 047

robustness of detection, they remain susceptible to 048

malicious social manipulation (Wang et al., 2023), 049

such as publishing extremist comments. Studies 050

have shown that social attacks can achieve a suc- 051

cess rate as high as 90% , particularly against mod- 052

els that rely on networks (Wang et al., 2023), high- 053

lighting the pressing need for more robust frame- 054

works that can identify manipulative clues. 055

The key to identifying manipulative behavior 056

lies in finding anomalous actions, a task that has 057

become increasingly challenging. Given the dif- 058

fering intentions behind real and fake news (Wang 059

et al., 2024b), users’ intention for sharing news 060

also varies, with real news often shared to express 061

opinions or convey information, while the sharing 062

of fake news is more likely influenced by emotional 063

factors (McLoughlin et al., 2024). However, since 064

users’ decision-making processes are always com- 065

plex and unobservable, it is particularly difficult 066

for traditional deep learning models to understand 067

user intent. Therefore, LLMs with their reasoning 068

capabilities, have been widely applied in detection 069

tasks. Detection achieved through standardized 070

prompt learning is not always satisfactory (Wang 071

et al., 2024a), advanced strategies such as workflow 072

optimization and retrieval-augmentation have been 073

shown to improve performance (Li et al., 2024a; 074

Cheung and Lam, 2023). Studies utilizing gen- 075

erative comments (Nan et al., 2024) or simulated 076

social engagement (Wan et al., 2024) to augment 077

data have produced richer refutation evidence, but 078

also introducing non-real data to the system, which 079

may increase the complexity of data processing. 080

Therefore, in the increasingly chaotic landscape 081

of social media, uncovering the underlying inten- 082
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tions behind user behavior and constructing accu-083

rate behavioral models for reliable and robust fake084

news detection representcritical challenges. In this085

paper, we leverage the reasoning capabilities of086

LLMs to infer users’ underlying intentions on so-087

cial media, and develop a computational framework088

based on the Theory of Planned Behavior (TPB)089

(Ajzen, 1991), a framework from social psychol-090

ogy that explains how attitudes, subjective norms,091

and perceived behavioral control shape users’ in-092

tentions and behavior, to describe users’ behav-093

ioral planning process on online social media. By094

combining contrastive learning with feature fusion095

techniques, we achieve rich representations of user096

behavior for robust fake detection.097

Specifically, as illustrated in Fig.1, users’ be-098

havioral planning process is always unobservable;099

therefore, based on the observed social media en-100

vironment: news content, user attributes, and user101

behavior, we first categorize users’ attributes into102

three dimensions: basic profiles, social traits, and103

historical posts. These features, along with user104

behaviors and news content, are processed by LLM105

to obtain the inferred users’ intention. Then, we106

employ computational methods to map the initial107

variables of user attitudes, subjective norms, and108

perceived behavioral control from the non-contact109

social data. Using these three variables, we pre-110

dict users’ intention and perform the first layer of111

fusion. To bridge the inferred intentions from the112

LLM with the TPB-based predictions, we employ113

a contrastive loss, ensuring alignment between the114

two perspectives. Subsequently, user behaviors are115

predicted based on the intentions and perceived116

control, with predictions iteratively compared to117

observed real behaviors to refine the process. Fi-118

nally, the enhanced fusion of intentions and behav-119

iors is utilized as the ultimate representation for120

detection, thereby enhancing performance and im-121

proving resilience against adversarial attacks. Our122

contributions can be summarized as:123

• Innovative Intention Inference with LLMs :124

We employ LLMs to uncover the underlying125

intentions driving user action, thus facilitating126

a deeper understanding of anomalies and re-127

vealing the motivational differences between128

true and fake news.129

• Interpretable Behavior Modeling via TPB: By130

developing the computational TPB for on-131

line information diffusion, we bridge the gap132
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Figure 1: Computational Theory of Planned Behavior
(TPB) for information spreading behavior modeling.

between psychological theory and computa- 133

tional frameworks, enhancing both the inter- 134

pretability of feature fusion and its robustness 135

in complex decision-making scenarios. 136

• Robust Detection in Adverse Scenarios: Ex- 137

periments on 4 datasets reveal that combining 138

LLM-inferred intent with TPB-guided model- 139

ing significantly improves detection accuracy 140

and maintains stable in extreme scenarios of 141

data scarcity and adversarial attacks. 142

2 Related Work 143

2.1 Social context-enhanced Fake Detection 144

Detection methods relying solely on news con- 145

tent are increasingly inadequate for high-quality 146

fake news detection. Consequently, recent research 147

has incorporated relevant social context and prop- 148

agation features into detection frameworks. For 149

instance, dEFEND(Shu et al., 2019) constructs a 150

news-comment network, leveraging the semantic 151

correlations between content and comments for de- 152

tection. The DualEmo model (Zhang et al., 2021) 153

analyzes the emotional characteristics and the emo- 154

tional gap between news content and user responses 155

to enhance detection. Bian et al.(Bian et al., 2020) 156

designed a Bi-GCN model to capture the bidirec- 157

tional propagation patterns. GCNFN (Monti et al., 158

2019) leverages users’ profiles to supplement com- 159

ment embeddings, while UPFD (Dou et al., 2021) 160

further incorporates users’ historical posts to cap- 161

ture their intrinsic preferences. HG-SL (Sun et al., 162

2023) constructs a hypergraph based on users’ shar- 163

ing behavior and incorporates statistical propaga- 164

tion features to enhance the learning. Similarly, 165

HGFND(Jeong et al., 2022) constructs hypergraphs 166

from different perspectives, effectively capturing 167

the dissemination patterns of news. 168

Instead of using real comments, GenFEND (Nan 169

et al., 2024) utilizes LLMs as a user simulator and 170

comment generator, generates comments from po- 171

tential users with diverse profiles. DELL (Wan 172
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et al., 2024) simulates the whole social system with173

different user engagements and introduces 6 proxy174

tasks to enhance the news understanding. These175

strategies enrich social data but also introducing176

non-real data to the system, which may increases177

the complexity of data mining.178

2.2 User Behavior Modeling in Information179

Propagation180

User motivations for information dissemination are181

influenced by multiple factors, including news at-182

tributes (e.g., sentiment) (Horner et al., 2021), with183

fake news often eliciting stronger emotional re-184

actions such as anger (McLoughlin et al., 2024).185

Moreover, users attributes and their social circles186

also influence their behavior. Altay et al. (Altay187

et al., 2022) found that users with more friends188

share less fake news, Cheng et al.(Cheng et al.,189

2021) modeled the unbiased fake news propagation190

and revealed that verified users or users have more191

tweets are less likely to be suspicious. Gimpel et192

al. (Gimpel et al., 2021) found that fake news is193

frequently shared within trusted social circles.194

Since user’s behavioral decision-making process195

is unobservable, theoretical guidance is essential196

(Zhang et al., 2022). Social identity theory reveals197

that users tend to conform to the viewpoints preva-198

lent within their community to achieve a sense199

of belonging (Dmj et al., 2018). The Theory of200

Planned Behavior (TPB) (Ajzen, 1991) explains201

and predicts human behavior based on three key202

components: attitudes, subjective norms, and per-203

ceived behavioral control. Attitudes refer to an204

individual’s evaluation of a behavior, subjective205

norms represent the perceived social pressure and206

perceived behavioral control reflects the individ-207

ual’s confidence to execute the behavior. Together,208

these factors shape intentions, which in turn lead209

behavior. TPB is widely used across disciplines,210

it also helps reveal how personal evaluation (atti-211

tude) and social influence (subjective norm) inter-212

sect with an individual’s sense of agency (perceived213

control) influence user’s sharing behavior.214

3 The Proposed Method215

We design a computational framework based on216

the Theory of Planned Behavior (TPB) with LLM-217

generated user Intent (TPB-Intent), as shown in218

Fig.2, which consists of 3 major components: Data219

Filtering and Processing, LLM-based User Inten-220

tion Inference, and TPB-based Computational User221

Behavior Learning and Fake Detection. 222

3.1 Problem Formulation 223

Given a list of m news N = {n1, n2, ..., nm}, for 224

each news ni = (di, gi), we have the text of the 225

news content di and user behavior records gi = 226

((u1, bi,1), (u2, bi,2)), ..., (un, bi,n)), where uj is a 227

user participating in ni’s propagation, and bi,j rep- 228

resents the behavior of uj in the propagation. For 229

each user, we divide the user’s personal informa- 230

tion into basic profiles proj , social traits socj and 231

historical posts hisj , thus uj = (proj , socj , hisj). 232

Each news is assigned a label yi ∈ {0, 1}, if news 233

ni is fake, yi = 1, otherwise yi = 0. Our model 234

aims to find the intent inti,j of user uj in ni, and 235

predict a label ŷi for ni. 236

3.2 Data Filtering and Processing 237

3.2.1 Top-K Influential Nodes Identification 238

Considering the high computational cost of utiliz- 239

ing LLMs and the observation that key users often 240

play a pivotal role in shaping overall propagation, 241

we first identify influential user nodes from the 242

propagation network. We calculate 7 network met- 243

rics (Node depth, Children count, Total reach, Re- 244

sponse latency, Propagation duration, Degree cen- 245

trality and Betweenness centrality) for each node, 246

and sort them to select the k nodes with the highest 247

ranking as high-influence nodes. 248

3.2.2 User data processing 249

The raw user data, comprising both numerical and 250

textual information, is challenging for LLMs to 251

interpret directly. To address this, we categorize 252

numerical data into distinct levels based on statisti- 253

cal distributions. For example, the number of user 254

posts is segmented into five levels (e.g., few, rela- 255

tively few, moderate, relatively many, and many) 256

and converted into descriptive statements like "The 257

user has a (level) volume of posts" (see Fig.2). This 258

approach enhances embedding learning by intro- 259

ducing semantic granularity and improves LLMs’ 260

interpretability by transforming quantitative data 261

into meaningful linguistic representations. 262

3.3 LLM-based User Intention Inference 263

Capturing the diverse, hidden, and complex nature 264

of user intentions is challenging for traditional deep 265

learning methods. Leveraging the knowledge and 266

reasoning capabilities of large language models 267

(LLMs), we propose a novel approach to recon- 268

struct user intentions by integrating user attributes, 269
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Figure 2: The overall architecture of TPB-Intent: a.Data filtering and processing module for influential nodes
identification and user data processing, b.LLM-based user intention inference module to infer users’ intentions
behind behavior, and c.TPB-based computational user behavior learning module for feature fusion and detection.

news content, and behavioral data through strate-270

gic prompting. This enables the discovery of in-271

tention differences in the spread of true and false272

information and addresses data gaps in the inten-273

tion component of the Theory of Planned Behavior274

(TPB). Guided by TPB, which posits that user ac-275

tions are driven by intentions, we use LLMs to infer276

intentions from actual behaviors, news content, and277

user characteristics. To handle the complexity of278

intentions, we employ an open-ended prompting279

strategy, generating concise, single-sentence inter-280

pretations of user intent without predefined cate-281

gorical constraints. For each news ni, we leverage282

LLM to infer the intentions of the identified k key283

users. The inferred intention is denoted as inti,j284

for uj in the spread of ni.
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3.4 TPB-based Computational User Behavior286

Learning and Fake Detection287

Due to variable omissions, the original TPB can-288

not be directly applied to online information dis-289

semination scenarios. Therefore, we propose a 290

three-step approach to model this process: (1) map 291

observed social data to the initial variables of TPB; 292

(2) perform computational intention learning and 293

contrastive fusion for enhanced intentions; and (3) 294

conduct computational behavior learning and con- 295

trastive fusion for enhanced behaviors. 296

3.4.1 Mapping Social Data to TPB Constructs 297

For all raw data, we use BERT(Devlin et al., 2019) 298

as the encoder. We first use the encoder to obtain 299

the representation of user historical posts hhisj , so- 300

cial traits hsocj , profiles hproj and news content hdi , 301

each h ∈ Rd′ is a d′-dimensional vector. Then, we 302

employ a feature projector P(·) to map the raw fea- 303

tures into the elements of the TPB framework. This 304

module uses a two-layer fully connected network 305

and combines activation functions and regulariza- 306

tion operations. Since a user’s attitude toward par- 307

ticipating in the spread of a news topic is influenced 308

by their prior cognition and the content of the news, 309

we combine the text embeddings of the news with 310

the user’s historical posts and feed them into the 311

projection layer to calculate the attitude. Similarly, 312

subjective norms mainly reflect the influence of oth- 313

ers on users, so we use the user’s social attributes 314

to measure this factor. Perceived behavioral control 315

represents the user’s overall sense of self-efficacy 316

in forming and achieving their intentions. This as- 317

pect can be inferred from their self-cognition and 318
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social preference. Thus, we integrated the user’s319

profiles and social traits to compute their poten-320

tial perceived behavioral control ability. Therefore,321

we obtain the projected embeddings for attitudes322

oatti,j ∈ Rd, subjective norms osubj ∈ Rd and323

perceived behavioral control operj ∈ Rd:324

oatti,j = P(hhisj + hdi), (1)325

osubj = P(hsocj ), (2)326

operj = P(hproj + hsocj ). (3)327

3.4.2 Computational Intent Learning and328

Contrastive Fusion329

Subsequently, we concatenate oatti,j , osubj and330

operj , use the combined representation to predict331

the intent of the user uj in spreading news ni.332

Given the complexity of intent formation, which333

involves deep logical and semantic transformations,334

the objective of this step is not to directly predict335

the intent. Instead, we aim to approximate it in a336

comparative manner, bringing the representation337

relatively closer to the LLM inferred intent hinti,j .338

To achieve this, we first input the combined em-339

beddings into a linear layer for feature refinement,340

yielding an intermediate variable einti,j :341

einti,j = W1[oatti,j ,osubj ,operj ] + b1 (4)342

where W1 is weight matrix, b1 is bias vector.343

Then, We compute a contrastive loss to optimize344

the embedding einti,j , ensuring it is relatively close345

to the embedding of LLM inferred intention hinti,j346

of the same user-news pair, while remaining rela-347

tively distant from other pairs:348

Lcons
int (einti,j ,hinti,j )349

= −
exp

(
cos

(
einti,j ,hinti,j

)
/τ

)∑
k exp

(
cos

(
einti,j ,hintk

)
/τ

) . (5)350

where k = (p, q) is other candidate user-news351

pairs,τ is the temperature scaling parameter, cos(·)352

represents the cosine similarity.353

Finally, we integrate the predicted einti,j and354

the inferred hinti,j to obtain an enhanced intent355

representation for the first layer of feature fusion:356

zinti,j = W2[einti,j ,hinti,j ] + b2 (6)357

3.4.3 Computational Behavior Learning and358

Contrastive Fusion359

Based on the original TPB, an individual’s per-360

ceived behavioral control, together with their inten-361

tion, drives the execution of specific behaviors. In362

this process, the behavioral control plays a pivotal 363

role in motivating users to take concrete actions 364

rather than merely having intentions. If an individ- 365

ual’s behavioral control is weak, they may perceive 366

that their actions will not achieve the intended out- 367

come, leading to a potential abandonment of action. 368

In this step, we begin by projecting the user’s 369

real action on social media to obtain behavior em- 370

beddings hbi,j . Subsequently, we concatenate and 371

transform the predicted user intent einti,j with the 372

user’s perceived behavioral control embeddings 373

operj to obtain the predicted behavior ebi,j . Finally, 374

the real behavior embeddings and the predicted 375

embeddings are integrated to derive zbi,j ∈ Rd: 376

ebi,j = W3[einti,j ,operj ] + b3, (7) 377

zbi,j = W4[ebi,j ,hbi,j ] + b4. (8) 378

To optimize behavioral learning, similarly, we 379

compute a contrastive loss to encourage ebi,j to be 380

close to hbi,j and away from hbk of other pairs. 381

Lcons
b (ebi,j ,hbi,j ) = −

exp
(
cos

(
ebi,j ,hbi,j

)
/τ

)∑
k exp

(
cos

(
ebi,j ,hbk

)
/τ

) .
(9) 382

3.4.4 Fake Detection 383

Ultimately, the representations zinti,j and zbi,j , de- 384

rived from the two levels of learning, are fed into 385

a Multi-Layer Perceptron (MLP) to compute the 386

suspicion score for news articles. 387

ŷi = MLP(Zinti) +MLP(Zbi) (10) 388

The final loss function incorporates both the con- 389

trastive loss for mapping intents and behaviors dur- 390

ing the learning process and the classification loss. 391

Lcls = − 1

N

N∑
i=1

(
yi log ŷi + (1− yi) log(1− ŷi)

)
(11) 392393

L = λLcls + (1− λ) (Lcons
int + Lcons

b ) (12) 394

λ determines the contribution of losses. 395

4 Experiments 396

We conduct extensive experiments on four widely 397

used datasets to answer the questions: (RQ1)Does 398

TPB-Intent outperform baselines in fake detec- 399

tion? (RQ2)Are intentions identified by LLMs 400

more valuable than real data? (RQ3) What are 401

the most important strategies and features in the 402

model?(RQ4)How robust is TPB-Intent to data con- 403

straints and adversarial attacks? 404
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Table 1: Performance comparison on all datasets, where the best and second-best results are highlighted in bold and
underlined, respectively. A:accuracy, P:precision, R:recall.

Method Politifact Gossipcop Mcfend Weibo21
A P R macF1 A P R macF1 A P R macF1 A P R macF1

News content-based
EANN 0.728 0.709 0.716 0.714 0.694 0.701 0.687 0.692 0.638 0.626 0.543 0.540 0.873 0.874 0.873 0.874

SentGCN 0.848 0.857 0.840 0.840 0.728 0.703 0.682 0.698 0.593 0.583 0.523 0.528 0.878 0.878 0.878 0.879
BERT 0.861 0.861 0.847 0.852 0.770 0.749 0.710 0.721 0.708 0.692 0.625 0.625 0.874 0.874 0.874 0.874

RoBERTa 0.850 0.851 0.838 0.842 0.779 0.773 0.707 0.722 0.690 0.702 0.597 0.578 0.894 0.894 0.895 0.894
Social context-enhanced

dEFEND 0.899 0.901 0.898 0.895 0.914 0.907 0.896 0.901 0.766 0.749 0.737 0.739 0.924 0.924 0.924 0.924
DualEmo 0.928 0.931 0.925 0.924 0.918 0.917 0.911 0.913 0.762 0.741 0.728 0.725 0.940 0.940 0.940 0.940
BiGCN 0.907 0.906 0.902 0.903 0.919 0.913 0.906 0.918 0.750 0.733 0.702 0.706 0.932 0.933 0.932 0.932

UPFD-prefer 0.819 0.813 0.815 0.813 0.936 0.926 0.932 0.928 - - - - - - - -
UPFD-profile 0.855 0.854 0.842 0.846 0.935 0.924 0.931 0.927 0.738 0.729 0.671 0.670 0.748 0.839 0.772 0.699
LLM-enhanced
ChatGPT-n 0.731 0.938 0.581 0.717 0.757 0.674 0.517 0.585 0.446 0.605 0.411 0.489 0.787 0.846 0.694 0.762
Claude-n 0.721 0.964 0.545 0.697 0.767 0.816 0. 384 0.5220 0.418 0.630 0.238 0. 346 0.662 0.767 0.448 0.565

L-Defense 0.919 0.915 0.916 0.915 0.839 0.813 0.816 0.814 0.701 0.642 0.642 0.642 0.911 0.912 0.912 0.911
GenFEND 0.908 0.907 0.906 0.907 0.922 0.928 0.906 0.914 0.766 0.748 0.732 0.728 0.918 0.920 0.918 0.918

Ours 0.955 0.954 0.954 0.953 0.952 0.945 0.947 0.946 0.800 0.784 0.774 0.771 0.950 0.950 0.949 0.950

4.1 Experimental Setup405

4.1.1 Datasets406

We conduct experiments on four datasets, including407

two English datasets (Politifact and Gossipcop) and408

two Chinese datasets (Mcfend and Weibo21). Poli-409

tifact focuses on political news, while GossipCop410

primarily covers entertainment news. Mcfend ag-411

gregates data from multiple fact-checking websites,412

Weibo21 is a multi-domain dataset from Weibo.413

The detailed statistics are provided in Appendix A414

4.1.2 Baselines415

We compare our model with 12 baselines in three416

categories(check Appendix B for details): News417

content-based methods (EANN, SentGCN, BERT,418

RoBERTa) rely solely on the textual content of419

news. Social context-enhanced approaches (dE-420

FEND, DualEmo, BiGCN, UPFD) incorporate user421

engagement data. LLM-enhanced methods (Chat-422

GPT, Claude, L-Defense, GenFEND) leverage in-423

ference and generation capabilities of LLMs.424

4.1.3 Evaluation Metrics and Settings425

We use the accuracy(A), precision(P), recall(R) and426

F1 score for evaluation. Our experiments are con-427

ducted on a 12 GB GeForce GTX 2080Ti GPU. We428

use 5-fold cross validation to evaluate models’ per-429

formance. For Politifact and Mcfend, the number430

of high-influence users retained (k) is set to 50. For431

Gossipcop and Weibo21 with more news, k is set432

to 20. As Mcfend and Weibo21 lack user historical433

posts, we replace hhisj with profile and social traits434

(hproj + hsocj ) in Eq.1. For baselines, we retain 435

their settings. For our model, we prompt ChatGPT 436

(gpt-4o-mini) to infer users’ intent, implement it in 437

PyTorch and adopt Adam as the optimizer, train 50 438

epochs to obtain best performance. The learning 439

rate is 0.001 and the batch size is 32. The dimen- 440

sion of learned representations d is 64. 441

4.2 Results on Fake News Detection (RQ1) 442

Table1 presents model performance across four 443

datasets. Key observations include: (1) Our model 444

achieves the highest overall performance, demon- 445

strating the effectiveness of integrating LLM- 446

generated user intent with the theory of planned be- 447

havior. DualEmo performs competitively on Politi- 448

fact and Weibo21 (macF1: 0.924, 0.940), emphasiz- 449

ing the role of emotional features. On Gossipcop, 450

user features are critical, as UPFD-prefer (leverag- 451

ing user posting history) reaches a macF1 of 0.928. 452

For Mcfend, semantic information in user com- 453

ments is decisive, with dEFEND and GenFEND 454

outperforming other baselines. (2) Among content- 455

based methods, RoBERTa and BERT consistently 456

achieve higher scores, reflecting their strong se- 457

mantic modeling capabilities. However, their re- 458

liance on news content alone limits performance, 459

particularly on datasets where social context is 460

crucial (Mcfend, Gossipcop). (3) Social context- 461

enhanced methods generally outperform content- 462

based approaches, highlighting the value of user 463

interaction features. (4) LLM-enhanced models 464

show mixed results. Standalone LLMs perform 465
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Table 2: Performance comparison after replacing user comments or attributes with inferred intent.

Method Politifact Gossipcop Mcfend Weibo21
A ↑ % macF1 ↑ % A ↑ % macF1 ↑ % A ↑ % macF1 ↑ % A ↑ % macF1 ↑ %

dEFEND 0.912 1.45 0.915 2.23 0.918 0.44 0.911 1.11 0.779 1.7 0.747 1.08 0.915 -0.98 0.915 -0.98
DualEmo 0.933 0.5 0.930 0.65 0.922 0.44 0.918 0.55 0.779 2.23 0.745 2.76 0.928 -1.28 0.928 -1.28
BiGCN 0.927 2.18 0.926 2.55 0.930 1.2 0.927 0.98 0.762 1.6 0.725 2.69 0.921 -1.18 0.921 -1.18

UPFD-Pro 0.891 4.21 0.889 5.08 0.920 -1.71 0.916 -1.29 0.763 3.39 0.735 9.7 0.921 23.13 0.921 31.76
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Figure 3: Results of strategy and feature ablation.

poorly across most datasets, particularly on Mcfend466

(macF1: 0.411, 0.346), underscoring the necessity467

of task-specific adaptations.468

4.3 Impact of Intent on Fake Detection (RQ2)469

To validate that inferred user intentions may pro-470

vide richer cues than real data, we adapted exist-471

ing social context-enhanced models by substituting472

user comments or attributes with inferred inten-473

tions. Results in Table 2 show that while replac-474

ing comments on Weibo21 and user attributes on475

Gossipcop led to minor declines, inferred intent476

generally enhanced model performance, especially477

in cases with incomplete user features (e.g., macF1478

increased by 31.76% for Weibo21 under UPDF-479

Pro(file)). This underscores the potential of intent480

as a valuable supplementary cue for detection.481

4.4 Ablation Study (RQ3)482

As shown in Fig.3(a), removing inferred intent483

causes a significant performance drop across all484

datasets, particularly on Mcfend (macF1: 0.77 →485

0.72), highlighting the critical role of inferred in-486

tent in enhancing detection. Similarly, excluding487

TPB-guided aggregation and instead summing indi-488

vidual features at the same level results in subopti-489

mal macF1 scores, demonstrating the effectiveness490

and theoretical grounding of TPB in feature fusion.491

The feature ablation (Fig.3(b)) shows that our ap-492

proach effectively integrates all features to achieve493

highest macF1. In Politifact and Mcfend, user in-494

tentions play a dominant role, aligning with the na-495

ture of political or social events, where the drivers496

of true and fake news dissemination differ signifi-497
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Figure 4: Impact of engagement data volume.

cantly. For Weibo21, users’ real behavior emerges 498

as the most critical feature, likely indicating that 499

users’ response always contain direct evidence. For 500

Gossipcop, user attributes prove to be significant, 501

indicating less distinct intentions in entertainment 502

domain, making account information essential. 503

4.5 Robustness Analysis (RQ4) 504

4.5.1 Data Limitation 505

Fig.4 shows the performance of social-context en- 506

hanced models under varying user engagement 507

constraints. Our model maintains robust perfor- 508

mance across all datasets. This stems from its in- 509

tegration of intent and the comprehensive feature 510

fusion, enabling effective representation learning 511

even with minimal interactions. While compet- 512

ing models also improve with more engagements, 513

UPFD-profile struggles under sparse interactions, 514

likely due to the limited semantic richness of user 515

profiles. BiGCN, heavily reliant on networks, also 516

suffers from restricted interactions. 517

4.5.2 News Style Attack 518

For news style attacks, we follow (Wu et al., 2024), 519

modifying the stylistic presentation of both fake 520

and real news. For the English datasets Politifact, 521

we instruct the LLM (chatgpt-4o-mini) to rewrite 522
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Table 3: Impact of news style attacks.

Method Politifact Mcfend
A ↓ % macF1 ↓ % A ↓ % macF1 ↓ %

BERT 0.664 22.9 0.613 28.1 0.521 26.4 0.366 41.4
DualEmo 0.819 11.6 0.815 11.8 0.722 5.3 0.634 12.6
BiGCN 0.771 15.0 0.763 15.5 0.740 1.3 0.689 2.41

ChatGPT 0.460 37.1 0.441 38.5 0.404 9.4 0.370 24.3
Ours 0.942 1.36 0.940 1.36 0.789 1.38 0.764 0.91

Table 4: Impact of user engagement attacks.

Method Politifact Mcfend
A ↓ % macF1 ↓ % A ↓ % macF1 ↓ %

DualEmo 0.921 0.75 0.917 7.57 0.787 -3.28 0.749 -3.25
BiGCN 0.931 -2.65 0.928 -2.77 0.851 -13.5 0.822 -16.4

UPFD-Pro 0.797 6.78 0.787 6.97 0.954 -29.3 0.951 -41.9
GenFEND 0.910 -0.22 0.908 -0.11 0.807 -5.35 0.779 -7.01

Ours 0.948 0.73 0.947 0.63 0.828 -3.50 0.796 -3.24

fake news in the style of "New York Times" and523

real news in the style of "The National Enquirer".524

For the Chinese dataset Mcfend, we direct LLM to525

rewrite fake news in the style of "People’s Daily"526

in China, while real news is rewritten in an exagger-527

ated, attention-grabbing style to mimic misleading528

content due to the lack of a suitable fake news529

proxy. The models are trained on the original data530

while the test set is replaced to simulate attacks.531

Table 3 reports the performance degradation532

(↓ %) of various models under news style attacks.533

Our model only leverages news content when com-534

puting users’ attitudes while incorporating multiple535

dimensions of features to supplement learning pro-536

cess, thus achieving the highest robustness. In con-537

trast, content-only models (e.g., BERT, ChatGPT-538

n) suffer severe degradation (up to 41.44%), re-539

vealing their vulnerability to stylistic variations.540

DualEmo and BiGCN, which incorporate user en-541

gagement, emotions and network structures, exhibit542

moderate resistance, with degradation ranging from543

11%–15% (Politifact) and 2%–12% (Mcfend).544

4.5.3 User Engagements Attack545

For user engagement attacks, we adopt a simplified546

version of the strategy from (Wang et al., 2023).547

We identify users engaging exclusively with real548

or fake news and simulate cross-interference using549

LLM (chatgpt-4o-mini). For real-only users, we550

generate their responses with positive stance and in-551

ferred intents for fake news; for fake-only users, we552

generate interactions with real news. To enhance553

realism, 5 interactions per news item are generated554

and randomly integrated into propagation structure.555

Results in Table 4 show that most models expe-556

3
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Figure 5: Case: intent reveals subtle deception.

rience anomalous accuracy increases under attacks, 557

particularly on Mcfend dataset. This is likely be- 558

cause many fake news-sharing accounts are fact- 559

checking accounts, whose interactions with true 560

news provide positive cues. Moreover, the limited 561

number of users consistently sharing one type of 562

news leads to their repeated use in attacks, allow- 563

ing models to detect patterns rather than being mis- 564

led. This effect is most notable in UPFD-Pro(file), 565

which relies heavily on user profiles, with its F1 566

fluctuating by 41.94%. In contrast, our model main- 567

tains stability by integrating intent and behavioral 568

insights, reducing vulnerability to manipulation. 569

4.6 Case Study 570

The case in Fig.5 highlights LLMs’ ability to iden- 571

tify hidden intentions, such as sarcasm, in seem- 572

ingly credible news posts and user responses. For 573

instance, the fabricated post about NASA appears 574

reliable due to its professional language, poten- 575

tially misleading basic detectors into classifying it 576

as "Real." Similarly, the user’s excited comment 577

might be misinterpreted as supportive by stance 578

analyzers, leading to incorrect judgments. Our 579

work shows that LLMs can uncover humor and 580

sarcasm by analyzing social contexts, revealing 581

intentions like "for amusement" or "generate dis- 582

cussion" rather than genuine support. This enables 583

the detector to reassess the post’s authenticity. 584

5 Conclusion 585

Our proposed framework integrates LLM-inferred 586

user intent with the Theory of Planned Behavior 587

to enhance fake news detection across multiple 588

datasets, which not only improves detection per- 589

formance but also strengthens robustness and inter- 590

pretability, maintaining stable results even under 591

various adversarial attack scenarios. This high- 592

lights the value of incorporating psychological and 593

behavioral insights into computational models for 594

fake news detection and mitigation. 595
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6 Limitations596

Despite the effectiveness of our approach, several597

limitations remain. First, while our model inte-598

grates user intent inference with the Theory of599

Planned Behavior (TPB), its performance will be600

affected by the accuracy of Large Language Mod-601

els (LLMs) in capturing user intentions. Errors in602

intent inference could propagate through the frame-603

work, potentially impacting detection robustness.604

Second, our approach relies on social engagement605

features, which may be sparse or unavailable for606

certain news articles, limiting applicability in low-607

resource settings. Additionally, the model assumes608

that user behaviors align with their inferred inten-609

tions, which may not always hold due to strategic610

misinformation campaigns or adversarial manipula-611

tions. Future work will explore adaptive strategies612

to mitigate these issues, such as dynamic intent re-613

calibration and cross-platform behavior modeling.614

7 Ethical Consideration615

We utilize publicly available datasets curated by616

previous researchers, strictly adhering to all rel-617

evant legal and ethical standards during data ac-618

quisition and usage. To mitigate potential societal619

risks, we provide only prompt templates without620

disclosing the specific content of LLM-generated621

intentions. This approach ensures responsible use622

of the technology while maintaining transparency623

in our methodology.624
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A Datasets840

The details are shown in Table 5.841

Politifact and Gossipcop: English datasets sourced842

from the widely used FakeNewsNet repository843

(Shu et al., 2020).844

• Politifact: Contains news primarily related to845

political topics.846

• Gossipcop: Includes news mainly covering847

entertainment topics.848

Mcfend and Weibo21: Chinese datasets.849

• Mcfend: Sampled from the dataset col-850

lected by (Li et al., 2024b), which aggregates851

data from multiple Chinese and English fact-852

checking websites. We selected news samples853

with network structures and balanced the num-854

ber of true and fake news.855

• Weibo21: A multi-domain dataset originat-856

ing from Weibo, initially introduced by (Nan857

et al., 2021) and later supplemented with user858

features by (Li et al., 2024b). In this study, we859

utilized the enhanced version of the Weibo21.860

B Baselines861

News content-based detectors: detectors utilize862

only the text of the news article:863

• EANN (Wang et al., 2018): Generates event864

invariant feature representations with adver-865

sarial training, we use the text-only version866

for this work.867

• SentGCN (Vaibhav et al., 2019): Divides868

each news article into a graph of sentences869

and uses GNN for modeling.870

• BERT (Devlin et al., 2019) and RoBERTa871

(Liu et al., 2019): Large pre-trained language872

models with basic settings.873

Social context-enhanced detectors: detectors in-874

corporate users’ engagement information to im-875

prove detection:876

• dEFEND (Shu et al., 2019): Develops an877

RNN-based sentence-comment co-attention878

network.879

• DualEmo (Zhang et al., 2021): Considers880

emotions from publishers and users’ com-881

ments, as well as the gap to improve detection.882

• BiGCN (Bian et al., 2020): Leverages top- 883

down and bottom-up GCN to learn the pat- 884

terns of rumor propagation and dispersion re- 885

spectively. 886

• UPFD: Combines news content with user pref- 887

erences using graph modeling, we use two 888

versions (-preferences, -profile) to show the 889

importance of user features. 890

LLM-enhanced detectors: detectors utilize the 891

inference and generation capabilities of LLMs to 892

enhance detection: 893

• ChatGPT (chatgpt-4o-mini) (OpenAI, 2023) 894

and Claude (claude-3-haiku) (Anthropic, 895

2024): Use zero-shot prompting to identify 896

the veracity of news based on news content. 897

• L-Defense (Wang et al., 2024a): Divides ev- 898

idence into two competing groups and asks 899

LLMs to generate reasons for each possible 900

veracity. In this work, we use user responses 901

as evidence for training. 902

• GenFEND (Nan et al., 2024): Utilizes LLMs 903

as comment generators, generating comments 904

from potential users with diverse profiles to 905

enhance data. We generate 15 comments for 906

each news. 907

C Inferred User Intent Distribution 908

C.1 Intent Distribution 909

We analyzed the distribution of user intentions 910

across four datasets, with word clouds illustrat- 911

ing the findings (Fig.6 ). The analysis reveals that, 912

for fake news, the dominant themes are emotional 913

responses, skepticism, and divisive topics, espe- 914

cially for political news, suggesting an intent to stir 915

political debates or amplify controversial content. 916

Conversely, real news discussions center around 917

"inform others," "raise awareness," and "promote 918

support", which emphasize information sharing, 919

awareness-raising, and constructive engagement, 920

reflecting an intent to provide accurate information 921

and engage in rational discussions. These insights 922

demonstrate the importance of understanding user 923

intent in detecting and mitigating the spread of 924

misinformation, as it reveals the underlying moti- 925

vations behind user interactions. 926

However, for Gossipcop, user intents exhibit a 927

certain degree of overlap, with both primarily fo- 928

cusing on raising questions or engaging the audi- 929

ence. This highlights the blurred lines between user 930
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Table 5: Statistics of datasets (F:fake news, R:real news).

Politifact Gossipcop Mcfend Weibo21
F R F R F R F R

News 341 240 3,430 6,903 365 200 4,488 4,640

Behaviors
post 8,354 5,988 37,728 101,456

4,949 2,752 9,208 10,127
repost 5,587 2,967 10,324 20,190

comment 1,339 869 4,292 5,201 7,899 4,501 55,694 25,493
Users 18,217 46,758 15,976 92,841

(a) Politifact-Fake (b) Politifact-Real (c) Gossipcop-Fake (d) Gossipcop-Real

(e) Mcfend-Fake (f) Mcfend-Real (g) Weibo21-Fake (h) Weibo21-Real

Figure 6: Word cloud of user intention distribution in true and fake news dissemination.

reactions to real and fake news in entertainment do-931

mains, and explains why the user’s identity is more932

important in detection for this dataset.933

C.2 LLM Comparison934

We tried three different LLMs on two datasets to935

analyze whether the intent they infer is of different936

importance to fake detection and our framework.937

The results are shown in Table 6. Different LLMs938

exhibit varying capabilities in both Intent-only and939

TPB-Intent settings. Among the models, ChatGPT940

achieves the highest overall performance, partic-941

ularly with TPB-Intent (0.955 Acc./0.953 F1 on942

Politifact, 0.800 Acc./0.771 F1 on Mcfend). This943

suggests that ChatGPT is better equipped to lever-944

age both intent inference and TPB-guided feature945

aggregation for robust fake news detection. Claude946

underperforms relative to ChatGPT in the Intent-947

only setting, but the gap narrows with TPB-Intent,948

highlighting the effectiveness of a well-designed949

feature aggregation approach when individual fea-950

ture is not inherently strong. QWen has consistent951

performance across Intent-only and TPB-Intent set-952

tings, demonstrating its superior intent reasoning953

capabilities. To reflect the importance of both user954

intent and TPB-guided aggregation, we ultimately955

select ChatGPT as the reasoning model.

Table 6: Performance of different LLMs in detection.

Method Politifact Mcfend
Acc. F1 Acc. F1

Chatgpt
4o-mini

Intent-only 0.931 0.929 0.777 0.740
TPB-Intent 0.955 0.953 0.800 0.771

Claude
3-Haiku

Intent-only 0.912 0.909 0.790 0.770
TPB-Intent 0.952 0.950 0.793 0.769

QWen-
Turbo

Intent-only 0.940 0.938 0.796 0.765
TPB-Intent 0.955 0.952 0.796 0.770

956
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