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ABSTRACT

Transductive inference is an effective means of tackling the data deficiency problem
in few-shot learning settings. A popular transductive inference technique for few-
shot metric-based approaches, is to update the prototype of each class with the
mean of the most confident query examples, or confidence-weighted average of
all the query samples. However, a caveat here is that the model confidence may
be unreliable, which may lead to incorrect predictions. To tackle this issue, we
propose to meta-learn the confidence for each query sample, to assign optimal
weights to unlabeled queries such that they improve the model’s transductive
inference performance on unseen tasks. We achieve this by meta-learning an
input-adaptive distance metric over a task distribution under various model and
data perturbations, which will enforce consistency on the model predictions under
diverse uncertainties for unseen tasks. We validate our few-shot learning model
with meta-learned confidence on four benchmark datasets, on which it largely
outperforms strong recent baselines and obtains new state-of-the-art results. Further
application on semi-supervised few-shot learning tasks also yields significant
performance improvements over the baselines.

1 INTRODUCTION

Few-shot learning, the problem of learning under data scarcity, is an important challenge in deep
learning as large number of training instances may not be available in many real-world settings.
While the recent advances in meta-learning made it possible to obtain impressive performance on
few-shot learning tasks (Hou et al., 2019; Li et al., 2019; Lifchitz et al., 2019), it still remains
challenging in cases where we are given very little information (e.g. one-shot learning). Some
of the metric-based meta-learning approaches tackle this problem using transductive learning or
semi-supervised learning, by leveraging the structure of the unlabeled instances at the inference
time (Hou et al., 2019; Kim et al., 2019; Li et al., 2019; Ren et al., 2018). Popular approach for
these problem includes leveraging nearest neighbor graph for propagating labels (Kim et al., 2019;
Liu et al., 2018; Yang et al., 2020), or using predicted soft or hard labels on unlabeled samples to
update the class prototype (Hou et al., 2019; Ren et al., 2018). However, all these transductive or
semi-supervised inference approaches are fundamentally limited by the intrinsic unreliability of the
labels predicted on the unseen samples.

In this work, we aim to tackle this problem by proposing a novel confidence-based transductive
inference scheme for metric-based meta-learning models. The most challenging problem is that the
confidence prediction on the test instances for unseen task should be inevitably unreliable, since the
samples come from an unknown distribution. To account for such uncertainties of prediction on
an unseen task, we first propose to generate various model and data perturbations, such as random
dropping of residual blocks and random augmentations. This randomness helps the model better learn
the confidence measure by considering various uncertainties for an unseen task (see Figure 1), and
also allows us to take an ensemble over the confidence measures under random perturbations at test
time. In order to enhance learning confidence, we further meta-learn the distance metric (or metric) to
assign different confidence scores to each query (or test) instance for each class, such that the updated
prototypes obtained by confidence-weighted averaging of the queries improve classification of the
query samples. This is done by learning a metric length-scale term for each individual instance or a
pair of instances. We refer to this transductive inference using meta-learned input-adaptive confidence
under various perturbations as Meta-Confidence Transduction (MCT).
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(a) ProtoNets (+4.44%) (b) Instance-wise metric (+8.89%) (c) MCT (+15.56%)

Figure 1: Transductive inference with confidence scores. (a) ProtoNets with Euclidean distance; (b) ProtoNets
with instance-wise metric; (c) ProtoNets with model/data perturbations and instance-wise metric; We visualize
t-SNE embeddings on a 3-way 1-shot task, where each color stands for different class. The numbers show the
accuracy increase after transduction for this task. The transparency shows the confidence scores for red class.

We validate our transductive inference scheme for metric-based meta-learning models on four
benchmark datasets against existing transductive approaches, which shows that the models using
meta-learned confidence significantly outperform existing transductive inference methods, and obtain
new state-of-the-art results. We further verify the generality of our MCT on semi-supervised learning
tasks, where we assign confidence scores to unlabeled data. The results show that MCT outperforms
relevant baselines by large margins, which shows the efficacy of our method. Further ablation studies
show that both meta-learning of various perturbations and input-adaptive distance metric are crucial
in the success of our method in assigning correct confidence to each test sample.

Our main contributions are as follows:

• We propose to meta-learn the confidence with various types of model and data perturba-
tions during meta-learning, such that the meta-learned confidence can better account for
uncertainties at unseen tasks.
• We further propose to meta-learn an input-adaptive distance metric, which allows to

output an accurate and reliable confidence for an unseen test samples that can directly
improve upon the transductive inference performance.
• We validate our model on four benchmark datasets for few-shot classification and achieve

new state-of-the-art results, largely outperforming all baselines. Further experimental
validation of our model on semi-supervised few-shot learning also verifies its efficacy.

2 RELATED WORK

Distance-based meta-learning for few-shot classification The goal of few-shot classification is
to correctly classify query set examples given only a handful of support set examples. Due to its
limited amount of data, each task-specific classifier should resort to the meta-knowledge accumulated
from the previous tasks, which is referred to as meta-learning (Thrun & Pratt, 1998). Meta-learning
of few-shot classification can roughly be divided into several categories such as optimization-based
method (Finn et al., 2017; Grant et al., 2018; Lee & Choi, 2018; Ravi & Larochelle, 2017; Rusu
et al., 2019; Zintgraf et al., 2019), distance-based approaches (Snell et al., 2017; Sung et al., 2018;
Vinyals et al., 2016), class or task-wise network modulation with amortization (Gordon et al., 2018;
Requeima et al., 2019), or some combination of those approaches (Das & Lee, 2019; Na et al., 2020;
Mangla et al., 2020; Triantafillou et al., 2019). We use a distance-based approach in this work, which
allows us to directly compare distance between examples on a metric space. For example, Matching
Networks (Vinyals et al., 2016) use cosine distance, whereas Prototypical Networks (Snell et al.,
2017) use euclidean distance with each class prototype set to the mean of support embeddings.

Transductive learning Since few-shot classification is intrinsically challenging, we may assume
that we can access other unlabeled query examples, which is called transductive learning (Vapnik,
1998). Here we name a few recent works. TPN (Liu et al., 2018) constructs a nearest-neighbor
graph and propagate labels to pseudo-label the unlabeled query examples. EGNN (Kim et al., 2019)
similarly constructs a nearest-neighbor graph, but utilizes both edge and node features in the update
steps. On the other hand, Hou et al. (2019) tries to update class prototypes by picking top-k confident
queries with their own criteria. Our approach also updates class prototypes for each transduction step,
but makes use of all the query examples instead of a small subset of k examples.
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Semi-supervised learning In the few-shot classification, semi-supervised learning can access
additional large amount of unlabeled data. Ren et al. (2018) proposed several variants of soft k-means
method in Prototypical Networks (Snell et al., 2017), where soft label is predicted confidence of
unlabeled sample. Li et al. (2019) proposed the self-training method with pseudo labeling module
based on gradient descent approaches (Finn et al., 2017; Sun et al., 2019). Basically, if an unlabeled
query set is used for few-shot classification instead of an additional unlabeled set, it becomes
transductive learning, and vice versa. Our approach has connection to soft k-means method of Ren
et al. (2018), but we predict the confidence with input-adaptive distance metric and use meta-learned
confidence under various perturbations.

3 PRELIMINARIES

3.1 FEW-SHOT CLASSIFICATION

We start by introducing notations. In the conventional C-way N -shot classification, we first sample
C classes randomly from the entire set of classes, and then sample N and M examples from
each class for the support set and query set, respectively. We define this sampling distribution as
p(τ). As a result, we have a support set S = {(xi, yi)}C×Ni=1 and query set Q = {(x̃i, ỹi)}C×Mi=1 ,
where y, ỹ ∈ {1, . . . , C} are the class labels. If some portion of the support set is unlabeled, then
the problem becomes semi-supervised learning. The convention for the evaluation of few-shot
classification models is to use N ∈ {1, 5} (i.e. 1- or 5-shot) and M = 15.

The goal of few-shot classification is to correctly classify query examples in Q given the support set
S . Since S includes only a few examples for each class, conventional learning algorithms will mostly
fail due to overfitting (e.g. consider 1-shot classification). Thus, most existing approaches tackle this
problem by meta-learning over a task distribution p(τ), such that the later tasks can benefit from the
knowledge obtained over the previous training episodes.

One of the most popular and successful approaches for few-shot classification is the metric-based
approach, in which we aim to learn an embedding function fθ(x) ∈ Rl that maps an input x to a
latent embedding z in an l-dimensional metric space (which is usually the penultimate layer of a
convolutional network). Support set and query examples are then mapped into this space, such that
we can measure the distance between class prototypes and query embeddings.

3.2 TRANSDUCTIVE INFERENCE WITH SOFT k-MEANS

We now describe and discuss transductive inference using the confidence scores of query examples
computed by soft k-means algorithm (Ren et al., 2018). Suppose that we are given an episode
consisting of support set S and query set Q. We also define Sc as the set of support examples in
class c and Qx = {x̃1, . . . , x̃C×M} as the set of all query instances. Starting from Prototypical
Networks (Snell et al., 2017), we first compute the initial prototype P (0)

c = 1
|Sc|

∑
x∈Sc fθ(x) for

each class c = 1, . . . , C. Then, for each step t = 1, . . . , T , and for each query example x̃ ∈ Qx, we
compute its confidence score, which denote the probability of it belonging to each class c, as follows:

q(t−1)c (x̃) =
exp(−d(fθ(x̃), P (t−1)

c ))∑C
c′=1 exp(−d(fθ(x̃), P

(t−1)
c′ ))

(1)

where d(·, ·) is Euclidean distance and P (t−1) denotes t− 1 steps updated prototype. We then update
the prototypes of class c based on the confidence scores (or soft labels) q(t−1)c (x̃) for all x̃ ∈ Qx:

P (t)
c =

∑
x∈Sc 1 · fθ(x) +

∑
x̃∈Qx q

(t−1)
c (x̃) · fθ(x̃)∑

x∈Sc 1 +
∑

x̃∈Qx q
(t−1)
c (x̃)

(2)

which is the weighted average that we previously mentioned. Note that the confidence of the support
examples is always 1, since their class labels are observed. We repeat the process until t = 1, . . . , T .

Questions However, confidence-based transduction, such as soft k-means, leads to a new question,
which is the focus of this work: Is using the confidence of the model indeed helpful in transductive
inference?
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Figure 2: Overview. (a) To capture data uncertainty, we randomly apply horizontal flip augmentation to the
whole data in episode. (b) Along with data uncertainty, we randomly drop the last residual block to capture the
model uncertainty. (c) In order to efficiently train the confidence under these perturbations, we meta-learn the
input-adaptive distance metric.

4 META-CONFIDENCE TRANSDUCTION

In order to address the question, we propose to Meta-Confidence Transduction (MCT). As shown in
the method overview in Figure 2, we meta-learn the confidence using the various perturbations with
input-dependent temperature scaling.

4.1 MODEL AND DATA PERTURBATIONS

The model confidence from few-shot tasks is intrinsically unreliable due to the data scarcity problems,
even if the model has been meta-learned over similar tasks. One way to output more reliable
confidence scores is to enforce the model to output consistent predictions while perturbing either the
model or the data. In this work, we consider the following two sources of perturbations:

Model perturbation: We consider two confidence scores, one from the full network (full-path)
and the other from a sub-network generated by dropping a block (drop-path) (Veit et al., 2016; Wu
et al., 2018) from the full network. As discussed in Veit et al. (2016), dropping single lower block
in ResNet doesn’t significantly affect the model performance. Furthermore, we empirically found
that block drop allows us to obtain a model that is less correlated to the original model compared to
dropout.

Data perturbation: We also consider two confidence scores from two images, one from the
original image and the other from horizontally flipped image. This allows us to perturb the data
without loss of information, to consistently obtain perturbed confidences at training and test time.

By jointly considering these two sources of perturbations, we can have a total of four (2×2) scenarios
(or sources) of possible transductive inferences. As shown in Algorithm 1, at training time, we
randomly select a source of confidence and simulate a single transduction step. The reason we
optimize only a single full-path is as follows. First, since we randomly apply horizontal flipping to all
examples in each episode, perturbed spaces with flipped images are optimized through the sequence
of episodes. Secondly, as drop-path is one of the ensemble path of full-path, it is jointly optimized
with full-path.

At test time, we perform transductive inference for all scenarios using the ensemble confidence
obtained from all perturbed sources. This process is done T times to get the final confidence scores.
By doing so, we can enforce the model to perform well under various transduction scenarios with
different perturbations, leading to better performance due to the ensemble effect of meta-learned
confidences. (See Appendix A for more details of transductive inference).

4.2 META-LEARNING CONFIDENCE WITH INPUT-ADAPTIVE DISTANCE METRIC

In order to enhance the reliability of confidence under various perturbations, we meta-learn the input-
adaptive distance metric by performing transductive inference during training with query instances, to
obtain a metric that yield performance improvements when performing transductive inference using
it. While Liu et al. (2018) proposed to learn input-adaptive length scale metrics for the Gaussian
distance kernel to construct nearest neighbor graphs for transductive label propagation, it was aiming
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Algorithm 1 Meta-learning confidence with model and data perturbation.
Require: The set of support examples Sc, for each class c ∈ {1, . . . , C}.
Require: The set of all query examples (x̃, ỹ) ∈ Q.
Require: Full-path embedding function fθ and block-dropped embedding function fDθ .
Require: Flip augmentation Aug(·) and define fAθ as fθ(Aug(·)).

1: hθ ← Sample from {fθ, fDθ , fAθ , fA,Dθ } . Select a confidence space
2: for c ∈ {1, . . . , C} do
3: P ′c ← 1

|Sc|
∑

x∈Sc hθ(x). . Compute prototype on confidence space

4: for c ∈ {1, . . . , C} do

5: qc(x̃)←
exp
(
−d(hθ(x̃), P ′c)

)∑C
c′=1 exp

(
−d(hθ(x̃), P ′c′)

) for all x̃ ∈ Qx . Compute confidence score

6: Pc ←
∑

x∈Sc 1 · fθ(x) +
∑

x̃∈Qx qc(x̃) · fθ(x̃)∑
x∈Sc 1 +

∑
x̃∈Qx qc(x̃)

. Compute prototype on full-path space

7: J ← 0 . Initialize loss
8: for (x̃, ỹ) ∈ Q do

9: J ← J +
1

|Qx|

[
d(fθ(x̃), Pỹ) + log

∑
c′

exp
(
−d(fθ(x̃), Pc′)

)]
. Update loss

to learn the similarity between instances. On the other hand, we meta-learn an input-adaptive metric
with perturbations to learn the confidence score for explicitly weighting each unlabeled example for
transductive inference.

Specifically, we meta-learn the distance metric dφ in Eq. 3 and 4, which we define as Euclidean
distance with normalization, instance-wise metric scaling gIφ, and pair-wise metric scaling gPφ :

dIφ(a1,a2) =

∥∥∥∥∥a1/‖a1‖2gIφ(a1)
− a2/‖a2‖2

gIφ(a2)

∥∥∥∥∥
2

2

(3)

dPφ (a1,a2) =
1

gPφ (a1,a2)

∥∥∥∥ a1
‖a1‖2

− a2
‖a2‖2

∥∥∥∥2
2

(4)

for all a1,a2 ∈ Rl. The instance-wise metric scaling makes the metric space more flexible, whereas
the pair-wise metric scaling additionally adjusts the distance between embeddings, allowing us to
obtain adequate confidence. Here, the normalization allows the confidence to be mainly determined by
metric scaling so that it is well learned. In order to obtain the optimal scaling function gφ ∈ {gIφ, gPφ }
for transduction, we first compute the query likelihoods after T transduction steps, and then optimize
φ, the parameter of the scaling function gφ by minimizing the following episodic-wise loss for
dφ ∈ {dIφ, dPφ }:

Lτ (θ, φ) =
1

|Q|
∑

(x̃,ỹ)∈Q

− log p(ỹ|x̃,S; θ, φ) (5)

=
1

|Q|
∑

(x̃,ỹ)∈Q

{
dφ(fθ(x̃), P

(T )
c ) + log

C∑
c′=1

exp(−dφ(fθ(x̃), P (T )
c′ ))

}
. (6)

As for gφ, we simply use a CNN with fully-connected layers which takes either the feature map of
an instance or the concatenated feature map of a pair of instances as an input. We set the number of
transduction steps to T = 1 for training to minimize the computational cost, but use T = 10 for test.

5 EXPERIMENTS

5.1 DATASETS

We validate our method on four benchmark datasets for few-shot classification:
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1) miniImageNet. This dataset (Vinyals et al., 2016) consists of a subset of 100 classes sampled from
the ImageNet dataset (Russakovsky et al., 2015). Each class has 600 images, resized to 84×84 pixels.
We use the split of 64/16/20 for training/validation/test. 2) tieredImageNet. This dataset (Ren et al.,
2018) is another subset of ImageNet, that consists of 779, 165 images of 84 × 84 pixels collected
from 608 classes. The task is to generalize the few-shot classifier over 34 different superclasses. Thus
the entire dataset is split into 20/6/8 superclasses for training/validation/test, where each superclass
contains 351, 97, and 160 low-level classes, respectively. 3) CIFAR-FS. This dataset (Bertinetto
et al., 2019) is a variant of CIFAR-100 dataset used for few-shot classification, which contains 100
classes that describe general object categories. For each class, there are 600 images of 32× 32 pixels.
The dataset is split into 64/16/20 classes for training/validation/test. 4) FC100. This is another few-
shot classification dataset (Oreshkin et al., 2018) compiled by reorganizing the CIFAR-100 dataset.
The task for this dataset is to generalize across 20 superclasses, as done with the tieredImageNet
dataset. The superclasses are divided into 12/4/4 classes for training/validation/test, each of which
contains 60/20/20 low-level classes, respectively.

5.2 NETWORK ARCHITECTURES

We consider ResNet-12 backbone and conventional 4-block convolutional networks with 64-64-64-64
(ConvNet-64) or 64-96-128-256 (ConvNet-256) channels for each layer. We implement the metric
scaling function as a single convolutional block followed by two fully-connected layers (FC-layers).
The convolutional block consists of 3x3 convolution, batch normalization, ReLU activation and 2x2
max pooling. The first FC-layer is followed by batch normalization and ReLU activation, whereas the
last FC-layer followed by sigmoid function to ensure non-negativity. Finally, in order to balance the
effect of the scaling and normalized distance on confidence, we apply scaling (exp(α)) and shifting
(exp(β)) to the output of the sigmoid function, where α and β are initialized to 0.

5.3 EXPERIMENTAL SETUP

Here we mention a few important experimental settings of our model. To avoid overfitting, we apply
data augmentation techniques suggested in Cubuk et al. (2019); DeVries & Taylor (2017) and use an
auxiliary dense classifier as done in Lifchitz et al. (2019). (See Appendix B for more details of the
auxiliary dense classifier).

We use SGD optimizer with the Nesterov momentum of 0.9 and set the weight decay to 0.0005.
Following Snell et al. (2017), we use higher way (15-way) classification for training and 5-way
for test. The number of query examples for each class is set to 8 for training and 15 for test. For
miniImageNet, CIFAR-FS and FC100, we set the initial learning rate to 0.1 and cut it to 0.006 and
0.0012 at 25, 000 and 35, 000 episodes, respectively. For tieredImageNet, we set the initial learning
rate to 0.1 and decay it by a factor of 10 at every 20, 000 episode until convergence.

We experiment for semi-supervised few-shot classification as follows. We split both miniImageNet
and tieredImageNet into labeled and unlabeled sets, following previous works (Li et al., 2019; Ren
et al., 2018). Before we train the model with semi-supervised learning, we pre-train the model with
conventional supervised manner (e.g. 64-way classification for miniImageNet). At the meta-training
phase, we additionally use 15 instances for each class. At meta-test phase, we use 30 and 50 unlabeled
instances for each class on 1-shot and 5-shot task, respectively, following Li et al. (2019). For fair
comparison with masked soft k-means of Ren et al. (2018), we use single update step with unlabeled
set for both training and testing.

5.4 MAIN RESULTS

Model Backbone miniImageNet
1-shot 5-shot

TPN (Liu et al. (2018)) ConvNet-64 55.51±0.86 69.86±0.65

MCT (Instance) ConvNet-64 63.53±0.91 75.15±0.56

EGNN (Kim et al. (2019)) ConvNet-256 59.63±0.52 76.34±0.48

MCT (Instance) ConvNet-256 70.10±0.87 80.56±0.49

Table 3: Comparison with other transductive models.

Transductive inference Table 1 and Table 2
show the results of transductive inference
with the baselines and our full model, Meta-
Confidence Transduction (MCT), which per-
forms transductive inference with the meta-
learned confidence. We achieve new state-of-
the-art results on one-shot classification for all
datasets. As for the 5-shot, we achieve comparable performance through a quarter parameter back-
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Table 1: Average classification performance over 1000 randomly generated episodes, with 95% confidence
intervals. We consider 5-way classification on all the datasets. ∗ denotes it is reported from Yang et al. (2020).

Model Backbone miniImageNet tieredImageNet
1-shot 5-shot 1-shot 5-shot

TPN (Liu et al., 2018) ConvNet-64 55.51±0.86 69.86±0.65 59.91±0.94 73.30±0.75

EGNN∗ (Kim et al., 2019) ConvNet-256 59.63±0.52 76.34±0.48 63.52±0.52 80.24±0.49

MAML+SCA (Antoniou & Storkey, 2019) DenseNet 62.86±0.79 77.46±1.18 - -
CAN + Top-k (Hou et al., 2019) ResNet-12 67.19±0.55 80.64±0.35 73.21±0.58 84.93±0.38

DPGN (Yang et al., 2020) ResNet-12 67.77±0.32 84.60±0.43 72.45±0.51 87.24±0.39

TEAM (Qiao et al., 2019) ResNet-18 60.07 75.90 - -
Fine-tuning (Dhillon et al., 2020) WRN-28-10 65.73±0.68 78.40±0.52 73.34±0.71 85.50±0.50

SIB (Hu et al., 2020) WRN-28-10 70.0±0.6 79.2±0.4 - -
TIM-GD (Boudiaf et al., 2020) WRN-28-10 77.8 87.4 82.1 89.8

MCT (Pair) ResNet-12 76.16±0.89 85.22±0.42 80.68±0.89 86.63±0.89

MCT (Instance) ResNet-12 78.55±0.86 86.03±0.42 82.32±0.81 87.36±0.50

Table 2: Average classification performance on CIFAR-FS and FC100.

Model Backbone CIFAR-FS FC100
1-shot 5-shot 1-shot 5-shot

DPGN (Yang et al., 2020) ResNet-12 77.90±0.50 90.20±0.40 - -
Fine-tuning (Dhillon et al., 2020) WRN-28-10 76.58±0.68 85.79±0.50 43.16±0.59 57.57±0.55

SIB (Hu et al., 2020) WRN-28-10 80.0±0.6 85.3±0.4 - -
MCT (Pair) ResNet-12 87.28±0.70 90.50±0.43 51.27±0.80 62.59±0.60

MCT (Instance) ResNet-12 85.61±0.69 90.03±0.46 51.16±0.88 63.28±0.61

bone network (i.e. ResNet-12 vs WRN-28-10). For fair comparison against TPN (Liu et al., 2018)
and EGNN (Kim et al., 2019) that use different backbone networks, we further perform an additional
experiments using shallow backbone networks in Table 3. Again, our model largely outperforms
all baselines. Here, we use MCT without model perturbation (block drop) since ConvNet-64 and
ConvNet-256 do not have skip connections.

Semi-supervised inference We also perform experiments on semi-supervised classification in
Table 4 to further validate the effectiveness and generality of our MCT. We follow the same exper-
imental setting described in Li et al. (2019). In the semi-supervised setting, instead of computing
the confidence scores of query examples, we compute the confidence scores of unlabeled support
examples in order to update the class prototype. Again, our MCT largely outperforms all the baselines
including the recent LST model. The results demonstrate the effectiveness of various perturbations
with the distance metric scaling for correctly assigning confidence scores to unlabeled examples.

5.5 ABLATION STUDIES

We next perform ablation studies of our model on miniImageNet dataset to identify where the perfor-
mance improvements come from. We use Prototypical Networks (PN) with ResNet-12 backbone
networks for these experiments without auxiliary dense classifier.
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Figure 3: Histogram of metric scale, on
a miniImageNet 5-way 5-shot task. σ
corresponds to gφ.

Effect of the distance metrics We first study the effect of
the distance metric in Table 5. The performance in the trans-
ductive inference columns correspond to each of the models
with the transductive inference with naive soft k-means al-
gorithm without model and data perturbations. We see that
the ProtoNets (PN) with metric scaling from TADAM (Ore-
shkin et al., 2018) underperforms the plain PN with Euclidean
distance. On the other hand, the proposed instance-wise and
pair-wise metric significantly outperform both distance metrics
in both inductive and transductive inference settings, demon-
strating the effectiveness of our input-dependent metric scaling methods over globally shared distance
metric. In Figure 3, we observe that instance-wise metric scaling assigns various scales to different
inputs. On the other hands, the pair-wise metric scaling assigns low (high) values between the samples
from the same (different) classes to allow the model to obtain accurate confidence.
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Table 4: Semi-supervised few-shot classification performance. We consider 5-way classification on miniIm-
ageNet (‘mini’) and tieredImageNet (‘tiered’). The baseline results are drawn from Li et al. (2019). All results
are based on pre-trained ResNet-12 with full dataset in conventional supervised manner. “w/D” means that
unlabeled set includes 3 distracting classes, which does not overlap the label space of the support set (Li et al.,
2019; Liu et al., 2018; Ren et al., 2018).

Model mini tiered mini w/D tiered w/D
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Masked Soft k-Means 62.1 73.6 68.6 81.0 61.0 72.0 66.9 80.2(Ren et al., 2018)
TPN (Liu et al., 2018) 62.7 74.2 72.1 83.3 61.3 72.4 71.5 82.7
LST (Li et al., 2019) 70.1 78.7 77.7 85.2 64.1 77.4 73.5 83.4

MCT (Instance) 73.8±0.7 84.4±0.5 76.9±0.7 86.3±0.5 69.6±0.7 81.3±0.5 74.5±0.7 84.0±0.5

Table 5: Average classification performance over 1000 randomly generated episodes, with 95% confidence
intervals. d(·, ·) denotes Euclidean distance. s ∈ R is a learnable parameter initialized to 7.5, following Oreshkin
et al. (2018).

Model Distance Metric Inductive Transductive
1-shot 5-shot 1-shot 5-shot

ProtoNets (PN) d(a1,a2) 57.36±0.66 75.59±0.51 68.58±0.92 78.71±0.53

PN + metric scaling s · d(a1,a2) 55.43±0.67 74.52±0.49 68.34±0.87 78.57±0.51

PN + Instance-wise metric (Eq. 3) dIφ(a1,a2) 61.08±0.66 77.26±0.46 70.34±0.87 79.54±0.54

PN + Pair-wise metric (Eq. 4) dPφ (a1,a2) 61.81±0.58 77.67±0.50 71.95±0.81 81.06±0.51

Data Model miniImageNet 1-shot miniImageNet 5-shot
Perturb Perturb NLL Transduction NLL Transduction

7 7 1.11 71.95±0.81 0.82 81.06±0.51

3 7 1.09 73.93±0.85 0.68 81.93±0.49

7 3 1.04 74.07±0.85 0.60 82.62±0.47

3 3 1.09 74.73±0.86 0.60 83.36±0.45

Table 6: Test NLL vs. performance of transductive inference with
pair-wise distance metric. NLL is computed just before taking the
initial transductive step.

Effect of the model / data perturba-
tion In Table 6, We analyze the con-
tribution of each type of uncertainty
to the reliability of confidence. We
observe that the performance of trans-
ductive inference improves as we add
in each type of uncertainties. We use
negative log-likelihood (NLL) as the
quality measure for the confidence
scores: the lower the NLL, the closer the confidence scores to the target label. We observe that both
types of uncertainties are helpful in improving the reliability of the output confidence.

Model miniImageNet
1-shot 5-shot

ProtoNets (PN) 57.36±0.66 75.59±0.51

PN+Inst 61.08±0.66 77.26±0.46

PN+Inst+AD 65.34±0.63 82.15±0.45

PN+AD+MCT(Inst) 78.55±0.86 86.03±0.42

Table 7: Ablation study on miniImageNet.
Inst: Instance-wise distane metric (Eq. 3);
AD: Auxiliary dense classifier.

Effect of auxiliary dense classifier We use Prototyp-
ical Networks with auxiliary dense classifier proposed
in Hou et al. (2019) as a baseline. To show how it af-
fects the performance, we do ablation study on miniIm-
ageNet. In Table 7, we see that instance-wise distance
metric (PN+Inst) improves ProtoNets. In addition, auxil-
iary dense classifier helps further improve the performance
(PN+Inst+AD). Finally, we can see that our full model
(PN+AD+MCT), which uses meta-learned confidence for
transduction against third row (PN+Inst+AD), achieves the superior performance, improving the
performance of the baseline model by 4.72%.

6 CONCLUSION

Using unlabeled data for few-shot learning, either test instances themselves (transductive) or others
(semi-supervised) could help with predictions. Yet, they should be assigned correct confidence scores
for optimal performance gains. In this work, we proposed to tackle them by meta-learning confidence
scores, such that the prototypes updated with meta-learend scores optimize for the transductive
inference performance. Specifically, we first propose perturbations that can simulate model and data-
level uncertainties for unseen examples, for more robust confidence estimation. Then, we meta-learn
the parameter of the length-scaling function on the perturbed samples, such that the proper distance
metric for the confidence scores can be automatically determined. We experimentally validate our
transductive inference model on four benchmark datasets and obtain state-of-the-art performances on
both transductive and semi-supervised few-shot classification tasks. Further ablation studies confirm
the effectiveness of each component.
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A TRANSDUCTIVE INFERENCE FOR MCT

Algorithm 2 Meta-Confidence Transduction (MCT)
Require: The number of classes C, and the number of transduction steps T .
Require: The set of support examples Sc, for each class c = 1, . . . , C.
Require: The set of all query examples Qx.
Require: Full-path embedding function fθ and block-dropped embedding function fDθ .
Require: Flip augmentation Aug(·) and define fAθ as fθ(Aug(·)).
Require: Embedding function set F = {fθ, fDθ , fAθ , f

A,D
θ }

Output: Confidence score qTc (x̃) obtained after T transduction steps, for all c = 1, . . . , C and
x̃ ∈ Qx.

1: for c = 1, . . . , C do
2: Phθ0,c ← 1

|Sc|
∑

x∈Sc hθ(x) for all hθ ∈ F . Compute initial prototype for each space

3: for t = 0, . . . , T do
4: q

(t)
c (x̃)← 0 . Initialize confidence score

5: for c = 1, . . . , C do
6: for hθ in F do

7: σhθt,c(x̃)←
exp(−dφ(hθ(x̃), Phθt,c )∑C
c′ exp(−dφ(hθ(x̃), P

hθ
t,c′)

for all x̃ ∈ Qx . Compute local confidence

8: q
(t)
c (x̃)← q

(t)
c (x̃)+

1

|F |
·σhθt,c(x̃) for all x̃ ∈ Qx . Obtain ensemble confidence score

9: for hθ in F do

10: Phθt+1,c ←
∑

x∈Sc 1 · hθ(x) +
∑

x̃∈Qx q
(t)
c (x̃) · hθ(x̃)∑

x∈Sc 1 +
∑

x̃∈Qx q
(t)
c (x̃)

11: . Update class c prototype for each space

As shown in Algorithm 2, we update the class prototypes by considering various types of uncer-
tainties. Given an episode consisting of raw images, we generate another episode by flipping the
original images. First, prototypes of full-path and drop-path are obtained by averaging embedding
of support set. By using these prototypes, we compute the confidence scores for each space and
class, respectively. With the ensemble confidence score obtained from various spaces and queries,
we update prototypes of each space. Then, we repeatedly update the prototype T times by using an
averaged confidence. Finally, q(T )(x̃) is used for inference.

B DETAILED EXPLANATION FOR AUXILIARY DENSE CLASSIFIER

Model Pooling miniImageNet
(DC + ) 1-shot 5-shot

Instance-wise metric (dIφ) GAP 64.99±0.63 81.22±0.44

Instance-wise metric (dIφ) None 65.34±0.63 82.15±0.45

Pair-wise metric (dPφ ) GAP 62.66±0.62 80.22±0.47

Pair-wise metric (dPφ ) None 64.49±0.64 81.63±0.44

Table 8: The inductive inference performance with various
dimension-wise classification methods.

Auxiliary dense classifier (AD) is
firstly proposed in Lifchitz et al.
(2019), and achieves successful per-
formance improvement in few-shot
classification. However, they apply
spatial pooling to feature maps, in or-
der to make embeddings at testing.
This causes unnecessary bottlenecks,
making it difficult to completely use
the learned spatial information. To alleviate this problem, we reinterpret AD as a regularizer on the
high dimensional embedding being learned. In other words, we do not apply spatial pooling at both
training and testing, and then use flattened feature map as the embedding for each instance. We found
that computing the distance with densely matching the spatial embeddings improves performance,
without any additional parameters. When training with AD, we compute dimension-wise loss LτD,
the average classification loss for each dimension of embedding (e.g. 64-way classification for mini-
ImageNet). Hence, final learning objective is L = Ep(τ)[λL

τ
E + LτD], where LτI is the episodic-wise

loss in Eq. 6 and λ is set to 0.5. For our full models, we evaluate the expectation over task distribution
p(τ) via Monte-Carlo (MC) approximation with a single sample during training to obtain the learning
objective.
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C QUALITATIVE ANALYSIS
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Figure 4: Visualization of incorrectly classified query examples, on a miniImageNet 3-way 1-shot task. The
size of circles shows the confidence score for the red class. Every figure is visualized by same task. conf denotes
confidence. In each row, we show the transduction with local confidence and the transduction with ensemble
confidence, where local confidence is derived from each space. Best viewed in color.
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