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Abstract
Language models have demonstrated important ad-1

vancements across various natural language pro-2

cessing (NLP) tasks. However, the availability of3

high-quality and domain-specific data remains a4

challenge for training these models, particularly in5

industry-specific applications. In this paper, we6

propose a methodology to fine-tune a large lan-7

guage model (LLM) using a mixture of private8

company data and open-source data.9

Our empirical investigation reveals that combining10

private and open-source data during the fine-tuning11

process leads to superior performance, mitigating12

the risk of overfitting that can occur when training13

solely on narrow, domain-specific datasets. We ob-14

served that incorporating open-source data along-15

side the private data helps to reduce the distribution16

shift between the source and target data, effectively17

acting as a regularizer and enhancing the model’s18

ability to generalize.19

Furthermore, we compare the divergence between20

the private and open-source datasets with the test21

loss of the fine-tuned model. Our results suggest22

a correlation between reduced data divergence and23

improved model performance, indicating that care-24

fully selecting and curating the dataset mixture can25

be a crucial step in preventing overfitting and en-26

suring the model’s effective adaptation to industry-27

specific use cases.28

This study provides a practical solution for29

industry-specific adaptation of LLMs, demonstrat-30

ing how the strategic blending of private and open-31

source data can unlock the full potential of these32

models while addressing critical concerns around33

data privacy and model reliability in real-world ap-34

plications.35

1 Introduction36

The integration of large language models (LLMs) into37

industry-specific applications has the potential to transform38

operations across various sectors, notably in the energy indus-39

try. They can automate and enhance tasks such as predictive40

maintenance, regulatory compliance, and customer service.41

The process of fine-tuning on specific industrial data offers
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Figure 1: Strategy to use mixture of public dataset and domain spe-
cific dataset improves fine tuning of LLM only if divergence be-
tween the two dataset is small.

42
several key advantages: 43

• Cost Savings: Utilizing pre-trained models and fine- 44

tuning them for specific purposes significantly reduces 45

the resources needed for training from scratch. This effi- 46

cient use of computational power results in considerable 47

cost savings by eliminating the necessity for extensive 48

data collection and expensive hardware procurement for 49

training large models. 50

• Privacy and Security: Fine-tuning enables organiza- 51

tions to customize pre-trained models using their own 52

datasets, keeping sensitive information within the orga- 53

nization and minimizing exposure to external risks. This 54

localized training approach ensures that data remains 55

under the organization’s control, protecting privacy and 56

complying with relevant regulations. 57

• Tailored Applications: Fine-tuning opens up possibili- 58

ties for various specialized applications. For example, 59

chatbots trained on customer service data capable of ad- 60

dressing specific product inquiries, or research assistants 61

fine-tuned on scientific literature to assist researchers in 62

their work. 63

Moreover, supervised fine-tuning on domain-specific data is 64

advantageous for Retrieval Augmented Generation (RAG) 65



systems [Gao et al., 2023] and becomes a fundamental and66

crucial step for improved alignment techniques such as Rein-67

forcement Learning from Human Feedback (RLFH) [Ouyang68

et al., 2022] and Direct Preference Optimization (DPO)69

[Rafailov et al., 2024]. These cutting-edge techniques lever-70

age human feedback and oversight to steer LLMs towards71

desired behaviors and mitigate potential risks, but their ef-72

fectiveness heavily relies on the initial domain-specific fine-73

tuning step.74

Deploying LLMs, including RAG systems, in sectors like en-75

ergy, where data are not only domain-specific but also highly76

confidential, presents significant challenges [Cuconasu et77

al., 2024]. Standard fine-tuning practices on such narrow78

datasets, especially when the data is substantially out-of-79

distribution compared to the training corpus used in the initial80

model training, can lead to severe overfitting. This overfitting81

hinders the model’s ability to generalize effectively, under-82

mining the potential benefits of subsequent alignment tech-83

niques and ultimately limiting the model’s practical utility in84

industrial settings.85

This study explores an innovative approach to fine-tuning86

LLMs by using a mixed dataset of open-source and propri-87

etary domain-specific data. Our empirical results indicate that88

this method significantly mitigates overfitting, enabling the89

models to generalize better across a broader range of tasks90

without compromising data confidentiality. Thus, we provide91

a practical solution for industry-specific adaptation of LLMs,92

ensuring enhanced performance while adhering to stringent93

privacy standards. Crucially, this robust domain-specific fine-94

tuning sets the stage for effective application of advanced95

alignment techniques, unlocking the full potential of these96

models in industrial contexts while addressing critical con-97

cerns around safety and reliability.98

Additionally, our approach enriches the understanding of do-99

main adaption in machine learning. In fact, fine-tuning LLMs100

on a mixed dataset effectively addresses a domain adaptation101

problem where the goal is to adapt the model to fit a mix-102

ture of distributions. The integration of open-source data with103

the domain specific data reduces the divergence between the104

target and source distributions. This strategic blending facil-105

itates a more robust training process, helping the model to106

better adapt and thus enhancing resilience against overfitting.107

2 Related works108

The integration of LLMs into domain-specific applications is109

a crucial research challenge. For example, the RAG system110

is a common strategy to bridge the gap between pre-trained111

LLMs and industry-specific data [Cuconasu et al., 2024;112

Lewis et al., 2020]. The RAG approach combines the genera-113

tive capabilities of LLMs with information retrieval, allowing114

the model to access relevant documents and incorporate that115

contextual information into its outputs.116

Recent studies, such as [Cuconasu et al., 2024], demonstrate117

the promising results of RAG systems. However, their per-118

formance may not be optimal, especially when applied to119

domain-specific data. In this case, fine-tuning can improve120

the performance of RAG systems in these tasks, or even out-121

perform it.122

Beyond the RAG system, researchers have explored other 123

techniques to fine-tune and adapt LLMs to specialized 124

domains.[Arora et al., 2023] proposed a simplified prompt- 125

ing strategy that generates multiple questions and aggregates 126

the most reliable responses, aiming to improve the LLM’s 127

performance on domain-specific tasks. 128

Recognizing the limitations of pre-trained LLMs in capturing 129

domain-specific knowledge, researchers have explored hy- 130

brid approaches that combine the flexibility of LLMs with 131

enterprise-specific knowledge graphs. [Baldazzi et al., 2023] 132

demonstrated how this integration of LLMs and ontologi- 133

cal reasoning can effectively capture and augment domain 134

knowledge, enhancing the model’s capabilities in industry- 135

specific applications. 136

Fine-tuning LLMs on large additional text corpora has also 137

been shown to be effective in improving performance on 138

various NLP tasks. For example, the FinBERT model 139

[Liu et al., 2021] was fine-tuned on a financial domain- 140

specific dataset, leading to improved results on finance- 141

related tasks. Similarly, [Xia et al., 2024] fine-tuned LLMs 142

using a manufacturing-domain corpus to better adapt the 143

models to the nuances of the manufacturing field. 144

However, the lack of available domain-specific training data 145

remains a significant challenge in many specialized indus- 146

tries. [Saxena et al., 2024] reported difficulties in finding 147

appropriate datasets for their domain-specific applications, 148

highlighting the need for novel approaches to address this 149

data scarcity. 150

To tackle the data scarcity issue, researchers have explored 151

parameter-efficient fine-tuning techniques, where only a few 152

external parameters are fine-tuned instead of the entire LLM 153

[Hu et al., 2023]. Additionally, data cleaning and curation 154

approaches, such as the one proposed by Lin et al. [Lin et 155

al., 2024], have shown promise in improving the fine-tuning 156

performance of LLMs. 157

Finally, a comprehensive study by [Zhang et al., 2024] ex- 158

plored the impact of different scaling factors on the fine- 159

tuning performance of LLMs, emphasizing the data- and task- 160

dependent nature of these fine-tuning methods. 161

Overall, the existing literature underscores the importance of 162

adapting LLMs to domain-specific applications, while also 163

highlighting the challenges posed by data availability and dis- 164

tribution shifts. Our work builds upon these insights and pro- 165

poses a novel approach to fine-tune LLMs using a strategic 166

mixture of domain-specific and open-source data, with the 167

aim of mitigating the risk of overfitting and enhancing the 168

model’s generalization capabilities. 169

3 Proposed Method 170

The key challenge we aim to address is the tendency of large 171

language models (LLMs) to overfit when fine-tuned on lim- 172

ited, domain-specific data. This phenomenon can lead to poor 173

generalization, especially on out-of-distribution samples. To 174

mitigate this issue, we propose a novel fine-tuning approach 175

that leverages a mixture of data distributions. 176

Our proposed method is motivated by the principles of do- 177

main adaptation. When fine-tuning an LLM, the target data 178

distribution (e.g., a company’s private data) often differs sig- 179



nificantly from the original distribution the model was trained180

on (e.g., general web data). This domain shift can exacerbate181

the overfitting problem, as the model struggles to generalize182

from the source distribution to the target distribution.183

To address this, we fine-tune the LLM on a mixture of data184

sources, combining the company’s private data with publicly185

available, related data (e.g., open-source documents). By ex-186

posing the model to a more diverse set of data during fine-187

tuning, we aim to reduce the discrepancy between the source188

and target distributions, thereby improving the model’s abil-189

ity to generalize.190

Specifically, our fine-tuning approach involves training the191

LLM on a balanced mixture of private company data and rel-192

evant open-source data. The intuition is that the open-source193

data, while not identical to the target domain, can help the194

model learn more robust representations that are less sensitive195

to the idiosyncrasies of the private data alone. By reducing196

the domain shift between the fine-tuning data and the original197

model training data, we expect to enhance the model’s per-198

formance on a wide range of samples from the target domain.199

We evaluate the effectiveness of our approach on text gen-200

eration tasks, such as question-answering, and find that fine-201

tuning on a mixture of private and open-source data indeed202

helps reduce overfitting compared to fine-tuning on private203

data alone. This is a promising result, as direct access to the204

original data used to train the LLM is often unavailable, mak-205

ing our approach a practical solution for domain-specific fine-206

tuning.207

3.1 Problem Statement208

We consider a supervised learning task where the datasets are209

defined as Cartesian products between features spaces X and210

label spaces Y . We consider different datasets, each as a col-211

lection of points generated by an underlying distribution, as212

follows:213

• Source distribution S over X × Y , where the collection214

of points S = {(xi, yi) ∈ (X × Y)}mi=1 are drawn in-215

dependently and identical distributed (i.i.d.) from S. It216

indicates the set used to pre-train the foundation LLM.217

• Domain-specific distribution D, such that the points in218

the dataset D = {(xi, yi) ∈ (X × Y)}ni=1, drawn i.i.d.219

from D, represent the proprietary data.220

• Open-source distribution O, assumed similar to S, such221

that the points in O = {(xi, yi) ∈ (X × Y)}ni=1 are222

drawn i.i.d. from O.223

• Target distribution T over X × Y , a mixture of D and224

O:225

T = αD + (1− α)O, (1)

where α ∈ [0, 1] is the mixing ratio. In this case, the226

collection of points in T = {(xi, yi) ∈ (X × Y)}ni=1,227

are drawn from T .228

Let H be an hypothesis space such that the hypothesis h ∈ H229

is a function h : X → Y . Consider hS the hypothesis learnt230

by minimizing the expected loss over S (corresponding to231

the LLM to fine tune in our case). The hypothesis hS is the232

solution of the empirical risk minimization (ERM) problem233

over the source distribution, given by: 234

hS = argmin
h∈H

E(x,y)∼S [ℓ(h(x), y)]. (2)

The ℓ term is a loss function which in our case is the cross- 235

entropy loss, defined as: 236

ℓ(h(x), y) = −
C∑

c=1

yc log hc(x), (3)

where y is one-hot encoded label vector, C is the number of 237

classes, and hc(x) is the predicted probability of class c for 238

input x. In our case, the domain adaptation problem involves 239

adapting the hS function to minimize the loss over the target 240

distribution T . The learnt hypothesis hT is then the solution 241

of the following ERM problem: 242

hT = arg min
h∈H|hS

E(x,y)∼T [ℓ(h(x), y)], (4)

where H |hS means that the exploration of the hypothesis 243

space is initialized at the the point hS . 244

Adapting the hypothesis hS to the distribution T involves 245

addressing the discrepancy between the distributions S and 246

D. In fact, even though we are interested in applying the 247

learnt hypothesis hT on the points (x, y) ∼ D, fitting hS 248

directly to D can lead to overfitting due to the divergence be- 249

tween S and D. By performing fine-tuning on the target dis- 250

tribution T , which is a mixture of distributions O and D, we 251

aim to leverage the similarity between S and O to mitigate 252

the outlying nature of D more effectively than D alone would 253

do. Based on empirical observations, we find that: 254

JS-Divergence(D,O) > JS-Divergence(D, T ), (5)
and under the assumption that S and O are similar, we claim 255

that: 256

JS-Divergence(D,S) ≥ JS-Divergence(D, T ). (6)
This inequality explains the effectiveness of fine tuning over a 257

mixture of distribution between the domain specific data and 258

opensource data which are assumed similar to the source one. 259

By reducing the overall divergence between the training dis- 260

tribution T and the original source distribution S, it facilitates 261

a smoother adaptation of the model hS , enhancing its ability 262

to generalize from training to real-world data. 263

The divergence used is the Jensen-Shannon divergence (JS- 264

Divergence) [Lin, 1991], which is a popular measure of dis- 265

tance between two probability distributions. It is defined as 266

the average of the Kullback-Leibler divergences [Kullback 267

and Leibler, 1951] of each distribution to the mean of both 268

distributions, providing a symmetric and bounded measure. 269

Mathematically, it is given by: 270

JS-Divergence(P,Q) =
1

2
KL(P ∥ M) +

1

2
KL(Q ∥ M),

(7)
where P and Q are the two distributions, M = 1

2 (P +Q) is 271

their mean, and KL denotes the Kullback-Leibler divergence. 272

This measure is particularly useful in scenarios where the dis- 273

tributions may not overlap completely, as it remains finite un- 274

der such conditions. The properties of being symmetric and 275

bounded between 0 and 1 make JS-Divergence a robust tool 276

for quantifying distributional discrepancies, especially in do- 277

main adaptation scenarios. 278



3.2 Generalization and Theoretical Bounds279

The generalization performance of hT is influenced not only280

by the number of samples used during training but also by the281

divergence between the mixed training distribution T and the282

target distribution D. Building upon the foundational work283

by [Mansour et al., 2009] we can provide a generalization er-284

ror of a hypothesis bounded by the Rademacher Complexity285

(R) of a hypothesis space H [Shalev-Shwartz and Ben-David,286

2014; Mohri et al., 2018], and the Discrepancy introduced287

in [Mansour et al., 2009; Mohri and Muñoz Medina, 2012],288

which is a type of H∆H − divergence between two distri-289

butions. With probability at least 1− δ we have:290

LD(ĥ
∗
T )− LD(h

∗
D) ≤ 4RT ,n(H |hS )

+ dH|hS∆H|hS
(T ,D) + dH∆H(T ,D),

(8)

which becomes291

LD(ĥ
∗
T )− LD(h

∗
D) ≤ O

(√
d+ log 1/δ√

n

)
+ dH|hS∆H|hS

(T ,D) + dH∆H(T ,D),

(9)

where LD(h) = E(x,y)∼D[ℓ(h(x), y)], ĥ∗
T is the empirical292

risk minimizer over the mixture distribution T , h∗
D is the true293

minimizer over D, H | hS represents the hypothesis space294

constrained by source domain knowledge, dH∆H(T ,D) is295

the Discrepancy and n is the number of training points.296

This formulation supports our methodology by highlight how297

mixed-data fine-tuning serves as an effective domain adapta-298

tion strategy. By blending domain-specific and open-source299

data, we aim to craft a hypothesis that not only fits well to the300

training data but also exhibits robust generalization across di-301

verse real-world applications. In practice, while the theoreti-302

cal model uses H∆H − divergence for its rigorous proper-303

ties, our empirical evaluation employs JS-Divergence due to304

its computational efficiency and its practical effectiveness in305

capturing the essential aspect of distributions shifts.306

4 Experiments307

4.1 Overview308

In this study, we fine-tuned an open-source LLM, specifically309

the mistral-7b-Instruct-v02 [Jiang et al., 2023], utilizing a310

combination of domain-specific data and open-source data.311

The fine-tuning process employed QLORA (Quantized Low-312

Rank Adaptation) [Dettmers et al., 2024], which is designed313

to reduce the model complexity and size, thereby enabling ef-314

ficient fine-tuning. We explored various mixtures of private315

company data and open-source data from public domain to316

construct our mixed training set to use during the fine-tuning317

phase. This approach allowed us to examine the impact of318

different data proportions on the model’s performance. The319

evaluation was consistently carried out on a held-out test set320

comprised exclusively of private company data, correspond-321

ing the domain specific data. We performed experiments fo-322

cusing on a text-generation tasks, specifically for question-323

and-answer scenarios.324

Moreover, to assess the distribution shift between the 325

datasets, we computed the Jensen-Shannon divergence, pro- 326

viding a quantifiable measure of dataset similarity. 327

4.2 Dataset 328

The domain-specific dataset was derived from technical man- 329

uals and documentation related to the manufacturing, testing, 330

and assembly of industrial assets within the energy sector. 331

This dataset is highly specialized, containing information that 332

has likely never been exposed to the public domain, thus rep- 333

resenting a set of highly out-of-distribution samples with re- 334

spect the source distribution the original LLM was trained on. 335

Some examples of question and answering reported below: 336

• ”Q”: ”What are the traditional monitored parameters 337

for oil?” 338

• ”A”: ”The traditional monitored parameters for oils are 339

viscosity and oxidation.” 340

• ”Q”: ”Why should the traditional monitored parameters 341

be used for turbine ?” 342

• ”A”: ”These parameters are used to trend and predict 343

the remaining useful life of the asset, helping to prevent 344

operational problems from developing due to the condi- 345

tion of external environment.” 346

The dataset comprises approximately 3,000 samples of spe- 347

cific question-and-answer texts, meticulously curated to re- 348

flect the unique context of the energy industry. 349

For the open-source dataset, we utilized the Alpaca dataset 350

[Taori et al., 2023], publicly available on Hugging Face and 351

comprising 52,000 instructions and demonstrations generated 352

by OpenAI’s text-davinci-003 engine. This dataset is com- 353

monly used for conducting instructional tuning on language 354

model to enhance their ability to follow directions more pre- 355

cisely [Jiang et al., 2023]. For the purposes of this exper- 356

iments, we selected 3,000 samples from the Alpaca dataset 357

to match the number of points used in the domain-specific 358

dataset. 359

The two datasets were then blended in varying proportions, 360

with subsequent testing conducted solely on the domain- 361

specific dataset to isolate the effects of the mixed training 362

data. 363

4.3 QLORA Technique 364

The QLORA technique is a variant of the Low-Rank Adapta- 365

tion (LORA) methodology [Hu et al., 2021] which involves 366

modifying the parameterization of the neural network by in- 367

troducing low-rank matrices that approximate the update to 368

the weights during training. This method significantly re- 369

duces the number of trainable parameters, which minimizes 370

memory usage and computational demands, making it suit- 371

able for fine-tuning large models on specialized datasets. By 372

applying QLORA, we aim to maintain or even enhance the 373

model’s performance while mitigating the risk of overfitting 374

to the highly specialized domain data. 375

4.4 Experimental Setup 376

The experiments were conducted on high-performance com- 377

puting environment equipped with DGX NVIDIA 8xA100 378



GPUs, with with 40 GB of memory. This setup ensured379

efficient handling of the large models and extensive data380

involved. We implemented the experiments using Python,381

leveraging libraries such as Transformers [Wolf et al., 2019]382

and PyTorch [Paszke et al., 2019], which provide a robust383

frameworks for training and manipulating large-scale lan-384

guage models.385

For our experiments, QLORA was applied to all linear lay-386

ers of the model to efficiently adapt the pre-trained weights387

with minimal computational overhead. We set the low-rank388

adaption factor α equal to 8 and the rank r equal to 8 as well.389

We employed Adam optimizer [Kingma and Ba, 2014] and a390

cosine learning rate scheduler starting from an initial learn-391

ing rate of 2×10−4, which adapts the learning rate cyclically392

based on epoch count. A weight decay of 0.1 was applied to393

prevent overfitting, alongside a dropout rate of 0.05. Models394

were trained for up to 150 epochs, with early stopping em-395

ployed to halt the training if the validation loss ceased to im-396

prove, ensuring efficient use of the computational resources.397

Each fine-tuning experiment varied the ratio of domain-398

specific to open-source data to identify the optimal conditions399

for model performance. We meticulously tracked the model’s400

behavior under each configuration to asses how variations in401

data mixture affect the learning outcomes. The performance402

metrics and detailed analysis of these experiments will be pre-403

sented in the results section.404

5 Results and Analysis405

5.1 Jensen-Shannon Divergence Calculation406

To evaluate the effectiveness of our mixed-data fine-tuning407

approach, we quantified the distribution shifts between dif-408

ferent dataset configurations using the Jensen-Shannon di-409

vergence (JS-Divergence). This metric was instrumental in410

assessing how well the mixed dataset aligns with both the411

domain-specific and open-source datasets, providing a basis412

for understanding the impact of our data blending strategy on413

model generalization.

Dataset 1 Dataset 2 Discrepancy
Domain Specific Open Source 0.62
Domain Specific Mixed Dataset 0.37

Table 1: Jensen-Shannon divergence values quantifying discrepan-
cies between different dataset configurations. Lower values indicate
greater similarity between datasets.

414
The results, as summarized in Table 1, reveal significant in-415

sights into the dynamics of dataset integration. The diver-416

gence between the domain-specific and open-source dataset417

was notably high 0.62, indicating substantial differences in418

their distributions. By introducing a mixed dataset, the di-419

vergence from the domain-specific dataset decrease to 0.37.420

This reduction in divergence suggests that mixing the data421

has effectively made the distribution of the training data more422

representative.423

These findings support the hypothesis that a well-blended424

training dataset can bridge the gap between diverse data425

sources, thus mitigating potential overfitting issues when the426

model is applied exclusively to domain-specific data. The 427

reduced Jensen-Shannon divergence value indicates that the 428

mixed dataset shares more characteristics with both parent 429

sets, potentially leading to improved generalization across 430

varied data domains. Given the impact of dataset mixing on 431

reducing discrepancy we aim to observe a mitigation of the 432

overfitting effect. 433

5.2 Results of Fine-Tuning 434

We conducted several experiments where we modified the 435

composition of the training set while keeping the held-out test 436

set unchanged (solely composed of proprietary domain spe- 437

cific data). Initially, we focused on fine-tuning the model us- 438

ing the proprietary data of our company. Figure 2a illustrates 439

that when the model is trained solely on domain-specific data, 440

there is a significant deviation between the test loss and the 441

training loss. This discrepancy indicates that the model is 442

overfitting to the domain data. As a result, we proceeded 443

with an additional experiment, fine-tuning the model exclu- 444

sively on open-source data and evaluating its performance on 445

the same domain-specific test set. The plots in Figure 2b once 446

again reveal a divergence between the test and training losses, 447

confirming the occurrence of overfitting in this case as well. 448

These findings are consistent with the results obtained from 449

the JS-Divergence analysis, which highlights the substantial 450

dissimilarity between the open-source data and the domain- 451

specific data. 452

We then proceeded on performing fine-tuning of the model 453

over a mixed dataset comprising both open-source and 454

domain-specific data, varying the mixing weight α as de- 455

scribed in Equation 1. We tested different levels of mixture, 456

ranging from α = 1 (using only domain-specific data) to 457

α ∈ [0.2, 0.5, 0.8] (mixing different proportions of domain 458

and open-source data), and finally α = 0.0 (fine-tuning solely 459

on open-source data). For each training run, we evaluated the 460

model on the same held-out test set composed exclusively of 461

domain-specific data, as our primary interest was to improve 462

the model’s performance on the specific data domain. 463

Figure 3b illustrates the results obtained on the test set. Sur- 464

prisingly, we observe that fine-tuning over a mixture dataset 465

effectively mitigated the overfitting phenomenon. Indeed, all 466

the test loss curves obtained by the models trained on the mix- 467

ture dataset were lower than those obtained differently, and 468

they tended to converge within the training loss, while the 469

others diverged, as we can observe by comparing the test loss 470

curves and the training ones in Figure 3a. Moreover, the best 471

result was achieved using α = 0.5, indicating that a balanced 472

mix between open and private data led to a better mitigation 473

effect. 474

We hypothesize that the regularization effect was achieved by 475

reducing the distribution shift between the mixed data and the 476

domain-specific data. This is supported by the observation 477

that the Jensen-Shannon divergence between the open-source 478

data and the domain-specific data is higher compared to the 479

divergence between the mixed data and the domain-specific 480

data. It is worth noting that there exists a positive correla- 481

tion between reducing the divergence among the datasets and 482

the mitigating effect observed. This implies that supervised 483

fine-tuning on a mixed dataset serves as a regularization tech- 484
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(a) Training loss curve during fine-tuning on domain-specific (private)
data, and the corresponding test loss curve evaluated on a held-out
domain-specific dataset.
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(b) An overfitting case: training loss curve during fine-tuning on open-
source data, and the test loss curve evaluated on a domain-specific
dataset, demonstrating a divergence between the two losses.

Figure 2: Comparison of fine-tuning performance on domain-
specific (private) data and open-source data. (a) Fine-tuning on
domain-specific data only, showing the training loss curve on the
domain-specific data and the corresponding test loss curve evalu-
ated on a held-out domain-specific dataset. (b) Fine-tuning on open-
source data only evaluated on a held-out domain-specific dataset,
illustrating an overfitting case where the test loss on the domain-
specific dataset diverges from the training loss on the open-source
data. The results highlight the challenges of domain shift and
the need for regularization techniques when fine-tuning on out-of-
distribution data.

nique. Our empirical findings demonstrate that, particularly 485

during fine-tuning on out-of-distribution data such as domain- 486

specific data, the integration of datasets with reduced discrep- 487

ancy values can help prevent the occurrence of overfitting. 488

Effect of Increasing Dataset Size 489

To further investigate the benefits of fine-tuning on a mixed 490

dataset, we conducted an additional experiment where we 491

doubled the size of the training data while maintaining the 492

optimal mixing ratio of α = 0.5 between open-source and 493

domain-specific data. We then evaluated the fine-tuned model 494

on the held-out domain-specific test set, and the results are 495

depicted in Figure 4. 496

Interestingly, the model trained on the larger mixed dataset 497

did not exhibit overfitting, and more importantly, it achieved 498

better convergence compared to the previous experiments 499

with a smaller dataset. This observation not only reinforces 500

the notion that mixing datasets can effectively prevent overfit- 501

ting, but it also suggests that increasing the number of training 502

samples can lead to further performance improvements. 503

The training loss curve and the test loss curve in Figure 4 504

demonstrate a desirable trend: the test loss closely follows 505

the training loss, indicating that the model generalizes well to 506

the unseen domain-specific data. This behavior contrasts with 507

the overfitting observed when training solely on the domain- 508

specific dataset or on the open-source dataset alone, where 509

the test loss diverged from the training loss. 510

Our findings suggest that the regularization effect introduced 511

by mixing datasets can be amplified by increasing the overall 512

size of the training data. The larger and more diverse the com- 513

bined dataset, the more effective the regularization becomes, 514

leading to better generalization and prevention of overfitting. 515

This phenomenon aligns with the well-established principle 516

in machine learning that larger and more diverse training 517

datasets can help models capture broader patterns and im- 518

prove their ability to generalize to unseen data distributions. 519

In summary, this experiment not only corroborates the ef- 520

fectiveness of mixing datasets in mitigating overfitting but 521

also highlights the potential benefits of increasing the over- 522

all training data size when working with domain-specific or 523

out-of-distribution data. By combining these two strategies, 524

we can leverage the regularizing effect of data mixing while 525

also benefiting from the increased diversity and information 526

provided by larger datasets. 527

6 Conclusions 528

This study presents a novel approach to fine-tuning LLMs 529

for industry-specific applications by leveraging a strategic 530

combination of private company data and open-source data. 531

Our findings demonstrate that this mixed-dataset fine-tuning 532

methodology can effectively mitigate the risk of overfit- 533

ting that often arises when training LLMs solely on narrow, 534

domain-specific datasets. The key contributions of this work 535

include empirical evidence that incorporating open-source 536

data alongside private company data during the fine-tuning 537

process leads to superior performance compared to using pri- 538

vate data alone. This blended approach helps to reduce the 539

distribution shift between the training and test data, acting 540
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(a) The figure depicts the training losses of the model during the fine-
tuning process using datasets that combine open-source and domain-
specific data. The legend denotes the different mixing weights used:
α = 1 corresponds to the utilization of exclusively domain-specific
data, α = 0 represents the exclusive use of open-source data, and
α ∈ [0.2, 0.5, 0.8] indicates varying proportions of domain and open-
source data.
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(b) The figure illustrates the test losses of the model throughout the
fine-tuning process, utilizing training datasets that combine open-
source and domain-specific data. The alpha values represent the pro-
portions of private and open-source data used for training, as explained
in the caption of Figure 3a.

Figure 3: Comparison of training and test losses during fine-tuning
on mixed datasets comprising open-source and domain-specific data
and tested. (a) Training losses for models fine-tuned with varying
mixing weights (α) between the two data sources. (b) Test losses
evaluated on a held-out domain-specific dataset for the same fine-
tuned models. The results demonstrate the effectiveness of fine-
tuning on a mixed dataset in mitigating overfitting, with the optimal
performance achieved at α = 0.5, indicating a balanced mix be-
tween open-source and domain-specific data.
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Figure 4: Fine-tuning performance on a larger mixed dataset with
mixing ratio α = 0.5. The training and test loss curves on the held-
out domain-specific dataset exhibit desirable convergence, with the
test loss closely following the training loss, contrasting the overfit-
ting observed when fine-tuning on single datasets. The results sug-
gest that increasing the overall training data size while maintain-
ing an optimal mixing ratio can amplify the regularization effect of
dataset mixing.

as a regularizer and enhancing the LLM’s ability to general- 541

ize, by mitigating the risk of overfitting. Additionally, our 542

analysis of the Jensen-Shannon divergence between the pri- 543

vate and open-source datasets reveals a correlation between 544

reduced data divergence and improved model performance, 545

underscoring the importance of carefully curating the dataset 546

mixture to bridge the gap between diverse data sources and 547

prevent overfitting. This work also provides a practical solu- 548

tion for industry-specific adaptation of LLMs, demonstrating 549

how the strategic combination of private and open-source data 550

can unlock the full potential of these models while address- 551

ing critical concerns around data privacy and model reliabil- 552

ity in real-world applications. By addressing the challenges 553

of data scarcity and domain shift in industry-specific settings, 554

this study paves the way for more effective deployment of 555

LLMs in sectors such as energy, where data confidentiality 556

and model performance are of paramount importance. Over- 557

all, the principles and insights gleaned from this work can 558

also inform the broader field of domain adaptation in machine 559

learning, enriching our understanding of how to leverage di- 560

verse data sources to enhance model generalization. 561

6.1 Future works 562

In future research, our investigation will focus on assessing 563

the effectiveness of the proposed fine-tuning methodology on 564

other domain-specific datasets. Given the limited availability 565

of additional data, it becomes imperative to expand the scope 566

of analysis in order to evaluate the generalizability and ro- 567

bustness of the approach across various domains. It is impor- 568

tant to emphasize the significance of supervised fine-tuning 569

on domain-specific data, as it serves as a fundamental and 570

crucial step for improved alignment techniques such as RLFH 571

and DPO. By incorporating these advanced techniques, we 572

can further enhance the performance and alignment of the 573

model. Therefore, in our ongoing fine-tuning process, ex- 574

ploration DPO emerges as a valuable next step. 575
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et al. Retrieval-augmented generation for knowledge-intensive627

nlp tasks. Advances in Neural Information Processing Systems,628

33:9459–9474, 2020.629

[Lin et al., 2024] Xinyu Lin, Wenjie Wang, Yongqi Li, Shuo Yang,630

Fuli Feng, Yinwei Wei, and Tat seng Chua. Data-efficient fine-631

tuning for llm-based recommendation. ArXiv, abs/2401.17197,632

2024.633

[Lin, 1991] Jianhua Lin. Divergence measures based on the 634

shannon entropy. IEEE Transactions on Information theory, 635

37(1):145–151, 1991. 636

[Liu et al., 2021] Zhuang Liu, Degen Huang, Kaiyu Huang, 637

Zhuang Li, and Jun Zhao. Finbert: A pre-trained financial lan- 638

guage representation model for financial text mining. In Pro- 639

ceedings of the twenty-ninth international conference on inter- 640

national joint conferences on artificial intelligence, pages 4513– 641

4519, 2021. 642

[Mansour et al., 2009] Yishay Mansour, Mehryar Mohri, and Af- 643

shin Rostamizadeh. Domain adaptation: Learning bounds and 644

algorithms. arXiv preprint arXiv:0902.3430, 2009. 645
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