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Abstract

We study the problem of building text classi-
fiers with little or no training data, commonly
known as zero and few-shot text classification.
In recent years, an approach based on neu-
ral textual entailment models has been found
to give strong results on a diverse range of
tasks. In this work, we show that with proper
pre-training, Siamese Networks that embed
texts and labels offer a competitive alternative.
These models allow for a large reduction in in-
ference cost: constant in the number of labels
rather than linear. Furthermore, we introduce
label tuning, a simple and computationally effi-
cient approach that allows to adapt the models
in a few-shot setup by only changing the label
embeddings. While giving lower performance
than model fine-tuning, this approach has the
architectural advantage that a single encoder
can be shared by many different tasks.

1 Introduction

Few-shot learning is the problem of learning classi-
fiers with only a few training examples. Zero-shot
learning (Larochelle et al., 2008), also known as
dataless classification (Chang et al., 2008), is the
extreme case, in which no labeled data is used. For
text data, this is usually accomplished by represent-
ing the labels of the task in a textual form, which
can either be the name of the label or a concise
textual description.

In recent years, there has been a surge in zero-
shot and few-shot approaches to text classification.
One approach (Yin et al., 2019, 2020; Halder et al.,
2020; Wang et al., 2021) makes use of entailment
models. Textual entailment (Dagan et al., 2006),
also known as natural language inference (NLI)
(Bowman et al., 2015), is the problem of predicting
whether a textual premise implies a textual hypoth-
esis in a logical sense. For example, Emma loves
apples implies that Emma likes apples.

The entailment approach for text classification
sets the input text as the premise and the text repre-

senting the label as the hypothesis. A NLI model
is applied to each input pair and the entailment
probability is used to identify the best matching
label.

In this paper, we investigate an alternative based
on Siamese Networks (SN) (Bromley et al., 1993),
also known as dual encoders. These models embed
both input and label texts into a common vector
space. The similarity of the two items can then be
computed using a similarity function such as the
dot product. The advantage is that input and label
text are encoded independently, which means that
the label embeddings can be pre-computed. There-
fore, at inference time, only a single call to the
model per input is needed. In contrast, the models
typically applied in the entailment approach are
Cross Attention (CA) models which need to be ex-
ecuted for every combination of text and label. On
the other hand, they allow for interaction between
the tokens of label and input, so that in theory they
should be superior in classification accuracy. How-
ever, in this work we show that in practice, the
difference in quality is small.

Both CA and SNs also support the few-shot
learning setup by fine-tuning the models on a small
number of labeled examples. This is usually done
by updating all parameters of the model, which in
turn makes it impossible to share the models be-
tween different tasks. In this work, we show that
when using a SN, one can decide to only fine-tune
the label embeddings. We call this Label Tuning
(LT). With LT the encoder can be shared between
different tasks, which greatly eases the deployment
of this approach in a production setup. LT comes
with a certain drop in quality, but this drop can
be compensated by using a variant of knowledge
distillation (Hinton et al., 2014).

Our contributions are as follows: We perform
a large study on a diverse set of tasks showing
that CA models and SN yield similar performance
for both zero-shot and few-shot text classification.
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Figure 1: Overview of training and inference with Label Tuning (LT). At training time, input and label texts
(hypotheses) are processed by the encoder. LT then tunes the labels using a cross entropy (CE) loss. At inference
time, the input text is passed through the same encoder. The tuned label embeddings and a similarity function are
then used to score each label. The encoder remains unchanged and can be shared between multiple tasks.

In contrast to most prior work, we also show that
these results can also be achieved for languages
other than English. We compare the hypothesis
patterns commonly used in the literature and using
the plain label name (null hypothesis) and find that
on average there is no significant difference in per-
formance. Finally, we present LT as an alternative
to full fine-tuning that allows using the same model
for many tasks and thus greatly increases the scala-
bility of the method. We will release the code and
trained models used in our experiments.

2 Methodology

Figure 1 explains the overall system. We follow
Reimers and Gurevych (2019) and apply symmet-
ric Siamese Networks that embed both input texts
using a single encoder. The encoder consists of a
transformer (Vaswani et al., 2017) that produces
contextual token embeddings and a mean pooler
that combines the token embeddings into a single
text embedding. We use the dot product as the
similarity function. We experimented with cosine
similarity but did not find it to yield significantly
better results.

As discussed, we can directly apply this model
to zero-shot text classification by embedding the
input text and a textual representation of the label.
For the label representation we experiment with a

plain verbalization of the label, or null hypothesis,
as well as the hypotheses or prompts used in the
related work.

Fine-Tuning In the case of few-shot learning, we
need to adapt the model based on a small set of
examples. In gradient-based few-shot learning we
attempt to improve the similarity scores for a small
set of labeled examples. Conceptually, we want to
increase the similarity between every text and its
correct label and decrease the similarity for every
other label. As the objective we use the so called
batch softmax (Henderson et al., 2017):
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Where B is the batch size and S(z,y) = f(x)-f(y)
the similarity between input x and label text y un-
der the current model f. All other elements of the
batch are used as in-batch negatives. To this end,
we construct the batches so that every batch con-
tains exactly one example of each label. Note that
this is similar to a typical softmax classification
objective. The only difference is that f(y;) is com-
puted during the forward pass and not as a simple
parameter look-up.

Label Tuning Regular fine-tuning has the draw-
back of requiring to update the weights of the com-
plete network. This results in slow training and



large memory requirements for every new task,
which in turn makes it challenging to deploy new
models at scale. As an alternative, we introduce la-
bel tuning, which does not change the weights of
the encoder. The main idea is to first pre-compute
label embeddings for each class and later tune them
using a small set of labeled examples. Formally,
we have a training set containing N pairs of an
input text x; and its reference label index z;. We
pre-compute a matrix of the embedded input texts
and embedded labels, X eRV*d and Y eRE x4,
respectively. d is the embedding dimension and K
the size of the label set. We now define the score for
every input and label combination as S = X x YT
(SeRN*KY and tune it using cross entropy:

/ 1 al - Si i
J' = N Z Si 2 — logz eI 2)
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To avoid overfitting, we add a regularizer that pe-
nalizes moving too far from the initial label em-
beddings Yp as ||Yo — Y|, where ||.|[F is the
Frobenius norm.! Additionally, we also imple-
ment a version of dropout by masking some of
the entries in the label embedding matrix at each
gradient step. To this end, we sample a random
vector 7 of dimension d whose components are 0
with probability dropout and 1 otherwise. We then
multiply this vector component-wise with each row
in the label embedding matrix Y. The dropout
rate and the strength of the regularizer are two
hyper-parameters of the method. The other hyper-
parameters are the learning rate for the stochastic
gradient descent as well as the number of steps.
Following Logan IV et al. (2021), we tune them
using 4-fold cross-validation on the few-shot train-
ing set. Note that the only information to be stored
for each tuned model are the d-dimensional label
embeddings.

Knowledge Distillation As mentioned, label
tuning produces less accurate models than real fine-
tuning. We find that this can be compensated by a
form of knowledge distillation (Hinton et al., 2014).
We first train a normal fine-tuned model and use
that to produce label distributions for a set of unla-
beled examples. Later, this silver set is used to train
the new label embeddings for the untuned model.
This increases the training cost of the approach and
adds an additional requirement of unlabeled data

"https://en.wikipedia.org/wiki/Matrix_
norm#Frobenius_norm

but keeps the advantages that at inference time we
can share one model across multiple tasks.

3 Related Work

Pre-trained Language Models (LMs) have been
proved to encode knowledge that, with task-
specific guidance, can solve natural language un-
derstanding tasks (Petroni et al., 2019). Leverag-
ing that, Le Scao and Rush (2021) quantified a
reduction in the need of labeled data of hundreds
of instances with respect to traditional fine-tuning
approaches (Devlin et al., 2019; Liu et al., 2019).
This has led to quality improvements in zero and
few-shot learning.

Semantic Similarity methods Gabrilovich and
Markovitch (2007) and Chang et al. (2008) use the
explicit meaning of the label names to compute the
similarity with the input text. Recent advances in
pre-trained LMs and their application to semantic
textual similarity tasks, such as Sentence-BERT
(Reimers and Gurevych, 2019), have shown a new
opportunity to increase the quality of these meth-
ods and set the stage for this work. Chu et al.
(2020) employ a technique called unsupervised
label-refinement (LR). They incorporated a modi-
fied k-means clustering algorithm for refining the
outputs of cross attention and Siamese Networks.
We incorporate LR into our experiments and extend
the analysis of their work. We evaluate it against
more extensive and diverse benchmarks. In addi-
tion, we show that pre-training few-shot learners
on their proposed textual similarity task NatCat
underperforms pre-training on NLI datsets.

Prompt-based methods GPT-3 (Brown et al.,
2020), a 175 billion parameter LM, has been shown
to give good quality on few-shot learning tasks.
Pattern-Exploiting Training (PET) (Schick and
Schiitze, 2021) is a more computational and mem-
ory efficient alternative. It is based on ensembles
of smaller masked language models (MLMs) and
was found to give few-shot results similar to GPT-3.
Logan IV et al. (2021) reduced the complexity of
finding optimal templates in PET by using null-
prompts and achieved competitive performance.
They incorporated BitFit (Ben-Zaken et al., 2021)
and thus reached comparable accuracy fine-tuning
only 0.1% of the parameters of the LMs. Ham-
bardzumyan et al. (2021) present a contemporary
approach with a similar idea to label tuning. As
in our work, they use label embeddings initialized
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as the verbalization of the label names. These task-
specific embeddings, along with additional ones
that are inserted into the input sequence, are the
only learnable parameters during model training.
They optimize a cross entropy loss between the
label embeddings and the output head of a MLM.
The major difference is that they employ a prompt-
based approach while our method relies on embed-
ding models.

Entailment methods The entailment approach
(Yin et al., 2019; Halder et al., 2020) uses the label
description to reformulate text classification as tex-
tual entailment. The model predicts the entailment
probability of every label description . Wang et al.
(2021) report results outperforming LM-BFF (Gao
et al., 2021), an approach similar to PET.

True Few-Shot Learning Setting Perez et al.
(2021) argue that for true few-shot learning, one
should not tune parameters on large validation sets
or use parameters or prompts that might have been
tuned by others. We follow their recommendation
and rely on default parameters and some hyper-
parameters and prompts recommended by Wang
et al. (2021), which according to the authors, were
not tuned on the few-shot datasets. For label tuning,
we follow Logan IV et al. (2021) and tune parame-
ters with cross-validation on the few-shot training
set.

4 Experimental Setup

Random The theoretical performance of a ran-
dom model that uniformly samples labels from the
label set.

Word embeddings For the English experiments,
we use Word2Vec (Mikolov et al., 2013) embed-
dings?. For the multi-lingual experiments, we use
FastText (Grave et al., 2018). In all cases we prepro-
cess using the NLTK tokenizer (Bird et al., 2009)
and stop-words list and by filtering non-alphabetic
tokens. Sentence embeddings are computed by
averaging the token embeddings.

Char-SVM For the few-shot experiments we
implemented a Support Vector Machines (SVM)
(Hearst et al., 1998) based on character n-grams.
The model was implemented with scikit-learn (Pe-
dregosa et al., 2011) and uses bigrams to fivegrams.

https://code.google.com/archive/p/
word2vec

Cross Attention For our experiments we use pre-
trained models from HuggingFace (Wolf et al.,
2020). As the cross attention baseline, we trained
a version of MPNET (Song et al., 2020) on Multi-
Genre (MNLI, Williams et al. (2018)) and Stanford
NLI (SNLI, Bowman et al. (2015)) using the pa-
rameters and code of Nie et al. (2020). This model
has approx. 110M parameters. For the multilingual
experiments, we trained — the cross-lingual lan-
guage model — XLLM roberta-base (Liu et al., 2019)
on SNLI, MNLI, adversarial NLI (ANLI, Nie et al.
(2020)) and cross-lingual NLI (XNLI, Conneau
et al. (2018)), using the same code and parameters
as above. The model has approx. 280M parame-
ters. We give more details on the NLI datasets in
Appendix G.

Siamese Network We also use models based on
MPNET for the experiments with the Siamese Net-
works. paraphrase-mpnet-base-v2? is a sentence
transformer model (Reimers and Gurevych, 2019)
trained on a variety of paraphrasing datasets as
well as SNLI and MNLI using a batch softmax
loss (Henderson et al., 2017). nli-mpnet-base-v24
is identical to the previous model but trained ex-
clusively on MNLI and SNLI and thus comparable
to the cross attention model. For the multilingual
experiments, we trained a model using the code
of the sentence transformers with the same batch
softmax objective used for fine-tuning the few-shot
models and on the same data we used for training
the cross attention model.

Roberta-NatCat For comparison with the re-
lated work, we also trained a model based on
RoBERTa (Liu et al., 2019) and fine-tuned on the
NatCat dataset as discussed in Chu et al. (2020)
using the code’ and parameters of the authors.

Datasets We use a number of English text classi-
fication datasets used in the zero-shot and the few-
shot literature (Yin et al., 2019; Gao et al., 2021;
Wang et al., 2021). In addition, we use several
German and Spanish datasets for the multilingual
experiments. Table 1 provides more details.

These datasets are of a number of common text
classification tasks such as topic classification, sen-
timent and emotion detection, and review rating.
However, we also included some less well-known
tasks such as acceptability, whether an English sen-

*https://tinyurl.com/pp-mpnet
*nttps://tinyurl.com/nli-mpnet
Shttps://github.com/ZeweiChu/ULR
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name task lang. train test labels token length
GNAD (Block, 2019) topic de 9,245 1,028 9 279
AG News (Gulli, 2005) en 120,000 7,600 4 37
HeadQA (Vilares and Gémez-Rodriguez, 2019) es 4,023 2,742 6 15
Yahoo (Zhang et al., 2015) en 1,360,000 100,000 10 71
Amazon Reviews (Keung et al., 2020) reviews de, en, es 205,000 5,000 5 25-29
IMDB (Maas et al., 2011) en 25,000 25,000 2 173
Yelp full (Zhang et al., 2015) en 650,000 50,000 5 99
Yelp polarity (Zhang et al., 2015) en 560,000 38,000 2 97
SAB (Navas-Loro et al., 2017) sentiment es 3,979 459 3 13
SemEval (Nakov et al., 2016) en 9,834 20,632 3 20
sb10k (Cieliebak et al., 2017) de 8,955 994 3 11
Unified (Bostan and Klinger, 2018) emotions en 42,145 15,689 10 15
deISEAR (Troiano et al., 2019) de 643 340 7 9
COLA (Warstadt et al., 2019) acceptability en 8,551 1,043 2 7
SUBJ (Pang and Lee, 2004) subjectivity en 8,019 1,981 2 22
TREC (Li and Roth, 2002) entity type en 5,452 500 6 10

Table 1: Overview of the evaluated datasets. Token length is the median value.

tence is deemed acceptable by a native speaker, and
subjectivity, whether a statement is subjective or
objective. As some datasets do not have a standard
split we split them randomly using a 9/1 ratio.

Hypotheses We use the same hypotheses for the
cross attention model and for the Siamese network.
For Yahoo and Unified we use the hypotheses from
Yin et al. (2019). For SUBJ, COLA, TREC, Yelp,
AG News and IMDB we use the same hypotheses
as Wang et al. (2021). For the remaining datasets
we designed our own hypotheses. These were writ-
ten in an attempt to mirror what has been done for
other datasets and they have not been tuned in any
way. Appendix B shows the patterns used. We also
explored using a null hypothesis, that is the raw
label names as the label representation and found
this to give similar results.

Fine-Tuning Inspired by Wang et al. (2021), we
investigate fine-tuning the models with 8, 64 and
512 examples per label. For fine-tuning the cross
attention models we follow the literature (Wang
et al., 2021) and create examples of every possible
combination of input text and label. The exam-
ple corresponding to the correct label is labeled
as entailed while all other examples are labeled as
refuted. We then fine-tune the model using stochas-
tic gradient descent and a cross-entropy loss. We
use a learning rate of le-5, a batch size of 8 and
run the training for 10 epochs. As discussed in the
methodology Section 2, for the Siamese Networks
every batch contains exactly one example of ev-
ery label and therefore the batch size equals the
number of labels of the task. We use a learning

rate of 2e-5 and of 2e-4 for the BitFit experiments.
Appendix D contains additional information on the
hyper-parameters used.

We use macro F1-score as the evaluation metric.
We run all experiments with 5 different training sets
and report the mean and standard deviation. For
the zero-shot experiments, we estimate the standard
deviation using bootstrapping (Koehn, 2004). In all
cases, we use Welch’s t-test® with a p-value of 0.05
to establish significance (following Logan IV et al.
(2021)). For the experiments with label refinement
(Chu et al., 2020) and distillation, we use up to
10,000 unlabeled examples from the training set.

5 Results

Table 2 shows results comparing Siamese Networks
(SN) with cross attention models (CA) and various
baselines. As discussed above, SN and CA models
are based on the MPNET architecture and trained
on SNLI and MNLI.

For the zero-shot setup (n=0) we see that all
models out-perform the random baseline on aver-
age. The word embedding baselines and RoBERTa-
NatCat perform significantly worse than random
on several of the datasets. In contrast the SN and
CA models only perform worse than random on
COLA. The SN outperforms the CA on average,
but the results for the individual datasets are mixed.
The SN is significantly better for 4, significantly
worse for 4 and on par for the remaining 3 datasets.
Regarding the use of a hypothesis pattern from the
literature or just a null hypothesis (NH), we find

®https://en.wikipedia.org/wiki/Welch%
27s_t—-test
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name n  Yahoo AG News Unified COLA SUBJ TREC IMDB SemEval Yelppol Yelpfull Amazon Mean
random 0 10.0 25.0 10.0 50.0 50.0 16.7 50.0 333 50.0 20.0 20.0 30.5
W2V (NH) 0 44892 59.105 10.103 46917 37.1g7 17.614 71.003 46.803 65.90.2 14.80.1 17.80.4 39.30.7
RoBERTa-NatCat 0 50.002 49.80¢ 7.90.3 35515 44309 18.677 45603 36.603 49.8¢.2 11.191 11.204 32.80.7
RoBERTa-NatCat (NH) 0 37.3[)_2 62.60_5 15.2()_3 42.31_4 40.41_[] 22.212 39.9[],2 30.9()_3 47.7[]_2 17.5[)_1 17.5[]&5 33.9()_7
mpnet (CA) 0 51.8[]_1 60-50.6 23.30_4 47.01_4 41.00_9 19.8]_(5 87-50_2 37.40_3 88-40_2 36.7[]_2 25-60.6 47~20.8
mpnet (CA-NH) 0 46392 56305 22204 47715 55711 20215 83502 38.802 83402  36.102 33406 47.608
mpnet (SN) 0 53901 62505 21.603 46.015 42008 31514 73802 46.703 78.602  26.1p2 40.606 47.60.7
mpnet (SN-NH) 0 5140.1 64.20_6 21 .20.3 46.01.6 54.010 32.11.7 6960.3 41 .50_3 83602 34302 3740,7 48.70_8
Char-SVM 8 29316 54325 12211 45618 64939 39539 57.135 33.611 56.754 29218  30.016 4l.1a9
mpnet (CA) 8 58.32_8 80.62_9 23.61_1 50.42_1 75.25_[} 66.46_[] 88.4[]_9 59.51_3 90.31_9 50.92_1 47.71,3 62.82_9
mpnet (CA—NH) 8 59'22.6 83.11_7 23.022 48.422 74653 68.77]7 87'20.8 58.2]_0 88.93_3 49-32_4 47.3])7 62.53_5
mpnet (SN) 8 62004 8425 248,53 49618 79.654 62854 76416 58724 84.815 44720 4697 6133,
mpnet (SN-NH) 8 61009 84415 24611 46327 80550 58.5.4 76119 57.030 86204 43515 46015 6044
Char-SVM 64 49.00_5 76.60_6 17.3()_4 48.51_6 79.61_2 60.42_2 70.9]_5 39-00.8 77.32_5 41-80_4 43-50.8 54.91_3
mpnet (CA) 64 66.509 87.909 28.1;3 54208 91.614 87.019 90719 62.0o4 93504  57.004 54115 7023
mpnet (CA-NH) 64 65804 87410 26406 Sl320 92505 85.051 89305 62615 92704 S56.1g¢ 541y 69.4,
mpnet (SN) 64 66.60_4 87.71_0 29.30.3 56.61.8 92.01_0 87.71.9 7971.4 61.91_2 8&704 50.80_9 54.11.4 68612
mpnet (SN-NH) 64 66.5[)_/1 87.31_2 29.3()5 46.511_() 92.7()_3 87.531 79.71}5 61.51_7 88.1[],2 50.7[]_5 54.0137 67.63_5
Char-SVM 512 59.6p2 85.803 23.004 51211  87.006 87.507 82.8p5 46.005 87.1p2 49303 50404  64.505
mpnet (CA) 512 67.1[]_7 90.20_4 32.4]_2 68.52_0 94.61_] 95.2()‘6 92.50,2 63.6]_2 95.20_3 60.80.4 60-1[]‘5 74.60_9
mpnet (CA-NH) 512 67702 90403 32806 68.016 94906 94415 90.111 63.714 94.602  59.507 59.709 74209
mpnet (SN) 512 68-90_2 90.30_3 33-2()_3 74.30_9 96.10_3 95.3()_6 84.00_3 64.60_7 90.00_3 55.30_3 60.40_5 73.90_5
mpnet (SN-NH) 512 68.995 90.2) 2 33505 628196 95904 95.006 83703 64.1p% 90.1¢.2 55.1p.3 60.3 72759

Table 2: English results for models based on MPNET and trained on SNLI and MNLI, comparing Siamese archi-
tecture (SN) and cross attention (CA) and also models with a null hypothesis (NH). Results are grouped by the
number of training examples (n). Bold font indicates significant results.

that, while there are significant differences on indi-
vidual datasets, the NH setup shows higher but still
comparable (within 1 point) average performance.

For the few-shots setup (n={8,64,512}), we
find that all models out-perform a Char-SVM
trained with the same number of instances by a
large margin. Comparing SN and CA, we see that
CA outperforms the SN on average but with a dif-
ference with-in the confidence interval. For n=8
and n=64, CA significantly outperforms SN on 3
datasets and performs comparably on the remaining
8. For n=512, we see an even more mixed picture.
CA is on par with SN on 6 datasets, outperforms it
on 3 and is out-performed on 2. We can conclude
that for the English datasets, SN is more accurate
for zero-shot while CA is more accurate for few-
shot. The average difference is small in both setups
and we do not see a significant difference for most
datasets.

Table 3 shows the multi-lingual experiments.
The RoBERTa XLM models were pre-trained on
data from more than 100 languages and fine-tuned
on an NLI data of 15 languages. The cross-lingual
data and the fact that there is only 7500 examples
for the languages other than English, explains why
quality is lower than for the English-only experi-
ments. For the zero-shot scenario, all models out-
perform the random baseline on average, but with
a smaller margin than for the English-only models.
The FastText baseline performs comparable to CA

on average (26.0 vs 27.2), while SN is ahead by
a large margin (27.2 vs 32.4). The differences be-
tween models with hypotheses and null hypothesis
(NH) are smaller than for the English experiments.

Looking at the few-shot scenarios, we see that
both models out-perform the Char-SVM by a large
margin. In general, the results are closer than for
the English experiments, as well as in the number
of datasets with significant differences (only 2-4 of
datasets). Similarly to English, we can conclude
that at multilingual level, SN is more accurate in
the zero-shot scenario whereas CA performs better
in the few-shot one. However, for few-shot we see
only small average differences (less than 1 point
except for n=64).

Table 4 shows a comparison of different fine-
tuning approaches on the English datasets. Ap-
pendix H contains the multi-lingual results and
gives a similar picture. We first compare Label
Refinement (LR) as discussed in Chu et al. (2020)
(see Section 3). Recall that this approach makes
use of unlabeled data. We find that in the zero-shot
scenario LR gives an average improvement of more
than 2 points and significantly out-performing the
baseline (mpnet) for 7 of the 11 datasets. When
combining LR with labeled data as discussed in
Chu et al. (2020) we find this to only give modest
improvements over the zero-shot model (e.g., 54.0
(zero-shot) vs 55.8 (n=8)). Note that we apply
LR to the untuned model, while Chu et al. (2020)



language German English Spanish

name n GNAD Amazon deIlSEAR sbl0k Amazon SemEval Unified Amazon HeadQA SABs Mean
random 0 11.1 20.0 14.3 333 20.0 333 10.0 20.0 16.7 333 21.2
FastText 0 17.31‘() 15.4(],5 22.22_1 31.51_5 18.6[]‘5 43.8()_1 11.8(),3 19.7[)_5 45.0()_9 35.02,2 26.01_2
xlm-roberta (CA) 0 28.51_3 24.40,5 21-11.8 34.11_4 23.8(}_5 33.1(}_2 16.50_3 24.10_5 36-70_9 29.52_2 27.21_2
xlm-roberta (CA-NH) 0 29413 26.1p6 18315  31.809 29206 34602 15704 25005 37809 2435 27210
xlm-roberta (SN) 0 41.51.2 31.10.7 22.1 1.9 38.41_2 37.00.(; 4310_3 15.30'3 2800() 35.4()_9 32.02,3 32.41_2
xIm-roberta (SN-NH) 0 38912 29505 23.024 35714 31.006 38703 13.79.2 32906 38.80s 35.62.3 31.813
Char-SVM 8 56.128 30.522 29416 45455 30.016  33.611 12.21 1 30.812 36326 50.65 3 35.525
xlm-roberta (CA) 8 61.62_/1 43.31,3 39.55_1 53.62_2 41.22_2 55.03_4 18.31,1 41.11_3 49.52_7 53.93,5 45-72.8
xlm-roberta (CA-NH) 8 60.22_3 43.91,2 36.41_8 56.51_5 43.52_0 55.82_9 18.82_2 42.71_7 47.62_6 56.53_2 46.22_2
xlm-roberta (SN) 8 62.80_6 40.00,9 35.23_0 52.60_6 43.60_6 55.62_3 18.50_9 40.82_8 50.31_2 54.63_6 45.42_0
xIm-roberta (SN-NH) 8 59213 41 .51.3 33.824 53.41_3 43.20.9 51.83_6 17-20,8 41.41.4 50.21_2 52.64.5 44.42_2
Char-SVM 64 77.30_3 41.4(]‘3 48.12_9 51.50_7 43.50_3 39-00.8 17.30_4 4041_0 52-30.8 54.70_9 46.61_2
xIm-roberta (CA) 64 78411 51016 56816 65.60 3 51215 6191 24.31 7 49.507  55.007 61.4, 55.513
xlm-roberta (CA-NH) 64 7834 5085 57.259 64.31 4 51.313 61.605 24.61 9 48416 56.01¢ 60.75 4 55316
xIm-roberta (SN) 64 T1dos 49.60s 59311  58.823 497, 5835, 23.607 47304 56005 61857 54215
xlm-roberta (SN—NH) 64 77.00_9 49.80,9 56.80_6 60.31_3 49.8]_4 57-51.8 22.80_8 46.80_3 56.31_1 59.52_7 53.61_3
Char-SVM 512 85005 48205 48.1a9  59.00.4 50404 46.005  23.004 46409 64794 63813 53.511
xlm-roberta (CA) 512 84707 56303 56510  68.5.¢ 58.60s 62706 29207 53.004 65910 67906 60.31.0
xIm-roberta (CA-NH) 512 85.8,3 56.807 56313 67.91 4 58505  62.5:3 28910 52314 65905 68.9 > 60.41 2
xIlm-roberta (SN) 512 85.0[]_6 55-7[],4 59.51_5 67.90_5 58.6[]_,1 62.3()_3 29.5()_4 52.5[)_3 66.90_1 65.611 60.30_3
xlm-roberta (SN-NH) 512 84905 56.15 57.609  67.8,5 5830, 61300 29104 52405 66809 6831 60.30.9

Table 3: Multi-lingual results for models based on roberta-xIm for cross attention (CA) and Siamese networks
(SN). n denotes the number of training examples. Bold font indicates significant results.

proposed to apply it to a tuned model. However,
we find that to only give small improvements over
an already tuned model (mpnet (FT) vs. mpnet
(FT+LR)). Also, in this work we are interested in
approaches that do not change the initial model
so that it can be shared between tasks to improve
scalability. Label Tuning (LT) improves results as
n grows and out-performs LR and the Char-SVM
baseline from Table 2.

Comparing regular Fine-Tuning (FT) and BitFit,
we find them to perform quite similarly both on
average and on individual datasets, with only few
exceptions, such as the performance difference on
TREC for the n=8 setup. In comparison with FT
and BitFit, LT is significantly out-performed on
most datasets. The average difference in perfor-
mance is around 5 points, which is comparable to
using 8 times less training data.

Using the knowledge distillation approach dis-
cussed before (LT-DIST), we find that for 8 and 64
examples, most of the difference in performance
can be recovered while still keeping the high scal-
ability. For n=8, we only find a significant differ-
ence to mpnet (FT) for Yelp full.

6 Analysis

We analyze the performance of the Cross Attention
(CA) and Siamese Network-based (SN) models.
Unless otherwise noted, the analysis was run over
all datasets and languages. Table 5, gives a com-
parison of the processing speed of different models.

Details on the hardware used is given in Appendix
F. As expected, the performance of the cross at-
tention model halves when the label size doubles.
The performance of the Siamese network is inde-
pendent of the number of labels. This shows that
Siamese Networks have a huge advantage at infer-
ence time — especially for tasks with many labels.
Table 6 shows the average F1 scores for different
token lengths. To this end the data was grouped in
bins of roughly equal size. SN has an advantage
for shorter sequences (< 44 tokens), while CA
performs better for longer texts (> 160 tokens).
Table 7 shows an analysis based on whether the
text does or does not contain negation markers’.
For emotion detection and review tasks, both mod-
els perform better on the subset without negations.
However, while SN outperforms CA on the data
without negations, CA performs better on the data
with negations. The same trend does not hold for
the sentiment datasets. These are based on Twitter
and thus contain shorter and simpler sentences. For
the sentiment datasets based on Twitter we also
found that both models struggle to predict the neu-
tral class. CA classifies almost everything neutral
tweet as positive or negative. SN predicts the neu-
tral class regularly but still with a relative high error
rate. Appendix E contains further analysis showing
that label set size, language and task do not have a
visible effect on the difference in accuracy of the

"We used an in-house list of 23 phrases for German and
Spanish and 126 for English



name n  Yahoo AGNews Unified COLA SUBJ TREC IMDB SemEval Yelppol Yelpfull Amazon Mean

mpnet 0 55.00_2 65‘60_4 20.50_3 47.61_4 62.80_9 43.02_1 79‘50_2 48.9[)_3 79.90_2 32-10_2 37.00_7 52.00_9
mpnet (LR) 0 59.10_2 73.8()_5 20.90_3 47.71_5 68.70_8 48.22_2 80.00_2 46.30_3 80-50_2 28-6(}_2 39'80.6 54.00_9
mpnet (BitFit) 8 62.6p7 80.115 27.012 49.009 79.630 57920 83999 54.6o5% 90.3, 9 50.1, 4 46.11 5 61917
mpnet (FT) 8 63.50,3 83.31.9 27~00,8 49.7[)_9 83.14,8 70.87,1 82.62(3 54.83_3 90.61,1 50-516 46.81‘5 63.93_0
mpnet (FT+LR) 8 63.91_0 83.61_8 26-30_8 49.11_1 84.53_4 68.97,3 83.62_5 56.91_5 90.51_2 51.11_2 46.71_9 64.12_8
mpnet (LR) 8 59.70_3 76.00_6 22»40_4 47.80_5 71.31_4 48.42_7 80.40_3 50.92_0 81.71_5 33.63_8 41.21_5 55.81_7
mpnet (LT) 8 59.40_9 78.7()_9 2320_4 48.71_4 81.93_4 52.54_4 77.70_5 45.22_0 85.12_2 41.51_1 41.92_9 57.82_2
mpnet (LT—DIST) 8 62.90_7 83.0] 9 26.60_9 47.73_(] 84.63_4 67.8();4 83.7(]_6 54.92_2 89.91_4 492] 0 45-62_] 63.32_7
mpnet (BitFit) 64 67.606 86.9)9 30309 51309 93.709 82159 857,09 60.814 92.1y5 54907 51.81 2 68.813
mpnet (FT) 64 67.3(]_5 87.31_2 29-50_4 55-41_2 93.80_5 88.52,6 86.11_2 61.43_0 91.80_3 54-50_/1 53-61_(, 69.91_5
mpnet (FT+LR) 64 67.50_4 87.60_8 29.40_3 55.50_9 93.70_5 86.53_4 86-20_4 60-42_1 91-40.0‘ 54.60_5 54-11.6 69.71_4
mpnet (LR) 64 5990, 76.605 22700 47805 71605 Sllig 80491 52007  82.1p7 29815 42005  56.00.r
mpnet (LT) 64 64805 85006 27.10_5 49.3 1.2 89.90_5 70.82.8 81.2]_0 54.52_7 89006 50.00_7 49.1 1.6 646J A4
mpnet (LT—DIST) 64 67.00.5 86.9049 28.80.4 52.21.2 92.50.2 86.51,1 84605 60.22,3 91203 53.7047 52.71.2 68.71,0
mpnet (BitFit) 512 70495 90.302 32902 729135 96302 92206 88.202 64405 93.3¢.2 58.50.2 60.70.3 74.50 5
mpnet (FT) 512 69.30_2 90.70_3 33-00_4 74-51_2 96.00_2 95-41_3 87.70_4 64.10_3 93.20_3 58-50_2 60-80_7 74.80_7
mpnet (FT+LR) 512 69.505 90.805  32.605 74209 96305 95.000 88.005 63307 933, 5840, 61305 74805
mpnet (LR) 512 60410,1 76.70,2 22.60.1 47.80_3 72.00.2 51403 80.3040 52.6[)_2 81450.2 29.7043 42.70.2 56.10_2
mpnet (LT) 512 68400,2 88.0043 29.10.4 55.21,1 92.60,5 86420,2 84.30,3 59.80,7 91400,2 53.70,3 54.90,5 69.30,5
mpnet (LT—DIST) 512 68470,2 88.90,2 30.80,3 58.61,1 93.70,2 89.40,5 85.50,2 61.30.5 91.70,1 55.80,2 57.00,5 71.00,5

Table 4: English results for Siamese models based on MPNET and trained on NLI and paraphrasing datasets.
Comparing fine-tuning (FT), label tuning (LT), label tuning with distillation (LT-DIST), and label refinement (LR).
Results are grouped by the number of training examples (n). Bold font indicates significant results.

name 2-3 4-6 10
w2v 19290 195.82 208.40
mpnet-base (CA) 5.12 222 1.15
mpnet-base (SN) 26.08 18.30 18.85

Table 5: Processing speed in thousand tokens/second.
We show the results grouped by the size of the label set.
Calculated on the English test sets.

length 1-22 22-44 44-86 86-160 > 160
SN 39.8 446 425 34.5 36.4
CA 36.7 41.8 440 352 40.3

Table 6: Average macro F1 score for sets of different
token length measured across all test sets for n=0.

two models.

7 Conclusion

We have shown that Cross Attention (CA) and
Siamese Networks (SN) for zero-shot and few-shot
text classification give comparable results across a
diverse set of tasks and multiple languages. The in-
ference cost of SN is low as label embeddings can
be pre-computed and, in contrast to CA, does not
scale with the number of labels. We also showed
that tuning only these label embeddings (Label
Tuning (LT)) is an interesting alternative to regular
Fine-Tuning (FT). LT gets close to FT performance
when combined with knowledge distillation and
when the number of training samples is low, i.e.,

task emotions reviews sentiment
negation no yes no yes no yes
SN 23.0 143 49.0 444 373 45.1
CA 224 168 482 470 322 374

Table 7: Average macro F1 score for sets with and with-
out a negation marker present. Measured across all test
sets for n=0.

for realistic few-shot learning. This is relevant for
production scenarios, as it allows to share the same
model among tasks. BitFit achieves better accuracy
and also allows tuning relatively few parameters.
However, it will require 60 times more memory to
add a new task than for LT®. The main disadvan-
tage of BitFit, however, is that the weight sharing
it requires is much harder to implement, especially
in highly optimized environments such as NVIDIA
Triton. Therefore we think that LT is an interesting
alternative for fast and scalable few-shot learning.
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A Unified Emotions

Unified Emotions is a meta-dataset comprised of
the following datasets: DailyDialog (Li et al.,
2017), CrowdFlower (Crowdflower, 2016), TEC
(Mohammad, 2012), Tales (Alm et al., 2005; Alm
and Sproat, 2005; Alm, 2008), ISEAR (Scherer and
Wallbott, 1994), Emoint (Mohammad et al., 2017),
Electoral Tweets (Mohammad et al., 2015), Ground-
edEmotions (Liu et al., 2007) and EmotionCause
(Ghazi et al., 2015).

B Hypotheses

Table 9 lists all the hypothesis patterns used in our
experiments.

C Paraphrase datasets

paraphrase-mpnet-base-v2 has been
trained on these datasets: AIINLI, sentence-
compression, SimpleWiki, altlex, msmarco-
triplets, quora_duplicates, coco_captions, ya-
hoo_answers_title_question, S20ORC _citation_pairs,
stackexchange _duplicate_questions and  wiki-
atomic-edits. Details on these dataset are provided
here.

D Hyperparameters

For the label tuning experiments we used the fol-
lowing hyper-parameters:

* learning rate € {0.01,0.1}

* number of epochs € {1000, 2000}

* regularizer coefficient € {0.01,0.1}

* dropout rate € {0.01,0.1}

E Additional Analysis

The following table shows the F1-score breakdown
by hypothesis length. One could think that the CA
model performs better for longer hypothesis but
this cannot be observed. Potentially because all
hypotheses are relatively short.

name 3-5 5-7 >7
SN 422 329 303
CA 414 30.1 252

Table 10: Average macro F1 score by length of the ref-
erence hypothesis, averaged over all test sets for n=0.

For completeness, we also add similar break-
downs by task type, label set size, and language.
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None of them indicate an effect on the difference
between SN and CA model performance.

name 2-3 4-6 >6
SN 51.1 36.7 34.7
CA 52.1 32.0 31.2

Table 11: Average macro F1 score by label set size,
averaged over all test sets for n=0.

name emotions other reviews sentiment topic
SN 21.8 404 46.4 39.0 483
CA 222 347 47.8 337 444

Table 12: Average macro F1 score by task, averaged
over all test sets for n=0.

name de en es
SN 333 477 31.8
CA 27.0 46.8 30.1

Table 13: Average macro F1 score by language, aver-
aged over all test sets for n=0.

F Computing Requirements

All experiments were run on a system with an AMD
Ryzen Threadripper 1950X CPU and a Nvidia
GeForce GTX 1080 Ti GPU. Most of the comput-
ing time was spent training the NLI models used
in our experiments. Training the CA models took
approx. 20h while training the SN models took
approx. 10h.

G NLI Training sets

name examples
SNLI (Bowman et al., 2015) 569,033
MNLI (Williams et al., 2018) 412,349
ANLI (Nie et al., 2020) 169,246
XNLI (Conneau et al., 2018) 112,500

Table 14: Sizes of NLI traininig sets. SNLI, MNLI and
ANLI are English only. XNLI contains 15 languages
with 7,500 examples per language.

H Multilingual Label Tuning Results

Table 8 multilingual results for label tuninig and
fine-tuning.


https://www.sbert.net/examples/training/paraphrases/README.html#datasets

language German English Spanish

name n GNAD Amazon deISEAR sbl0k Amazon SemEval Unified Amazon HeadQA SABs Mean
random 0 11.1 20.0 14.3 333 20.0 333 10.0 20.0 16.7 333 21.2
FastText 0 17.31_0 15.40_5 22.22_1 31.51,5 18.60_5 43.80,4 11.8(),3 19.70_5 45.00_9 35.02_2 26.01,2
xIm-roberta 0 37.81_1 28.40_7 43.12_7 46.61_3 35.40_7 50.50_4 21.30_3 32.80_6 50.6[)_9 31‘62_0 37‘81_3
Char-SVM 8 56.1ss 30.520 29416 45495 30016 33.611 12211 30812 36326 50655 35595
xIm-roberta (FT) 8 66.33_7 45.10_9 56.62_1 55-92,6 45.21_2 55-73,8 25.40_7 42.51_1 55.02_3 58-15_2 50-62,8
xIm-roberta (LT) 8 64.61_2 42.1 1.5 50.62_4 50‘21.8 41 .72_0 46.52,7 23.00_4 40.41_3 53.72_9 52-2/1.8 46‘52,,1
xlm—roberta (LT—DIST) 8 67.032 44.3(]5 53.23,[] 55.82.[) 45.41.(5 53.13,3 25.3(],(5 41.71,4 54.62,3 59.44,2 50.02‘5
Char-SVM 64 77-30.8 41~40.8 48. 12_9 51.50_7 43-50.8 39-00.8 17.30_4 40‘41_0 52‘30.8 54‘70_9 46‘61_2
xIm-roberta (FT) 64 79-70(7 51.51(0 67.70(9 63-00,9 53-11“() 61.01‘6 28.10,2 49.40,3 60.51_() 64.91_8 57.91‘2
xIm-roberta (LT) 64 76906 48.4(],6 62609 59106 49116 54.21,9 26.90,7 48.70.4 59~3[).8 61.83.1 54714
xIlm-roberta (LT—DIST) 64 78.9045 50.0141 64.7043 62.50.9 51.7143 59.51.0 27.60.4 48.90_7 59.30_9 65.41_8 56.91.0
Char-SVM 512 85.003 48.205 48.129 59.004 50404  46.005 23.004 46409 64704 63.813 53.511
xIlm-roberta (FT) 512 85.40.6 57.2047 67.81.2 68.60.9 58.80.4 64.70.7 32.10.3 53-30.6 68.80.5 69.70_5 62.60.7
xlm-roberta (LT) 512 80.80_6 52.50_7 62.60_8 63.30,9 54.30_3 60.60,7 28.90_4 51-40_4 62.90_3 66.80.4 58-40,6

xlm»roberta(LT—DIST) 512 80.70_4 54.10_3 64.60_2 66‘01,3 55.60_3 62‘91,() 30‘50_4 52‘40_2 63.10_4 68.70_5 59‘90.6

Table 8: Multi-lingual results for Siamese models based on paraphrase-multilingual-mpnet-base-v2, comparing
fine-tuning (FT), label tuning (LT) and label tuning with distillation (LT-DIST). Results are grouped by the number
of training examples (n). Bold font indicates significant results.

dataset type lang.  pattern

Unified Emotions en This person feels {anger, disgust, feat, guilt, joy, love, sadness,
shame, surprise}.
This person doesn’t feel any particular emotion.

deISEAR de Diese Person empfindet {Schuld, Wut, Ekel, Angst, Freude,
Scham, Traurigkeit}.

AG News Topic en It is {business, science, sports, world} news.

GNAD de Das ist ein Artikel aus der Rubrik {Web, Panorama, International,
Wirtschaft, Sport, Inland, Etat, Wissenschaft, Kultur}.

HeadQA es Estd relacionado con la {medicina, enfermeria, quimica, biologfa,

psicologia, farmacologia}.

Yahoo en It is related with {business & finance,computers & internet, educa-
tion & reference, entertainment & music, family & relationships,
health, politics & government, science & mathematics, society &
culture, sports}.

Amazon Review en This product is {terrible, bad, okay, good, excellent}.

de Dieses Produkt ist {furchtbar, schlecht, ok, gut, exzellent}.

es Este producto es {terrible, mal, regular, bien, excelente}.
IMDB, Yelp (2) en It was {terrible, great}.
Yelp (5) It was {terrible, bad, okay, good, great}.
SemEval Sentiment en This person expresses a {negative, neutral, positive} feeling.
sb10k de Diese Person driickt ein {negativ, neutral, positiv }es Gefiihl aus.
SAB es Esta persona expresa un sentimiento {negativo, neutro, positivo}.
COLA Acceptability en It is {correct, incorrect}.
SUBJ Subjectivity en It is {objective, subjective}.
TREC Question Type en It is {expression, description, entity, human, location, number}.

Table 9: Hypotheses patterns used.
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