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ABSTRACT

Feature selection is of great importance and applies in lots of fields, such as med-
ical and commercial. Wrapper methods, directly comparing the performance of
different feature combinations, are widely used in real-world applications. How-
ever, selecting effective features meets the following two main challenges: 1)
feature combinations are distributed in a huge discrete space; and 2) efficient
and precise combinations evaluation is hard. To tackle these challenges, we
propose a novel deep meta-learning-based feature selection framework, termed
MetaFS, containing a Feature Subset Sampler (FSS) and a Meta Feature Estimator
(MetaFE), which transforms the discrete search space into continuous and adopts
meta-learning technique for effective feature selection. Specifically, FSS parame-
terizes the distribution of discrete search space and applies gradient-based meth-
ods to optimize. MetaFE learns the representations of different feature combina-
tions, and dynamically generates unique models without retraining for efficient
and precise combination evaluation. We adopt a bi-level optimization strategy to
optimize the MetaFS. After optimization, we evaluate multiple feature combina-
tions sampled from the converged distribution (i.e., the condensed search space)
and select the optimal one. Finally, we conduct extensive experiments on two
datasets, illustrating the superiority of MetaFS over 7 state-of-the-art methods.

1 INTRODUCTION

Human activities and real-world applications generate a huge amount of data, where the data has
a large number of features. Sometimes, we need to identify the effects of different features and
select an optimal feature combination for further study. For example, on online shopping websites,
marketer analyze the purchase data to study the purchasing preferences of different peoples and con-
struct the users’ profilingAllegue et al. (2020), which need to select a few number of representative
shopping categories for further study. Supervised feature selection (FS) Cai et al. (2018b), making
full use of label (e.g., the group classifications) information, is apposite to solve these problems.

Numerous supervised feature selection frameworks have been proposed, including filter Miao &
Niu (2016), embedding Tibshirani (1996); Gui et al. (2019), and wrapper El Aboudi & Benhlima
(2016) frameworks, shown in Figures 1(a, b, and c). Filter frameworks evaluate each feature individ-
ually while embedding frameworks greedily weighting features. They both evaluate features instead
of combinations and the selection results are less effective. Wrapper frameworks traverse feature
combinations and directly score them by wrapped supervised algorithms, e.g., K-nearest neighbors
(KNN) and Linear Regression (LR), which significantly improve the effectiveness of feature selec-
tion Sharma & Kaur (2021). However, the number of feature combinations grows exponentially
with the number of features. Evaluating such large combinations is computationally intensive, and
consequently a small number of evaluations would limit the improvement on the final performance.
In summary, there are two major problems remaining in wrapper frameworks, which are listed as
follows:

Problem 1: How to search feature combinations in a large discrete space? If we select k effective
features from a feature set with size n, we need to consider

(
n
k

)
possible feature combinations,

which forms an exponentially large search space. It’s impractical to traverse and compare all feature
combinations from a such huge discrete space.
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Figure 1: Supervised Feature Selection Frameworks and our MetaFS

Problem 2: How to efficiently and precisely evaluate feature combinations? To evaluate subsets,
we usually train an model from scratch for each subset, which is inefficient and time-consuming. To
reduce the time consumption, researchers prefer to use some simple model such as KNN and LR as
the evaluation model Rostami et al. (2021). However, these models are hard to capture the complex
correlation among features and are hard to precisely evaluate different subsets (See Section 5.3).

To address these problems, as shown in Figure 1(d), we propose a meta-learning-based feature selec-
tion framework (MetaFS). MetaFS first transforms the discrete searching problem into a continuous
optimization problem over a feature combination distribution, in which good feature combinations
own higher sampling probabilities than bad ones. Specifically, we adopt differentiable parameters to
represent the probability distribution function, such that it can be easily optimized. Next, we sample
feature combinations from our distribution, and adopt deep meta-learning technique, which main-
tains the combination representations and generates unique evaluation model for each combinations
without re-training, to solve the problem of efficient and precise feature combinations’ evaluation.
Then, according to the evaluation results, we increase the probabilities of good combinations and
decrease bad ones by employing gradient-based method to optimizing the probability distribution
function. Finally, we search the optimal combination in a condensed search space. The main contri-
butions of our work are four folds:

• We propose a novel deep meta-learning-based feature selection framework, entitled MetaFS. It
transforms the discrete search space into continuous and applies bi-level optimization, that al-
ternatively condenses the continuous continuous search space and learns a meta-learning-based
combination evaluation network for effective feature selection.

• We propose Feature Subset Sampler (FSS) to parameterize the distribution of search space, which
allows us using gradient-based methods to condense the search space, effectively reducing the
difficulties in the searching process.

• We propose Meta Feature Estimator (MetaFE) to efficiently and precisely evaluate feature com-
binations. It learns the representations of different feature combinations and generates unique
evaluation model without re-training to each feature combination for precise evaluation.

• We conduct extensive experiments on two real-world benchmark datasets to verify our framework.
The experimental results demonstrate the superiority of MetaFS.

2 RELATED WORK

Feature Selection Methods Cai et al. (2018b) can be classified into supervised, semi-supervised
Yu et al. (2018); Liu et al. (2019) and unsupervised methods Liu et al. (2011); Tang et al. (2019).
Unsupervised and semi-supervised methods cannot make full use of label information, having a poor
performance on supervised tasks.

Filter frameworks, e.g., MI Yang & Pedersen (1997), independently compute the correlation met-
rics of features. While embedding frameworks Gui et al. (2019); Singh et al. (2020) estimate the
contribution (e.g., attention and weight) of features in the process of model construction. Some
neural-network-based embedding methods are proposed recent years. For example, Gui et al. (2019)
carries out the feature selection in the learned latent representation space with an attention mech-
anism, Singh et al. (2020) selects features by an unique loss function and a well-designed neural
network structure and Wang et al. (2019) iterative trains a hierarchical neural network for a better
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selection. However, they all focus on feature scoring, but the greedily chosen features with high
scores are usually not the optimal combination Wiegreffe & Pinter (2019); Jain & Wallace (2019).

Many works El Aboudi & Benhlima (2016) divided wrapper frameworks into heuristic-based meth-
ods Sharma & Kaur (2021); Rostami et al. (2021) and sequential selection methods Granitto et al.
(2006). Sequential selections consecutively add (or eliminate) features from an empty (or full) set
to select features. Whereas heuristic methods applies heuristic algorithms to search the best subset,
such as particle swarm optimization (PSO) Karasu et al. (2020), genetic algorithms (GA) Sayed
et al. (2019), and reinforcement learning algorithms Fan et al. (2020). However, these mentioned
algorithms are still limited by the evaluation efficiency, hardly evaluating huge amounts of subsets
during the selection procedure.

Meta Learning for Weight Generation Meta learning provides an alternative paradigm where a
machine learning model gains experience over multiple learning episodes Hospedales et al. (2020);
Vanschoren (2018). For example, Liu et al. (2018) learns the representation for different architecture
and generate weights to accelerate architecture searching. And Li et al. (2019); Ha et al. (2016) gen-
erate weights for different data domain with the shared information. These mentioned meta learning
model all focus on the similar datasets, architecture and hyper parameters, which aims to accelerate
the convergence and improve the prediction accuracy by learning the shared representation among
datasets. However, there is still no work for evaluating feature combinations.

3 PROBLEM FORMULATION

Suppose there are n samples and m features. Let X = [x1, · · ·xm]
⊤ ∈ Rn×m denote the input

features, where each xk ∈ Rn is the k-th feature in input. Let y = [y1, · · · yn] ∈ Rn denote
labels. Our goal is to find a feature subset I = {i1, · · · , ir} with its corresponding input data
XI = [xi1 , · · ·xir ]

⊤ ∈ Rn×r, such that we can achieve the minimum loss on the validation dataset
by using the model trained with the training dataset. The optimization target can be formulated as:

min
∑
I∈I

λIL
(
Xval

I ,yval; ΘI

)
, s.t.


ΘI = argmin

Θ⋆
L
(
Xtrain

I ,ytrain; Θ⋆
)

∑
I∈I

λI = 1,∀λI ∈ {0, 1}
(1)

where I represent the set of all subsets, λI is a binary variable denotes whether subset I is selected
or not, ΘI denotes the trainable parameters for subset I, and L denotes the loss function.

4 METHODOLOGIES

As there are exponential numbers of subsets and λI are discrete, Eq. 1 is hard to be optimized.
Inspired by Lovász (1975), we relax λI to be continuous, i.e., 0 ≤ λI ≤ 1. In this way, the subset
with the maximum λI is equivalent to the optimal result in Eq. 1 and we can apply gradient-based
method to continuously optimize the feature selection.

In this paper, we propose MetaFS, consisting of two components: (1) Feature Subset Sampler (FSS)
and (2) Meta Feature Estimator (MetaFE). Specifically, FSS parameterizes a subset sampling dis-
tribution to model the continuous coefficients λI and samples subsets for MetaFE. Next, MetaFE,
applying meta learning techniques, efficiently generates unique models without re-training to pre-
cisely evaluate sampled subsets. Then, FSS and MetaFE are collaboratively optimized to condense
the search space (increase the sampling probabilities of good subsets) and finally find the optimal
one. In the following subsections, we’ll show the structures of FSS, MetaFE, and the collaborative
optimization process.

4.1 FEATURE SUBSET SAMPLER

There are
(
m
r

)
coefficients λI in total, which is too large and cannot be directly maintained. As the

constraint of λI (after relaxation) is similar to that of a probability distribution, we propose Feature
Subset Sampler (FSS), using a probability distribution to model these coefficients:

λI ← Pset(I), I = {i1, . . . , ir} ∈ Nr (2)
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where Pset(I) is the sampling probability of subset I. For each sampling, we select r features
according to features’ selecting probabilities without replacement. Suppose pi is the probability for
the i-th feature to be select in a single sampling, the subset sampling probabilities are formulated as:

Pset(Ii) =

∏
ij∈Ii

pij∑
Ik∈I

∏
ij∈Ik

pij
, (3)

where I represent the set of all possible subsets. And when the features’ selecting probabilities is
fixed, e.g., sampling subsets, the denominator is a constant and the subset sampling probability is
proportional to the product of the features’ selecting probabilities, i.e., Pset(Ii) ∝

∏
ij∈Ii

pij .

FSS maintains m trainable features’ importance c = [c1, . . . , cm] ∈ Rm to model the feature se-
lected probability [p1, . . . , pm]. In this paper, we employ softmax function and define the selected
probability of feature i is:

pi =
exp(ci)∑m

k=1 exp(ck)
. (4)

Then, the sampling probability of subset Ii is proportional to the exponent of the sum of correspond-
ing features’ importance:

Pset(Ii) ∝
∏
j∈Ii

pj ∝
∏
j∈Ii

exp(cj) = exp
∑
j∈Ii

cj (5)

In the training process, FSS calculates the feature selecting probability pk according to the main-
tained feature importance c and samples subsets without replacement for MetaFE. Then, MetaFE
calculates the evaluation of sampled subsets and feed backward for FSS to increase the sampiling
probabilities of good subsets. (See detailed training stage in Section 4.3)

4.2 META FEATURE ESTIMATOR

Conventionally, when we evaluate different subsets, we need to train a unique model from scratch
for each of them, which is time-consuming. Intuitively, similar feature combinations take similar
effects, which means that there are inherent correlations among the model parameters that learned
from similar subsets. To make full use of such correlations, we propose Meta Feature Estimator
(MetaFE), learning the representations of different feature subsets, to generate unique model param-
eters for each sampled subset without re-training, for efficient and precise subset evaluation.
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Figure 2: Meta Feature Estimator Framework
As shown in Figure 2(a), MetaFE is composed of activation functions (e.g., ReLU and Sigmoid) and
multiple Meta Fully Connected layers (MetaFC). Figure 2(b) shows the structure of MetaFC, which
is a fully connected layer that calculates the output by generated parameters WI that generated by
Meta Learner for subset I, formulating as:

xout = xinWI + b,WI = Learner(I) (6)

Meta Learner maintains different subsets’ representations by m trainable feature embeddings. And
it generates the weight parameters WI according to the subset representation. As shown in Fig-
ure 2(c), let [e1, . . . , em]⊤ ∈ Rm×de denote m trainable feature embeddings. For each input subset
I = {i1, . . . , ir}, we suppose that all features have similar impact on model inference, meta learner
first extracts the corresponding feature embeddings E = [ei1 , . . . , eir ]

⊤ ∈ Rr×de and fuses them
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into a subset embedding eI = (1/r)
∑ir

k=i1
ek by mean function, as shown in Figure 2 (d). Then,

meta learner generates the weight parameters WI ∈ Rdin×dout by a trainable fully connected neural
network (FC network) according to the learned subset embedding eI. And finally, we apply WI to
compute xout according to Eq. 6.

Note that instead of training FC weight parameters from scratch, MetaFE generates the parameters
from subset embeddings and meta parameters (Figure 2b). In this way, MetaFE can generate unique
fully connected neural networks for each input subset, and this generating process do not require
re-training process, which can significantly improve the evaluation efficiency in feature selection.

4.3 SEARCHING PROCEDURE

Feature selection (Eq.1) can be regarded as a bi-level optimization problem Colson et al. (2007).
Inspired by Cai et al. (2018a), we employ a collaborative optimization procedure to optimize MetaFE
and FSS to finally search the best subset, which contains three stages and shown in Figure 3(a).
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Figure 3: Training Process of Meta Feature Selection

Pre-training MetaFE. As MetaFE initially cannot compare the effectiveness of subsets without
feeding any training data, we first pre-train MetaFE by using subsets sampled from uniform distri-
bution. In this way, MetaFE could recognize the better feature combination to guide the optimization
of FSS. The detailed training process of MetaFE is same to that in collaborative learning.

Collaborative learning. FSS and MetaFE are alternately optimized to condense the search space
described by FSS and increase the evaluation accuracy of MetaFE, simultaneously:

• Updating FSS. FSS is trained to increase the sampling probability of good subsets and decrease
the bad ones to condense the search space. As shown in Figure 3(b), we first sample a batch
of subsets and evaluate them by MetaFE, and then calculate the gradient descent direction of
features’ importance to update FSS. Specifically, for a sampled subsets [I1, . . . Ibs ] with the size
number of bs, we select a batch of samples for each of them, and feed these samples into MetaFE to
calculate the supervised learning loss (subset evaluation) [l1, . . . , lbs ] of different subsets. Finally,
we update the feature importance c to increase the probability of good subsets, such that a subset
with a lower loss need to have a higher sampling probability:

c⋆ = argmin
c

bs∑
k=1

lkPset(Ik) = argmin
c

bs∑
k=1

lk exp
∑
i∈Ik

ci, (7)

where Pset(Ik) is the sampling probability of subset Ik that is exponentially proportional to the
sum of corresponding features’ importance (Eq. 5). In this work, we employ gradient descent
method to update the feature importance c⋆.

• Updating MetaFE. Similar to updating FSS, MetaFE is updated by batch gradient descent. For
each update, we first samples bs subsets and select a batch of samples [XI1 , . . . ,XIbs

] ∈ Rbs×bd×r

for each of them, where bd is the batch size of samples. Then, we updates MetaFE to increase the
accuracy of subsets’ evaluation, such that,

min
ΘIk

bs∑
k=1

L(XIk ,y; ΘIk), (8)
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where L is the loss function, ΘIk = G(Ik;Θ) is the generated parameters that produced by subset
Ik and all trainable parameters Θ in MetaFE (including subset embeddings and meta parameters).
As a result, we can freeze the trainable parameters of FSS and optimize the trainable parameters
Θ with the following formula:

Θ⋆ = argmin
Θ

bs∑
k=1

L(XIk ,y;G(Ik;Θ)). (9)

Then we can apply gradient descent to optimize all trainable parameters in MetaFE, and the gra-
dient of Θ can be easily computed by back-propagation according to chaining rule.

Sampling and Selecting. when the search space is converged, MetaFS samples and evaluates mul-
tiple subsets. Finally, we select the optimal subset as our result.

5 EXPERIMENTS

In this section, we conduct experiments on two real-world datasets to show our superiority in three
aspects: 1) the performance of the selected feature subsets; 2) the efficiency and precision of subset
evaluation; 3) the convergence of subset search stages.

5.1 EXPERIMENTS SETTING

5.1.1 DATASETS AND METRICS

The experiments are conducted on two datasets, one of them is public, listed as follows:

• Shopping: This dataset is from an online shopping website, which aims to estimate the customs’
gender according to 21912 different shopping categories (features). This data is sparse and huge,
which has more than 3 million samples. To reduce the time usage, we only select 10 thousand
samples for baselines to evaluate each subset (use all samples in MetaFS).

• Gisette Dua & Graff (2017): Gisette is a handwritten digit recognition dataset, which has 7000
samples and 5000 features. And most of the features are highly correlated.

For all datasets, we simply select 50 features in experiments, so that we can artificially analyze them
in downstream works. We divide all samples into two parts with a ratio of 8:2 for feature selection
and testing. For the methods requiring validation dataset, we further divide the samples for feature
selection into two parts, where 80% of them for training and 20% of them for validating. To test
the performance of the selected subset, we extract the selected features and train a fully connected
neural network (FCN) from scratch with an early-stop mechanism. And then we evaluate the subset
performance on the test dataset. We also run such re-training processes 10 times, and take the mean
values as the final results on Gisette dataset to reduce the evaluation bias as it has less samples and
is easy to fall in over-fitting. We adopt precision, recall and F1-score to evaluate the results.

5.1.2 BASELINES

We compare our MetaFS with 8 different methods, including four filter and embedding methods,

• MI-KBest Yang & Pedersen (1997): It ranks features by Mutual Information compared with label
information. And then we select k features with the highest scores.

• Lasso Tibshirani (1996): It trains a linear classification model (logistic regression) via l1 penalty,
and select the features whose the corresponding weights are non-zero.

• AFS Gui et al. (2019): It trains a neural network and learns the feature importance with attention
mechanism. We select the features that the corresponding attention weights are non-zero.

In addition, we compare MetaFS with four wrapper methods, where we apply Decision Tree (DT)
as the wrapped model, as it has a good performance on subset evaluation (see Section 5.3).
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• PSO Chuang et al. (2008): Particle Swarm Optimization (PSO) is a heuristic method, which
optimizes a problem by iteratively trying to improve a candidate solution with regard to a given
measure of quality. We use this method to search the best subset.

• WOA Mafarja & Mirjalili (2018): Similar to PSO, we apply whale Optimization Algorithm (WOA)
to search the subsets, which mimics the hunting mechanism of humpback whales in nature.

• HHO Too et al. (2019): Hybrid High-Order (HHO) is another heuristic method, which searches
subsets with several active and time-varying phases of exploration and exploitation.

We also compare a hybrid feature selection method, which is a mix of filter and wrapper methods:

• PPIMBC Hassan et al. (2021): It is a Markov Blanket based feature selection algorithm that selects
a subset of features by considering their performance both individually as well as a group.

For all baselines, we turn the hyper-parameters and limit the numbers of selections closing to 50.

Experiments settings In our implementation, we build a MetaFE model with two hidden layers,
where the layer sizes are set to [64, 32]. The size of feature embeddings in MetaFE is simply set to
256. The batch size of samples and subsets are set to 128 and 32, respectively. In the experiments,
we train MetaFE on the training dataset, update FSS and search the optimal subset on the validation
dataset. We employ cross entropy as a loss function in the experiments, and all experiments are
conducted by using a single Nvidia 2070 GPU.

5.2 PERFORMANCE COMPARISON

Table 1 shows the evaluation results of the selected features. First, for the filter and embedding
methods, i.e., MI-Kbest, Lasso, and AFS, have worse performances on Gisette dataset, as they
evaluate features greedily and are hard to capture the cross-correlation among features. Second, for
the wrapper and hybrid methods, i.e., RFE, PSO, WHO, HOO, and PPIMBC, which need to train
plenty of models for evaluating different subsets, have bad performance on the Shopping dataset.
The reason is that the Shopping dataset is hard to learn only with a few samples (see Section 5.3),
and the methods easily fall into local minimum with imprecise evaluations.

Table 1: The Evaluation Performance of Selecting Results

Metrics
Shopping Gisette

F1(%) Precision(%) Recall(%) F1(%) Precision(%) Recall(%)
MI-Kbest 0.7012 0.7045 0.7003 0.9456 0.9456 0.9456
Lasso 0.6625 0.6628 0.6624 0.9608 0.9607 0.9608
AFSelect 0.6870 0.6968 0.6865 0.9600 0.9599 0.9602
PSO 0.6782 0.6805 0.6775 0.9615 0.9615 0.9617
WHO 0.6721 0.6813 0.6718 0.9633 0.9632 0.9635
HOO 0.6256 0.6640 0.6336 0.9543 0.9543 0.9545
PPIMBC 0.4500 0.6136 0.5329 0.9725 0.9724 0.9728
MetaFS 0.7114 0.7151 0.7104 0.9726 0.9727 0.9725

Unlike the above methods, MetaFS achieves the best results on the two datasets. The reason is that
MetaFS, as a wrapper framework, can directly compare different feature subsets during the selec-
tion procedure. In addition, compared to the other wrapper methods, MetaFS applies meta-learning
techniques, efficiently evaluating subsets without re-training. Moreover, the deep-learning-based
evaluation model can capture complex correlations among features, improving the evaluation’s pre-
cision. With the precise and efficient subset evaluations, MetaFS could quickly filter out the bad
subsets to condense the search space and finally tests much more subsets to select the optimal result.

5.3 STUDIES ON FEATURE SUBSET EVALUATION

To study the precision and efficiency of different evaluation methods, we sample 100 different sub-
sets from the uniform distribution and a converged subset space. Then, we compare the time usage
of the evaluation process and the ranking similarities of the evaluating results. The compared eval-
uation methods include four popular retrained learning methods, which are widely used in wrapper
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methods, including KNN, Linear Regression (LR), Support Vector Classification (SVC), and Deci-
sion Tree (DT). In addition, we compare it with our proposed MetaFE. To illustrate the effectiveness
of MetaFE, we also compared it to an FCN model that trained for all subsets without retraining.

Table 2: The Ranking Accuracy of Evaluation Results (RBO)
Retraining Training Once

KNN DT LR SVC FCN MetaFE

Gisette
Random 0.9092 0.9013 0.858233 0.8994 0.7190 0.9146

Converaged 0.6371 0.5747 0.6065 0.6313 0.5311 0.6772

Shopping
Random 0.6883 0.8061 0.7479 0.7600 0.6548 0.8518

Converaged 0.5106 0.5971 0.6470 0.6839 0.5265 0.6523

As shown in Table 2, we introduce Rank Biased Overlap (RBO) to evaluate the ranking similarities
of different evaluation results, where a higher RBO indicates higher similarity. The ground truth is
the results from an FCN model re-trained for each subset. For the Gisette dataset, as it is easy to
learn, almost all re-trained methods have a good performance in the uniform sampling distribution.
However, when the distribution converges, these models are hard to distinguish the nuances among
good subsets precisely. For the sparse Shopping dataset, the re-trained methods produce worse
results in all subset sampling spaces. The reason is that the efficiency of evaluation limits them
(see Table 3), and they could only evaluate 10 thousand samples for each subset. Different from
the above methods, MetaFE, based on a fully connected neural network, has an excellent ability
to capture complex non-linear correlations among features. Moreover, it can almost ignore the
time-consuming training stage and can be trained with all visible samples to improve the inference
performance. Compared to FCN, MetaFE could generate unique model parameters for different
subsets, which has a good generalization for subset evaluation. As a result, MetaFE has a precise
evaluation performance in experiments, especially for datasets with a large number of samples.

Table 3: Time Usage of Evaluating One subset (ms)
Retraining MetaFE

KNN DT LR SVC CPU GPU GPU*
Shopping(10k) 7930.96 3715.88 3722.36 11572.44 375.85 31.26 73.6187

Gisette 533.51 35.65 33.76 366.34 27.92 7.24 13.905

Table 3 shows the time usage of different methods for evaluating one subset, where the re-trained
methods only evaluate 10 thousand samples on the Shopping dataset. We also show the time usage of
MetaFE under different devices, where the GPU* represents the estimated time usage that considers
the training process. The re-trained methods cost plenty of time for training models. Worsely, the
used time increases with the size of trained samples. Conversely, MetaFE does not need re-training
models, costing less time. Based on a neural network, it can fully use GPU parallel technique, which
significantly accelerates the calculation speed. Even though taking the training process into account
(GPU*), the evaluation process is still much more efficient than re-trained methods. Therefore,
MetaFE has excellent advantages in the precision and efficiency on subset evaluation.

5.4 CONVERGENCE ANALYSIS

In this subsection, we will analyze the convergence of MetaFS during the training process. We
first compare the convergence curve of our MetaFS (FSS +MetaFE) with two variants to show the
effectiveness of our training process: 1) FSS+FCN: replacing MetaFE with an FCN model, and 2)
Init+MetaFE: removing the FSS and sample subsets from an initial uniform distribution.

We take the Gisette dataset as a typical case, and Figure 4 shows the F1-score varies over time. In
the pre-training stage, all models are trained with random subsets (sampled from the uniform distri-
bution). MetaFE can capture the inherent correlation of different subsets, having a higher prediction
precision than FCN. In the collaborative learning stage, using FSS can increase the probabilities
of good subsets and condense the search space. As a result, the estimator (MetaFE or FCN) can
be trained with similar subsets and finally improves the precision of model inference. To show
the change in model performance during training stages, we compare the difference of the subset
evaluations of MetaFE that trained on different training stages. The ground truth is the test from a
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Figure 4: The Convergence Curves in Giseete Dataset

well-trained FCN model, and the subsets are sampled from two different distributions: 1) a uniform
distribution and 2) a converged subset sampling space from a well-trained FSS.

Figure 5.4 shows the ranking similarity (RBO) change along the training iteration, where the blue
lines are the results of MetaFEs that were trained on different training stages, where the evaluation
subsets follow uniform distribution, corresponding to the RBO result on the left axis. The red lines
are the results of MetaFEs evaluated with converged subset space, corresponding to the right axis.
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Figure 5: Ranking Similarity (RBO) of MetaFE Change along the Training Iteration

First, the RBO curves along the training iteration are unstable. One reason is that, since training
FCN models for evaluating subsets is time-consuming, we only sample 100 subsets, which is small
and cannot reflect the actual performance. Overall, the general trend of the RBO curve that eval-
uates converged subset space is increased with the training iteration. The reason is that MetaFE is
collaboratively trained with the FSS and could specifically increase the precision of evaluating good
subsets with the growing training iterations. For the subsets that follow a uniform distribution, the
performance of MetaFE is decreased with the iteration as it is based on a neural network, having a
characteristic of forgetting old knowledge Biesialska et al. (2020). However, our proposed collabo-
rative training stage alternately optimizing the subset sampling space (FSS) and MetaFE, ensuring
that MetaFE is always in the optimal state when updating the subset sampling space, can effectively
avoid this problem. As a result, MetaFS has good performance throughout the training stages.

6 CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel Meta Feature Selection framework (MetaFS) for effective fea-
ture selection. MetaFS, consisting of FSS and MetaFE, transforms the discrete search problem into
continuous and adopts meta learning techniques to evaluate subsets without retraining. Specifically,
the proposed FSS parameterizes the search space and adopts gradient-based methods to effectively
reduce the search difficulties. Meanwhile, ensuring the evaluation precision, MetaFE could signifi-
cantly decrease the time usage of evaluation over the selection procedures. MetaFS adopts bi-level
optimization strategies to optimize FSS and MetaFE, evaluating multiple subsets sampled from FSS
and finally select the optimal one. We conduct extensive experiments on two datasets, demonstrating
that our MetaFS searches the promising subsets. In the future, we will study the hyper parameters
of MetaFS and simplify the operation to support rapid deployment in real-world scenarios.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Sahar Allegue, Takoua Abdellatif, and Khalil Bannour. Rfmc: a spending-category segmentation.
In 2020 IEEE 29th International Conference on Enabling Technologies: Infrastructure for Col-
laborative Enterprises (WETICE), pp. 165–170. IEEE, 2020.

Magdalena Biesialska, Katarzyna Biesialska, and Marta R Costa-Jussa. Continual lifelong learning
in natural language processing: A survey. arXiv preprint arXiv:2012.09823, 2020.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task
and hardware. arXiv preprint arXiv:1812.00332, 2018a.

Jie Cai, Jiawei Luo, Shulin Wang, and Sheng Yang. Feature selection in machine learning: A new
perspective. Neurocomputing, 2018b.

Li-Yeh Chuang, Hsueh-Wei Chang, Chung-Jui Tu, and Cheng-Hong Yang. Improved binary pso for
feature selection using gene expression data. Computational Biology and Chemistry, 2008.

Benoı̂t Colson, Patrice Marcotte, and Gilles Savard. An overview of bilevel optimization. Annals of
operations research, 2007.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

Naoual El Aboudi and Laila Benhlima. Review on wrapper feature selection approaches. In 2016
International Conference on Engineering MIS (ICEMIS), 2016.

Wei Fan, Kunpeng Liu, Hao Liu, Pengyang Wang, Yong Ge, and Yanjie Fu. Autofs: Auto-
mated feature selection via diversity-aware interactive reinforcement learning. arXiv preprint
arXiv:2008.12001, 2020.

Pablo M Granitto, Cesare Furlanello, Franco Biasioli, and Flavia Gasperi. Recursive feature elim-
ination with random forest for ptr-ms analysis of agroindustrial products. Chemometrics and
Intelligent Laboratory Systems, 2006.

Ning Gui, Danni Ge, and Ziyin Hu. Afs: An attention-based mechanism for supervised feature
selection. In Proc. of AAAI, 2019.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Atif Hassan, Jiaul H Paik, Swanand Khare, and Syed Asif Hassan. Ppfs: Predictive permutation
feature selection. arXiv preprint arXiv:2110.10713, 2021.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. arXiv preprint arXiv:2004.05439, 2020.

Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186,
2019.
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