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Abstract

Generalizing to unseen graph tasks without task-specific supervision is challenging:
conventional graph neural networks are typically tied to a fixed label space, while
large language models (LLMs) struggle to capture graph structure. We introduce
UniGTE, an instruction-tuned encoder–decoder framework that unifies structural
and semantic reasoning. The encoder augments a pretrained autoregressive LLM
with learnable alignment tokens and a structure-aware graph–text attention mecha-
nism, enabling it to attend jointly to a tokenized graph and a natural-language task
prompt while remaining permutation-invariant to node order. This yields compact,
task-aware graph representations. Conditioned solely on these representations,
a frozen LLM decoder predicts and reconstructs: it outputs the task answer and
simultaneously paraphrases the input graph in natural language. The reconstruction
objective regularizes the encoder to preserve structural cues. UniGTE is instruction-
tuned on five datasets spanning node-, edge-, and graph-level tasks across diverse
domains, yet requires no fine-tuning at inference. It achieves new state-of-the-art
zero-shot results on node classification, link prediction, graph classification and
graph regression under cross-task and cross-domain settings, demonstrating that
tight integration of graph structure with LLM semantics enables robust, transferable
graph reasoning.

1 Introduction

Zero-shot learning in graph machine learning seeks to generalize to unseen tasks and domains
without task-specific supervision. Although graph neural networks (GNNs) excel in fully supervised
settings, they transfer poorly to new label spaces or data distributions without costly fine-tuning [1].
Inspired by recent progress in natural language processing (NLP), prompt-based extensions have
been proposed to enhance GNN generalization [2, 3]. However, the rigid architecture of conventional
GNNs—especially their task-specific output heads—still hampers adaptability in zero-shot scenarios.

The advent of large language models (LLMs) opens new avenues for zero-shot reasoning on graphs.
A direct approach serializes graph data into text and feeds it to an LLM [4, 5, 6, 7]. While simple,
this often underperforms because LLMs lack structural inductive bias [8]. Recent work therefore
explores combining GNNs and LLMs, which can be grouped as follows.

LLMs as enhancers. These methods keep a GNN as the primary predictor and employ the LLM
only to inject auxiliary semantic signals—for example, generating synthetic labels or textual node
descriptions [9, 10, 11, 12]. Although such signals improve performance, the approaches inherit the
architectural rigidity of GNNs and typically require retraining for new tasks. Replacing task-specific
output heads with textual label embeddings enables limited zero-shot classification [13, 14] but does
not naturally extend to regression or other objectives, and semantic mismatch between graph and text
remains an issue.
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Figure 1: Framework of UniGTE

LLMs as predictors. Here the predictive role is assigned to the LLM, while a GNN supplies
structural information aligned to the LLM’s semantic space—usually via self-supervised pretraining
and cross-modal projection [15, 16, 17]. Because the two components are trained separately, it is hard
to inject task-specific signals in a task-aware manner, limiting generalization. Deeper integrations
such as GOFA [18] inject GNN features into LLM tokens at inference time, boosting zero-shot
performance but at a high computational cost and with persistent cross-task and cross-domain gaps.

Our proposal. We introduce UniGTE, a unified encoder–decoder framework that is instruction-tuned
on a diverse suite of graph datasets (node classification, link prediction, graph classification; domains
include citation networks, e-commerce graphs, molecular structures). The encoder augments a
pretrained autoregressive LLM to jointly consume a tokenized graph, a natural-language task prompt,
and a fixed set of learnable alignment tokens. During self-attention, these alignment tokens aggregate
structural and prompt signals into a compact task-aware graph representation. The decoder is a
frozen autoregressive LLM that conditions on this representation to (i) generate the task prediction and
(ii) reconstruct the graph prompt, with the latter providing auxiliary supervision via a prompt-level
loss. This design yields a single model that is permutation-invariant to node order, conditioned on
task instructions, and capable of zero-shot generalization across modalities, tasks, and domains. Our
key contributions are as follows:

• We present UniGTE—the first unified encoder–decoder architecture that achieves zero-shot gener-
alization across diverse graph tasks and domains without any task-specific fine-tuning.

• UniGTE conditions graph representation learning on task prompts and embeds both graph structure
and textual semantics in a common space, enabling flexible adaptation across modalities and
objectives.

• Extensive experiments demonstrate state-of-the-art zero-shot results on node classification, link
prediction, and graph regression across multiple domains.

2 Methodology

We present UniGTE, a unified encoder–decoder framework for learning transferable graph represen-
tations across heterogeneous tasks and domains. UniGTE is instruction-tuned on a diverse collection
of graph datasets that cover multiple task families—node classification, link prediction, and graph
classification—and domains such as citation networks, e-commerce graphs, and molecular structures.

The architecture comprises an encoder and a decoder. The encoder extends a pretrained autoregressive
large language model (LLM) to jointly process graph-structured inputs and natural-language task
prompts. Its input sequence comprises a tokenized graph (e.g., node representations from a subgraph),
a task-specific prompt, and a fixed set of learnable alignment tokens. These alignment tokens act as
cross-modal anchors during self-attention, aggregating information from graph tokens guided by the
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task prompt and distilling it into a compact, task-aware latent representation—termed the task-aware
graph representation.

The decoder is a frozen autoregressive LLM that conditions exclusively on the encoder outputs of
the alignment tokens—that is, on the task-aware graph representation. It autoregressively generates
two outputs: (i) the task prediction and (ii) a reconstruction of the graph prompt. The latter serves as
an auxiliary supervision signal, implemented via a prompt-level loss that encourages the encoder to
preserve the semantic content of the input graph. An overview of the framework is shown in Fig. 1.

2.1 Task definition and notation

A graph-learning task τ ∈ T is formally defined as τ :=
{
(Gi, y

τ
i )
}M

i=1
∪ {T τ}, where M is the

number of graph instances. Each instance pairs a graph Gi with a target output yτi , expressed as a
sequence of text tokens that typically encodes a class label or a numerical value.

A graph is denoted G =
(
V, E ,A,X,E

)
, where V = {v1, v2, . . . , vN} is the node set and E =

{e1, e2, . . . , e|E|} the edge set. The adjacency matrix A ∈ RN×N is defined by Aij = 1 iff
(vi, vj) ∈ E . Node features are stored in X ∈ RN×FN and edge features in E ∈ R|E|×FE , with FN

and FE denoting their respective feature dimensions.

Each task τ is accompanied by a natural-language instruction T τ = [T τ
desc, T

τ
detail], containing two

components. The task description T τ
desc = [w

(d)
1 , . . . , w

(d)
ℓ ] briefly states the objective—for example,

“Determine this node’s most likely category within the network’s classification schema.” The task-
specific input T τ

detail = [w
(s)
1 , . . . , w

(s)
r ] provides the contextualised information needed to solve

the task, such as “Given a representation of a paper with the following information: Title: {title},
Abstract: {abstract}. Question: Which arXiv CS sub-category does this paper belong to?”

2.2 Unified graph-text encoder: learning task-aware graph representations via LLM

In UniGTE, the encoder receives a graph instance Gi, the task description T τ
desc, and a fixed set of

alignment tokens A (defined below), and embeds them into a shared latent space. The decoder,
conditioned on the encoder outputs corresponding to the alignment tokens—i.e., the task-aware
graph representation—and on the task-specific input T τ

detail, then autoregressively produces the target
sequence yτi .

We first describe the unified graph–text encoder. Prior work shows that graph tasks depend on
structural and attribute information to different extents [19, 20]. To satisfy these varied requirements,
the encoder must inject task cues into the aggregation process while retaining the ability to generalise
across tasks and domains for zero-shot transfer. Inspired by the strong generalisation capacity of
large language models (LLMs) in graph contexts, we build the encoder on a pretrained LLM that
jointly encodes graph structure and task instructions, thereby learning task-aware representations.

2.2.1 Unified input formatting for graph tasks

To enable joint training across heterogeneous tasks and domains, we cast every task into a unified
graph-level input. For node- and edge-level tasks, we extract an n-hop subgraph centred on the target
node or edge and treat all nodes in this subgraph as input tokens TG :

TG = [w
(g)
1 , . . . , w(g)

n ],

where each token w
(g)
i is obtained by encoding the node’s attribute text with a pretrained language

model (PLM), and n = |G| is the number of nodes in the subgraph. This abstraction lifts instance-level
tasks to the graph level, promoting parameter sharing across task types [3].

To inject task semantics, we employ a unified description template Tdesc that specifies both the task
type and a concise summary of the input graph. Presenting this textual prompt alongside the graph
tokens guides the encoder to produce a latent representation that is simultaneously structure- and
task-aware.

To bridge graph and text inputs in a shared semantic space, we append a fixed set of learnable
alignment tokens:

A = [a1,a2, . . . ,am ], m ≪ n+ ℓ,
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where m is much smaller than the combined number of graph tokens n and text tokens ℓ. These
tokens distil and integrate information from both modalities and act as the sole interface to the decoder.
This design unifies the representational spaces of graph and text while shrinking the overall token
budget, allowing the model to accommodate longer inputs within its sequence-length limit.

Given TG , Tdesc, and A, the encoder input is

xenc =
[
TG ; Tdesc ; A

]
∈ R(n+ℓ+m)×dh ,

where dh is the hidden dimension of the underlying language model.

2.2.2 Structure-aware graph-text attention

Beyond simple input formatting, we propose a structure-aware graph–text attention mechanism.
Existing methods often linearize graph nodes into token sequences and input them into large language
models (LLMs). However, their performance heavily relies on a fixed node ordering and degrades
significantly under permutation [21]. This fragility stems from the absolute positional encoding
in standard self-attention, which contradicts the permutation invariance inherent to graph data. To
address this, we design a unified attention mechanism that jointly processes graph and text tokens
while preserving structural invariance.

Let the projection matrices be WQ,WK ,WV ∈ Rdh×dk and WO ∈ Rdk×dh . The scaled dot-
product attention with relative position encoding, as applied in LLMs, is defined as

Âij =
(xiWQ)R(i− j) (xjWK)⊤√

dk
, A = softmax(Â), Attn(X) = A(XWV )WO, (1)

where R(·) denotes the rotary positional encoding (RoPE) transformation [22].

Cross-modal RoPE We extend RoPE to accommodate graph, text, and alignment tokens. For
text tokens, i and j represent absolute positions, and R(i − j) operates as in standard RoPE. For
graph tokens, we assign a shared, learnable position index <GraphPos>, such that i − j = 0 for
all graph-node pairs. This causes R(0) to reduce to the identity matrix, removing order sensitivity.
For cross-modal interactions, we compute the offset between text token positions and <GraphPos>,
enabling the model to learn consistent alignments across modalities.

While this construction restores node-permutation invariance, it discards explicit structural cues. We
re-inject them through additive biases:

Âij =
(xiWQ)R(i− j) (xjWK)⊤√

dk
+ b(i, j), (2)

with b(i, j) = I{i,j≤n}
(
bPE
ij + bEdge

ij

)
+ bMij . The three bias terms are:

Distance-based structural bias Following graph transformers [23], we embed the shortest-path
distance between graph nodes as:

bPE
ij = e

(
distG(i, j)

)
, (3)

where e(·) is a learnable lookup table, and distG(i, j) denotes the shortest-path distance between
nodes i and j.

Edge-aware bias Graphs in practice feature heterogeneous edge types. For each edge ek on the
shortest path SP(i, j) we compute

bek = MLP
(
PLM

(
“Description of ek”

))
(4)

and aggregate by bEdge
ij = 1

| SP(i,j)|
∑

k∈SP(i,j) bek . Unlike discrete type embeddings [24], this
natural-language description lets the model generalize to unseen edge semantics, benefiting zero-shot
transfer.
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Masking bias Finally, bMij enforces directional constraints:

bMij =

{
−∞, if (i > j ∧ i > n) or (i ≤ n ∧ n < j ≤ n+ ℓ),

0, otherwise.
(5)

Graph tokens attend bidirectionally to capture connectivity; in addition, they may look forward into
the text so downstream instructions can refine their representations. Conversely, text tokens never
attend to graph tokens, preventing information leakage. Alignment tokens obey the standard causal
mask across both modalities.

Together, these biases endow our attention with (i) permutation invariance for graph inputs, (ii)
explicit structural awareness, and (iii) flexible cross-modal interaction, enabling robust reasoning
across diverse graph-text tasks.

2.2.3 Instruction tuning of the unified graph–text encoder

After the encoder processes the input graph and prompt, we take the hidden states HA at the special
alignment tokens A as task-aware graph representations. HA fuse structural cues from the graph with
semantic hints from the task description and constitute the sole conditioning signal for the decoder.

Instruction-tuning objective. We train concurrently on node-, edge- and graph-level tasks drawn
from multiple domains. For a task τ with target sequence yτ = (yτ1 , . . . , y

τ
Lτ

) and instance-specific
instruction T τ

detail, the negative log-likelihood loss is

Lτ
IT(θenc) = −

Lτ∑
t=1

logP
(
yτt | HA, T

τ
detail, y

τ
<t; θenc

)
. (6)

Here T τ
detail differs from the terse task description T τ

desc in that it contains the concrete, instance-level
input needed to solve τ .

During instruction tuning we keep the decoder frozen and update only a small subset of encoder
parameters: LoRA adapters θLoRA, alignment-token embeddings θA, the MLP weights θMLP that
compute edge-aware bias, and the table θe for relative-position bias. We denote their union by θenc.

Auxiliary prompt reconstruction. We additionally ask the decoder to reconstruct the graph
description dG embedded in the prompt. This supervision encourages the alignment tokens to better
encode structural information, while eliminating the need for a separate autoencoding stage. With
target tokens w(dG) = (w

(dG)
1 , . . . , w

(dG)
Ld

), the auxiliary loss is

Lτ
prompt(θenc) = −

Ld∑
t=1

logP
(
w

(dG)
t | HA, w

(dG)
<t ; θenc

)
. (7)

Overall objective. The total loss for task τ is the sum of the two terms:

Lτ
total(θenc) = Lτ

IT(θenc) + Lτ
prompt(θenc). (8)

In training we minimise
∑

τ Lτ
total(θenc) with respect to θenc.

2.3 Training and evaluation strategy

To assess the scalability and generalization ability of our model, we curate a diverse set of graph
datasets spanning multiple levels (node, edge, and graph) and domains. The benchmark includes
both classification and regression tasks drawn from application areas such as citation networks,
e-commerce platforms, social media, and molecular graphs. Specifically, it comprises 17 datasets
from five distinct domains, covering node classification, link prediction, graph classification, and
graph regression tasks. Full details of the datasets are provided in the Appendix A. We use a subset
of these datasets for instruction tuning, and directly evaluate the model’s zero-shot performance on
the remaining datasets without any further fine-tuning.
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3 Experimental results

In this section, we conduct comprehensive experiments to validate the effectiveness of UniGTE. Our
evaluation is designed to address the following research questions:

RQ1: How well does UniGTE generalize to unseen datasets within the same domain (in-domain
zero-shot)?

RQ2: Can UniGTE handle more challenging generalization settings, such as transferring across
domains or tasks unseen during training (cross-domain and cross-task zero-shot)?

RQ3: What are the respective contributions of task-aware graph encoding and alignment tokens to
the zero-shot performance of UniGTE?

3.1 Experimental setup

Datasets We jointly train UniGTE on five datasets: Arxiv [25], Children [26], Computer [26],
FB15K237 [13], and ChEMBL [27], spanning node classification, link prediction, and graph clas-
sification tasks. For Arxiv, Children, and Computer, we construct both node classification and link
prediction tasks to increase task diversity. After training, we evaluate UniGTE in a zero-shot setting
on a set of unseen datasets. For in-domain evaluation, we use datasets from the same domains
(e.g., additional citation or e-commerce graphs). To assess cross-domain generalization, we evaluate
on datasets from different domains such as web graphs and social networks. Finally, to evaluate
cross-task generalization, we include a previously unseen graph regression task. Detailed descriptions
of all training and evaluation datasets are provided in the Appendix A.

Baselines We compare UniGTE against several recent state-of-the-art models with demonstrated
transfer and zero-shot capabilities. OFA [13] combines a GNN-based predictor with a large language
model (LLM) via prompt-based input augmentation. GraphGPT [15], LLaGA [28], and TEA-
GLM [17] adopt an LLM as the primary predictor and align graph-text representations through either
a multi-layer perceptron (MLP) or a linear projection layer. GOFA [18] also employs an LLM as the
predictor but incorporates structural information through inter-layer graph aggregation within the
LLM architecture. Due to the high computational cost of training and evaluating GraphGPT, we
report its results as provided in the original publication. For all other baselines, we re-ran the official
implementations and conducted evaluations under our experimental setup. Detailed settings of the
experimental environment can be found in Appendix C.

3.2 In-domain zero-shot generalization (RQ1)

To address RQ1, we evaluate each model’s zero-shot performance on datasets from the same domains
as those seen during training. These include citation networks (Pubmed [29] and Cora [30], with the
latter being a more challenging variant featuring 70 classes), e-commerce datasets (Photo and Sports),
and molecular graphs [31](HIV, BACE, and PCBA). We report accuracy for node classification, and
AUC for link prediction and graph classification, reflecting the standard metrics used for each task
type.

As shown in Table 1, UniGTE achieves the best overall performance across tasks and datasets,
outperforming all baselines on the majority of benchmarks. Models relying on GNN-based predictors,
such as OFA, struggle to generalize and exhibit weak transfer performance. Surprisingly, in most
tasks, LLM-based methods like LLaGA and GraphGPT fail to outperform their base model, Vicuna-
7B, suggesting that their lack of permutation invariance hinders generalization—changes in node
ordering significantly impact their predictions.

Among the baselines, TEA-GLM applies a pooling mechanism to produce a fixed number of graph
tokens, which preserves permutation invariance and contributes to better generalization in node
classification and link prediction tasks. However, its inability to incorporate task-specific signals
leads to inconsistent performance across tasks and even negative transfer in graph classification.
GOFA, trained using our instruction tuning pipeline on the official pre-trained checkpoint, achieves
limited gains. Despite extensive pretraining, it underperforms in most tasks and fails to match even
an untuned LLM in many cases.

In contrast, UniGTE demonstrates consistent positive transfer across all datasets and task types.
This can be attributed to its use of task-specific signals during graph encoding, which enable the
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Table 1: In-domain zero-shot results. Bold and underline indicate the best and second-best results,
respectively. N.S. denotes unsupported tasks.

Model Pubmed Cora Photo Sports BACE HIV PCBA Pubmed Photo
Node Classification Graph Classification Link Prediction

Vicuna-7B 0.721 0.155 0.384 0.371 0.492 0.467 0.497 0.502 0.576
OFA 0.237 0.189 0.317 0.047 0.483 0.404 0.424 0.499 0.499

GraphGPT-std 0.701 0.126 – – – – – 0.501 –
LLaGA 0.726 0.156 0.249 0.351 N.S. N.S. N.S. 0.740 0.659

TEA-GLM 0.781 0.202 0.418 0.357 0.467 0.498 0.434 0.663 0.675
GOFA 0.614 0.039 0.447 0.133 0.500 0.481 0.500 0.507 0.504

UniGTE 0.870 0.215 0.565 0.403 0.534 0.501 0.541 0.722 0.732

model to distinguish between task objectives, and its alignment tokens, which unify structural and
semantic information. Together, these components contribute to UniGTE’s superior generalization in
in-domain, zero-shot scenarios.

3.3 Cross-domain and cross-task generalization (RQ2)

To evaluate the generalization ability of each model in more challenging settings, we conduct zero-
shot testing under both cross-domain and cross-task conditions. Specifically, we use datasets from
domains not seen during training—WikiCS [32] (web links), Reddit, and Instagram [33](social
networks)—as well as an entirely new task: graph regression, evaluated on Esol [34], Lipo, and
Freesolv [35]. We report accuracy for node classification and mean absolute error (MAE) for
regression.

As shown in Table 2, UniGTE outperforms all baselines across both domains and task types. Most
baseline models show some degree of positive transfer, but results remain inconsistent. LLaGA and
OFA do not support graph-level tasks due to limitations in model design. GOFA achieves stronger
regression performance than TEA-GLM on some datasets, yet both models show clear trade-offs:
they perform well on specific domains or tasks but fail to generalize broadly.

In contrast, UniGTE consistently delivers strong performance across all datasets and settings. The
challenging nature of cross-domain and cross-task transfer underscores the importance of robust
generalization. UniGTE’s results demonstrate its ability to generalize effectively beyond the training
distribution, highlighting the benefits of its unified graph-text representation and task-aware alignment
mechanism.

3.4 Ablation study (RQ3)

We conduct ablation studies to assess the contributions of two key components in UniGTE: alignment
tokens and task-aware graph encoding. To evaluate the role of alignment tokens, we remove them
entirely and allow the decoder to generate outputs without their guidance. For task-aware graph
encoding, we replace the task-specific description Tdesc with a fixed, generic prompt that is not
tailored to any specific task.

To provide a comprehensive analysis, we evaluate performance from both domain-level and task-level
perspectives, averaging metrics across datasets within each category. To ensure comparability across
different task types—particularly between classification and regression—we adopt a normalized
MAE score defined as:

M̂AE = 1− MAE − MAEmin

MAEmax − MAEmin
,

where MAEmin and MAEmax denote the minimum and maximum MAE values observed across all
models and datasets. This normalization yields scores between 0 and 1, where higher values indicate
better performance, thus making them directly comparable to metrics such as accuracy and AUC.

As shown in Figure 2, both components contribute substantially to the model’s generalization. “w/o
AT” corresponds to the setting without alignment tokens, and “w/o TA” reflects the ablation of task-
aware graph encoding. Across both perspectives, removing either component results in a consistent
performance drop. The absence of alignment tokens significantly degrades performance, highlighting
their role in capturing structured and semantic information essential for zero-shot inference. Similarly,
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Table 2: Zero-shot performance on cross-domain node classification and cross-task graph regression.
Bold and underline indicate the best and second-best results, respectively. N.S. indicates tasks not
supported by the model. Lower is better for regression (MAE).

Model WikiCS Reddit Instagram Esol Lipo Freesolv
Node Classification (Accuracy) Graph Regression (MAE)

Vicuna-7B 0.290 0.309 0.391 6.58 11.22 64.11
OFA 0.361 0.498 0.580 N.S. N.S. N.S.

LLaGA 0.601 0.499 0.397 N.S. N.S. N.S.
TEA-GLM 0.449 0.491 0.479 14.90 9.76 13.35

GOFA 0.613 0.493 0.367 4.93 1.36 14.98

UniGTE 0.680 0.510 0.601 2.54 1.03 9.18
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Figure 2: Ablation study of alignment tokens and task-aware graph encoding, reported from both
domain-level and task-level perspectives. “w/o AT” indicates the removal of alignment tokens, while
“w/o TA” refers to replacing task-specific descriptions with a generic prompt.

removing task-specific descriptions reduces performance across the board, confirming the importance
of task-aware encoding in providing fine-grained task signals.

Overall, these results underscore the necessity of both components: alignment tokens enhance
generalization by bridging modalities, while task-aware encoding improves adaptability to diverse
task objectives.

4 Related work

In this section, we review recent advances in zero-shot and transfer learning for graph machine
learning. Existing approaches can be broadly categorized into two groups: (1) methods based solely
on GNNs, and (2) methods that incorporate large language models (LLMs). The LLM-based methods
can be further divided into two subtypes: LLM as an enhancer, where the LLM provides auxiliary
semantic information to assist graph models, and LLM as a predictor, where the LLM itself performs
prediction after being aligned with structural features.

4.1 Zero-shot and transfer learning with GNNs

A wide range of self-supervised learning techniques have been proposed to reduce the reliance of
graph neural networks (GNNs) on labeled data and improve their generalization. For example, Deep
Graph Infomax (DGI) [36] maximizes mutual information between local and global embeddings.
Contrastive methods such as GraphCL [37], GCA [38], GCC [39], and JOAO [40] construct positive
and negative views of graphs to learn invariant node representations. Generative approaches like
GraphMAE [41, 42] adopt masked reconstruction objectives to jointly encode semantic and structural
cues.

Although effective, these models typically require task-specific fine-tuning on downstream datasets.
To improve transferability, prompt-based GNNs have recently gained attention. GraphPrompt [2]
proposes a unified prompt template shared across pretraining and fine-tuning, improving knowledge
transfer. ProG [3] reformulates node-level, link-level, and graph-level tasks into a unified prompting
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framework and leverages meta-learning for multi-task adaptation. However, these approaches still
depend heavily on GNN-specific architectures, making it difficult to generalize across tasks or datasets
with varying output spaces without further retraining.

4.2 LLMs for graph zero-shot and transfer learning

4.2.1 LLMs as enhancers

One line of work leverages LLMs as semantic enhancers—generating task descriptions, pseudo-
labels, or contextual cues to guide GNNs during training [10, 11, 12, 13, 14]. These methods benefit
from the rich prior knowledge encoded in LLMs; however, the final prediction is still performed by
GNNs, limiting their flexibility and generalization in unseen tasks. Some studies [13, 14] further
propose novel architectural designs that enable GNNs to support zero-shot transfer across datasets.
Despite these improvements, such approaches still exhibit limited generalization ability and are
inherently unsuitable for regression tasks.

4.2.2 LLMs as predictors

A second line of work treats LLMs as predictors. Some studies attempt to serialize graph data into
textual sequences [5, 6, 4], which are then directly fed into LLMs for inference. While this approach
enables zero-shot reasoning by leveraging pretrained language models, it often compromises structural
fidelity, as LLMs primarily capture token-level co-occurrence patterns rather than graph-specific
inductive biases [8].

Some methods like LLaGA [28] attempt to convert nodes into token sequences and input them
directly into LLMs. However, this approach loses permutation invariance—a key property of
graph data—making the output highly sensitive to node ordering [21]. To better preserve structural
information, other works incorporate GNNs to extract graph features, which are then aligned with
LLM inputs. For example, GraphGPT [15] aligns a graph transformer encoder with an LLM
through a two-stage training process. UniGraph [16] employs masked word prediction to pretrain
a GNN and aligns it with LLM embeddings via an MLP-based projection. TEA-GLM [17] further
proposes a feature-wise contrastive pretraining strategy, followed by lightweight projection for
alignment.vDespite these advances, most existing methods treat GNNs and LLMs as loosely coupled
modules and perform alignment in a post hoc manner, limiting their adaptability to task-specific
signals. As a result, such models often struggle in multi-task or cross-domain scenarios.

GOFA [18] addresses this limitation by introducing a tighter integration strategy, inserting GNN
layers between LLM transformer blocks to enable token-level structural aggregation. However, this
architecture incurs high computational costs and still faces performance challenges in zero-shot
settings across diverse tasks and domains.

5 Limitations

While UniGTE achieves strong zero-shot generalization across a wide range of graph tasks and
domains, its performance gains on link prediction tasks are less pronounced compared to node
classification and graph regression. This may be due to the pairwise nature of link prediction, which
poses unique challenges for prompt formulation and representation alignment. Exploring more
effective strategies for encoding edge-level interactions and adapting task prompts for link prediction
remains an important direction for future work.

6 Conclusion

We presented UniGTE, a unified encoder–decoder framework for zero-shot graph learning. UniGTE
fuses graph structure and natural-language task instructions in a shared representation space via
a permutation-invariant encoder with learnable alignment tokens, while a frozen LLM decoder
produces both task predictions and prompt reconstructions. This design supports flexible transfer
across node-, edge-, and graph-level tasks and across disparate domains. Extensive experiments
verify UniGTE’s robustness, setting new zero-shot state-of-the-art results under demanding cross-task
and cross-domain conditions. Our study highlights the benefit of tightly integrating structural and
semantic cues for broadly transferable graph reasoning.
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A Dataset descriptions

Table 3: Dataset statistics

Domain Dataset Avg. #Nodes Avg. #Edges #Classes/Tasks #G

Citation
Arxiv 169,343 1,166,243 40 1
Pubmed 19,717 44,338 3 1
Cora 25,120 91,140 70 1

E-commerce

Computer 87,229 721,081 10 1
Photo 48,362 500,928 12 1
Children 76,875 1,554,578 24 1
Sports 173,055 1,773,500 13 1

Web link WikiCS 11,701 216,123 10 1

Knowledge graph FB15K237 14,541 310,116 237 1

Social network Reddit 33,434 198,438 2 1
Instagram 11,339 144,010 2 1

Molecular

ChEMBL 25.87 55.92 1048 365,065
HIV 25.51 54.95 1 41,127
BACE 34.09 73.72 1 1,513
PCBA 25.97 56.20 128 437,929
Esol 13.29 27.35 1 1,128
Lipo 27.04 59.00 1 4,200
Freesolv 8.72 16.76 1 642

Arxiv Arxiv [25] is a large-scale citation graph derived from arXiv Computer Science papers. Each
node corresponds to a paper and edges represent citation links between papers. The task is to classify
each paper into one of 40 arXiv subcategories, such as "cs.LG" or "cs.AI". This dataset serves as a
representative benchmark for large-scale node classification.

Pubmed Pubmed [29] is a citation network of biomedical research papers from the PubMed
database. Each node is a paper and edges correspond to citation links. The classification task involves
assigning each paper to one of three disease-related categories.

Cora The Cora [30] dataset is a citation graph where each node corresponds to a research paper,
and each edge represents a citation link between papers. The dataset focuses on papers within the
machine learning domain and includes 70 fine-grained categories, making the classification task
particularly difficult.

Computer The Computer [26] dataset is co-purchased or co-viewed product graph, where each
node represents a product in the computer category, and edges indicate that two products were
frequently co-purchased or co-viewed by users. The textual content associated with each node
consists of user-generated reviews for the corresponding product.

Photo The Photo [26] dataset is an e-commerce product graph where nodes represent photographic
products, and edges indicate that two items were either co-purchased or co-viewed by users. The
textual content of each node consists of user reviews associated with the corresponding product.

Children The Children [26] dataset is a co-purchased or co-viewed product graph focused on
children’s books. Nodes correspond to individual books, and edges connect books that were frequently
browsed or bought together. Each node is associated with textual information including the book’s
title and descriptive metadata.

Sports The Sports [26] dataset is a co-purchased or co-viewed product graph in the sports domain.
Nodes represent sports-related products, and edges indicate that two items were often purchased or
viewed together. The associated text for each node consists of the product’s title.

WikiCS WikiCS [32] is a web link network constructed from English Wikipedia articles related to
computer science. Nodes are individual articles, and directed edges represent hyperlinks between
them. The node text is the full content of each article.
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Table 4: Task-specific descriptions used as T τ
desc.

Task Type Task Description (T τ
desc)

Node Classification Determine this node’s most likely category
within the network’s classification schema.

Link Prediction Determine whether there is a specific relationship
between these two nodes.

Graph Classification Determine whether the molecule possesses specific
physicochemical or bioactivity properties.

Graph Regression Predict the continuous numerical value of a
physicochemical or bioactivity property of the
molecule.

FB15K237 FB15K237[13] is a large-scale knowledge graph where each node represents an entity
(e.g., a person, location, or object) and each edge corresponds to a relational triple connecting two
entities. Textual content for nodes is constructed from entity names and relation descriptions.

Reddit The Reddit[33] dataset is a social interaction graph where nodes correspond to users and
edges represent reply interactions in threads from a specific time period. Node-associated text consists
of user posts from Reddit threads.

Instagram Instagram [33] is a social graph in which each node represents a user, and edges denote
social connections such as following relationships. The textual content associated with each node is
extracted from users’ self-introductions or profile descriptions.

ChEMBL ChEMBL [27] is a molecular graph dataset where each graph corresponds to a chemical
compound. Nodes represent atoms, and edges denote chemical bonds. The textual information for
each molecule is given by its SMILES (Simplified Molecular Input Line Entry System) representation.

HIV The HIV [31] dataset consists of molecular graphs representing candidate compounds for HIV
treatment. Nodes denote atoms and edges are chemical bonds. Each molecule is described by its
SMILES string.

BACE BACE [31] is a molecular dataset used in bioactivity classification. Each graph is a molecule,
with atoms as nodes and chemical bonds as edges. SMILES strings provide the molecular structure
information in text format.

PCBA PCBA [31] is a large-scale molecular dataset for virtual screening. Each graph is a molecule,
modeled by atoms and bonds, with SMILES strings representing the underlying chemical structure.

Esol The Esol [34] dataset contains water-solubility data for chemical compounds. Each molecule
is modeled as a graph, with node and edge structures corresponding to atoms and bonds. SMILES
strings serve as the textual representation.

Lipo Lipo is a molecular dataset focused on lipophilicity prediction. Each molecule is represented
as a graph with atoms as nodes and bonds as edges. The SMILES string encodes each molecule’s
structure in text form.

Freesolv Freesolv [35] consists of molecular graphs used for estimating hydration free energy.
Each molecule is modeled by a graph of atoms and bonds. The SMILES representation is used as the
text-based molecular description.

B Details of prompt descriptions

For each specific task τ , we define a high-level textual description T τ
desc that serves as the general

instruction for the task. This description is task-type dependent and is designed to guide the model’s
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Table 5: Task-specific instruction templates used as T τ
detail.

Dataset Instruction Template (T τ
detail)

Arxiv, Pubmed, Cora Given a representation of a paper with the following information: Title: {title}, Abstract:
{abstract}. Question: Which arXiv CS sub-category does this paper belong to? Please
directly give the most likely answer from the following sub-categories: {candidate_labels}.

Children Given a representation of a book with the following information: Name: {title}, Content:
{abstract}. Question: Which category does this book belong to? Please directly give the
most likely answer from the following categories: {candidate_labels}.

Computer, Photo Given a representation of a book with the following information: Name: {title}, Content:
{abstract}. Question: Which category does this book belong to? Please directly give the
most likely answer from the following categories: {candidate_labels}.

Sports Given a representation of an electronic product with the following information: Comment:
{comment}. Question: Which category does this electronic product belong to? Please
directly give the most likely answer from the following categories: {candidate_labels}.

WikiCS Given a representation of a Wikipedia page with the following information: Name: {name},
Content: {content}. Question: Which category does this Wikipedia page belong to? Please
directly give the most likely answer from the following categories: {candidate_labels}.

Reddit Given a representation of a user with the following information: Previous posts: {posts}.
Question: Which category does this user belong to? Please directly give the most likely
answer from the following categories: {candidate_labels}.

Instagram Given a representation of a user with the following information: Personal introduction:
{introduction}. Question: Which category does this user belong to? Please directly give
the most likely answer from the following categories: {candidate_labels}.

FB15K237 Given the representation of two entities: First entity: Name: {name}, Description: {de-
scription}. Second entity: Name: {name}, Description: {description}. Question: Which
category should the relation between these two entities be classified as? Please directly
give the most likely answer from the following categories: {candidate_labels}.

Arxiv-link, Pubmed-link Given the representation of two papers: Title: First Paper: {title}, Second Paper: {title}.
Question: Do these two papers have citation relationships? Please choose the most likely
answer from: "Yes, they have citation relationships" or "No, they do not have citation
relationships".

Children-link Given the representation of two books: Title: First Book: {title}, Second Book: {title}.
Question: Do these two books have co-purchased or co-viewed relationships? Choose
from: "Yes, they have co-purchased or co-viewed relationships" or "No, they do not have
co-purchased or co-viewed relationships".

Computer-link, Photo-link Given the representation of two electronic products: Title: First Product: {comment},
Second Product: {comment}. Question: Do these two products have co-purchased or
co-viewed relationships? Choose from: "Yes, they have co-purchased or co-viewed
relationships" or "No, they do not have co-purchased or co-viewed relationships".

ChEMBL, HIV, BACE, PCBA Given a representation of a molecule with the following information: SMILES: {smiles}.
Question: {task} Please answer: "Yes, this molecule is effective to this assay" or "No, this
molecule is not effective to this assay".

Esol, Lipo, Freesolv Given a representation of a molecule with the following information: SMILES: {smiles}.
Question: {task} Please provide a single numerical value rounded to two decimal places.

understanding and response generation. The full list of task descriptions used in our experiments is
shown in Table 4.

Additionally, we provide task-specific content instructions T τ
detail, which include a description of the

graph content and the corresponding question. The details are shown in the table 5.

C Details of experimental setup

Datasets For data splitting, we follow standard splits for node classification, graph classification,
and graph regression tasks. For link prediction, we randomly split the data into training/validation/test
sets with a ratio of 8:1:1. To ensure fair comparison, all baseline models are evaluated using the
same splits. Due to the large scale of the training data, we sample a subset of instances from each
training dataset. Specifically, we sample 45,470 instances from Arxiv, 21,888 from Children, 31,378
from Computer, 10,000 each from Arxiv-link, Children-link, and Computer-link, 29,440 from
FB15K237, and 74,242 from ChEMBL.
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Table 6: In-domain zero-shot results.

Model Pubmed Cora Photo Sports BACE HIV PCBA Pubmed Photo
Node Classification Graph Classification Link Prediction

w/o AT 0.721 0.155 0.384 0.371 0.492 0.467 0.497 0.502 0.576
w/o TA 0.766 0.211 0.399 0.311 0.487 0.499 0.489 0.609 0.710

UniGTE 0.870 0.215 0.565 0.403 0.534 0.501 0.541 0.722 0.732

Table 7: Zero-shot performance on cross-domain node classification and cross-task graph regression.

Setting WikiCS Reddit Instagram Esol Lipo Freesolv
Node Classification (Accuracy) Graph Regression (MAE)

w/o AT 0.290 0.309 0.391 6.58 11.22 64.11
w/o TA 0.645 0.502 0.590 8.35 2.44 12.37

UniGTE 0.680 0.510 0.601 2.54 1.03 9.18

Table 8: Legality rate (%) across models and datasets

Dataset Pubmed Cora Photo Sports WikiCS Reddit Instagram HIV BACE PCBA Esol Lipo Freesolv
Model Legality rate (%)

Vicuna-7B 100 95.8 94.1 99.6 64.7 57.4 90.3 96.0 92.1 39.0 99.1 81.2 98.5
LLaGA 100 76.5 83.8 99.2 99.0 99.0 99.5 82.1 100 75.1 66.3 82.2 57.0

TEA-GLM 100 95.6 96.2 100 70.9 96.8 99.7 100 100 100 80.6 88.1 45.0

UniGTE 100 95.0 99.7 99.7 99.6 100 100 100 100 100 99.1 99.8 100

Baselines For LLaGA and TEA-GLM, we re-run their training pipelines under our experimental
settings using Vicuna-7B as the predictor. As GOFA requires extensive pretraining, we directly use
the officially released pretrained checkpoint and conduct instruction tuning under our experimental
setup. For all baselines, we follow the hyperparameter configurations provided in their respective
original papers.

Training details We use BERT as the pretrained language model (PLM), and Vicuna-7B as the
large language model (LLM). In our implementation of UniGTE, we set the LoRA learning rate and
the MLP learning rate to 2e-4, while the learning rate for the graph relative position embedding is 2e-3.
We use a batch size of 2, apply gradient clipping with a maximum norm of 10, and perform gradient
accumulation every 2 steps. The number of alignment tokens is fixed to 64 across all experiments.
All experiments are conducted on a machine with two NVIDIA A100 GPUs, each equipped with
80GB of memory.

D More experimental results

D.1 Ablation study details

We provide detailed ablation results for each dataset. The in-domain results are presented in Table 6,
while the cross-domain and cross-task results are shown in Table 7. As the tables indicate, removing
the alignment tokens significantly degrades the model’s transferability. Additionally, replacing the
task-specific description with a fixed, generic prompt leads to performance drops across different
datasets. These findings validate the effectiveness of the proposed alignment tokens in enhancing
generalization, and further demonstrate the importance of incorporating task-specific signals into the
encoding process.

D.2 Legality rate

The training process may affect the instruction-following ability of LLMs in zero-shot scenarios.
Specifically, while the model can generate appropriate outputs on the training set, it often fails to
produce legality answers on unseen datasets. This essentially reflects poor generalization ability.
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Following the approach proposed in [43], we use the legality rate to measure the proportion of valid
responses generated by the model on unseen datasets.

As shown in Table 8, existing baselines exhibit poor instruction-following performance on certain
datasets. In contrast, our model consistently maintains strong instruction compliance across all unseen
datasets, generating valid answers. This further demonstrates the superior generalization capability
of our approach.

D.3 Efficiency and computational complexity analysis

We have conducted a comparison between LLM and UniGTE under a zero-shot setting using
equivalent graph information. The results are summarized in the tables below, where the first table
reports inference time and the second table presents task-specific performance metrics, showing that
UniGTE achieves significantly faster inference speed while maintaining superior accuracy.

Table 9: Inference time compared with the LLM

Sec / sample (s) Pubmed Cora PCBA Photo_link WikiCS Instagram Lipo
Vicuna-7B 0.8 2.6 3.2 1.7 0.7 3.3 10.2
UniGTE 0.5 0.6 1.0 1.1 0.3 0.3 2.0

Improvement 37.5% 78.7% 70.3% 34.1% 50.8% 91.7% 80.5%

Table 10: Task performance compared with the LLM

Task Metric Pubmed Cora PCBA Photo_link WikiCS Instagram Lipo
Vicuna-7B 0.721 0.155 0.497 0.576 0.290 0.391 11.220
UniGTE 0.870 0.215 0.541 0.732 0.680 0.601 1.030

Improvement 20.7% 38.7% 8.9% 27.1% 134.5% 53.7% 90.8%

Here, we compare the time complexity of GOFA. We adopt the same notation used in the GOFA
paper: suppose a graph contains V nodes, E edges, and each node is represented by k tokens on
average. In GOFA, each node is expanded into k tokens (k ≫ 1), and the self-attention is restricted
within each node’s token group. Thus, the per-layer time complexity is: O(k · k · V ) = O(V k2),
which is consistent with the complexity reported in the original GOFA paper. In contrast, UniGTE
represents each node using a single token and performs cross-node attention directly. Therefore, the
complexity becomes: O((V · 1)2) = O(V 2). This is considerably lower, especially when k = 128 or
higher as required in GOFA for satisfactory performance. Furthermore, our method leverages k-hop
subgraph sampling, which keeps the number of nodes V relatively small, making O(V ) ≪ O(k2)
and thus O(V 2) ≪ O(V k2).

In addition to the Transformer layers of the LLM itself, GOFA also introduces external GNN layers.
This component is not accounted for in its original complexity analysis. Assuming the average
node degree is d, the GNN layer introduces an additional cost of O(V · d · k). Combining all these
considerations, our method provides a clear computational advantage over GOFA.

To further validate this, we compare per-sample inference time and accuracy under the zero-shot
setting between GOFA and UniGTE. As shown in the table below, UniGTE achieves faster inference
and better performance, demonstrating the efficiency and effectiveness of our design.

Table 11: Inference time compared with GOFA

Sec / sample (s) Pubmed Cora PCBA Photo_link WikiCS Instagram Lipo
GOFA 1.4 5.1 1.5 1.8 2.0 1.2 2.1

UniGTE 0.5 0.6 1.0 1.1 0.3 0.3 2.0

Improvement 63.2% 89.3% 34.5% 38.5% 83.6% 77.1% 5.7%
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Table 12: Task performance compared with GOFA

Task Metrics Pubmed Cora PCBA Photo_link WikiCS Instagram Lipo
GOFA 0.614 0.039 0.500 0.504 0.613 0.367 1.360

UniGTE 0.870 0.215 0.541 0.732 0.680 0.601 1.030

Improvement 41.7% 451.3% 8.2% 45.2% 10.9% 63.8% 24.3%

Table 13: Supervised results under SFT setting

Model Arxiv Children Computer Arxiv_link Children_link Computer_link FB15K237
GraphGPT-std 0.625 - - - - - -

LLaGA 0.711 0.498 0.579 0.901 0.837 0.793 0.870
TEA-GLM 0.661 0.477 0.549 0.891 0.767 0.738 0.910

GOFA 0.659 0.190 0.514 0.772 0.505 0.563 0.731

UniGTE 0.713 0.431 0.589 0.913 0.813 0.765 0.901

D.4 Supervised results

We have conducted additional experiments under the SFT setting and compared UniGTE with relevant
baselines that use LLMs as predictors. The results are presented below.

As shown in Table 13, UniGTE achieves competitive performance and yields strong results on most
datasets, even surpassing state-of-the-art baselines on several of them. This highlights its promising
capability under SFT settings. These results demonstrate that although our model is originally
designed for zero-shot scenarios, it also performs robustly under full supervision, without significant
degradation compared to existing approaches.

D.5 Graph understanding tasks

We have conducted additional experiments on graph understanding tasks to demonstrate our model’s
graph understanding/reasoning capabilities, and compared the results with relevant baselines.

Table 14: Comparison of various models on graph reasoning tasks

Model Pubmed_CONN Cora_CONN Pubmed_SPD Cora_SPD Pubmed_CN Cora_CN BACE_CYCLE HIV_CYCLE PCBA_CYCLE
Vicuna-7B 0.551 0.505 1.51 2.53 5.07 12.85 2.04 1.37 2.11

LLaGA 0.618 0.553 3.72 7.98 - - - - -
TEA-GLM 0.689 0.623 3.06 2.34 5.27 7.79 6.94 7.39 9.74

GOFA 0.638 0.694 1.43 1.68 1.13 7.24 6.96 5.58 6.24

UniGTE 0.707 0.616 1.11 1.42 1.20 2.24 1.83 1.10 1.92

We directly evaluated the model trained in our original submission on zero-shot graph understanding
tasks, without any fine-tuning on these tasks. All other baselines were evaluated under the same
zero-shot setting, except for GOFA, which incorporates some graph understanding tasks during
its pretraining phase. To ensure fair comparison, all methods were tested on the same test sets.
Following the experimental setup of GOFA and the references you kindly suggested, we constructed
the following tasks and generated the data using real-world datasets. We used AUC for evaluating the
CONN task, and MAE for the other tasks.

• CONN: Determine whether two nodes are connected

• SPD: Predict the shortest path distance between two nodes

• CN: Predict the number of common neighbors between two nodes

• CYCLE: Predict the number of cycles in the graph

The results are summarized in the Table 14, where the best result is bolded and the second-best is
italicized. Our method achieves state-of-the-art performance on most datasets. Notably, compared
to Vicuna, which serves as our base model, our method consistently outperforms it across all tasks
and datasets—highlighting the strong generalization and zero-shot capabilities of our approach.
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Compared to other baselines, our method is either the best or competitive. It is worth noting that
GOFA, benefiting from the inclusion of graph understanding tasks during its pretraining phase,
performs relatively well on a few specific datasets. In contrast, our method has never encountered any
graph understanding tasks during training, making the evaluation a significantly more challenging and
rigorous zero-shot setting. Despite this, our approach still delivers consistently strong performance,
further demonstrating its generalization capability.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We verify the contributions of our proposed method through experiments, and
the results in the Sec. 3 effectively demonstrate the contributions we outlined in the abstract
and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the current shortcomings of our method and future research
directions in Sec.5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all necessary information to ensure the reproducibility of our
main experimental results. Section 2 details the proposed methodology, while Sections 2.3
and detailed setting in Appendix C outline the training procedures and implementation
settings. All reported results in this paper can be reliably reproduced based on the disclosed
configurations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets in all experiments. To ensure reproducibility,
we will include the complete source code in the supplementary materials in an anonymized
form.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on data splits, hyperparameter settings, and baseline
configurations in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: Due to the high computational cost associated with training large language
models (LLMs), we do not report error bars or variance across multiple runs. However, our
evaluation spans a wide range of datasets and task types across multiple domains, and the
consistent performance of our method across these diverse settings provides strong empirical
support for the robustness and generalization of the proposed approach.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computer resources in Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We confirm that our work complies with the NeurIPS Code of Ethics, including
ethical standards for data collection, usage, and experimentation.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not discuss societal impacts because it focuses on foundational
research in graph learning. The method is generic and does not directly involve application
scenarios with immediate societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any data or models that pose high risk, and this work does
not involve or introduce such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: We properly cite the original papers corresponding to all models and datasets
used in our work. Wherever applicable, we also ensure that we comply with the licenses
and terms of use of these assets. For publicly available datasets and pretrained models, we
use only those released under permissible licenses (e.g., MIT, CC-BY).
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: This paper employs a large language model (Vicuna-7B) as a core component
of the proposed encoder-decoder framework. Specifically, the LLM is used as the decoder to
generate task-specific outputs conditioned on alignment tokens. The LLM’s generalization
ability is integral to the design of our method and plays a central role in achieving zero-shot
performance across diverse graph tasks.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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