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ABSTRACT

Distilling supervision signal from a long sequence to make predictions is a chal-
lenging task in machine learning, especially when not all elements in the input
sequence contribute equally to the desired output. In this paper, we propose SPAN-
DROP, a simple and effective data augmentation technique that helps models iden-
tify the true supervision signal in a long sequence with very few examples. By di-
rectly manipulating the input sequence, SPANDROP randomly ablates parts of the
sequence at a time and ask the model to perform the same task to emulate counter-
factual learning and achieve input attribution. Based on theoretical analysis of its
properties, we also propose a variant of SPANDROP based on the beta-Bernoulli
distribution, which yields diverse augmented sequences while providing a learn-
ing objective that is more consistent with the original dataset. We demonstrate
the effectiveness of SPANDROP on a set of carefully designed toy tasks, as well
as various natural language processing tasks that require reasoning over long se-
quences to arrive at the correct answer, and show that it helps models improve
performance both when data is scarce and abundant.

1 INTRODUCTION

Building effective machine learning systems for long sequences is a challenging and important task,
which helps us better understand underlying patterns in naturally occurring sequential data like long
texts (Radford et al., 2019), protein sequences (Jumper et al., 2021), financial time series (Bao
et al., 2017), etc. Recently, there is growing interest in studying neural network models that can
capture long-range correlations in sequential data with high computational, memory, and statistical
efficiency, especially widely adopted Transformer models (Vaswani et al., 2017).

Previous work approach long-sequence learning in Transformers largely by introducing computa-
tional approaches to replace the attention mechanism with more efficient counterparts. These ap-
proaches include limiting the input range over which the attention mechanism is applied (Kitaev
et al., 2019) to limiting sequence-level attention to only a handful of positions (Beltagy et al., 2020;
Zaheer et al., 2020). Other researchers make use of techniques akin to the kernel trick to eliminate
the need to compute or instantiate the costly attention matrix (Peng et al., 2020; Katharopoulos et al.,
2020; Choromanski et al., 2020). Essentially, these approaches aim to approximate the original pair-
wise interaction with lower cost, and are often interested in still capturing the interactions between
every pair of input elements (e.g., the long sequence benchmark proposed by Tay et al., 2020).

In this paper, we instead investigate learning problems for long sequences where not all input ele-
ments contribute equally to the desired output. Natural examples that take this form include senti-
ment classification for long customer review documents (where a few salient sentiment words con-
tribute the most), question answering from a large document (where each question typically requires
a small number of supporting sentences to answer), key phrase detection in audio processing (where
a small number of recorded frames actually determine the prediction), as well as detecting a specific
object from a complex scene (where, similarly, a small amount of pixels determine the outcome),
to name a few. In these problems, it is usually counterproductive to try and make direct use of the
entire input if the contributing portion is small or sparse, which results in a problem of underspec-
ification (i.e., the data does not sufficiently define the goal for statistical models). One approach
to address this problem is annotating the segments or neighborhoods that directly contribute to the
outcome in the entire input. This could take the form of a subset of sentences that answer a question
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or describe the relation between entities in a paragraph (Yang et al., 2018; Yao et al., 2019), which
function as explainable evidence that supplements the answer. When such annotation is not feasible,
researchers and practitioners often need to resort to either collecting more input-output pairs or de-
signing problem-specific data augmentation techniques to make up for the data gap. For real-valued
data, this often translates to random transformations (e.g., shifting or flipping an image); for sym-
bolic data like natural language, techniques like masking or substitution are more commonly used
(e.g., randomly swapping words with a special mask token or other words). While these approaches
have proven effective in some tasks, each has limitations that prevents it from being well-suited for
the underspecification scenario. For instance, while global feature transformations enhance group-
invariance in learned representations, they do not directly help with better locating the underlying
true stimulus. On the other hand, while replacement techniques like masking and substitution help
ablate parts of the input, they are susceptible to the position bias of where the true stimulus might oc-
cur in the input. Furthermore, while substitution techniques can help create challenging contrastive
examples, it is significantly more difficult to design them for complex symbolic sequences (e.g.,
replacing a phrase naturally in a sentence).

To address these challenges, we propose SPANDROP, a simple and effective technique that helps
models distill sparse supervision signal from long sequences when the problem is underspecified.
Similar to replacement-based techniques such as masking and substitution, SPANDROP directly ab-
lates parts of the input at random to construct counterfactual examples that preserve the original
supervision signal with high probability. Instead of preserving the original sequence positions, how-
ever, SPANDROP directly removes ablated elements from the input to mitigate any bias that is related
to the absolute positions of elements (rather than the relative positions between them) in the input.
Upon closer examination of its theoretical and empirical properties, we further propose a more effec-
tive variant of SPANDROP based on the Beta-Bernoulli distribution that enhances the consistency of
the augmented objective function with the original one. We demonstrate via carefully designed toy
experiments that SPANDROP not only helps models achieve up to 20⇥ sample-efficiency in low-data
settings, but also further reduces overfitting even when training data is abundant. We find that it is
very effective at mitigating position bias compared to replacement-based counterfactual approaches,
and enhances out-of-distribution generalization effectively. We further experiments on four natural
language processing tasks that require models to answer question or extract entity relations from
long texts, and demonstrate that SPANDROP can improve the performance of already competitive
neural models without any change in model architecture.

2 METHOD

In this section, we first formulate the problem of sequence inference, where the model takes sequen-
tial data as input to make predictions. Then, we introduce SPANDROP, a simple and effective data
augmentation technique for long sequence inference, and analyze its theoretical properties.

2.1 PROBLEM DEFINITION
Sequence Inference. We consider a task where a model takes a sequence S as input and predicts
the output y. We assume that S consists of n disjoint but contiguous spans, each representing a
part of the sequence in order S = (s1, . . . , sn). One example of sequence inference is sentiment
classification from a paragraph of text, where S is the paragraph and y the desired sentiment label.
Spans could be words, phrases, sentences, or a mixture of these in the paragraph. Another example
is time series prediction, where S is historical data, y is the value at the next time step.

Supporting facts. Given an input-output pair (S,y) for sequence prediction, we assume that y is
truly determined by only a subset of spans in S. More formally, we assume that there is a subset
of spans Ssup ⇢ {s1, s2, . . . , sn} such that y is independent of si, if si /2 Ssup. In sentiment
classification, Ssup could consist of important sentiment words or conjunctions (like “good”, “bad”,
“but”); in time series prediction, it could reflect the most recent time steps as well as those a few
cycles away if the series is periodic. For simplicity, we will denote the size of this set m = |Ssup|,
and restrict our attention to tasks where m ⌧ n, such as those described in the previous section.

2.2 SPANDROP
In a long sequence inference task with sparse support facts (m ⌧ n), most of the spans in the input
sequence will not contribute to the prediction of y, but they will introduce spurious correlation in
a low-data scenario. SPANDROP generates new data instances (S̃,y) by ablating these spans at

2



Under review as a conference paper at ICLR 2022

0 50 100

0

5

10

Sequence length (n0)

Pr
op

or
tio

n
(%

) SPANDROP

Beta-SPANDROP

(a) Length of S̃ (n = 100, p = 0.2)

0 10 20

�4

�2

0

2

supporting facts (m)

Lo
g

no
is

e-
fr

ee
pr

ob
.

� = 1 � = 100
� = 10 � = 1
� = 0.1 � = 0.01

(b) supporting fact noise (p = 0.2)

100 102 104
0

0.2

0.4

0.6

Sequence length (n)

A
vg

.n
at

s/
sp

an

� = 1 � = 100
� = 10 � = 1
� = 0.1 � = 0.01

(c) Typical set size (p = 0.1)
Figure 1: Theoretical comparison between SPANDROP and Beta-SPANDROP.

random, while preserving the supporting facts with high probability so that the model is still trained
to make the correct prediction y. This is akin to counterfactually determining whether each span
truly determines the outcome y by asking what the prediction would have been without it.

Definition 1 (SPANDROP). Formally, given a sequence S that consists of spans (s1, s2, · · · sn),
SPANDROP generates a new sequence S̃ as follows:

�i
i.i.d.⇠ Bernoulli(1� p), S̃ =(si)

n

i=1,�i=1, (1)

where p is the hyperparameter that determines the probability to drop a span.

Note that SPANDROP does not require introducing substitute spans or artificial symbols when ab-
lating spans from the input sequence. It makes the most of the natural sequence as it occurs in the
original training data, and preserves the relative order between spans that are not dropped, which is
often helpful in understanding sequential data (e.g., time series or text). It is also not difficult to es-
tablish that the resulting sequence S̃ can preserve all of the m supporting facts with high probability
regardless of how large n is.

Remark 1. The new sequence length n0 = |S̃| and the number of preserved supporting facts m0 =
|S̃ \ Ssup| follow binomial distributions with parameters (n, 1� p) and (m, 1� p), respectively:

P (n0|n, p) =
✓
n

n0

◆
(1� p)n

0
pn�n

0
, P (m0|m, p) =

✓
m

m0

◆
(1� p)m

0
pm�m

0
. (2)

Therefore, the proportion of sequences where all supporting facts are retained (i.e., m0 = m) is
(1 � p)m, which is independent of n. This means that as long as the total number of supporting
facts in the sequence is bounded, then regardless of the sequence length, we can always choose
p carefully such that we end up with many valid new examples with bounded noise introduced to
supporting facts. Note that our analysis so far relies only on the assumption that m is known or
can be estimated, and thus it can be applied to tasks where the precise set of supporting facts Ssup

is unknown. More formally, the amount of new examples can be characterized by the size of the
typical set of S̃, i.e.the set of sequences that the randomly ablated sequence will fall into with high
probability. The size of the typical set for SPANDROP is approximately 2nH(p), where H(p) is the
binary entropy of a Bernoulli random variable with probability p. Intuitively, these results indicate
that the amount of total counterfactual examples generated by SPANDROP scales exponentially in
n, but the level of supporting fact noise can be bounded as long as m is small.

However, this formulation of SPANDROP does have a notable drawback that could potentially hinder
its efficacy. Because the new sequence length n0 follows a binomial distribution, its mean is n(1�p)
and its variance is np(1� p). For sufficiently large n, most of the resulting S̃ will have lengths that
concentrate around the mean with a width of O(

p
n), which creates an artificial and permanent

distribution drift from the original length (see Figure 1(a)). Furthermore, if we know the identity of
Ssup and keep these spans during training, this length reduction will bias the training set towards
easier examples to locate spans in Ssup. In the next subsection, we will introduce a variant of
SPANDROP based on the beta-Bernoulli distribution that alleviates this issue.
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2.3 BETA-SPANDROP

To address the problem of distribution drift with SPANDROP, we introduce a variant that is based on
the beta-Bernoulli distribution. The main idea is that instead of dropping each span in a sequence
independently with a fixed probability p, we first sample a sequence-level probability ⇡ at which
spans are dropped from a Beta distribution, then use this probability to perform SPANDROP.
Definition 2 (Beta-SPANDROP). Let ↵ = �,� = � · 1�p

p
, where � > 0 is a scaling hyperparameter.

Beta-SPANDROP generates S̃ over S as:

⇡ ⇠B(↵,�), �i
i.i.d.⇠ Bernoulli(1� ⇡), S̃ =(si)

n

i=1,�i=1, (3)

where B(↵,�) is the beta-distribution with parameters ↵ and �.

It can be easily demonstrated that in Beta-SPANDROP, the probability that each span is dropped is
still controlled by p, same as in SPANDROP: E[�i|p] = E[E[�i|⇡]|p] = E[1 � ⇡|p] = 1 � ↵

↵+�
=

1 � p. In fact, we can show that as � ! 1, Beta-SPANDROP degenerates into SPANDROP since
the beta-distribution would assign all probability mass on ⇡ = p. Despite the simplicity in its
implementation, Beta-SPANDROP is significantly less likely to introduce unwanted data distribution
drift, while is capable of generating diverse counterfactual examples to regularize the training of
sequence inference models. This is due to the following properties:
Remark 2. The new sequence length n0 = |S̃| and the number of preserved supporting facts m0 =
|S̃ \ Ssup| follow binomial distributions with parameters (n,�,↵) and (m,�,↵), respectively:

P (n0|n,↵,�) = �(n+ 1)

�(n0 + 1)�(n� n0 + 1)

�(n0 + �)�(n� n0 + ↵)

�(n+ ↵+ �)

�(↵+ �)

�(↵)�(�)
, (4)

P (m0|m,↵,�) =
�(m+ 1)

�(m0 + 1)�(m�m0 + 1)

�(m0 + �)�(m�m0 + ↵)

�(m+ ↵+ �)

�(↵+ �)

�(↵)�(�)
, (5)

where �(z) =
R1
0 xz�1e�xdx is the gamma function.

As a result, we can show that the probability that Beta-SPANDROP preserves the entire original
sequence with the following probability

P (n0 = n|n,↵,�) =�(n+ �)�(↵+ �)

�(n+ ↵+ �)�(�)
. (6)

When � = 1, this expression simply reduces to �

n+�
; when � 6= 1, this quantity tends to O(n��)

as n grows sufficiently large. Comparing this to the O((1 � p)n) rate from SPANDROP, we can
see that when n is large, Beta-SPANDROP recovers more of the original distribution represented by
(S̃,y) compared to SPANDROP. In fact, as evidenced by Figure 1(a), the counterfactual sequences
generated by Beta-SPANDROP are also more spread-out in their length distribution besides covering
the original length n with significantly higher probability. A similar analysis can be performed by
substituting n and n0 with m and m0, where we can conclude that as m grows, Beta-SPANDROP
is much better at generating counterfactual sequences that preserve the entire supporting fact set
Ssup. This is shown in Figure 1(b), where the proportion of “noise-free” examples (i.e., m0 = m)
decays exponentially with SPANDROP (� = 1) while remaining much higher when � is sufficiently
small. For instance, when p = 0.1, � = 1 and m = 10, the proportion of noise-free examples for
SPANDROP is just 34.9%, while that for Beta-SPANDROP is 47.4%.

As we have seen, Beta-SPANDROP is significantly better than its Bernoulli counterpart at assigning
probability mass to the original data as well as generated sequences that contain the entire set of sup-
porting facts. A natural question is, does this come at the cost of diverse counterfactual examples?
To answer this question we study the entropy of the distribution that S̃ follows by varying � and n,
and normalize it by n to study the size of typical set of this distribution. As can be seen in Figure
1(c), as long as � is large enough, the average entropy per span H̄ degrades very little from the theo-
retical maximum, which is H(p), attained when � = 1. Therefore, to balance between introducing
noise in the supporting facts and generating diverse examples, we set � = 1 in our experiments.

Using the beta-Bernoulli distribution in dropout. The beta-Bernoulli distribution has been studied
in prior work in seeking replacements for the (Bernoulli) dropout mechanism (Srivastava et al.,
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2014). Liu et al. (2019a) set ↵ = � for the beta distribution in their formulation, which limits the
dropout rate to always be 0.5. Lee et al. (2018) fix � = 1 and vary ↵ to control the sparsity of
the result of dropout, which is similar to Beta-SPANDROP when � = 1. However, we note that
these approaches (as with dropout) are focused more on adding noise to internal representations
of neural networks to introduce regularization, while SPANDROP operates directly on the input to
ablate different components therein, and thus orthogonal (and potentially complementary) to these
approaches. Further, SPANDROP has the benefit of not having to make any assumptions about the
model or any changes to it during training, which makes it much more widely applicable.

3 FINDCATS: DISTILLING SUPERVISION FROM LONG-SEQUENCES

In this section, we design a synthetic task of finding the animal name “cat” in a character sequence to
a) demonstrate the effectiveness of SPANDROP and Beta-SPANDROP in promoting the performance
over a series of problems with different settings, b) analyze the various factors that may affect the
efficacy of these approaches, and c) compare it to other counterfactual augmentation techniques like
masking on mitigating position bias.

3.1 EXPERIMENTAL SETUP

FINDCATS. To understand the effectiveness of SPANDROP and Beta-SPANDROP in an experimental
setting, we designed a synthetic task called FINDCATS where the model is trained to discern that
given an animal name “cat”, whether a character string contains it as a subsequence (i.e., contains
characters in “cat” in order, for instance, “abcdafgbijktma”) or not (e.g., “abcdefhtijklmn”). This
allows us to easily control the total sequence length n, the supporting facts size m, as well as easily
estimate the supporting fact noise that each SPANDROP variant might introduce. To generate the
synthetic training data of FINDCATS, we first generate a sequence consisting of lowercase letters (a
to z) that does not contain “cat” as a subsequence. For half of these sequences, we label the tuple
(cat,S) with a negative class to indicate that S does not contain “cat” as a subsequence; for the
other half, we choose arbitrary (but not necessarily contiguous) positions in S to replace the letters
with letters in “cat” from left to right to generate positive examples.

In all of our experiments, we evaluate model performance on a held-out set of 10,000 examples to
observe classification error. We set sequence length to n = 300 where each letter is a separate span,
and chose positions for the letters in the animal name “cat” uniformly at random in the sequence
unless otherwise mentioned.

Model. We employ three-layer Transformer model (Vaswani et al., 2017) with position embeddings
(Devlin et al., 2019) as the sequence encoder, which is implemented with HuggingFace Transform-
ers (Wolf et al., 2019). For each example (“cat”,S, y), we feed “[CLS] cat [SEP] S [SEP]” to the
sequence encoder and then construct binary classifier over the output representation of “[CLS]” to
predict y. To investigate the effectiveness of SPANDROP, we simply apply SPANDROP to S first
before feeding the resulting sequence into the Transformer classifier.

3.2 RESULTS AND ANALYSIS

In each experiment, we compare SPANDROP and Beta-SPANDROP at the same drop ratio p. And
we further use rejection sampling to remove examples that do not preserve the desired supporting
facts to understand the effect of supporting fact noise.

Data efficiency. We begin by analyzing the contribution of SPANDROP and Beta-SPANDROP to
improving the sample efficiency of the baseline model. To achieve this goal, we vary the size of
the training set from 10 to 50,000 and observe the prediction error on the held-out set. We observe
from the results in Figure 2(a) that: 1) Both SPANDROP and Beta-SPANDROP significantly improve
data efficiency in low-data settings. For instance, when trained on only 200 training examples,
SPANDROP variants can achieve the generalization performance of the baseline model trained on 5x
to even 20x data. 2) Removing supporting fact noise typically improves data efficiency further by
about 2x. This indicates it is helpful not to drop spans in Ssup during training when possible, so that
the model is always trained with true counterfactual examples rather than sometimes noisy ones. 3)
Beta-SPANDROP consistently improves upon the baseline model even when data is abundant. This
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Figure 2: Experimental results of SPANDROP variants and SPANMASK on the FINDCATS synthetic
tasks.

is likely due to the difficulty of the task when n = 300 and m = 3. Similar to many real-world tasks,
the task remains underspecified even when the generalization error is already very low thanks to the
large amount of training data available. 4) SPANDROP introduces inconsistent training objective
with the original training set, which leads to performance deterioration when there is sufficient
training data, which is consistent with our theoretical observation.

Effect of supporting fact noise and sequence length. Since SPANDROP introduces noise in
the supporting facts (albeit with a low probability), it is natural to ask if such noise is neg-
atively correlated with model performance. We study this by varying the drop ratio p from
{0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} on fixed training sets of size 1,000, and observe the resulting
model performance and supporting fact error. As can be seen in Figure 2(b), supporting fact noise
increases rapidly as p grows.1 However, we note that although the performance of SPANDROP dete-
riorates as p increases, that of Beta-SPANDROP stays relatively stable. Inspecting these results more
closely, we find that even the performance of the noise-free variants follow a similar trend, which
should not be affected by supporting fact noise.

Recalling the observations from our data efficiency experiments, we next turn to the hypothesis that
this discrepancy is mainly caused by the inconsistent length distribution SPANDROP introduces.
To test this hypothesis, we conduct two separate sets of experiments: 1) training and testing the
model on varying sequence lengths {10, 20, 30, 50, 100, 200, 300, 500}, where longer sequences
suffer more from the discrepancy between SPANDROP-resulted sequence lengths and the original
sequence length; and 2) testing the model trained on n = 300 on test sets of different lengths, and
if our hypothesis about distribution drift were correct, we should see SPANDROP models’ perfor-
mance peaking around n0 = n(1�p), while the performance of Beta-SPANDROP is less affected by
sequence length. As can be seen from Figures 2(c) and 2(d), our experimental results seem to well
supporting this hypothesis. Specifically, in Figure 2(c), while the performance of both SPANDROP
variants deteriorates as n grows and the task becomes more challenging and underspecified, SPAN-
DROP deteriorates at a faster speed even when we remove the effect of supporting fact noise. On the
other hand, we can clearly see in Figure 2(d) that SPANDROP performance peak around sequences
of length 270 (= n(1� p) = 300⇥ (1� 0.1)) before rapidly deteriorating, while Beta-SPANDROP
is unaffected until test sequence length exceeds that of all examples seen during training.

1Note that the noise in our experiments are lower than what would be predicted by theory, because in
practice the initial sequence S might already contain parts of “cat” before it is inserted. This creates redundant
sets of supporting facts for this task and reduces supporting fact noise especially when n is large.
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Mitigating position bias. Besides SPANDROP, replacement-based techniques like masking can also
be applied to introduce counterfactual examples into sequence model training, where elements in the
sequence are replaced by a special symbol that is not used at test time. We implement SPANMASK
in the same way as SPANDROP except spans are replaced rather than removed when the sampled
“drop mask” �i is 0. We first inspect whether SPANMASK benefits from the same beta-Bernoulli
distribution we use in SPANDROP. As can be seen in Figure 2(e), the gain from switching to a beta-
Bernoulli distribution provides negligible benefit to SPANMASK, which does not alter the sequence
length of the input to begin with. We also see that SPANMASK results in significantly higher error
than both SPANDROP and Beta-SPANDROP in this setting. We further experiment with introducing
position bias into the training data (but not the test data) to test whether these method help the model
generalize to an unseen setting. Specifically, instead of selecting the position for the characters “cat”
uniformly at random, we train the model with a “fixed position” dataset where they always occur
at indices (10, 110, 210), and a “first 100” dataset where they are uniformly distributed among the
first 100 letters. As can be seen in Figure 2(f), both the baseline and SPANMASK models overfit
to the position bias in the “fixed” setting, while SPANDROP techniques significantly reduce zero-
shot generalization error. In the “first 100” setting, Beta-SPANDROP consistently outperforms its
Bernoulli counterpart and SPANMASK at improving the performance of the baseline model as well,
indicating that SPANDROP variants are effective at reducing the position bias of the model.

4 EXPERIMENTS ON NATURAL LANGUAGE DATA

To examine the efficacy of the proposed SPANDROP techniques on realistic data, we conduct exper-
iments on four natural language processing datasets that represent the tasks of single- and multi-hop
extractive question answering, multiple-choice question answering, and relation extraction. We fo-
cus on showing the effect of SPANDROP instead of pursuing the state of the art in these experiments.

Datasets. We use four natural language processing datasets: SQuAD 1.1 (Rajpurkar et al., 2016),
where models answer questions on a paragraph of text from Wikipedia; MultiRC (Khashabi et al.,
2018), which is a multi-choice reading comprehension task in which questions can only be answered
by taking into account information from multiple sentences; HotpotQA (Yang et al., 2018), which
requires models to perform multi-hop reasoning over multiple Wikipedia pages to answer questions;
and DocRED (Yao et al., 2019), which is a document-level data set for relation extraction.

For the SQuAD dataset, we define spans as collections of one or more consecutive tokens to show
that SPANDROP can be applied to different granularities. For the rest three datasets, we define spans
to be sentences since supporting facts are provided at sentence level. For all of these tasks, we report
standard exact match (EM) and F1 metrics where applicable, for which higher scores are better. We
refer the reader to the appendix for details about the statistics and metrics of these datasets.

Model. We build our models for these tasks using ELECTRA (Clark et al., 2019), since it is shown
to perform well across a range of NLP tasks recently. We introduce randomly initialized task-
specific parameters designed for each task following prior work on each dataset, and finetune these
models on each dataset to report results. We refer the reader to the appendix for training details and
hyperparameter settings.

Main results. We first present the performance of our implemented models and their combination
with SPANDROP variants on the four natural language processing tasks. We also include results from
representative prior work on each dataset for reference (detailed in the appendix), and summarize the
results in Table 1. We observe that: 1) our implemented models achieve competitive and sometimes
significantly better performance (in the cases of HotpotQA, SQuAD, and DocRED) compared to
published results, especially considering that we do not tailor our models to each task too much;
2) SPANDROP improves the performance over these models even when the training set is large and
that the model is already performing well; 3) Models trained with Beta-SPANDROP consistently
perform better or equally well with their SPANDROP counterparts across all datasets, demonstrating
that our observations on the synthetic datasets generalize well to real-world ones. We note that the
performance gains on real-world data is less significant, which likely results from the fact spans in
the synthetic task are independent from each other, which is not the case in natural language data.

We further evaluate the performance of our trained models on the MultiRC testing data, and obtain
results of EM/F1: 41.1/79.8, 39.9/78.5 and 39.1/78.2 for models with Beta-SPANDROP, SPANDROP,
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(a) HotpotQA dev

Model Ans F1 Sup F1 Joint F1

RoBERTa-base 73.5 83.4 63.5
Longformer-base 74.3 84.4 64.4
SAE BERT-base 73.6 84.6 65.0

Our implementation
ELECTRA-base 74.2 86.3 66.2

+ SPANDROP 74.7 86.7 66.8
+ Beta-SPANDROP 74.7 86.9 67.1

(b) MultiRC dev

Model EM F1

BERT-base 26.6 74.2
RoBERTa-base 38.7 79.2
REPT RoBERTa-base 40.4 80.0

Our implementation
ELECTRA-base 40.1 80.4

+ SPANDROP 42.3 81.7
+ Beta-SPANDROP 44.8 81.6

(c) DocRED dev

Model Ign F1 RE F1 Evi F1

E2GRE BERT-base 55.2 58.7 47.1
ATLOP BERT-base 59.2 61.1 —
SSAN BERT-base 57.0 59.2 —

Our implementation
ELECTRA-base 59.6 61.6 50.8

+ SPANDROP 59.9 61.9 51.2
+ Beta-SPANDROP 60.1 62.1 51.2

(d) SQuAD dev

Model EM F1

RoBERTa-base — 90.6
ELECTRA-base 84.5 90.8
XLNet-large 89.7 95.1

Our implementation
ELECTRA-base 86.6 92.4

+ SPANDROP 86.8 92.6
+ Beta-SPANDROP 86.9 92.7

Table 1: Main results on four natural language processing datasets.

and without SPANDROP, respectively. This indicates that both Beta-SPANDROP and SPANDROP
improve the model generalization ability, and Beta-SPANDROP is better than SPANDROP, improving
EM/F1 with 2.0/1.6 absolute over the baseline.

Next, to better understand whether the properties of SPANDROP and Beta-SPANDROP we observe
on the synthetic data generalize to real-world data, we further perform a set of analysis experiments
on SQuAD. Specifically, we are interested in studying the effect of the amount of training data, the
span drop ratio p, and the choice of span size on performance.

0.1 1 10 100
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60

80
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D
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F 1
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)

Baseline SPANDROP Beta-SPANDROP

0 0.2 0.4
91

91.5
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92.5
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1 4 16 64
91

91.5

92

92.5

93

Span size
Figure 3: Effect analysis of training data size, drop ratio and span size on performance of models
trained with SPANDROP and Beta-SPANDROP over SQuAD

Effect of low data. To understand SPANDROP’s regularizing effect when training data is scarce,
we study the model’s generalization performance when training on only 0.1% of the training data
(around 100 examples) to using the entire training set (around 88k examples). As can be seen in
Figure 3 (left), both SPANDROP and Beta-SPANDROP significantly improve model performance
when the amount of training data is extremely low. As the amount of training data increases, this
gap slowly closes but remains consistently positive. The final gap when 100% of the training data is
used is still sufficient to separate top-2 performing systems on this dataset.

Impact of drop ratio. We compare SPANDROP and Beta-SPANDROP by controlling how likely
each span is dropped on average (drop ratio p). Recall from our experiments on FINDCATS that
larger p will result in distribution drift from the original training set for SPANDROP but not Beta-
SPANDROP, thus the performance of the former deteriorates as p increases while the latter is vir-
tually not affected. As can be seen in Figure 3 (middle), our observation on real-world data is
consistent with this theoretical prediction, and indicate that Beta-SPANDROP is a better technique
for data augmentation should one want to increase sequence diversity by setting p to a larger value.

8



Under review as a conference paper at ICLR 2022

Impact of span size. We train the model with SPANDROP on SQuAD with varying span sizes of
{1, 2, 4, 8, 16, 32, 64} tokens per span to understand the effect of this hyperparameter. We observe
in Figure 3 (right) that as span size grows, the generalization performance of the model first holds
roughly constant, then slowly deteriorates as span size grows too large. This suggests that the main
contributors to generalization performance might have been the total number of spans in the entire
sequence, which reduces with larger spans. This results in fewer potential augmented sequences for
counterfactual learning, therefore lowering regularization strength. This observation is consistent
with that on our synthetic data in our preliminary experiments, where we see that controlling for
other factors, larger span sizes yield deteriorated generalization performance (data not shown due to
space limit). This also suggests that while SPANDROP works with arbitrary span sizes, the optimal
choice of spans for different tasks warrants further investigation, which we leave to future work.

5 RELATED WORK

Long Sequence Inference. Many applications require the prediction/inference over long sequences,
such as multi-hop reading comprehension (Yang et al., 2018; Welbl et al., 2018), long document
summarization (Huang et al., 2021), document-level information extraction (Yao et al., 2019) in
natural language processing, long sequence time-series prediction (Zhou et al., 2021a), promoter
region and chromatin-profile prediction in DNA sequence (Oubounyt et al., 2019; Zhou & Troyan-
skaya, 2015) in Genomics etc, where not all elements in the long sequence contribute equally to the
desired output. Aside from approaches we have discussed that attempt to approximate all pair-wise
interactions between elements in a sequence, more recent work has also investigated compressing
long sequences into shorter ones to distill the information therein for prediction or representation
learning (Rae et al., 2020; Goyal et al., 2020; Kim & Cho, 2021).

Sequence Data Augmentation. Data augmentation is an effective common technique for under-
specified tasks like long sequence inference. Feng et al. (2021) propose to group common data
augmentation techniques in natural language processing into three categories: 1) rule-based meth-
ods (Zhang et al., 2015; Wei & Zou, 2019; Şahin & Steedman, 2018), which apply a set of pre-
defined operations over the raw input, such as removing, adding, shuffling and replacement; 2)
example mixup-based methods (Guo et al., 2019; Guo, 2020; Chen et al., 2020; Jindal et al., 2020),
which, inspired from Mixup in computer vision (Zhang et al., 2018), perform interpolation between
continuous features like word embeddings and sentence embeddings; 3) model-based methods (Xie
et al., 2020; Sennrich et al., 2016), which use trained models to generate new examples (e.g., back
translation Xie et al., 2020).

Most of existing rule-based data augmentation methods operate at the token/word level (Feng et al.,
2021), such as word shuffle/replacement/addition (Wei & Zou, 2019). Shuffle-based techniques are
less applicable when order information is crucial in the raw data (Lan et al., 2019, e.g., in natural
language). Moreover, these operations might not be trivial in implementation over larger spans (e.g.,
at the phrase or sentence level). For example, while replacing tokens require selecting candidates
from a fixed vocabulary which can be provided by well estimated language models (Clark et al.,
2019), replacing phrases or sentences is significantly more challenging since the “vocabulary” is
unbounded and marginal probability difficult to estimate. In contrast, our proposed SPANDROP
supports data augmentation in multiple granularity as the spans in SPANDROP can be of any length,
and is able to reserve sequence order since drop operation does not change the relative order of the
original input.

6 CONCLUSION

In this paper, we presented SPANDROP, a simple and effective method for learning from long se-
quences, which ablates parts of the sequence at random to generate counterfactual data to distill the
sparse supervision signal that is predictive of the desired output. We show via theoretical analysis
and carefully designed synthetic datasets that SPANDROP and its variant based on the beta-Bernoulli
distribution help model achieve competitive performance with a fraction of the data by introducing
diverse augmented training examples, and generalize better to previously unseen data. Our exper-
iments on four real-world NLP datasets demonstrate that besides these benefits, SPANDROP can
further improve upon powerful pretrained Transformer models even when data is abundant.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Wei Bao, Jun Yue, and Yulei Rao. A deep learning framework for financial time series using stacked
autoencoders and long-short term memory. PloS one, 12(7):e0180944, 2017.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Jiaao Chen, Zichao Yang, and Diyi Yang. MixText: Linguistically-informed interpolation of hidden
space for semi-supervised text classification. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 2147–2157, 2020.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with Performers. In International Conference on Learning Representations, 2020.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. ELECTRA: Pre-training
text encoders as discriminators rather than generators. In International Conference on Learning
Representations, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT, 2019.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chandar, Soroush Vosoughi, Teruko Mitamura,
and Eduard Hovy. A survey of data augmentation approaches for nlp. Findings of ACL, 2021.

Saurabh Goyal, Anamitra Roy Choudhury, Saurabh Raje, Venkatesan Chakaravarthy, Yogish Sab-
harwal, and Ashish Verma. Power-bert: Accelerating bert inference via progressive word-vector
elimination. In International Conference on Machine Learning, pp. 3690–3699. PMLR, 2020.

Hongyu Guo. Nonlinear mixup: Out-of-manifold data augmentation for text classification. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 4044–4051, 2020.

Hongyu Guo, Yongyi Mao, and Richong Zhang. Augmenting data with mixup for sentence classifi-
cation: An empirical study. arXiv preprint arXiv:1905.08941, 2019.

Kevin Huang, Qi Peng, Guangtao Wang, Tengyu Ma, and Jing Huang. Entity and evidence guided
relation extraction for docred. arXiv preprint arXiv:2008.12283, 2020.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
1419–1436, 2021.

Fangkai Jiao, Yangyang Guo, Yilin Niu, Feng Ji, Feng-Lin Li, and Liqiang Nie. REPT: Bridg-
ing language models and machine reading comprehensionvia retrieval-based pre-training. arXiv
preprint arXiv:2105.04201, 2021.

Amit Jindal, Arijit Ghosh Chowdhury, Aniket Didolkar, Di Jin, Ramit Sawhney, and Rajiv Shah.
Augmenting nlp models using latent feature interpolations. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics, pp. 6931–6936, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
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