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Abstract
Gaussian process latent variable models (GPLVM) are used to perform nonlinear and probabilistic
dimensionality reduction. They extend Gaussian processes (GP) to the domain of unsupervised
learning (Lawrence, 2004). The Bayesian incarnation of the GPLVM uses a variational framework,
where the posterior over all unknown quantities is approximated by a well-behaved variational family,
a factorised Gaussian (Titsias and Lawrence, 2010). This gives not only implicit regularisation
but also mathematical convenience. In this work we narrow our focus on examining the quality of
the latent representation learnt under this Gaussian assumption. We introduce non-Gaussianity
in the distribution of the latent space through normalising flows. The flexibility afforded by
flows is critical in modelling massively missing data. Inference is performed using Stochastic
Variational Inference (SVI) with a structured variational lower bound that factorizes across data
points permitting efficient and scalable mini-batching of gradients. We call this flexible model
class Gaussian process latent variable flows (GPLVF). We compare this framework with traditional
models like the Bayesian GPLVM. Our experiments focus on massively missing data settings.

1. Introduction

Gaussian processes (GPs) represent a powerful non-parametric probabilistic framework for performing
regression and classification with inductive biases controlled by a kernel function (Rasmussen and
Williams, 2006). The Gaussian process latent variable model (GPLVM) (Lawrence, 2004) paved
the way for GPs to be used in unsupervised learning tasks like dimensionality reduction and struc-
ture discovery for high-dimensional data. The GPLVM provides a probabilistic mapping from (an
unobserved) latent space to data-space where a GP acts as a decoder, with the smoothness of the
mapping controlled by a kernel function. Several traditional dimensionality reduction models learn a
projection of high dimensional data to lower dimensional manifolds (the direction of the mapping is
reversed in a GPLVM). An important attribute of the smooth GP decoder mapping in the GPLVM
is it ensures that points close in latent space are mapped to points close in data space. The notion
of an encoder for GPLVMs was introduced in (Lawrence and Quiñonero Candela, 2006) where an
additional mapping (called the back-constraint by the authors) was learnt expressing each latent point
in the evidence (marginal likelihood) as a function of its corresponding data point. This incarnation
ensured that data space proximities were preserved in latent encodings. Hence, GPLVMs can be put
on the same footing as autoencoding models with an encoder mapping from data to latent space and
a decoder mapping from latent to data space.

The Bayesian formulation of the GPLVM in (Titsias and Lawrence, 2010) variationally integrates out
latent variables, providing principled uncertainty around the latent encoding. The sparse variational
formulation relying on inducing variables (Titsias, 2009) serves a dual purpose of making the lower
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GPLVF for Missing data

Table 1: Existing approaches for Inference in GPLVMs.

Reference Decoder (X → Y ) Latent Variable q(X) Encoder (Y → X) Training Method
Lawrence (2004) GP point est. 7 Gradient based opt.

Lawrence and Quiñonero Candela (2006) GP point est. X Gradient Based opt.
Titsias and Lawrence (2010) GP Gaussian 7 Variational Inference

Bui and Turner (2015) GP Gaussian X SVI
This work GP Flexible X SVI

bound to the marginal likelihood tractable, and providing computational savings. The Bayesian
GPLVM also allows for the dimensionality of the latent space to be automatically determined by
using ARD (automatic relevance determination) kernels. It prunes dimensions which correspond to a
small inverse lengthscale.

Techniques to apply Gaussian processes to very large datasets were introduced in Hensman et al.
(2013) which demonstrated how stochastic variational inference (SVI) (Hoffman et al., 2013) can be
used with inducing variables. The key idea was re-formulating the evidence lower bound (ELBO)
in Titsias and Lawrence (2010) in a way that factorizes across the data enabling mini-batching for
gradients. However, in Hensman et al. (2013) this was only explored for regression (with a Gaussian
likelihood) settings rather than the unsupervised latent variable model setting.

This work looks at the Bayesian GPLVM through the lens of SVI. The generalised SVI scheme
allows for richer non-Gaussian variational families through the use of normalising flows (Rezende
and Mohamed, 2015). The model introduced in this work allows the distribution around the latent
encoding to be flexible and expressive by warping the Gaussian variational distribution through a
sequence of invertible transformations. The departure from Gaussian uncertainty means we can
model latent variables as being driven by multi-modal/complex distributions which may provide
a more faithful approximation to the true unknown posterior in several settings. Concretely, we
summarise the main contributions of this work below:

• We extend the Bayesian GPLVM framework to non-Gaussian variational distributions through
normalising flows.

• We demonstrate how this class of models can be used on datasets which are extremely sparse
(bulk of the features are missing for every data point) - we call this framework massively missing
data which is frequently embodied in real-world datasets.

2. Review of Bayesian GPLVM

In this section we provide an overview of the Bayesian GPLVM (Titsias and Lawrence, 2010). We
have a training set comprising of N D-dimensional real valued observations Y ≡ {yn}Nn=1 ∈ RN×D.
These data are associated with N Q-dimensional latent variables, X ≡ {xn}Nn=1 ∈ RN×Q where
Q < D provides dimensionality reduction (Lawrence, 2004). The forward mapping (X −→ Y ) is
governed by GPs independently defined across dimensions D. The probabilistic model describing the
data is as follows:

Prior on latents: p(X) =

N∏
n=1

N (xn;0, IQ),

Prior on mapping: p(f |X,θ) =

D∏
d=1

N (fd; 0,K(d)
nn ),

Data likelihood: p(Y |f , X) =

N∏
n=1

D∏
d=1

N (yn,d;fd(xn), σ2
y),
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where f ≡ {fd}Dd=1 and yd is the dth column of Y . K
(d)
nn is the covariance matrix corresponding

to a user chosen positive-definite kernel function kθ(x, x
′
) evaluated on latent points {xn}Nn=1

parameterised by some hyperparameters θ. Further, fd is a draw from a GP with covariance matrix

K
(d)
nn . If same kernel function kθ(x, x

′) is chosen across the dimensions, then K
(d)
nn is identical across

dimensions d and we can drop the superscript.
Exact Bayesian inference in this set-up entails finding the marginal likelihood obtained by integrating
out the mapping f and latent variables X; unfortunately this is intractable owing to the integration
over the latent variables X1.

p(Y |θ) =

∫
. . .

∫
p(Y |f , X)p(f |X,θ)p(X)df1 . . . dfDdX =

∫ D∏
d=1

p(yd|X)p(X)dX, (1)

where p(yd|X) = N (0,Kd + σ2
yI)

Further, the posterior over all the unknown quantities p(f , X|Y ) ∝ p(Y |f , X)p(f |X,θ)p(X) is
intractable. This intractability is side-stepped by introducing a variational distribution over un-
knowns (f , X) augmented with M inducing variables u ≡ {ud}Dd=1, each distributed with a GP prior
p(ud) ∼ N (0,Kmm). Kmm takes as input inducing input locations Z ∈ RM×Q which live in latent
space, are shared across dimensions and have dimensionality Q (matching xn)(Titsias, 2009). The for-

mulation
q(f , X,u) =

[ D∏
d=1

p(fd|ud, X)q(ud)
]
q(X) ≈ p(f , X,u|Y ) (2)

where q(ud) is the variational distribution over the inducing variables and q(X) =
∏N
n=1N (xn;µn, snIQ)

admits a tractable lower bound to the marginal likelihood p(Y |θ) for specific choices of kernel func-
tions. The variational formulation above gives rise to an evidence lower bound (ELBO) written in
rudimentary form (full derivation enclosed in supplementary),

L1:D =

D∑
d=1

Ld =

L1︷ ︸︸ ︷
D∑
d=1

N∑
n=1

Eq(f ,X,u)[log p(yn,d|fd,xn)]−KL(q(X)||p(X))−KL(

D∏
d=1

q(ud)||
D∏
d=1

p(ud)),

(3)

where KL(·) denotes Kullback-Leibler divergence and can be computed in closed form if the variational
distributions q(X) and q(u) are chosen to be Gaussian2. In fact, the q(ud)s are unrestricted and an
analytic maximisation of the bound w.r.t q(ud)s turns out to yield Gaussian distributions as the
optimal form. The final bound in Titsias and Lawrence (2010) is obtained by collapsing the bound
by plugging in the optimal q∗(ud) = arg max

q(ud)

Ld ∀d′s.

In this work we take a different approach, we use the uncollapsed version of the lower bound (with an
explicit representation of q(ud)) enabling stochastic gradient methods and parallelised mini-batching
of gradients for a truly scalable solution.

2.1. SVI for Bayesian GPLVM

Stochastic Variational Inference (SVI) (Hoffman et al., 2013) is used to scale variational infer-
ence to massive datasets by sub-sampling data to compute noisy gradients. The main prereq-
uisite is that the ELBO should factorise across the data points. Another detail is the exis-
tence of global variables that make the observations conditionally independent given their local
latent variable. The introduction of inducing variables u satisfies this criteria for variational

1. X appears non-linearly inside the covariance matrix Kd

2. The priors p(X) and p(u) are chosen to be factorised Gaussian in the model set-up
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sparse GP regression models, Hensman et al. (2013) derives the uncollapsed lower bound for
the regression case with a 1d output, here we show the final form of the uncollapsed lower
bound for the latent variable model setting with D-dimensional outputs yd by expanding L1.

L1:D =
∑
n,d

logN (yn,d| 〈kTn 〉q(X)︸ ︷︷ ︸
Ψ

(n,·)
1

K−1
mmmd, σ

2
y)− 1

2σ2
y

Tr(〈Knn〉q(X)︸ ︷︷ ︸
ψ0

−K−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

)

− 1

2σ2
y

Tr(SdK
−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

K−1
mm)−

∑
n

KL(q(xn)||p(xn))−
∑
d

KL(q(ud)||p(ud))

This bound is optimised with respect to variational parameters of q({u}Dd=1) given by ({md, Sd}Dd=1, Z),
the variational parameters concerning q(X) given by ({µn, sn}Nn=1), the kernel hyperparameters θ
and the likelihood noise variance σ2

y. Please refer to the appendix A.3 for a derivation of this bound
and appendix A.4 for the Ψ terms where we show how this formulation preserves factorisability.

3. Gaussian Process Latent Variable Flows

One of the advantages of the generalised SVI framework is that it only pre-requisites a factorisation of
the approximating variational family and does not impose any restrictions over its form. As such, the
choice of approximating variational family q(X) can be flexible as long as we can sample from it and
compute gradients w.r.t its parameters.In this class of models we make q(X) generic by allowing the
base Gaussian distribution around each latent point to be transformed by a sequence of normalising
flows. The motivation for this is that the posterior distribution p(X|Y ) can be arbitrarily complex
manifesting in multiple-modes and non-linear correlations in latent space. Further, the pathologies
in the posterior distribution over the latent variables X can be more pronounced in high-dimensional
missing data settings.

Normalising flows (Rezende and Mohamed, 2015) leverage the fundamental rule for specifying probabil-
ity densities of transformed random variables. When a random variable z(0) ∼ p(z(0)) is transformed
by a sequence of k invertible and differentiable mappings composed together, the resulting random

variable gk ◦ gk−1 ◦ . . . g1(z(0)) = z(k) has a density given by, p(z(k)) = p(z(0))

∣∣∣∣∣det
∏k
j=1

∂gj
∂z(j−1)

∣∣∣∣∣
−1

.

The variational distribution of the Bayesian GPLVM with a transformed Gaussian distribution is
given by,

q(X) =

N∏
n=1

N (xn;µn, snIQ)

∣∣∣∣∣ det
k∏
j=1

∂gj

∂x
(j−1)
n

∣∣∣∣∣
−1

, (4)

where the parameters of the flow mappings gj are collected in λ, a set of additional variational
parameters. We call this model Gaussian Process latent Variable Flows. It’s main attributes are:

• The base Gaussian distribution is channeled through a finite sequence of normalising flows
yielding an arbitrarily complex marginal distribution over the latent points xn

• It is the marginal densities q(xn) that are warped by the flow transformations rather than the
joint, yielding a joint density that still factorises across data points.

• This formulation preserves the factorisability of the bound (it can be written as a sum of N
terms) but with a richer non-Gaussian variational approximation. The parameters λ of the Q
dimensional flow are shared between the data points enabling amortised inference.

We perform Monte Carlo expectations of the terms in the uncollapsed lower bound that involve q(X)
by sampling from the base Gaussian at each step and pushing them through the flow gk ◦ gk−1 ◦
. . . g1(x(0)) = xk to yield the final latent point. We do this for all N across each dimension Q.
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3.1. Missing Data Framework

In this section we summarise a framework for dealing with massively missing data at test time. The
SVI objective factorises across data points and dimensions. The crux of the training procedure relies
on the marginalisation principle of Gaussian distributions. More concretely, we can marginalise out
the missing dimensions ya as long as our data point y is modelled as a joint Gaussian. For a single
data point split by its unobserved and observed dimensions,∫ ∏

d∈a

∏
d∈o

p(ya,yo|ud, X)dya =
∏
d∈o

p(yo|ud, X), (5)

where a and o denote the indices of missing and observed dimensions respectively with the full set of
dimensions given as, D = a ∪ o. ud ∈ RM∀d = 1, . . . , D denote the inducing variables which ensure
conditional independence. This set-up reflects real-world data very closely which is often sparse with
many missing and few overlapping dimensions.

4. Experiments

4.1. Missing MNIST

Figure 1: The latent flow based distri-
bution (green) vs. the Gaussian distri-
bution (blue) of the latent encoding of a
single digit with missing pixels.

The focus of this experiment is to gauge how the models cap-
ture uncertainty when training with missing pixels. We use
5000 training samples from the MNIST digits dataset (LeCun
et al., 2010) across classes [0-9] with ≈ 40% of the pixels
missing in each digit. Fig. 3 summarises sample generation
from the 2d latent distribution for a single training digit. The
key feature of the flow based distribution is that it demon-
strates the ability to capture non-linear correlations in the
uncertainty structure of the latent posterior for the missing
pixels digit. Notice that the samples generated from the flow
based variational approximation are much more diverse than
the ones from the latent Gaussian approximation; in some
parts of the flow distribution they recover digits resembling
the ground truth. Missing dimensions in the training data
are highly likely to give rise to pathological posteriors with
high uncertainty, and in these cases a flexible variational dis-
tribution provides a better approximation than a Gaussian.
Fig. 2 shows samples generated from the flow based approx-
imation, each point denotes a MAP estimate of the flow and

we superimpose the reconstructed digits for some of the samples.

4.2. Movie Lens 100K

q(X) Test RMSE∏N
n=1N (xn;µn, snIQ) 0.9648

Planar20 0.9281
Planar30 0.9105
Planar50 0.9039

Table 2: Movie Lens 100K RMSE sum-
mary with 10 latent dimensions. The
planar flows of increasing lengths trans-
form a base Gaussian distribution.

The movie lens 100K data has 1682 movies (columns/dimensions)
across 943 users (rows/data points) where each user has
rated an average of 20 movies (Harper and Konstan, 2015).
This yields an extremely sparse data grid with 93.8%
of the entries missing3, truly embodying the massively
missing data framework. We learn a 10d latent distri-
bution for the movie lens data and summarise the test
RMSE and test log likelihoods for increasing flow lengths.
We trained on 843 users and made predictions for 100
users.

3. each row denotes a user, when a user has not rated a movie the value is NaN.
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Figure 2: Sampled MNIST digits from the flow based (left) and Gaussian (right) 2d variational
approximation trained on data with missing pixels. Both models have not seen a fully dense image
of any digit.

Figure 3: Leftmost: True down scaled MNIST digit (14×14). Left: Training input of the digit with 40%
missing pixels. Right: Multiple samples from the flow based 2d latent distribution. Rightmost: Multiple
samples from the Gaussian 2d latent distribution. The densities shown are for a single digit.

5. Further work & Extensions

Figure 4: Test log-likelihood
(higher is better) across the mean-
field Gaussian (MF) model, and
planar flows of different lengths.
The training was done on a slice
of the data (selecting movies with
genre ‘Sci Fi’ or ‘Romance’ )

The ability to model the distribution of a latent encoding flexibly
could be invaluable in several settings. Flows enable capturing
correlations in the latent space without paying the price of learning
a full covariance matrix. In the missing training data framework,
their benefit is even more pronounced as unsupervised training with
massively missing dimensions induce arbitrarily complex posteriors
in latent space. The implementation shown here preserves the
factorisability of the lower bound enabling parallelisable inference
achieving dual goals of scalability and flexibility. The highlight
of the work is its applicability in massively missing data regimes
which very few frameworks can handle. Further, there are two
questions that surround the use of normalising flows, 1) the choice
of flow and 2) the flow length. Different transformations yield flows
with different inductive biases, this can be studied in more detail.
Based on prior knowledge, we can introduce transformations which
produce a desired effect in the latent space. Other avenues for
theoretical work include carefully comparing the collapsed bound
proposed in (Titsias and Lawrence, 2010) with the uncollapsed
bound introduced in (Hensman et al., 2013) and derived here.
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Appendix A. Derivations

A.1. Motivation for inducing variables

As is standard, we wish to minimize the KL divergence between the variational approximation and
the true posterior given by, KL(q({fd}Dd=1, X)||p({f}Dd=1, X|Y )). For an arbitrary d we have,

KL(q(fd, X)||p(fd, X|Y )) =

∫
q(fd, X) log

q(fd, X)

p(fd, X|Y )
dfddX (6)

= −
∫
q(fd, X) log

p(Y |fd, X)p(fd|X,θ)p(X)

q(fd, X)
dfddX︸ ︷︷ ︸

ELBO

+ log p(Y |θ) (7)

The evidence lower bound shown above is mathematically intractable due to the term p(fd|X,θ) =

N (0,K
(d)
nn ) involving the variables X which appear non-linearly in the kernel matrix. It turns out

that an augmented bound with inducing variables ud for each dimension is tractable.
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A.2. Derivation of the ELBO eq. (3)

In this section we detail the derivation of the rudimentary ELBO as in eq. (3) of the paper,
We introduce auxiliary inducing variables, ud ∈ RM for each of the latent functions fd, collecting all
of the ud’s in u and fd’s in f for ease of notation, it turns out that variational inference in (f ,u, X)
space is actually tractable. The marginal prior p(u|Z) is given as,

p(u|Z) =

D∏
d=1

N (ud;0,Kmm). (8)

where Z ∈ RM×Q denote inducing input locations.
Writing down the augmented variational approximation as,

q(f ,u, X) =

D∏
d=1

[p(fd|ud, X)q(ud)]q(X) ≈ p(f ,u, X|Y ) (9)

we derive the form of the ELBO in this augmented space by writing down the KL divergence explicitly,

KL(q(f ,u, X)||p(f ,u, X|Y )) =

∫
p(f |u, X)q(u)q(X) log

p(f |u, X)q(u)q(X)

p(f ,u, X|Y )
dfdudX

= −
∫
p(f |u, X)q(u)q(X) log

p(Y |f , X)p(f |u, X)p(u|Z)p(X)

p(f |u, X)q(u)q(X)
dfdudX + log p(Y )

where the terms in red (the difficult terms) cancel out and we suppress the implicit conditioning over
the hyperparameters θ for brevity. The final ELBO is given by,

L1:D = p(f |u, X)q(u)q(X) log
p(Y |f , X)p(u|Z)p(X)

q(u)q(X)
dfdudX (10)

where p(f |u, X) is the conditional prior, q(u) is a free-form variational distribution, p(X) =∏N
n=1N (0, IQ) is just a product of standard normals and q(X) is chosen to be a product of multivariate

Gaussians with diagonal covariances sn,

q(X) =

N∏
n=1

N (xn;µn, snIQ), (11)

p(u|Z) is as defined in eq. 8.
Going back to (10), we first apply the integration w.r.t f and rewrite it more conveniently,

L1:D =

∫
q(X)

[∫
q(u)

[
Ep(f |u,X)[log p(Y |f , X)] + log

p(u)

q(u)
+ log

p(X)

q(X)

]
du

]
dX (12)

= Eq(f ,u,X)[log p(Y |f , X)]−KL(q(X)||p(X))−KL(q(u)||p(u)) (13)

= Eq(f ,u,X)[log

N∏
n=1

D∏
d=1

N (yn,d;fd(xn), σ2
y)]−KL(q(X)||p(X))−KL(q(u)||p(u)) (14)

=

L1︷ ︸︸ ︷∑
n,d

Eq(f ,u,X)[logN (yn,d;fd(xn), σ2
y)]−KL(q(X)||p(X))−KL(q(

D∏
d=1

ud)||
D∏
d=1

p(ud)) (15)

8
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A.3. Derivation of the uncollapsed SVI ELBO

Consider the first term of the ELBO in eq. 15,

L1 =
∑
n,d

Ep(fd|ud,X)q(ud)q(X)[log p(yn,d|fd,xn)] (16)

=
∑
n,d

∫
q(X)

∫
q(ud)

∫
p(fd|ud, X) log p(yn,d|fd,xn)dfd︸ ︷︷ ︸

L(n,d)
f

duddX

=
∑
n,d

∫
q(X)

∫
q(ud) L(n,d)

f dud︸ ︷︷ ︸
L(n,d)

u

dX

=
∑
n,d

∫
q(X) L(n,d)

u dX︸ ︷︷ ︸
L(n,d)

X

.

First, performing the integration w.r.t fd,

L(n,d)
f =

∫
p(fd|ud, X) log p(yn,d|fd,xn)dfd (17)

=

∫
p(fd|ud, X)

[
− 1

2
log(2πσ2

y)− 1

2σ2
y

(y2
n,d − 2yn,dfd(xn) + (fd(xn))2)

]
dfd (18)

= −1

2
log(2πσ2

y)− 1

2σ2
y

(y2
n,d) +

yn,d
σ2
y

∫
fd(xn)p(fd|ud, X)dfd︸ ︷︷ ︸

kTnK
−1
mmud

− 1

2σ2
y

∫
(fd(xn))2p(fd|ud, X)dfd︸ ︷︷ ︸

qn,n+(kTnK
−1
mmud)T (kTnK

−1
mmud)

(19)

= logN (yn,d|kTnK−1
mmud, σ

2
y)− 1

2σ2
y

qn,n. (20)

Note: yn,d is a scalar (dth dimension of point yn), kTn is a 1 ×M matrix - the nth row of Knm,
we know that p(fd|ud, X) = N (KnmK

−1
mmud,Knn −KnmK

−1
mmKmn). Further, fd(xn) is a scalar,

denoting the value at index xn of the vector fd. qn,n is the nth entry in the diagonal of matrix
Qnn = Knn −KnmK

−1
mmKmn.

Then, performing the integration w.r.t ud (we parameterise q(ud) = N (md, Sd) as we know its
optimal form is a Gaussian and using similar identities as above),

L(n,d)
u =

∫
q(ud)

[
logN (yn,d|kTnK−1

mmud, σ
2
y)− 1

2σ2
y

qn,n

]
dud

= logN (yn,d|kTnK−1
mmmd, σ

2
y)− 1

2σ2
y

qn,n −
1

2σ2
y

Λn,n.

(21)
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where Λn,n is the nth entry of the diagonal of matrix Λ = SdK
−1
mmKmnKnmK

−1
mm. Now, what remains

is to perform the integration w.r.t q(X).

L1 =
∑
n,d

L(n,d)
X =

∑
n,d

logN (yn,d| 〈kTn 〉q(X)︸ ︷︷ ︸
Ψ

(n,·)
1

K−1
mmmd, σ

2
y)− 1

2σ2
y

Tr(〈Knn〉q(X)︸ ︷︷ ︸
ψ0

−K−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

)

− 1

2σ2
y

Tr(SdK
−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

K−1
mm)

We note that the only terms in L(n,d)
u involving the latent X are Knm, Knn and KnmKmn;we show

in the next section that they admit a factorisation across data points. The final bound is given by,

L1:D = L1 −
∑
n

KL(q(xn)||p(xn))−
∑
d

KL(q(ud)||p(ud)) (22)

=
∑
n,d

logN (yn,d| 〈kTn 〉q(X)︸ ︷︷ ︸
Ψ

(n,·)
1

K−1
mmmd, σ

2
y)− 1

2σ2
y

Tr(〈Knn〉q(X)︸ ︷︷ ︸
ψ0

−K−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

)

− 1

2σ2
y

Tr(SdK
−1
mm 〈KmnKnm〉q(X)︸ ︷︷ ︸

Ψ2

K−1
mm)−

∑
n

KL(q(xn)||p(xn))−
∑
d

KL(q(ud)||p(ud))

(23)

A.4. Ψ statistics

In this section we detail how ψ0, Ψ1 and Ψ2 are factorisable across data points.

ψ0 = Tr(〈Knn〉q(X)) (24)

=

〈 N∑
i=1

K(ii)
nn

〉
q(X)

whereK(ii)
nn are the diagonal entries of matrix Knn (25)

=

N∑
i=1

〈
K(ii)
nn

〉
q(xi)

where {xi}Ni=1 ≡ X and q(X) =

N∏
i=1

q(xi) (26)

Next, we look at Ψ1,

Ψ1 = 〈Knm〉q(X) (27)

Knm =


k(x1, z1) . . . k(x1, zM )
k(x2, z1) . . . k(x2, zM )

...
...

...
k(xN , z1) . . . k(xN , zM )

 =


−−−− K

(1,·)
nm −−−−

−−−− K
(2,·)
nm −−−−

...
...

...

−−−− K
(N,·)
nm −−−−

 (28)

Ψ1 =


−−−− Ψ

(1,·)
1 −−−−

−−−− Ψ
(2,·)
1 −−−−

...
...

...

−−−− Ψ
(N,·)
1 −−−−

 =


−−−− 〈K(1,·)

nm 〉q(x1) −−−−
−−−− 〈K(2,·)

nm 〉q(x2) −−−−
...

...
...

−−−− 〈K(N,·)
nm 〉q(xN ) −−−−

 , (29)

10



GPLVF for Missing data

where we notice that Ψ1 is a N ×M matrix where each row just depends on a data point xi.

Ψ2 = 〈KmnKnm〉q(X) (30)

=



∣∣∣∣∣
∣∣∣∣∣ ...

∣∣∣∣∣
〈K(1,·)

nm 〉q(x1) 〈K(2,·)
nm 〉q(x2) . . . 〈K(N,·)

nm 〉q(xN )∣∣∣∣∣
∣∣∣∣∣ ...

∣∣∣∣∣




−−−− 〈K(1,·)

nm 〉q(x1) −−−−
−−−− 〈K(2,·)

nm 〉q(x2) −−−−
...

...
...

−−−− 〈K(N,·)
nm 〉q(xN ) −−−−

 (31)

=

N∑
i=1

〈K(i,·)T
nm K(i,·)

nm 〉q(xi) (32)

which is an M ×M matrix decomposable as a sum of N M ×M matrices where each component
matrix is only dependent on a data point xi.

A.5. KL divergence between factorised Gaussians

In eq. (9) we re-write the KL term involving q(X) as a factorisation across n, we show the proof
below:

KL(q(X)||p(X)) = KL
( N∏
n=1

q(xn)||
N∏
n=1

p(xn)
)

=

∫ N∏
n=1

q(xn) log

∏N
n=1 q(xn)∏N
n=1 p(xn)

dx1 . . . dxN

=

∫ N∏
n=1

q(xn)

N∑
n=1

log
q(xn)

p(xn)
dx1 . . . dxN

=

∫ N−1∏
n=1

q(xn)q(xN )
(

log
q(xN )

p(xN )
+

N−1∑
n=1

log
q(xn)

p(xn)

)
dx1 . . . dxN

= KL(q(xN )||p(xN ))

∫ N−1∏
n=1

q(xn)dx1 . . . dxN−1︸ ︷︷ ︸
1

+KL
(N−1∏
n=1

q(xn)||
N−1∏
n=1

p(xn)
)

=

N∑
n=1

KL(q(xn)||p(xn))

A.6. Test log-likelihood

1. The test log-likelihood is given by log p(y∗|Y ), we report this metric averaged across the number
of test points ntest and describe how its computed below.

11
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This metric is sometimes called the log predictive density, they both refer to the same quantity. The
test log-likelihood is given by log p(y∗|Y ),

p(y∗|Y ) =

∫
p(y∗|x∗,u)p(u|Y )q(x∗)dudx∗ (33)

≈ 1

J

J∑
j=1

∫
p(y∗|x∗(j),u)q∗(u)du x∗(j) ∼ q(x

∗)

≈ 1

J

J∑
j=1

N (K∗mK
−1
mmm,K∗∗ −Q∗∗ +K∗mK

−1
mmΣK−1

mmKm∗)

where, Q∗∗ = K∗mK
−1
mmKm∗,

q∗(u) = N (m,Σ)

m = σ−2
n Kmm(Kmm + σ−2

n KmnKnm)

Σ = Kmm(Kmm + σ−2
n KmnKnm)−1Kmm (34)

The integral over x∗ is resolved numerically and the integral over u is analytical as per Titsias (2009).
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