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Abstract

Deep neural networks show superior performance in text classification tasks, but
their poor interpretability and explainability can create trust issues. For text classi-
fication problems, the identification of textual sub-phrases or “rationales” is one
strategy for attempting to find the most influential portions of text, which can
be conveyed as critical in making classification decisions. Selective models for
rationale extraction faithfully explain a neural classifier’s predictions by training a
rationale generator and a text classifier jointly: the generator identifies rationales
and the classifier predicts a category solely based on those rationales. The se-
lected rationales are then viewed as the explanations for the classifier’s predictions.
Through exchange of such explanations, humans can interact to achieve higher
performances in problem solving. To imitate the interactive process of humans, we
propose a simple interactive rationale extraction architecture that selects pairs of
rationales and then makes predictions from two independently trained selective
models. We show how this architecture outperforms both base models for text
classification tasks on datasets IMDB movie reviews and 20 Newsgroups in terms
of predictive performance.
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1 Introduction

Selective (or select-predict) models for rationale extraction in text classification (Lei et al., 2016;
Bastings et al., 2019), with the general structure shown in Figure 1, are designed to extract a set
of words, namely a rationale (Zaidan et al., 2007), from an original text. For prediction purposes,
the rationale is expected to be sufficient as the input for the classification model to obtain the same
prediction as that prediction was based on the whole text. For the purpose of interpretability, the
rationale should be concise and contiguous. A rationale extraction model is faithful (Lipton, 2018)
if the extracted rationales are truly the information used for classification (Jain et al., 2020). The
problem of extracting rationales that satisfy the criteria above is challenging from a machine learning
perspective and becomes more difficult with only instance-level supervision (i.e., without token-level
annotations) (Jain et al., 2020). One model’s identification of rationales can suffer from high variance
because of the complex training process. An ensemble of more than one model helps to reduce
variance, which leads to the exploration of how to make use of two rationale extraction models and
how to make a choice when the two models make different predictions.

1The implementation is provided on https://github.com/JiayiDai/RationaleExtraction.

2022 Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022.

https://github.com/JiayiDai/RationaleExtraction
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Figure 1: Schematic of selective rationale extraction models where x is an embedded text, g is a
generator and f is a classifier. Generator g extracts a rationale r based on which classifier f makes a
prediction y.

When two humans have different answers to a prediction, they tend to exchange their reasons or
explanations, after which there might be a change of mind. To show why this interaction of humans is
effective, we use the problem of proving a mathematical conjecture as an instance: because searching
for a correct mathematical proof, which then leads to a correct claim about the conjecture, is usually
much more difficult than verifying a proof (e.g., P ⊆ NP in computation theory); But often one
who is not capable of finding a good proof can tell if a given proof is good. So in considering the
complexity for a generator to search among all possible rationales with only remote instance-level
supervision, the work of rationale extraction can be much more difficult than classification.

We may then consider alternative selective models for rationale extraction to be naturally compatible
with the interactive pattern of humans. We can do this by viewing the rationales extracted by a
generator as the proofs for the decisions of its classifier, which means the interaction between two
base models can be performed by the exchange of their rationales. Subsequently, the problem becomes
how to decide if a rationale is good or not so that we know which pairs of rationale and prediction
are appropriate choices when two base models make different predictions. A good rationale here is
expected to give a correct prediction when input to a decent classifier.

Intuitively, a good rationale is supposed to contain strong indicators for the correct “gold label”
instead of insignificant words which do not contribute to classification. This leads to two simple rules
for handling base models’ disagreements: first, a good rationale is more likely to produce consistent
predictions among classifiers (i.e., a good explanation convinces people); second, a good rationale is
more likely to produce a higher confidence level (Section 2.2) for the prediction of one classifier (i.e.,
one with a good reason is often confident). The two rules create a basis for building classification
models, as opposed to random guessing based on otherwise randomly selected words. Note that the
two rules are based on the assumption that the probability that base models extract strong indicators
for wrong labels is very low, which should be considered to be true for decent generators and decent
classifiers (i.e., better than random guessing).

To imitate the interactive pattern of humans in problem solving, we introduce Interactive Rationale
Extraction for Text Classification to interactively connect two independently trained selective
rationale extraction models. We show that the architecture achieves higher predictive performance
than either base models with similar performance on IMDB movie reviews and 20 Newsgroups. This
is done by selecting pairs of rationale and prediction from the base models using the above simple
rules. Because the rationales in our architecture are generated before any classification is made,
the interactive process also differs from post-hoc processing, such as Lime (Ribeiro et al., 2016),
which generates a rationale or token-level importance scores after making a prediction. In addition,
because this interactive architecture makes decisions solely based on the base models’ rationales, the
faithfulness and interpretability of the base models’ rationales are not compromised.

2 Background

2.1 Selective Rationale Extraction

The original selective rationale extraction model was proposed by Lei et al. (2016) with an architecture
shown in Figure 1. Their model faithfully explains a neural network-based classifier’s predictions
by jointly training a generator and a classifier with only instance-level supervision. We summarize
their work as follows. The generator g consumes the embedded tokens of the original text, namely
x = [x1, x2, ..., xl] where l is the number of the tokens in the text and each token xi ∈ Rd is an
d dimensional embedding vector, and outputs a probability distribution p(z|x) over the hard mask
z = [z1, z2, ..., zl] where each value zi ∈ {0, 1} denotes whether the corresponding token is selected.
A rationale r is defined as (z, x) representing the hard mask z over the original input x. Subsequently,
the classifier f takes (z, x) as input to make a prediction f(z, x). Given gold label y, the loss function
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Figure 2: Schematic of our interactive rationale extraction where rationales are exchanged. The
notations follow Figure 1.

used to optimize both generator g and classifier f is defined as

loss(z, x, y) = ||f(z, x)− y||22 + λ1||z||+ λ2

l−1∑
i=1

|zi − zi+1| (1)

which consists of three parts: prediction loss, selection loss and contiguity loss. The parameters
λ1 and λ2 in the loss function are used to tune the constraints on rationales (i.e., conciseness and
contiguity). Jain et al. (2020) modified the loss function to apply hard constraints on rationales
(i.e., maximum length) by not punishing a model when a given limit on the number of words is not
reached.

Because of the absence of token-level supervision and the use of hard masking which is not differen-
tiable, Lei et al. (2016) turned to REINFORCE (Williams, 1992) for gradient estimation, which causes
high variance and sensitivity to hyper-parameters (Jain et al., 2020). Following the select-predict
architecture proposed by Lei et al. (2016), Bastings et al. (2019) explored a re-parameterization
heuristic called HardKuma for gradient estimation. Furthermore, Guerreiro and Martins (2021)
exposed the trade-off between differentiable masking and hard constraints in selective rationale
extraction models.

2.2 Confidence Level

Confidence level (CL) is a measure that indicates how far a neural network’s prediction is from
being neutral. Given a neural network’s non-probabilistic output k = [k1, k2, ..., kn] for a n-class
classification, Kumar et al. (2022) defined the CL of the classification with a softmax function

CL(k) =
exp(max(k))∑n

i=1 exp(ki)
(2)

where max(k) is the value of the output node ki with the highest value (i.e., i is the final prediction).

Guo et al. (2017) stated that a classification network should not only have a high accuracy but also
indicate how likely each prediction is correct or incorrect for trust purposes. In addition, their study
on neural networks’ calibration Guo et al. (2017) suggested that accuracy, even if not nearly identical
to CL for some neural networks, is generally positively correlated to CL. This means that, when two
base models with similar expected performances make different predictions, the prediction with a
higher CL is generally more likely to be correct.

3 Algorithm

As demonstrated in Figure 2, after the interaction between two base select-predict models, a total
of 4 predictions are generated: y1 = f1(r1), y′1 = f1(r2), y′2 = f2(r1) and y2 = f2(r2) where y1
and y2 are the predictions based on their own rationales and y′1 and y′2 are predictions based on the
exchanged rationales, as shown in the table below.

r1 r2
f1 y1 y′1
f2 y′2 y2

Given an input text, when the predictions of two base models are the same, namely y1 = y2, both
rationales r1, r2 are good and the final prediction is the shared prediction. When two base models
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initially show a disagreement, we check if one rationale causes more consistent predictions. If r1
causes more consistent predictions, in order words, if r1 changes the prediction of f2 to y1 when
given as an input rationale (namely, y1 = y′2), but r2 does not change the prediction of f1 to y2
when given as an input rationale (y2 ̸= y′1), then the pair (r1, y1) is chosen as the final rationale and
prediction; symmetrically, if r2 causes more consistent predictions, the pair (r2, y2) is chosen. For
the cases where no rationale causes more consistent predictions, we rely on confidence levels which
are real numbers between 0 and 1 as defined by expression (2). If the confidence level of f1 on r1
is higher than that of f2 on r2 (say CL(f1, r1) > CL(f2, r2) with (f1, r1) and (f2, r2) separately
denoting their corresponding non-probabilistic outputs), the pair (r1, y1) is chosen; otherwise, the
pair (r2, y2) is chosen. The process of selecting a pair of rationale and prediction is formalized in
Algorithm 1. It’s worth mentioning that, in implementation, the exchange of rationales only needs to
be performed when base models have a disagreement in prediction (i.e., y1 ̸= y2).

Algorithm 1 Rationale-prediction Selection after Interaction
Require: f1, f2, r1, r2, y1, y

′
1, y

′
2, y2 from Figure 2, CL(f, r) for the confidence level of f on r.

if y1 = y2 then ▷ agreement
return (r1, y1) ▷ or (r2, y2)

else ▷ disagreement
if y1 = y′2 and y2 ̸= y′1 then ▷ model 2 convinced by model 1

return (r1, y1)
else if y1 ̸= y′2 and y2 = y′1 then ▷ model 1 convinced by model 2

return (r2, y2)
else

if CL(f1, r1) > CL(f2, r2) then ▷ model 1 is more confident
return (r1, y1)

else ▷ model 2 is more confident
return (r2, y2)

end if
end if

end if

4 Experiments

4.1 Datasets

IMDB movie reviews (Maas et al., 2011) This is a dataset of 50,000 movie reviews collected from
the Internet Movie Database (IMDB) with binary labels (i.e., positive and negative). The dataset is
originally split into two subsets: 25,000 for training and 25,000 for testing. We randomly split the
training data into 20,000 (80%) for training and 5,000 (20%) for development. The two labels are
perfectly balanced in each subset.

20 Newsgroups It is a publicly available dataset containing a total of 18,846 texts, with 11,314
for training and 7,532 for testing, in 20 distinct categories of news topics. We split the training data
randomly into 9,051 (80%) for training and 2,263 (20%) for development. The numbers of the 20
labels are not perfectly balanced and varying from 304 to 490 in the training data, 73 to 131 in the
development data and 251 to 399 in the testing data.

4.2 Setup

Training Instead of REINFORCE (Williams, 1992), a re-parameterization heuristic Gumbel-
Softmax (Jang et al., 2017) is used to simplify gradient estimation. A convolutional neural network
(Kim, 2014) is used for both generators and classifiers with filter sizes of [3,4,5], filter number of 100
and dropout rate of 0.5. Hidden dimensions of 100 and 120 are separately used for the first and the
second base model, which is the only difference among all parameters for training two base models.
Adam is used as the optimizer with a weight decay of 5e-06 and an initial learning rate of 0.001.
If no improvement is achieved in loss in development dataset from the previous best model after a
patience of 5 epochs, the learning rate is halved (i.e., 0.001, 0.0005...) and the training process starts
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20 Newsgroups
(λ1, λ2) (5e-3, 0) (1e-3, 1e-3)
Base Model Model 1 Model 2 Model 1 Model 2
Length 11.33 11.18 21.76 22.68
Contiguity Loss 17.12 16.84 21.92 21.45
Interaction Cases (331, 363, 1129, 1211.5) (228.6, 264, 974.2, 1075.8)
Case Accuracy (0.41, 0.43, 0.30, 0.26) (0.38, 0.44, 0.31, 0.27)

IMDB movie reviews
(λ1, λ2) (1e-3, 0) (2e-4, 2e-4)
Base Model Model 1 Model 2 Model 1 Model 2
Length 13.99 17.59 29.22 27.37
Contiguity Loss 21.84 26.45 37.14 35.48
Interaction Cases (855.6, 946.0, 1187.4, 1250.0) (681.7, 665.2, 1101.8, 1295.7)
Case Accuracy (0.66, 0.65, 0.59, 0.59) (0.66, 0.64, 0.58, 0.60)

Table 1: Experiment details (average values). We report the rationale length (i.e., number of words)
and contiguity loss of each base model under each hyper-parameter setting and numbers of interaction
cases and each case’s accuracy. Four values in an interaction case are the average numbers of the
cases separately for base model 1 convinced, base model 2 convinced, base model 1 more confident,
and base model 2 more confident. These are the four cases of handling disagreements in Algorithm 1.

over from the previous best model. In total, 20 epochs are used for training. Cross-entropy is used as
the loss objective. Batch size is set to be 128. For Gumbel-Softmax (Jang et al., 2017), the initial
temperature is 1 with a decay rate of 1e-5. GloVe (Pennington et al., 2014) of embedding dimension
300 is used for word embedding. The max text lengths are separately set to be 80 and 200 words for
20 Newsgroups and IMDB movie reviews.

Testing For each dataset, two base models are trained and tested with two settings of hyper-
parameters (λ1, λ2) from the loss function, {(0.005, 0), (0.001, 0.001)} for 20 Newsgroups and
{(0.001, 0), (0.0002, 0.0002)} for IMDB movie reviews. The four settings are chosen in a way that
shows the performance of the algorithm under different rationale length and contiguity (Table 1).
For each hyper-parameter setting, both base models are trained and tested with 6 random seeds
(i.e., {2022, 2023, 2024, 2025, 2026, 2027}), and the invalid cases where two base models show a
significant difference in the performance in development dataset (i.e., > 3% in accuracy) are removed.
The numbers of invalid cases are separately 2, 1, 1, 0 out of 6 for the four hyper-parameter settings.

20 Newsgroups IMDB movie reviews
(λ1, λ2) (5e-3, 0) (1e-3, 1e-3) (1e-3, 0) (2e-4, 2e-4)
Model 1 .55 (.53-.57) .58 (.56-.59) .81 (.80-.82) .82 (.81-.83)
Model 2 .54 (.52-.57) .57 (.55-.59) .81 (.80-.82) .82 (.81-.83)
Interaction .58 (.56-.60) .60 (.59-.61) .83 (.82-.84) .84 (.83-.84)

Table 2: Average performances (accuracy) of maximum six experiments for base (Models 1 and
2) and interactive models under each hyper-parameter setting for each dataset. The (min, max)
performances of each model are also reported to demonstrate variances.

4.3 Quantitative Evaluation

For quantitative evaluation, we report the predictive performances of the classifiers from the base
models and the interactive model. In Table 2, the interactive model outperforms the better base model
by 2% in IMDB movie reviews and 2-3% in 20 Newsgroups and shows a relatively smaller variance in
both datasets. The improvement in predictive performance and reduced variance is general for most
experiments in addition to the four settings. We found that, in the cases of extreme hyper-parameter
settings where rationales contain almost whole texts or no words, there is no improvement. This
seems reasonable as, when base models generate rationales of whole texts or no words, the rationales
are identical, which makes the exchange of rationales meaningless. Also, in some cases where one
base model is trained well and one is not (e.g., 80% and 60% accuracy in IMDB movie reviews), the
interactive model shows a slightly lower performance than the better base model. The reason can be
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that a relatively better rationale generated by the better model can not convince the classifier of the
poor performance model, where the first rule that a good rationale is more likely to produce consistent
predictions is not followed. If no rationale is causing consistent predictions, the second rule about
confidence level is applied but a poor classifier can sometimes be overconfident, which causes errors.

For a binary classification task, when two base models with similar performances have a disagreement,
the expected accuracy of each base model is around 50% and the probability of blindly choosing
a prediction turning out to be correct should also be near 50% (i.e., random guessing). However,
as shown in Table 1, in IMDB movie reviews, the accuracy after interaction is 8-16% higher than
random guessing. This result indicates that the interactive method performs better than majority
voting because voting can not effectively handle the cases where two base models have disagreements
(i.e., random guessing would be performed if two base models have a disagreement in majority
voting).

Also, we observed that, when the constraints on rationales are less strict (i.e., allowing more words
and more contiguity loss), generally the performance of base models increases but the improvement
after interaction deceases. The reason may be that, with weaker rationale constraints, strong indicators
are easier identified as causing the rationales of both base models to contain more similarly strong
indicators.

5 Conclusion

To handle the high variance of selective rationale extraction models, we proposed method we call
Interactive Rationale Extraction for Text Classification, which selects rationales and predictions
from base models based on simple rules through imitating the interaction process between humans
for handling disagreements. The experimental results show that the interactive process is effective in
terms of improving performance, choosing a better rationale, and reducing variance.
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