Memory-Efficient Selective Fine-Tuning

Antoine Simoulin! Namyong Park ' Xiaoyi Liu

Abstract

We propose an approach for reducing the mem-
ory required to fine-tune transformer-based mod-
els. During the backward pass, our approach only
propagates the gradient through a small number of
input positions, while freezing the others. Thus,
we only save a subset of the intermediate acti-
vations during the forward pass, for which the
computed gradient will not be zero. We show that
our approach leads to performance on-par with
full fine-tuning, while requiring only up to a third
of the GPU memory. Our approach is specifically
efficient in fine-tuning language models with a
number of parameters lying around hundreds of
millions. It allows to fine-tune such models on
consumer hardware, while maintaining a large
batch size.

1. Introduction

Large Language Models (LLMs) come with the challenge
of adapting them for specific tasks. Their high number
of parameters increases the compute requirement to fine-
tune them. Alternative methods such as zero-shot tuning or
prompting usually underperform fine-tuning (Brown et al.,
2020). Thus, in many cases, fine-tuning medium size LLMs
may offer a better balance in term of cost and performance,
compared with fine-tuning large LLMs or conditioning their
outputs with prompt based approaches (Li et al., 2022;
Schick & Schiitze, 2021). Medium size LLMs may also
be used as individual components, co-trained to encode
information for a larger system (Pfeiffer et al., 2023).

Parameter-Efficient Fine-Tuning (PEFT) approaches aim at
reducing the compute and storage requirements to fine-tune
LLMs by only updating a small subset of the model parame-
ters. As a result, we do not need to store any corresponding
gradients and optimizer states for the frozen parameters.
With parameters, gradients, and optimizer states usually
representing the majority of the GPU memory usage, this

"Meta. Correspondence to: Antoine Simoulin <antoinesi-
moulin@meta.com>.

Work presented at the ES-FoMo Workshop at ICML 2023, Hon-
olulu, Hawaii, USA. Copyright 2023 by the author(s).

' Grey Yang'

Table 1. Using two models requiring roughly the same GPU mem-
ory, we observe that the memory breakdown and the impact of
PEFT methods application are very different. For each model,
we show the evolution of the GPU memory (in MiB) required for
performing one training step for OPT-1B3 (Zhang et al., 2022)
with a batch size of 1 and a sequence length of 128 and BERT-base
(Devlin et al., 2019) with a batch size of 256, a sequence length of
128. Fwd (w/o grad) corresponds to the execution of the forward
pass, while disabling gradient computation.

w/ LoRA

BERT ~ OPT | BERT OPT
Cuda Context 780 780 780 780
+ Model weights | 1,250 5,806 1,250 5,828
+ Fwd (w/o grad)| 2,860 6,050 2,860 6,072
+ Fwd (w/ grad) | 24,754 6,290 | 20,554 6,294
+ Bwd 25,242 11,258 | 20,948 6,322
+ Optimizer step | 25,242 21,390 | 20,948 6,322

is specially efficient for very large language models with
billions of parameters. However, for language models with
“only” hundred of millions of parameters, most of the GPU
memory is actually used to store intermediate activations
required for gradient computation during the backward pass.

Table 1 presents the GPU memory required to perform one
training step with BERT-base (Devlin et al., 2019) and OPT
(Zhang et al., 2022) on a consumer hardware GPU. We
calibrate the example such that the memory requirement
is roughly the same for both models. In this configura-
tion we can only fit a single example for OPT, while we
can use a batch size of 256 for BERT. We observe that the
memory breakdown is very different between the two config-
urations. The required memory drastically increases during
the forward pass for BERT and during the backward pass
for OPT. When comparing the execution of forward pass
with and without enabling gradient computation in pytorch,
we estimate that the memory cost to store intermediate acti-
vations represents around 22 Gb for BERT and less than 1
Gb for OPT. On the contrary, we estimate that computing
and storing the parameter gradients increase the memory
requirement by less than 1 Gb for BERT and around 5 Gb
for OPT. When applying LoRA (Hu et al., 2022), a PEFT
method, we observe that the memory drastically decreases
for OPT, while having a less significant impact on BERT.

Memory-Efficient Selective Fine-Tuning

@ Output probabilities
piyix) by
SOFTMAX
-
POOLER
b o, h;
0000

ADD & NORM

TRANSFORMER LAYERS

FEED-FORWARD

v EMBEDDINGS LAYER

ADD & NORM

Group token frozen positions

SELF-ATTENTION

o o000 ° : u
Randomly select krandom position
and freeze others

X
—_—

Forward «--voee »>

SELF-ATTENTION

o000
MATMUL

TRANSFORMER LAYER

} Does not reqyire grad

- 5
} Requires grad|

MATMUL + SOFTMAX

ot wh v
Linear Linear Linear
we w« wY
Lo

Backward ‘ Requires grad Does not require grad

Figure 1. We illustrate our approach for memory efficient fine-tuning of LLMs. During the backward pass, we compute the gradient for
only a subset of k input positions, while the other remains frozen (in grey in the figure). During the forward pass, all input positions are
used, but only a subset of the layer activations is cached in memory (in blue in the figure).

In this work, we propose a method that focuses on optimiz-
ing the training of LLMs with millions of parameters, with
the aim at significantly reducing the GPU memory dedicated
to storing intermediate activations during the forward pass
without sacrificing model quality. Our paper is segmented
into the method (Section 2), the empirical evaluation results
(Section 3) and related work (Section 4).

2. Selective Fine-Tuning

Figure 1 illustrates our selective fine-tuning (SFT) method,
aiming at reducing the memory needed to store the interme-
diate activations used for gradient computation. Given an
input sequence X and a class label y, a transformer network
associates each token from the input sequence to an em-
bedding and computes a corresponding sequence of hidden
states h through multiple layer applications.

For each input sequence, we select k& random positions.! We
organize the input of each layer in two groups, one with the k
selected input positions: hg, and one with the remaining un-
selected positions: hg, such that that h = [hg, hg], with []
denoting the concatenation operator. This re-ordering does
not impact the computation since the position is directly
encoded in the hidden representations.

We use the average of the hidden states from the selected
positions of the last layers as input for a MLP. The MLP

'We select the positions using a uniform distribution. However,
we always include the [CLS] token—a special symbol prepended
as the beginning of every input sentence.

outputs a probability distribution over the classes of the task
given Eq 1. During the evaluation, we use the average from
all hidden states of the last layer as input for the MLP.

1 k
7 = MLP (kiz_;hg o

p(y|X) = softmax ()

The key element of our method is that we disable the gra-
dient computation for the un-selected tokens in G. Thus,
only the k selected position contributions will be used for
the gradient computation during the backward pass. For
example, let us consider a dense layer f(z) = o(Wx + b)
with a weight W, bias b, and nonlinear function ¢ as pa-
rameters. We note the output of the layer a, the input h
and the pre-activation z such that a = o(z) = o(Wh + b).
When back-propagating through this layer, given a loss £,
we compute the gradient with respect to W and b given
Eq 2.

0L _0LOa 0z _OL ,
AW~ 9a0:0W 0a’
oL oL

db 8aU

h
(@)

In pytorch, we disable the gradient computation for the

Memory-Efficient Selective Fine-Tuning

Table 2. Results from BERT-large (Devlin et al., 2019) on GLUE test tasks scored using the benchmark server. We report the Matthew’s
Correlation for CoLA, the Spearman correlation for STS-B, F1 score for MRPC and QQP. We report the accuracy on the MNLI matched
test split and the accuracy for every other tasks. The “Param.” column indicates the ratio of the number of updated parameters for each
task by the number of parameters in the backbone model. We indicate in bold the best result for each task. T indicates models we trained.
We report adapter results from Houlsby et al. (2019), BitFit from Zaken et al. (2022) and Diff Pruning from Guo et al. (2021). For LoRA
(Hu et al., 2022) and Ladder Side Tuning (LST) (Sung et al., 2022), we select the best learning rate in the dev set between the values
proposed in the original papers, respectively [5e™*,4e™*, 3¢, 2¢™*] and [3e™*, 173, 3¢™3]. We do not use the initialization setup
proposed in LoRA or LST nor do we drop any layers for the LST method.

Method Param. (%)| CoLA SST-2 MRPC QQP QNLI MNLI STS-B| Avg.
Avg. number of tokens — | 113 133 532 306 494 398 278 | 322
Full Tuning® 100.0 60.7 946 883 720 924 858 858 | 82.8
Adapters (Houlsby et al., 2019) 3.6 595 940 895 71.8 907 849 869 | 825
BitFit (Zaken et al., 2022) 0.1 59.7 942 889 705 920 845 85.0 | 82.1
Diff Pruning (Guo et al., 2021) 0.5 61.1 941 8.7 711 933 864 86.0 | 83.1
Ladder Side Tuning’ (Sung et al., 2022) 24 564 934 88.0 669 8.1 829 86.6 | 80.5
LoRAT (Hu et al., 2022) 0.3 585 940 8.2 711 911 847 84.6 | 819
Selective Fine-Tuning' 100.0 596 939 8.0 708 91.0 854 86.0 | 82.1
positions in G such that: difference with full fine-tuning and SoTA approaches are
comparable with our results.
35_{“ 35}_[35 0] 3)
da dag’ dag dag’ 3.2. Influence of the proportion of frozen token positions
. .) Given our selective fine-tuning approach, we then evaluate
Pluging that in Eq 2, we have: the impact of the number of frozen input positions on the
performance. We use our selective procedure to fine-tune
BERT-base on two tasks from the GLUE benchmark: MRPC
875 - {6‘60/ hg, 0} : (97/5 - ai o) and STS-B. We set the hyper-parameters as of 5e~® for the
dw dag db da learning rate, 32 for the batch size and 4 epochs. But we use

Given Eq 4, we only need to cache hg for the chain rule
application instead of the full activation h.

3. Experiments
3.1. Performance on downstream tasks

We first validate the relevance of our method on the GLUE
benchmark (Wang et al., 2018). We use a similar hyper-
parameter search space as in Zaken et al. (2022), by per-
forming a cross validation on the dev set using a learning
rate in [5e=5,3e75,2e 7% 1e75]. We set the batch size to
16 and perform 3 epochs on large datasets and 20 epochs
on small ones (MRPC, STS-B, CoLA). We use BERT-large
(Devlin et al., 2019) and either fine-tune the model fully or
use our selective fine-tuning approach and only propagate
the gradient through 16 input positions. We then evaluate
our model on the test set and report the results in Table 2.

As seen in the second part of Table 2 the average score is
on-par with full fine-tuning, thus empirically validating the
relevance of the approach. We compare our results with
state-of-the art comparable PEFT method and show that the

different values for k, the number of updated input positions,
ranging between 4 and 64. We report in Figure 2 (right), the
average performance on the dev set of the tasks.

As seen in Figure 2, the performance increases from 84.8 to
88.8 as the number of trained positions increases from 4 to
64. However, by only tuning 32 positions, we already reach
an average performance of 88.4, close to the 88.8 obtained
by training 64 input positions. In that regard, our approach
performs better than freezing some bottom layers (Lee et al.,
2019). Indeed Lee et al. (2019) show that only tuning the
four bottom layers impacted the performance by 10% on
the GLUE benchmark.

3.3. GPU memory impact

Finally, we seek to analyze the GPU memory required to
fine-tune LLMs using various approaches. We train our
BERT-base model for 100 steps on the CoLA task using
various batch sizes and report the maximum GPU memory
used. We compare with the two other PEFT fine-tuning
approaches closest to ours: Ladder Side Tuning (Sung et al.,
2022) and LoRA (Hu et al., 2022). LoRA approach freezes

Memory-Efficient Selective Fine-Tuning

24,576 MiB
= Selective Fine-Tuning (ours)
Selective Fine-Tuning (ours) + LORA .
=== Full Tuning R4
—==- Lora Tuning -
LST Tuning e

16,384 MiB

GPU RAM

8,192 MiB

4,096 MiB

2,048 MiB

32 64 128 256 512
Batch size

0.89

0.88

0.87

Avg. GLUE dev score

0.85

0.84
10 20 30 40 50 60

Number of trained token positions

Figure 2. (left) We plot the GPU memory required to train BERT-base on the CoLA task given the batch size. We compare our approach
with two PEFT approaches: Ladder Side Tuning and LoRA. (right) We plot the mean and standard deviation performance on the dev
set of five runs when training BERT-base on two tasks from the GLUE benchmark: MRPC, and STS-B. We use our memory efficient
fine-tuning approach with a different number of selected inputs for the gradient computation.

most of the model parameters, while only training additional
matrices, which weights are added to the backbone network.
Ladder Side Tuning (LST) freezes the model parameters
but trains a side-network with smaller dimensions, taking as
input intermediate activations from the backbone model.

Figure 2 shows the evolution of the required GPU memory
with respect to the batch size. The GPU memory increases
with the batch size for every approach. Our selected position
approach is more memory efficient by a large margin. When
using a batch size of 512, it requires two times less memory
than full fine tuning, from 9, 952 MiB to 23, 196 MiB.

All methods minimize GPU memory usage. LoRA and
LST aim to reduce the memory required to store optimizer
states and parameter gradients, while our method reduces
the memory required to store intermediate activations. In-
terestingly enough it is possible to use these approaches in
conjunction to reduce the memory for all three contributions.
Figure 2 shows that we can further reduce the memory by
combining our selective fine tuning approach with LoRA,
thus requiring only 7, 682 MiB with a batch size of 512, a
third of the memory used for full fine-tuning.

4. Related Work

Parameter-Efficient Fine-Tuning approaches (PEFT) aim to
limit the computing resources required to fine-tune LLMs,
by only updating a subset of the backbone model param-
eters. BitFit (Zaken et al., 2022) only fine-tunes the bias-
terms of the pre-trained model. Selective masking learns
task-specific binary masks and applies them to the original
weights, thus acting as filters selecting task-specific sub-
networks (Mallya et al., 2018; Zhao et al., 2020; Radiya-
Dixit & Wang, 2020).

Some approaches add a few parameters to a frozen model
and train them for a specific task. Adapters are task-specific
modules injected between layers of a frozen pre-trained
transformer model (Houlsby et al., 2019; Stickland & Mur-
ray, 2019; Pfeiffer et al., 2021; Riicklé et al., 2021; Ma-
habadi et al., 2021). Prefix-tuning (Li & Liang, 2021; Qin &
Eisner, 2021; Liu et al., 2021) prepends a sequence of con-
tinuous task-specific vectors to the input of a frozen model
and tunes them for each task. Diff pruning (Guo et al., 2021)
reparametrizes the parameters of a task-specific model as
the sum of the fixed pre-trained model parameters with a
task-specific sparse vector specifically tuned for each task.

More close to our work, Hu et al. (2022) propose a low-
rank matrix decomposition that compresses the pre-trained
model weights. Side Tuning (Zhang et al., 2020; Sung
et al., 2022) proposes to reduce the memory requirement for
storing intermediate activations by training a small separated
side network, which takes intermediate activations from the
backbone network as input via shortcut connections.

5. Conclusion and Future Work

Our selective approach reduces the GPU memory required
to fine-tune transformer-based language models, while main-
taining the same standard benchmark performance. Our ap-
proach selects a subset of the input positions through which
the gradient is propagated, while the other remains frozen.
When increasing the batch size, our approach reduces the
memory requirements by up to a third. We hope that our
approach will facilitate the fine-tuning of large language
models, in specializing them for specific domains, or co-
training them with other neural components from a larger
system.

Memory-Efficient Selective Fine-Tuning

References

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P, Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, 1., and Amodei, D. Language
models are few-shot learners. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.
neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8acld42f6da—-Abstra

html.

Devlin, J., Chang, M., Lee, K., and Toutanova, K. BERT:
pre-training of deep bidirectional transformers for lan-
guage understanding. In Burstein, J., Doran, C., and
Solorio, T. (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7,
2019, Volume 1 (Long and Short Papers), pp. 4171-4186.
Association for Computational Linguistics, 2019. doi:
10.18653/v1/n19-1423. URL https://doi.org/
10.18653/v1/n19-1423.

Guo, D., Rush, A. M., and Kim, Y. Parameter-efficient
transfer learning with diff pruning. In Zong, C., Xia,
F., Li, W.,, and Navigli, R. (eds.), Proceedings of the
59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Con-
ference on Natural Language Processing, ACL/IJCNLP
2021, (Volume 1: Long Papers), Virtual Event, Au-
gust 1-6, 2021, pp. 4884-4896. Association for Com-
putational Linguistics, 2021. doi: 10.18653/v1/2021.
acl-long.378. URL https://doi.org/10.18653/
v1/2021.acl-long.378.

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B.,
de Laroussilhe, Q., Gesmundo, A., Attariyan, M., and
Gelly, S. Parameter-efficient transfer learning for NLP.
In Chaudhuri, K. and Salakhutdinov, R. (eds.), Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 2790-2799. PMLR,
2019. URL http://proceedings.mlr.press/
v97/houlsbyl9a.html.

Hu, E. J., yelong shen, Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. LoRA: Low-rank adap-

URL https://proceedings.

tation of large language models. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=nzZeVKeeFYf9.

Lee, J., Tang, R., and Lin, J. What would elsa do?
freezing layers during transformer fine-tuning. CoRR,
abs/1911.03090, 2019. URL http://arxiv.org/
abs/1911.03090.

Li, X., Tramer, F., Liang, P., and Hashimoto, T. Large lan-
guage models can be strong differentially private learn-
ers. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=bVuP31tATMz.

Li, X. L. and Liang, P. Prefix-tuning: Optimizing continuous

ct. prompts for generation. In Zong, C., Xia, F.,, Li, W., and

Navigli, R. (eds.), Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Lan-
guage Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pp. 4582-4597.
Association for Computational Linguistics, 2021. doi:
10.18653/v1/2021.acl-long.353. URL https://doi.
org/10.18653/v1/2021.acl-long.353.

Liu, X, Ji, K., Fu, Y., Du, Z., Yang, Z., and Tang,

J. P-tuning v2: Prompt tuning can be comparable to
fine-tuning universally across scales and tasks. CoRR,
abs/2110.07602, 2021. URL https://arxiv.org/
abs/2110.07602.

Mahabadi, R. K., Henderson, J., and Ruder, S. Compacter:

Efficient low-rank hypercomplex adapter layers. In
Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang,
P, and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems 34: Annual Conference
on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pp. 1022—
1035, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/

081lbe9fdff07£3bc808£935906ef70c0-Abstract.

html.

Mallya, A., Davis, D., and Lazebnik, S. Piggyback: Adapt-

ing a single network to multiple tasks by learning to mask
weights. In Ferrari, V., Hebert, M., Sminchisescu, C., and
Weiss, Y. (eds.), Computer Vision - ECCV 2018 - 15th
European Conference, Munich, Germany, September 8-
14, 2018, Proceedings, Part IV, volume 11208 of Lecture
Notes in Computer Science, pp. 72—88. Springer, 2018.
doi: 10.1007/978-3-030-01225-0_5. URL https://
doi.org/10.1007/978-3-030-01225-0_5.

Pfeiffer, J., Kamath, A., Riicklé, A., Cho, K., and Gurevych,

I. Adapterfusion: Non-destructive task composition for

https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.acl-long.378
https://doi.org/10.18653/v1/2021.acl-long.378
http://proceedings.mlr.press/v97/houlsby19a.html
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1911.03090
http://arxiv.org/abs/1911.03090
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://arxiv.org/abs/2110.07602
https://arxiv.org/abs/2110.07602
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/081be9fdff07f3bc808f935906ef70c0-Abstract.html
https://doi.org/10.1007/978-3-030-01225-0_5
https://doi.org/10.1007/978-3-030-01225-0_5

Memory-Efficient Selective Fine-Tuning

Schick, T. and Schiitze, H.

transfer learning. In Merlo, P., Tiedemann, J., and Tsar-
faty, R. (eds.), Proceedings of the 16th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Main Volume, EACL 2021, On-
line, April 19 - 23, 2021, pp. 487-503. Association
for Computational Linguistics, 2021. doi: 10.18653/

v1/2021.eacl-main.39. URL https://doi.org/10.

18653/v1/2021.eacl-main.39.

Pfeiffer, J., Ruder, S., Vulic, 1., and Ponti, E. M. Modular

deep learning. CoRR, abs/2302.11529, 2023. doi: 10.
48550/arXiv.2302.11529. URL https://doi.org/
10.48550/arXiv.2302.115209.

Qin, G. and Eisner, J. Learning how to ask: Query-
ing Ims with mixtures of soft prompts. In Toutanova,
K., Rumshisky, A., Zettlemoyer, L., Hakkani-Tiir, D.,
Beltagy, 1., Bethard, S., Cotterell, R., Chakraborty, T.,
and Zhou, Y. (eds.), Proceedings of the 2021 Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2021, Online, June 6-11,
2021, pp. 5203-5212. Association for Computational
Linguistics, 2021. doi: 10.18653/v1/2021.naacl-main.
410. URL https://doi.org/10.18653/v1/
2021 .naacl-main.410.

Radiya-Dicxit, E. and Wang, X. How fine can fine-tuning be?
learning efficient language models. In Chiappa, S. and
Calandra, R. (eds.), The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28
August 2020, Online [Palermo, Sicily, Italy], volume 108
of Proceedings of Machine Learning Research, pp. 2435—
2443. PMLR, 2020. URL http://proceedings.
mlr.press/v108/radiya-dixit20a.html.

Riicklé, A., Geigle, G., Glockner, M., Beck, T., Pfeiffer,
J., Reimers, N., and Gurevych, I. Adapterdrop: On
the efficiency of adapters in transformers. In Moens,
M., Huang, X., Specia, L., and Yih, S. W. (eds.), Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pp. 7930-7946. Association for
Computational Linguistics, 2021. doi: 10.18653/v1/
2021.emnlp-main.626. URL https://doi.org/10.
18653/v1/2021.emnlp—-main.626.

It’s not just size that mat-
ters: Small language models are also few-shot learn-
ers. In Toutanova, K., Rumshisky, A., Zettlemoyer, L.,
Hakkani-Tiir, D., Beltagy, 1., Bethard, S., Cotterell, R.,
Chakraborty, T., and Zhou, Y. (eds.), Proceedings of
the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, On-

line, June 6-11, 2021, pp. 2339-2352. Association for
Computational Linguistics, 2021. doi: 10.18653/v1/
2021.naacl-main.185. URL https://doi.org/10.
18653/v1/2021.naacl-main.185.

Stickland, A. C. and Murray, I. BERT and pals: Pro-
jected attention layers for efficient adaptation in multi-
task learning. In Chaudhuri, K. and Salakhutdinov, R.
(eds.), Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of
Machine Learning Research, pp. 5986-5995. PMLR,
2019. URL http://proceedings.mlr.press/
v97/sticklandl9a.html.

Sung, Y.-L., Cho, J., and Bansal, M. LST: Ladder side-
tuning for parameter and memory efficient transfer learn-
ing. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=isPnnaTZaP5.

Wang, A., Singh, A., Michael, J., Hill, F,, Levy, O., and Bow-

man, S. GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pp. 353—
355, Brussels, Belgium, November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/W18-5446.
URL https://aclanthology.org/W18-5446.

Zaken, E. B., Goldberg, Y., and Ravfogel, S. Bitfit: Sim-

ple parameter-efficient fine-tuning for transformer-based
masked language-models. In Muresan, S., Nakov, P., and
Villavicencio, A. (eds.), Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pp. 1-9. Association for Computa-
tional Linguistics, 2022. doi: 10.18653/v1/2022.acl-short.
1.URL https://doi.org/10.18653/v1/2022.
acl-short.1.

Zhang, J. O., Sax, A., Zamir, A., Guibas, L. J., and Malik,

J. Side-tuning: A baseline for network adaptation via
additive side networks. In Vedaldi, A., Bischof, H., Brox,
T., and Frahm, J. (eds.), Computer Vision - ECCV 2020 -
16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part III, volume 12348 of Lecture
Notes in Computer Science, pp. 698—714. Springer, 2020.
doi: 10.1007/978-3-030-58580-8\ 41. URL https://
doi.org/10.1007/978-3-030-58580-8_41.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,

Chen, S., Dewan, C., Diab, M. T., Li, X., Lin, X. V.,
Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig,
D., Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,

https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.48550/arXiv.2302.11529
https://doi.org/10.48550/arXiv.2302.11529
https://doi.org/10.18653/v1/2021.naacl-main.410
https://doi.org/10.18653/v1/2021.naacl-main.410
http://proceedings.mlr.press/v108/radiya-dixit20a.html
http://proceedings.mlr.press/v108/radiya-dixit20a.html
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.naacl-main.185
https://doi.org/10.18653/v1/2021.naacl-main.185
http://proceedings.mlr.press/v97/stickland19a.html
http://proceedings.mlr.press/v97/stickland19a.html
https://openreview.net/forum?id=isPnnaTZaP5
https://openreview.net/forum?id=isPnnaTZaP5
https://aclanthology.org/W18-5446
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.1007/978-3-030-58580-8_41
https://doi.org/10.1007/978-3-030-58580-8_41

Memory-Efficient Selective Fine-Tuning

L. OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068, 2022. doi: 10.48550/arXiv.
2205.01068. URL https://doi.org/10.48550/
arXiv.2205.01068.

Zhao, M., Lin, T., Mi, F, Jaggi, M., and Schiitze, H.
Masking as an efficient alternative to finetuning for pre-
trained language models. In Webber, B., Cohn, T,
He, Y., and Liu, Y. (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20,
2020, pp. 2226-2241. Association for Computational
Linguistics, 2020. doi: 10.18653/v1/2020.emnlp-main.
174. URL https://doi.org/10.18653/v1/
2020.emnlp-main.174.

https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.48550/arXiv.2205.01068
https://doi.org/10.18653/v1/2020.emnlp-main.174
https://doi.org/10.18653/v1/2020.emnlp-main.174

