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Abstract
The deployment of autonomous vehicles (AVs) has faced hurdles due to the domi-
nance of rare but critical corner cases within the long-tail distribution of driving
scenarios, which negatively affects their overall performance. To address this
challenge, adversarial generation methods have emerged as a class of efficient
approaches to synthesize safety-critical scenarios for AV testing. However, these
generated scenarios are often underutilized for AV training, resulting in the po-
tential for continual AV policy improvement remaining untapped, along with a
deficiency in the closed-loop design needed to achieve it. Therefore, we tailor the
Stackelberg Driver Model (SDM) to accurately characterize the hierarchical nature
of vehicle interaction dynamics, facilitating iterative improvement by engaging
background vehicles (BVs) and AV in a sequential game-like interaction paradigm.
With AV acting as the leader and BVs as followers, this leader-follower modeling
ensures that AV would consistently refine its policy, always taking into account
the additional information that BVs play the best response to challenge AV. Ex-
tensive experiments have shown that our algorithm exhibits superior performance
compared to several baselines especially in higher dimensional scenarios, lead-
ing to substantial advancements in AV capabilities while continually generating
progressively challenging scenarios.

1 Introduction
Autonomous vehicles (AVs) have sparked a global wave of hope and potential as their capability
continues to advance and evolve. However, further progress toward the ultimate goal of real-world
deployment is consistently impeded by the intractable long-tail distribution of naturalistic driving
scenarios, within which a handful of homogeneous and unchallenging scenarios comprise the majority,
while critical and risky ones are severely limited and underrepresented [Feng et al., 2023; Cui et al.,
2019; Ding et al., 2020; Kou et al., 2008; O’Kelly et al., 2018]. To address this data imbalance issue,
several attempts have been made to generate rare and risky scenarios [Abeysirigoonawardena et al.,
2019; Wang et al., 2021; Hanselmann et al., 2022; Niu et al., 2023; Ding et al., 2023], which pose
significant challenges to AVs. Subsequently, these scenarios can compensate for the lack of rare-seen
scenarios in naturalistic driving data (NDD) and are extensively employed to accelerate the industrial
AV testing phase [Zhao et al., 2016, 2017; Chen et al., 2018; Ding et al., 2020; Feng et al., 2021,
2023]. In this process, background vehicles (BVs) are continuously updated to surface situations
where AV encounters failures. The tested AV, however, remains a fixed agent throughout this iterative
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Figure 1: Stackelberg Driver Model. We first pretrain AV agent and then employ the Stackelberg
game to characterize AV-BV interaction, where AV acts as the leader and BVs act as the followers.
procedure. This leads to scenarios not being fully exploited and their value not being fully harnessed.
Correspondingly, they fail to establish a closed-loop system that seamlessly integrates scenario-based
AV training and testing for continual driving policy optimization.

We believe that these generated scenarios can further be leveraged to optimize AV policy [Pinto et
al., 2017; Xu et al., 2022]. With AV-BV interactions modeled through an adversarial game process,
we can ingeniously achieve continual driving performance improvement by optimizing AV policy
over dynamically generated adversarial scenarios. However, commonly adopted simultaneous game
modeling falls short in fully characterizing the hierarchical relationships in interactions between
AV and BVs, in which BVs are just considered as auxiliary variables within the environment to
serve the ultimate goal of AV improvement. Alternatively, the Stackelberg Game [Von Stackelberg,
2010], being one of the fundamental methods in sequential game theory, has demonstrated favor-
able efficiency and convergence properties in task environments that exhibit hierarchical order of
play [Fiez et al., 2020, 2019]. By prioritizing one of the players (leader) with information about
the others (followers), the leader gains an advantage in the bi-level optimization formulation [Liu
et al., 2022]. Specifically, Stackelberg games find extensive applications in situations that involve
distinct leader-follower relationships [Joel et al., 2002]. In common practice, Stackelberg Generative
Adversarial Networks (GANs) [Fiez et al., 2020] typically designate the generator as the leader and
the discriminator as the follower. As another application, Stackelberg Actor-Critic [Zheng et al.,
2022] assigns the actor as the leader and the critic as the follower. In principle, the dominant player
that aligns more with the goal of the task assumes the role of leader, taking advantage of additional
decision information of the followers, with the objective of strategically lowering its own payoff
while aiming to achieve superior performance overall [Von Stackelberg, 2010].

Intuitively, we observe that a similar hierarchical leader-follower relationship exists between AV and
BVs in the context of autonomous driving. To capture this feature, we naturally propose the novel
Stackelberg Driver Model (SDM) framework where AV assumes the role of the leader and BVs act
as the followers. In this closed-loop continual optimization framework, AV policy is first updated with
the safety-critical scenarios produced by BV policy, knowing that BV would play the best response.
On the other hand, BVs are then optimized to risk AV adversarially over time yet without awareness of
the current AV reaction. The whole architecture and the optimization mechanism of SDM framework
are elaborated in Fig. 1. The contributions of this work are two-fold: (1) We stress the necessity of
constructing a closed-loop continual policy improvement framework for scenario-based autonomous
driving, integrating previously used testing scenarios into the training phase; (2) We introduce the
SDM as a novel approach that aligns with the hierarchical nature of interactions between AV and
BVs, facilitating AV performance improvement in a leader-follower order of play. We empirically
demonstrate that AV and BV agents can both achieve better performance during the game with SDM.
Essentially, SDM outperforms those competing baselines with simple adversarial training paradigms,
non-game modeling and other game modeling approaches, especially in higher dimensional scenarios.
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2 Related Work
2.1 Adversarial Learning in Autonomous Driving
Using adversarial learning in autonomous driving is a promising way to generate more challenging
scenarios for testing, where AV belongs to the environment and the generator (BV) is the agent
we can control [Ding et al., 2023]. Feng et al. [Feng et al., 2021; Sun et al., 2021] use Deep
Q-Network to generate discrete adversarial traffic scenarios. Wachi [Wachi, 2019] uses Multi-
agent DDPG [Lowe et al., 2017] to control two surrounding vehicles to attack the ego vehicle.
DR2L [Niu et al., 2021] uses an adversarial model to robustify autonomous vehicles by surfacing
harder events via domain randomization. (Re)2H2O [Niu et al., 2023] presents Hybrid Offline-
and-Online Reinforcement Learning to generate safety-critical scenarios. STRIVE [Rempe et al.,
2022] proposes a framework that generates safety-critical scenarios via gradient-based optimization.
Adversarial learning approach ensures that the generated scenarios are varied, adversarial, and critical
for validating AV safety [Ding et al., 2023]. However, these generated scenarios are not fully utilized
to train AV in a continual learning manner in these previous works. Research has been conducted
on adversarial RL environments that are evolving [Wang et al., 2020, 2019], but only evaluated in
simplified environments such as bipedal walkers or single adversarial agent, which does not meet the
needs of autonomous driving. Therefore, in our work, we employ adversarial learning to generate
challenging scenarios containing multiple BVs for training AV so that we can establish a closed-loop
framework for autonomous driving.

2.2 Stackelberg Game
Stackelberg game is a sequential structure of play, of which the simplest form involves a leader (the
first player) and a follower (the second player) [Li and Sethi, 2017]. The leader first commits to a
strategy on the premise of knowing the strategy function of the follower, which means that the leader
knows the best response of the follower [Huang et al., 2022]. Correspondingly, the follower chooses
a strategy to maximize its own payoff while adapting to the leader’s policy. This process is repeated
until a Stackelberg Equilibrium [Fiez et al., 2020] (a specific Nash Equilibrium [Kreps, 1989; Holt
and Roth, 2004]) is reached [Vu et al., 2022; Fiez et al., 2019]. Learning dynamics in Stackelberg
games ensure that leaders can fully utilize this leader-follower structure to benefit their own utility
and potentially improve overall efficiency [Liu, 1998; Brocas et al., 2018].

Due to such characteristics, Stackelberg game is regularly applied to find the Nash Equilibria of
bi-level optimization objectives through its stable convergence [Zhou et al., 2019]. For example,
in Stackelberg Actor Critic [Zheng et al., 2022] structure, deeming actor as the leader and critic as
the follower significantly outperforms the standard actor-critic [Konda and Tsitsiklis, 1999; Joel et
al., 2002] algorithm counterparts. Several researches applied the idea of Stackelberg game to the
architectural design of GAN [Goodfellow et al., 2020], proposing an improved GAN architecture
where the generator (leader) optimizes a cost function that depends on parameters of the discriminator
(follower) [Fiez et al., 2020].

Despite its good performance, little prior research has used Stackelberg game to model the interactions
between AV and BVs in autonomous driving domain. In this paper, we explore the potential of
Stackelberg game by training AV and BV sequentially and adversarially. We show evidence that
the excellent convergence and stability properties of Stackelberg game enable BV to generate more
critical scenarios that are specifically designed for AV. AV is then trained based on this tailored BV
environment, thereby enabling faster convergence and performance improvement.

3 Methodology
3.1 Problem Formulation
The interactions between driving agents and the environment can be conceptualized as a Markov
game [Littman, 1994] presented by a tuple (S,A,R, P, ρ, γ), where S, A, R, P , ρ denote the state,
action, reward space, transition probability and initial state distribution, respectively. We assume that
the traffic environment involves an AV denoted as V0 and a set of N BVs denoted as Vi, i = 1, . . . , N .
For each vehicle i at moment t, the state vector sit = [xi

t, y
i
t, v

i
t, θ

i
t], where (x, y) is lateral and

longitudinal position , v is longitudinal velocity and θ is heading angle. The action vector ait =
[∆vit,∆θit], where ∆vit and ∆θit are the increment of longitudinal velocity and heading angle between
two consecutive moments, respectively. During the game, a state at time step t encapsulates the states
of all traffic participants at this time step: st = [s0t , s

1
t , . . . , s

N
t ]T . State transitions are controlled by
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the current state and one action from each agent: T : S ×A0 ×A1 × · · ·AN → P (S). Each agent i
also has a reward function: Ri : S ×A0 ×A1 × · · ·AN → R. The conditional probability form of
transition probability and reward functions are p(st+1|st,a0, . . . ,aN ) and ri(st,a0, . . . ,aN , st+1)
respectively.

The design of the AV reward function at moment t, rt,av, involves concerns on AV speed (rspeedt,av )
and AV collision occurrence (rcolt,av):

rt,av = rspeedt,av + rcolt,av (1)

To increase the driving speed of AV, we reward AV for higher velocity: rspeedt,av =
vt,av

vmax,av
. Naturally,

AV agent deserves penalty for AV collision at the last moment in the scenario, thus avoiding AV
failure cases. Therefore, rcolt,av = −Ra if AV collides with BV else 0.

For BV, the reward function, rt,bv , should additionally includes the collision rate between BVs (rcolt,bv):

rt,bv = −rspeedt,av − rcolt,av + rcolt,bv (2)

where rcolt,bv = −Rb if BV collides with BV else 0. The aim is for BV to create more and more
difficult scenarios for AV with action at,bv = [a1t , . . . ,a

N
t ] ∈ Abv, while allowing AV to learn

and develop a stronger policy πav performing at,av = [a0t ] ∈ Aav to handle the challenges posed
by BV. The objective of the optimization problem is to maximize the cumulative rewards rt,av =
rav(st,at,av,at,bv) ∈ Rav and rt,bv = rbv(st,at,bv,at,av) ∈ Rbv , which are discounted by the same
γ, given state st ∈ S:

Jav (Pav, πav) = Es0∈ρ,st+1∼Pav(·|s,at,av,at,bv)
at,av∼πav(·|st),at,bv∼πbv(·|st)

[
H∑
t=0

γtrt,av

]

Jbv (Pbv, πbv) = E s0∈ρ,st+1∼Pbv(·|s,at,bv,at,av)
at,bv∼πbv(·|st),at,av∼πav(·|st)

[
H∑
t=0

γtrt,bv

] (3)

In conventional Actor-Critic formalism [Haarnoja et al., 2018], Q-function Q̂ is approximated by
minimizing the standard Bellman error (Eq. 4), while policy π̂ is optimized by maximizing the
Q-function (Eq. 5):

Q̂← argmin
Q

Es,a,s′∼U

[
1

2

(
(Q− B̂πQ̂)(s,a)

)2
]

(4)

π̂ ← argmax
π

Es,a∼U

[
Q̂(s,a)

]
(5)

where U denotes the data buffer generated by a previous version of policy π̂ through online sim-
ulation interactions. The Bellman evaluation operator B̂π is given by B̂πQ̂(s,a) = r(s,a) +

γEa′∼π̂(a′|s′)

[
Q̂ (s′,a′)

]
. We model the stochasticity by using a Gaussian distribution N (µ, σ) for

both AV and BV policies, with µ and σ approximated by a neural networkWθ [Niu et al., 2023].
By utilizing a different neural network, the Q-function can be approximated as Q̂ϕ. Subsequently,
through optimizing the policy network of both AV and BV with SDM (Sec. 3.2), the objectives in
Eq. 3 can be maximized, leading to a BV that is more aggressive and higher-quality, as well as an AV
that is both secure and efficient.

3.2 Stackelberg Driver Model for AV-BV Interactions
For the Stackelberg AV-BV model, the leader of the game knows the other players’ response and
incorporates this response in its policy update. In the optimization of Eq. 3, the policy of AV
serves as the ultimate optimization objective. As a result, AV policy network (here we use Actor-
Critic [Konda and Tsitsiklis, 1999] architecture) should possess complete knowledge of the policies
of BVs. Consequently, we designate AV as the leader and BV as the follower in the decision-making
hierarchy. Unlike the Markov game where both players have equal positions in the optimization
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problem [Littman, 1994], in our Stackelberg game formulation, the leader and follower strive to
resolve the following optimization issues:

min
πav∈Πav

{Lπav (πav, πbv)|πbv ∈ arg min
y∈Πbv

Lπbv
(πav, y)}

min
πbv∈Πbv

Lπbv
(πav, πbv)

(6)

Here, Lπav
and Lπbv

represent the loss functions of AV and BV policy networks, respectively.
Specifically, they take the following forms (here we use the formula in SAC [Haarnoja et al., 2018]):

Lπav = α log πav(at,av|st)− min
j=1,2

Qav
targ,j(st,at,av,at,bv)

Lπbv
= α log πbv(at,bv|st)− min

j=1,2
Qbv

targ,j(st,at,bv,at,av)
(7)

The key challenge in Stackelberg game is how to solve the argmin problem as the solution of πbv

still incorporates the gradient of πav . To this end, we employ the gradient descent method [Fiez et al.,
2020] to find the equilibrium where the leader uses its total derivative:

∇πav
Lπav

(πav,F(πav)) =
(
∇πav

Lπav
(π)−∇πav

∇πbv
Lπbv

(π)
[
∇2

πbv
Lπbv

(π)
]−1∇πbv

Lπav
(π)

)
(8)

and the follower responds with F : Πav → Πbv and applies its own policy update.

3.3 Practical Implementation
Agressiveness Regularization of BV. During the update process of BV, we incorporate agres-
siveness regularization mechanism to penalize BV for generating scenarios that are excessively
challenging for the current AV. This is because the optimization objective of BV policy does not have
any constraints related to AV, making it prone to exploring highly aggressive scenarios, leading to
game imbalance. Specifically, this manifests in the form of a high variance between gradients during
back propagation. Therefore, it is necessary to incorporate aggressiveness regularization over the
optimization of the policy network of BV.

Borrowing the loss functions for the policy network in Soft Actor-Critic (SAC) [Haarnoja et al.,
2018], we define the loss function of BV Critic with the added regularization as follows:

Lπbv
= α log πbv(at,bv|st)− min

j=1,2
Qbv

targ,j(st,at,bv,at,av)− β · min
j=1,2

Qav
targ,j(st,at,av,at,bv) (9)

Here, β ·minj=1,2 Q
av
targ,j(st,at,av,at,bv) is the regularization term, where β ∈ [0,+∞) determines

the degree of regularization. By adding Qav
targ into the loss of BV policy, this regularization restricts

BV from generating scenarios too difficult for AV to solve, enabling the robust improvement of AV.
We present the results of ablation experiments on regularization term in Sec. 4.2 Ablation Results.

Update Frequency. Apart from update method, update frequency of AV and BV also plays a
significant role in training results. It is worth considering the potential consequences when the
follower increases the difficulty of scenarios too frequently or the leader’s progress is relatively slow.
In such cases, the optimization trajectory of AV in the objective function space may not have had the
opportunity to advance, as frequent updates of BV have already resulted in significant alterations
to the objective function space structure. Consequently, this can result in a divergence in the game
process. Therefore, the update frequency ratio between AV and BV fav/fbv should be higher than a
certain lower bound. We present the results of ablation experiments on update frequency in Sec. 4.2
Ablation Results.

Pretraining of AV. Before the game begins, we pretrain AV to convergence in SUMO. This allows
AV policy to have reasonable constraints at the start of the game, ensuring stable gameplay.

4 Evaluation
In this section, we provide experimental evidence to demonstrate the effectiveness of our modeling
approach in optimizing autonomous driving policies. We mainly address the following questions to
support our claims:

1) Can SDM AV and BV outperform other baselines in various aspects (safety for AV, quality and
risky level for BV)? (Sec. 4.2 Overall Comparative Experiments)

2) Can SDM AV and BV both continually achieve better performance during the game? (Sec. 4.2
Controlled Experiments)
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4.1 Experimental Settings
Environment Setup. In this work, we import naturalistic vehicle trajectories data from HighD
dataset [Krajewski et al., 2018] as initial state s0 in SUMO simulator [Behrisch et al., 2011], in which
we set up an environment that corresponds with the three-line highway in HighD for scenario replay.
We then select segments from higher dimensional and lowest dimensional scenarios that contain 6
and 2 vehicles respectively in HighD, arbitrarily choosing one of them being AV and the others being
BVs. The processed data points are standardized as transitions (s,a, r, s′, done) that can be leveraged
in downstream RL algorithms directly.

Evaluation Metrics. To evaluate the performance of AV driving policy and the quality of BV-
generated scenarios, we select widely recognized metrics in autonomous driving. AV Collision
Rate (CR) and BV CR present the percentage of AV-BV and BV-BV collision scenarios out of all
evaluation scenarios respectively. Additionally, in order to measure the temporal and spatial density
of AV-BV collision occurrence, we adopt Average Collision Frequency Per Second (CPS) and
Average Collision Frequency Per 100 Meter (CPM) [Niu et al., 2023], given by AV-BV collision
numbers Ncol averaged by total testing time Ttt and total AV testing distance Dtt respectively:
CPS = Ncol/Ttt, CPM = Ncol/Dtt.

Testing AV/BV Driving Policies. Both AV and BV are tested using various policy models. For RL
AV agent in game (RL-AV), we apply 2 BV driving policies for testing: 1) SUMO Car-Following
Model (SUMO-BV) [Song et al., 2014] with SUMO lane-changing model [Erdmann, 2015]; 2) RL
BV agent in game (RL-BV). For RL BV agent in game (RL-BV), we also apply 2 AV driving polices
for testing: 1) RL AV agent pretrained in SUMO-BV environment (pretrained-AV), which is a fixed
policy; 2) RL AV agent in game (RL-AV). We conduct three sets of experiments: pretrained-AV vs
RL-BV, RL-AV vs SUMO-BV, RL-AV vs RL-BV. It is worth noting that the RL-AV and RL-BV
tested against each other are both obtained within the same game setting.
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Figure 2: Comparison between AV, BV agents of SDM,
SimGM, I-SDM and NSG. All scenarios contain 6 vehicles.
AVs of SDM and all baselines are pretrained to convergence
before 20k step mark. The ablation parameters for SDM are
β = 0.2, fav/fbv = 5/1. The subfigures show CRs of (a)
pretrained-AV, (b) RL-BV, (c) RL-AV and (d) RL-AV when
tested with (a) RL-BV, (b) pretrained-AV, (c) RL-BV and
(d) SUMO-BV respectively (all results are computed using
exponential smoothing with a 0.99 coefficient and averaged
over 3 random seeds).

Baselines. We design four baselines
for comparisons:

1) Non-Game: we train RL-AV in
SUMO-BV traffic flow with no game
modeling.

2) Simultaneous Game Model
(SimGM): we train AV to operate
in the presence of destabilizing
adversary BVs that apply disturbance
forces to the system, which is a
zero-sum simultaneous game (Robust
Adversarial Reinforcement Learning,
RARL) [Pinto et al., 2017].

3) Naive Sequential Game (NSG):
we employ the SAC [Haarnoja et al.,
2018] algorithm to adversarially train
AV and BV models, where AV and
BV take turns acting as the Agent and
Environment sequentially.

4) Inversed Stackelberg Driver
Model (I-SDM): we set AV as fol-
lower and BV as leader, in contrast to
the original SDM model, with β = 0
and fav/fbv = 1/1.

4.2 Experimental Results
Overall Comparative Experiments.
In this paragraph, we analyze the train-
ing and testing performance of SDM
against other baselines and provide a rigorous argument about the superiority of SDM. We initiate
the state information of five BVs and one AV (6-vehicle scenario) from the processed six-vehicle

6



scenarios from HighD. Before SDM training, we conduct pretraining on the AV model with SAC
and set BV to “SUMO-BV”. Subsequently, both AV and BV are set as RL agents trained with SDM
during the game.

Conclusion 1. The BV of SDM outperforms other baselines in both quality and risky level.

Fig. 2a and 2b illustrate the variation in performance of BVs of different game settings when tested
in pretrained-AV. A higher pretrained-AV CR (Fig. 2a) implies that the SDM BV model is more
risky. The “BV CR” (BV-BV collision rate) in Fig. 2b represents the quality of BV, where SDM BV
exhibits highest quality with lowest BV CR. Tab. 1 shows quantitative evidence in “pretrained-AV
vs RL-BV”, where AV CR, CPS and CPM in SDM is the highest and BV CR in SDM is the lowest
compared to other baselines.

It can be observed that SDM makes BV increasingly difficult (Fig. 2a), while the collision rate
between BVs (BV CR) decreases (Fig. 2b), exhibiting overwhelming advantages. The comparison
between SDM and I-SDM (blue line and green line in Fig. 2a and 2b) indicates that modeling BV
as the follower allows BV to explore more risky actions for AV (higher pretrained-AV CR) while
ensuring its own quality (lower RL-BV CR).

Conclusion 2. The AV of SDM outperforms other baselines in safety.

Fig. 2c and 2d depicts the dynamic evolution of AV performance in different game settings when
tesed in RL-BV and SUMO-BV. Quantitative results are shown in “RL-AV vs RL-BV” and “RL-AV
vs SUMO-BV” in Tab. 1.

In RL-BV testing environment (Fig. 2c and Tab. 1 “RL-AV vs RL-BV”), the results are consistent
with Con. 1. Despite SimGM and NSG showing lower AV CR, it is primarily due to their BV
CR (BV-BV collision rate) approaching 100% (Fig. 2b), meaning each trajectory ends prematurely
before AV has any chance to collide. This results in high CPS. In contrast, AV of SDM continues
to exhibit exceptional performance even challenged by aggressive and high-quality BVs (Con. 1),
demonstrating that SDM significantly enhances AV capability to handle risky scenarios.

In SUMO-BV testing environment (Fig. 2d and Tab. 1 “RL-AV vs SUMO-BV”), SDM AV is slightly
inferior to Non-Game AV (higher AV CR), primarily due to the fact that the former is trained in
continually challenging RL-BV, while the latter is trained in SUMO. Testing SDM AV in simple
SUMO-BV tends to yield more conservative results.

By comparing the performance of pretrained-AV and SDM RL-AV under SDM RL-BV environment
(blue lines of Fig. 2a and 2c), it becomes evident that the pretrained-AV is unable to effectively
handle the encountered RL-BV of SDM (higher AV CR in Fig. 2a). However, the RL-AV of SDM
demonstrate a rising ability to cope with the gradually increased RL-BV (lower AV CR in Fig. 2c),
indicating that the SDM strengthens AV capabilities and enables it to adapt and overcome the
challenges presented by RL-BV. Furthermore, SDM AV exhibits an overwhelming advantage over
I-SDM (lower RL-AV CR in both RL-BV and SUMO-BV environment), underscoring the advantage
of modeling AV as the leader in dealing with challenging scenarios generated by BVs.
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BV Training Steps
5k
15k
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Figure 3: Controlled experiment results of AV
agents in varying training durations against BV
agents (5 BVs) of differential difficulty levels.

Controlled Experiments. In this paragraph,
experiments are conducted in 6-vehicle scenar-
ios utilizing SDM BV of differential difficulty
levels to evaluate AV at various training stages,
including pretraining (20k) and SDM training
(25k, 35k, 45k, 55k steps). It is worth noting that
BV training begins after AV pretraining phase
(20k). The resultant AV CR, as illustrated in
Fig. 3, serves to exhibit the efficacy of SDM.

For each BV model, under the same AV training
conditions, as the number of BV training steps
increased (different colors), a continuous ascent
in AV CR was observed. This signifies that
over the course of game training, the difficulty
level of BV continuously intensified, enabling
the generation of increasingly challenging scenarios from the BVs.
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Table 1: Assessment on comparisons with other baselines and ablations. Results are averaged over
3 random seeds. The optimal values and second-best values for each column in both 2-vechicle and 6-
vehicle scenarios are marked in red and blue respectively. Two ablation parameters for SDM represent
aggressive regularization scale β = 0.00, 0.20, 1.00, 2.00, 10.00 and AV/BV update frequency ratio
fav

fbv
= 5

1 ,
1
1 ,

1
5 successively.

AV-BV Modeling
pretrained-AV vs RL-BV RL-AV vs SUMO-BV RL-AV vs RL-BV

AV CR↑ BV CR↓ CPS↑ CPM↑ AV CR↓ BV CR↑ CPS↓ CPM↓ AV CR↓ BV CR↓ CPS↓ CPM↓

5
B

V
s

B
as

el
in

es Non-Game / / / / 12.4% 0.667% 0.0368 0.0830 / / / /
SimGM 6.89% 93.5% 0.133 0.116 57.0% 0.758% 0.225 0.582 6.45% 93.6% 0.138 0.112

NSG 1.93% 98.1% 0.0338 0.0334 61.5% 0.833% 0.305 0.684 4.87% 95.1% 0.0868 0.0820
I-SDM 16.5% 72.9% 0.0883 0.146 80.3% 0.687% 0.565 1.04 24.9% 71.2% 0.250 0.316

-S
D

M

0.20, 1:5 31.9% 58.8% 0.115 0.252 17.2% 0.833% 0.0495 0.111 13.0% 68.9% 0.0453 0.114
0.20, 1:1 34.1% 57.0% 0.128 0.277 17.9% 0.909% 0.0508 0.140 13.3% 73.0% 0.0458 0.117
0.20, 5:1 33.2% 56.4% 0.125 0.269 15.7% 0.909% 0.0433 0.123 13.4% 68.6% 0.0435 0.112
0.00, 5:1 32.3% 58.9% 0.123 0.266 16.1% 1.02% 0.0453 0.128 13.3% 68.9% 0.0463 0.118
1.00, 5:1 36.3% 51.2% 0.131 0.287 18.4% 1.17% 0.0513 0.145 12.3% 65.2% 0.0403 0.105
2.00, 5:1 34.2% 56.7% 0.128 0.284 14.4% 0.441% 0.0397 0.102 15.7% 66.6% 0.0534 0.139

10.00, 5:1 18.9% 80.1% 0.0990 0.191 11.5% 0.694% 0.0317 0.0907 9.32% 90.7% 0.0454 0.0979

1
B

V

B
as

el
in

es Non-Game / / / / 3.40% 0.00% 0.00893 0.0247 / / / /
SimGM 28.9% 71.1% 0.586 1.39 56.8% 0.00% 0.203 0.674 24.0% 76.2% 0.481 1.18

NSG 50.3% 39.9% 0.483 1.51 41.0% 0.00% 0.138 0.491 49.8% 40.7% 0.457 1.58
I-SDM 13.9% 85.5% 0.188 0.536 98.0% 0.00% 1.13 3.50 40.4% 66.4% 0.596 1.64

SD
M

0.20, 1:5 53.6% 42.0% 0.443 1.25 16.9% 0.00% 0.0486 0.172 51.2% 44.3% 0.443 1.31
0.20, 1:1 54.0% 37.0% 0.376 1.07 14.3% 0.00% 0.0400 0.141 50.4% 39.4% 0.361 1.13
0.20, 5:1 19.9% 45.7% 0.0656 0.191 10.3% 0.00% 0.0282 0.0912 6.73% 54.4% 0.0220 0.0752
0.00, 5:1 15.4% 73.8% 0.0714 0.212 10.8% 0.00% 0.0294 0.0942 10.1% 74.9% 0.0456 0.152
1.00, 5:1 35.7% 16.3% 0.113 0.334 11.8% 0.00% 0.0317 0.109 18.2% 17.5% 0.0554 0.332
2.00, 5:1 33.6% 19.2% 0.112 0.323 8.98% 0.00% 0.0282 0.0910 14.1% 16.2% 0.0412 0.144

10.00, 5:1 29.3% 49.4% 0.122 0.361 12.8% 0.00% 0.0351 0.122 18.6% 49.0% 0.0678 0.245

For each AV model, at the same difficulty level of BV (same color), AV collision rate remained
elevated during the game (illustrated by the dashed line), indicating progressive policy enhancement
of AV.

Ablation Results. Tab. 1 showcases the results of ablation experiments in 6-vehicle scenarios
and 2-vehicle scenarios on aggressiveness regularization scale β = 0.00, 0.20, 1.00, 2.00, 10.00 and
update frequency ratio fav/fbv = 5/1, 1/1, 1/5.

For aggressiveness regularization, in 6-vehicle scenarios, it can be observed that β = 1.00 results in
riskier and higher-quality BVs, reflected in high AV CPS and low BV CR in Pretrained-AV vs RL-BV.
Also, it leads to better performance in AV, reflected in low AV CPS and low AV CPM in RL-AV vs
RL-BV. An excessively large β = 10 yields a disproportionately small BV reward share in Eq. 3.3,
resulting in lower-quality (high BV CR in pretrained-AV vs RL-BV) and less risky (low AV CR in
pretrained-AV vs RL-BV) BV. Conversely, an overly small β = 0 permits BVs to explore excessively
challenging scenarios, limiting AV performance (high AV CR in RL-AV vs RL-BV). A similar pattern
also emerges in 2-vehicle scenarios, where β = 2.00 shows relatively higher-quality (lower BV CR
in pretrained-AV vs RL-BV) and riskier (higher AV CR in pretrained-AV vs RL-BV) BV under the
same fav/fbv = 5/1. It is evident that the regularization term constrains the exploration of BV from
too aggressive behaviors in action space, consistent with Sec. 3.3 “Agressiveness Regularization of
BV”.

In the case of AV/BV update frequency ratio fav/fbv, in 6-vehicle scenarios, a larger ratio leads
to the learning of higher-quality BVs, as evident in the lower BV CR in Pretrained-AV vs RL-BV
and RL-AV vs RL-BV. Additionally, higher fav/fbv results in better AV performance, as reflected in
lower AV CPS and CPM in both RL-AV vs SUMO-BV and RL-AV vs RL-BV. However, in 2-vehicle
scenarios, a larger fav/fbv = 5/1 leads to the least challenging (lowest AV CR in pretrained-AV
vs RL-BV) BV, while resulting in the safest (lowest AV CR in RL-AV vs RL-BV) AV. This implies
that a lower fbv can maintain a relatively stable structure of the AV’s objective function, giving AV
sufficient time to update, while higher fbv allows better BV update, which aligns with the analysis in
Sec. 3.3 “Update Frequency”.

Experiments on Scenarios with Different Dimensions. As shown in Tab. 1, it reveals that NSG
achieves competitive BV performance (high AV CR and low BV CR in pretrained-AV vs RL-BV)
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in 2-vehicle scenarios. However, in the higher dimensional 6-vehicle scenarios, the baselines BVs
exhibit a sharp decline in performance, while SDM BV shows little. This highlights the superiority
of SDM, especially as the scenario dimension increases.

5 Conclusion and Future Work
In this paper, we propose a novel closed-loop scenario-based autonomous driving framework inte-
grating scenario generation, AV testing and AV improvement. The hierarchical nature of AV-BV
interaction is ingeniously characterized in a sequential Stackelberg game paradigm, referred to as the
Stackelberg Driver Model (SDM). SDM prioritizes AV by informing it that BV would respond with
the best strategy to challenge AV at each training iteration. Consequently, AV continually acquires
strategies to navigate through riskier situations, while BV develops the capacity to generate progres-
sively challenging scenarios for AV. Compared to other baselines, SDM demonstrates overwhelming
advantages in both AV and BV, capable of yielding high-performance AV in both regular and risky
scenarios, as well as high-quality (low BV CR) and challenging (high AV CR) BV. Our ablations
stress and justify the hierarchical relationship between AV and BVs and its consistency with the
inherent nature of leader-follower game process. In the future, we aspire to conduct experiments with
more intricate road topologies, as well as apply SDM to other complex intelligent systems that also
suffer from long-tail effects.

References
Yasasa Abeysirigoonawardena, Florian Shkurti, and Gregory Dudek. Generating adversarial driving

scenarios in high-fidelity simulators. In 2019 International Conference on Robotics and Automation
(ICRA), pages 8271–8277, 2019. 1

Michael Behrisch, Laura Bieker, Jakob Erdmann, and Daniel Krajzewicz. Sumo–simulation of urban
mobility: an overview. In Proceedings of SIMUL 2011, The Third International Conference on
Advances in System Simulation. ThinkMind, 2011. 6

Isabelle Brocas, Juan D. Carrillo, and Ashish Sachdeva. The path to equilibrium in sequential and
simultaneous games: A mousetracking study. Journal of Economic Theory, 178:246–274, 2018. 3

Yize Chen, Yishen Wang, Daniel Kirschen, and Baosen Zhang. Model-free renewable scenario genera-
tion using generative adversarial networks. IEEE Transactions on Power Systems, 33(3):3265–3275,
2018. 1

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on
effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9268–9277, 2019. 1

Wenhao Ding, Baiming Chen, Minjun Xu, and Ding Zhao. Learning to collide: An adaptive safety-
critical scenarios generating method. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2243–2250. IEEE, 2020. 1

Wenhao Ding, Chejian Xu, Mansur Arief, Haohong Lin, Bo Li, and Ding Zhao. A survey on
safety-critical driving scenario generation—a methodological perspective. IEEE Transactions on
Intelligent Transportation Systems, 2023. 1, 3

Jakob Erdmann. Sumo’s lane-changing model. In Michael Behrisch and Melanie Weber, editors,
Modeling Mobility with Open Data, pages 105–123, Cham, 2015. Springer International Publishing.
6

Shuo Feng, Xintao Yan, Haowei Sun, Yiheng Feng, and Henry X Liu. Intelligent driving intelligence
test for autonomous vehicles with naturalistic and adversarial environment. Nature communications,
12(1):748, 2021. 1, 3

Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen, and Henry X Liu.
Dense reinforcement learning for safety validation of autonomous vehicles. Nature, 615(7953):620–
627, 2023. 1

Tanner Fiez, Benjamin Chasnov, and Lillian J. Ratliff. Convergence of learning dynamics in
stackelberg games. CoRR, abs/1906.01217, 2019. 2, 3

9



Tanner Fiez, Benjamin Chasnov, and Lillian Ratliff. Implicit learning dynamics in stackelberg games:
Equilibria characterization, convergence analysis, and empirical study. In Hal Daumé III and Aarti
Singh, editors, Proceedings of the 37th International Conference on Machine Learning, volume
119 of Proceedings of Machine Learning Research, pages 3133–3144. PMLR, 13–18 Jul 2020. 2,
3, 5

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Commun. ACM,
63(11):139–144, oct 2020. 3

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pages 1861–1870. PMLR, 2018. 4, 5, 6

Niklas Hanselmann, Katrin Renz, Kashyap Chitta, Apratim Bhattacharyya, and Andreas Geiger.
King: Generating safety-critical driving scenarios for robust imitation via kinematics gradients. In
European Conference on Computer Vision, pages 335–352. Springer, 2022. 1

Charles A Holt and Alvin E Roth. The nash equilibrium: A perspective. Proceedings of the National
Academy of Sciences, 101(12):3999–4002, 2004. 3

Peide Huang, Mengdi Xu, Fei Fang, and Ding Zhao. Robust reinforcement learning as a stackelberg
game via adaptively-regularized adversarial training. arXiv preprint arXiv:2202.09514, 2022. 3

Daphna Joel, Yael Niv, and Eytan Ruppin. Actor–critic models of the basal ganglia: New anatomical
and computational perspectives. Neural networks, 15(4-6):535–547, 2002. 2, 3

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999. 3, 4

Youseok Kou, Huei Peng, and DoHyun Jung. Worst-case evaluation for integrated chassis control
systems. Vehicle System Dynamics, 46(S1):329–340, 2008. 1

Robert Krajewski, Julian Bock, Laurent Kloeker, and Lutz Eckstein. The highd dataset: A drone
dataset of naturalistic vehicle trajectories on german highways for validation of highly automated
driving systems. In 2018 21st International Conference on Intelligent Transportation Systems
(ITSC), pages 2118–2125, 2018. 6

David M Kreps. Nash equilibrium. In Game Theory, pages 167–177. Springer, 1989. 3

Tao Li and Suresh P Sethi. A review of dynamic stackelberg game models. Discrete & Continuous
Dynamical Systems-B, 22(1):125, 2017. 3

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pages 157–163. Elsevier, 1994. 3, 5

Risheng Liu, Jiaxin Gao, Jin Zhang, Deyu Meng, and Zhouchen Lin. Investigating bi-level optimiza-
tion for learning and vision from a unified perspective: A survey and beyond. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(12):10045–10067, 2022. 2

Baoding Liu. Stackelberg-nash equilibrium for multilevel programming with multiple followers
using genetic algorithms. Computers & Mathematics with Applications, 36(7):79–89, 1998. 3

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in neural information
processing systems, 30, 2017. 3

Haoyi Niu, Jianming Hu, Zheyu Cui, and Yi Zhang. Dr2l: Surfacing corner cases to robustify
autonomous driving via domain randomization reinforcement learning. In Proceedings of the 5th
International Conference on Computer Science and Application Engineering, pages 1–8, 2021. 3

Haoyi Niu, Kun Ren, Yizhou Xu, Ziyuan Yang, Yichen Lin, Yi Zhang, and Jianming Hu. (re)2h2o:
Autonomous driving scenario generation via reversely regularized hybrid offline-and-online rein-
forcement learning. In 2023 IEEE Intelligent Vehicles Symposium (IV), pages 1–8, 2023. 1, 3, 4,
6

10



Matthew O’Kelly, Aman Sinha, Hongseok Namkoong, Russ Tedrake, and John C Duchi. Scalable
end-to-end autonomous vehicle testing via rare-event simulation. Advances in neural information
processing systems, 31, 2018. 1

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Kumar Gupta. Robust adversarial
reinforcement learning. In International Conference on Machine Learning, 2017. 2, 6

Davis Rempe, Jonah Philion, Leonidas J Guibas, Sanja Fidler, and Or Litany. Generating useful
accident-prone driving scenarios via a learned traffic prior. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 17305–17315, 2022. 3

Jie Song, Yi Wu, Zhexin Xu, and Xiao Lin. Research on car-following model based on sumo. In The
7th IEEE/International Conference on Advanced Infocomm Technology, pages 47–55, 2014. 6

Haowei Sun, Shuo Feng, Xintao Yan, and Henry X Liu. Corner case generation and analysis for
safety assessment of autonomous vehicles. Transportation research record, 2675(11):587–600,
2021. 3

Heinrich Von Stackelberg. Market structure and equilibrium. Springer Science & Business Media,
2010. 2

Quoc-Liem Vu, Zane Alumbaugh, Ryan Ching, Quanchen Ding, Arnav Mahajan, Benjamin Chasnov,
Sam Burden, and Lillian J Ratliff. Stackelberg policy gradient: evaluating the performance of
leaders and followers. In ICLR 2022 Workshop on Gamification and Multiagent Solutions, 2022. 3

Akifumi Wachi. Failure-scenario maker for rule-based agent using multi-agent adversarial reinforce-
ment learning and its application to autonomous driving. In International Joint Conference on
Artificial Intelligence. International Joint Conferences on Artificial Intelligence, 2019. 3

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Poet: open-ended coevolution of
environments and their optimized solutions. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 142–151, 2019. 3

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International Conference on Machine Learning, pages 9940–9951.
PMLR, 2020. 3

Jingkang Wang, Ava Pun, James Tu, Sivabalan Manivasagam, Abbas Sadat, Sergio Casas, Mengye
Ren, and Raquel Urtasun. Advsim: Generating safety-critical scenarios for self-driving vehicles.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9909–9918, 2021. 1

Mengdi Xu, Zuxin Liu, Peide Huang, Wenhao Ding, Zhepeng Cen, Bo Li, and Ding Zhao. Trustworthy
reinforcement learning against intrinsic vulnerabilities: Robustness, safety, and generalizability.
ArXiv, abs/2209.08025, 2022. 2

Ding Zhao, Henry Lam, Huei Peng, Shan Bao, David J LeBlanc, Kazutoshi Nobukawa, and Christo-
pher S Pan. Accelerated evaluation of automated vehicles safety in lane-change scenarios based
on importance sampling techniques. IEEE transactions on intelligent transportation systems,
18(3):595–607, 2016. 1

Ding Zhao, Xianan Huang, Huei Peng, Henry Lam, and David J LeBlanc. Accelerated evaluation of
automated vehicles in car-following maneuvers. IEEE Transactions on Intelligent Transportation
Systems, 19(3):733–744, 2017. 1

Liyuan Zheng, Tanner Fiez, Zane Alumbaugh, Benjamin Chasnov, and Lillian J Ratliff. Stackelberg
actor-critic: Game-theoretic reinforcement learning algorithms. In Proceedings of the AAAI
conference on artificial intelligence, volume 36, pages 9217–9224, 2022. 2, 3

Yan Zhou, Murat Kantarcioglu, and Bowei Xi. A survey of game theoretic approach for adversarial
machine learning. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
9(3):e1259, 2019. 3

11


	Introduction
	Related Work
	Adversarial Learning in Autonomous Driving
	Stackelberg Game

	Methodology
	Problem Formulation
	Stackelberg Driver Model for AV-BV Interactions
	Practical Implementation

	Evaluation
	Experimental Settings
	Experimental Results

	Conclusion and Future Work

