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ABSTRACT

In Reinforcement Learning (RL), discrete actions, as opposed to continuous actions,
result in less complex exploration problems and the immediate computation of the
maximum of the action-value function which is central to dynamic programming-
based methods. In this paper, we propose a novel method: Action Quantization
from Demonstrations (AQuaDem) to learn a discretization of continuous action
spaces by leveraging the priors of demonstrations. This dramatically reduces
the exploration problem, since the actions faced by the agent not only are in a
finite number but also are plausible in light of the demonstrator’s behavior. By
discretizing the action space we can apply any discrete action deep RL algorithm
to the continuous control problem. We evaluate the proposed method on three
different setups: RL with demonstrations, RL with play data –demonstrations of a
human playing in an environment but not solving any specific task– and Imitation
Learning. For all three setups, we only consider human data, which is more
challenging than synthetic data. We found that AQuaDem consistently outperforms
state-of-the-art continuous control methods, both in terms of performance and
sample efficiency.

1 INTRODUCTION

With several successes on highly challenging tasks including strategy games such as Go (Silver et al.,
2016), StarCraft (Vinyals et al., 2019) or Dota 2 (Berner et al., 2019) as well as robotic manipulation
(Andrychowicz et al., 2020), Reinforcement Learning (RL) holds a tremendous potential for solving
sequential decision making problems. RL relies on Markov Decision Processes (MDP) (Puterman,
2014) as its cornerstone, a general framework under which vastly different problems can be casted.

There is a clear separation in the class of MDPs between the finite discrete action setup, where an
agent faces a finite number of possible actions, and the continuous action setup, where an agent
faces an infinite number of actions. The former is arguably simpler, since exploration is more
manageable with a finite number of actions, and computing the maximum of the action-value function
is straightforward (and implicitly defines a greedily-improved policy). In the continuous action
setup, the parametrized policy either directly optimizes the expected value function that is estimated
through Monte Carlo rollouts (Williams, 1992), which makes it demanding in interactions with the
environment, or tracks the maximum of the bootstrapped value function (Konda and Tsitsiklis, 2000)
hence introducing additional sources of approximations.

Therefore, a natural workaround consists in turning a continuous control problem into a discrete one.
The simplest approach is to naively (e.g. uniformly) discretize the action space, an idea which dates
back to the “bang-bang” controller (Bushaw, 1952). However, such a discretization scheme suffers
from the curse of dimensionality. A number of methods have addressed this limitation by making
causal dependence assumptions between the different action dimensions (Andrychowicz et al., 2020;
Metz et al., 2017), but they are typically complex and task-specific.

In this work, we introduce a novel approach leveraging the prior of human demonstrations for
reducing a continuous action spaces to a discrete set of meaningful actions. The proposed method
does not suffer from the curse of dimensionality and does not require any task specific assumption.
Demonstrations typically consist of transitions experienced by a human in the targeted environment,
performing the task at hand or not. They are of particular interest in cases where the reward function
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is hard to define (Russell, 1998; Ng et al., 1999), to facilitate exploration (Salimans and Chen, 2018;
Nair et al., 2018) or to build behavioral priors (Singh et al., 2020).

We thus propose Action Quantization from Demonstrations, or AQuaDem, a novel paradigm where
we learn a state dependent discretization of a continuous action space using demonstrations, enabling
the use of discrete-action deep RL methods by virtue of this learned discretization. We formalize this
paradigm, provide a neural implementation and analyze it through visualizations in simple grid worlds.
We empirically evaluate this discretization strategy on three downstream task setups: Reinforcement
Learning with demonstrations, Reinforcement Learning with play data, and Imitation Learning. We
test the resulting methods on robotics tasks and show that they outperform state-of-the-art continuous
control methods both in terms of sample-efficiency and performance on every setup.

2 PRELIMINARIES

Markov Decision Process. We model the sequential decision making problem as a Markov Deci-
sion Process (MDP) (Puterman, 2014; Sutton and Barto, 2018). An MDP is a tuple (S,A,P, r, γ, ρ0),
where S is the state space, A is the action space, P is the transition kernel, r is the reward function, γ
the discount factor and ρ0 the initial state distribution. Throughout the paper, we distinguish discrete
action spaces, which simply amount to a set {1, . . . ,K}, from continuous action spaces which consist
in an interval of Rd where d is the dimensionality of the action space. A stationary policy π is a
mapping from states to distributions over actions. The value function V π of a policy π is defined as
the expected discounted cumulative reward from starting in a particular state and acting according
to π: V π(s) = E

[∑∞
t=0 γ

tr(st, at)|s0 = s, at ∼ π(st), st+1 ∼ P(st, at))
]
. An optimal policy π∗

maximizes the value function V π
∗

for all states. The action-value function Qπ is defined as the
expected discounted cumulative reward from starting in a particular state, taking an action and then
acting according to π: Qπ(s, a) = r(s, a) + γE

[
V π(s′)|s′ ∼ P(s, a)

]
.

Value-based RL. The Bellman (1957) operator T connects an action-value function Q for the
state-action pair (s, a) to the action-value function in the subsequent state s′: T π(Q)(s, a) :=
r(s, a) + γE

[
Q(s′, a′)|a′ ∼ π(s), s′ ∼ P(s, a)

]
. Value Iteration (VI) (Bertsekas, 2000) is the basis

for methods using the Bellman equation to derive algorithms estimating the optimal policy π∗. The
prototypical example is the Q-learning algorithm (Watkins and Dayan, 1992), which is the basis of
e.g. DQN (Mnih et al., 2015), and consists in the repeated application of a stochastic approximation
of the Bellman operator Q(s, a) := r(s, a) + γmaxa′ Q(s′, a′), where (s, a, s′, r) is a sampled
transition from the MDP. The Q-learning algorithm exemplifies two desirable traits of VI-inspired
methods in discrete action spaces that are 1) bootstrapping: the current Q-value estimate at the next
state s′ is used to compute a finer estimate of the Q-value at state s, and 2) the exact derivation of the
maximum Q-value at a given state. For continuous action spaces, state-of-the-art methods (Haarnoja
et al., 2018; Fujimoto et al., 2018) are also fundamentally close to a VI scheme, as they rely on
Bellman consistency, with the difference being that the argument maximizing the Q-value, in other
words the parametrized policy, is approximate.

Demonstration data. Additional data consisting of transitions from an agent may be available.
These demonstrations may contain the reward information or not. In the context of Imitation Learning
(Pomerleau, 1991; Ng et al., 1999; 2000; Ziebart et al., 2008), the assumption is that the agent
generating the demonstration data is near-optimal and that demonstration rewards are not provided.
The objective is then to match the distribution of the agent with the one of the expert. In the context
of Reinforcement Learning with demonstrations (RLfD) (Hester et al., 2018; Vecerik et al., 2017),
demonstration rewards are provided. They are typically used in the form of auxiliary objectives
together with a standard learning agent whose goal is to maximize the environment reward. In the
context of Reinforcement Learning with play (Lynch et al., 2020), demonstration rewards are not
provided as play data is typically not task-specific.

Demonstration data can come from various sources, although a common assumption is that it is
generated by a single, unimodal Markovian policy. However, most of available data comes from
agents that do not fulfill this condition. In particular, for human data, and even more so when coming
from several individuals, the behavior generating the episodes may not be unimodal nor Markovian.
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3 METHOD

In this section, we introduce the AQuaDem framework and a practical neural network implementation
together with an accompanying objective function. We provide a series of visualizations to study the
candidate actions learned with AQuaDem in gridworld experiments.

Step 1 (offline)  Learn state-conditioned quantization.

<latexit sha1_base64="XyBV3imG+R+9oDt32cNIv7l2QkQ=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cKpi20oWy2k3bpZhN2N0Ip/Q1ePCji1R/kzX/jps1BWx8MPN6bYWZemAqujet+O6W19Y3NrfJ2ZWd3b/+genjU0kmmGPosEYnqhFSj4BJ9w43ATqqQxqHAdji+y/32EyrNE/loJikGMR1KHnFGjZX8XlPzSr9ac+vuHGSVeAWpQYFmv/rVGyQsi1EaJqjWXc9NTTClynAmcFbpZRpTysZ0iF1LJY1RB9P5sTNyZpUBiRJlSxoyV39PTGms9SQObWdMzUgve7n4n9fNTHQTTLlMM4OSLRZFmSAmIfnnZMAVMiMmllCmuL2VsBFVlBmbTx6Ct/zyKmld1L2ruvtwWWvcFnGU4QRO4Rw8uIYG3EMTfGDA4Rle4c2Rzovz7nwsWktOMXMMf+B8/gAqv45D</latexit>

 
<latexit sha1_base64="9GAr40ZFhWZLz6ilPXPS3BX5TCE=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIqMeqF48VrC2koWy223bpZhN2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKQw6LrfTmlldW19o7xZ2dre2d2r7h88mjjVjLdYLGPdCanhUijeQoGSdxLNaRRK3g7Ht7nffuLaiFg94CThQUSHSgwEo2glvxtRHDEqs+tpr1pz6+4MZJl4BalBgWav+tXtxyyNuEImqTG+5yYYZFSjYJJPK93U8ISyMR1y31JFI26CbBZ5Sk6s0ieDWNunkMzU3xsZjYyZRKGdzCOaRS8X//P8FAdXQSZUkiJXbP7RIJUEY5LfT/pCc4ZyYgllWtishI2opgxtSxVbgrd48jJ5PKt7F3X3/rzWuCnqKMMRHMMpeHAJDbiDJrSAQQzP8ApvDjovzrvzMR8tOcXOIfyB8/kDcfSRXA==</latexit>A

<latexit sha1_base64="0sZIW2CHbDrqKudd/3f9sSYEqpU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oUy2m3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqKGvSWMSqE6BmgkvWNNwI1kkUwygQrB2Mb2d++4kpzWP5aCYJ8yMcSh5yisZKD9j3+uWKW3XnIKvEy0kFcjT65a/eIKZpxKShArXuem5i/AyV4VSwaamXapYgHeOQdS2VGDHtZ/NTp+TMKgMSxsqWNGSu/p7IMNJ6EgW2M0Iz0sveTPzP66YmvPYzLpPUMEkXi8JUEBOT2d9kwBWjRkwsQaq4vZXQESqkxqZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBApDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP+o9jY4=</latexit>a1

Step 2 (online) Run discrete RL on quantized actions.
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⇡(s) = arg max
k

Q(s, ak)

Visualization of the AQuaDem framework (offline) with a downstream algorithm (online).

3.1 AQUADEM: ACTION QUANTIZATION FROM DEMONSTRATIONS

Our objective is to reduce a continuous control problem to a discrete action one, on which we can
apply discrete-action RL methods. Using demonstrations, we wish to assign to each state s ∈ S
a set of K candidate actions from A. The resulting action space is therefore a discrete finite set
of K state-conditioned vectors. In a given state s ∈ S, picking action k ∈ {1, . . . ,K} stands for
picking the kth candidate action for that particular state. The AQuaDem framework refers to the
discretization of the action space, and the resulting discrete action algorithms used with AQuaDem
on continuous control tasks are detailed in Section 4. We propose to learn the discrete action space
through a modified version of the Behavioral Cloning (BC) (Pomerleau, 1991) reconstruction loss
that captures the multimodality of demonstrations. Indeed the typical BC implementation consists
in building a deterministic mapping between states and actions Φ : S 7→ A. But in practice, and in
particular when the demonstrator is human, the demonstrator can take multiple actions in a given state
(we say that its behavior is multimodal) which are all good candidates for AQuaDem. We thus learn a
mapping Ψ : S 7→ AK from states to a set of K candidate actions and optimize a reconstruction loss
based on a soft minimum between the candidate actions and the demonstrated action.

Suppose we have a dataset of expert demonstrations D = {(si, ai)}1:n. In the continuous action
setting, the vanilla BC approach consists in finding a parametrized function fΦ that minimizes the
reconstruction error between predicted actions and actions in the dataset D. To ease notations, we
will conflate the function fΦ with its parameters Φ and simply note it Φ : S 7→ A. The objective is
thus to minimize: minΦ Es,a∼D‖Φ(s)− a‖2. Instead, we propose to learn a set of K actions Ψk(s)
for each state by minimizing the following loss:

min
Ψ

Es,a∼D
[
− log

( K∑
k=1

exp
(−‖Ψk(s)− a‖2

T

))]
, (1)

where the temperature T is a hyperparameter. Equation (1) corresponds to minimizing a soft-
minimum between the candidates actions Ψ1(s), . . . ,ΨK(s) and the demonstrated action a. Note
that with K = 1, this is exactly the BC loss. The larger the temperature T is, the more the loss
imposes all candidate actions to be close to the demonstrated action a thus reducing to the BC loss.
The lower the temperature T is, the more the loss only imposes a single candidate action to be close
to the demonstrated action a. We provide empirical evidence of this phenomenon in Section 3.2.
Equation (1) is also interpretable in the context of Gaussian mixture models (see Appendix A). The Ψ
function enables us to define a new MDP where the continuous action space is replaced by a discrete
action space of size K corresponding to the K action candidates returned by Ψ at each state.

3.2 VISUALIZATION

In this section, we analyze the actions learned through the AQuaDem framework, in a toy grid world
environment. We introduce a continuous action grid world with demonstrations in Figure 1.

We define a neural network Ψ and optimize its parameters by minimizing the objective function
defined in Equation (1) (implementation details can be found in Appendix D.1). We display the
resulting candidate actions across the state space in Figure 2. As each color of the arrows depicts a
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Figure 1: Grid world environment where the start state is in the bottom
left, and the goal state is in the top right. Actions are continuous (2-
dimensional), and give the direction in which the agent take a step.
These steps are normalized by the environment to have fixed L2 norm.
The stochastic demonstrator moves either right or up in the bottom
left of the environment then moves diagonally until reaching the
edge of the grid, and goes either up or right to reach the target. The
demonstrations are represented in the different colors.

single head of the Ψ network, we observe that the action candidates are smooth: action candidates
slowly vary as the state vary, which prevents to have inconsistent action candidates in nearby states.
Note that BC actions tend to be diagonal even in the bottom left part of the action space, where the
demonstrator only takes horizontal or vertical actions. On the contrary, the action candidates learned
by AQuaDem include the actions taken by the demonstrator conditioned on the states. Remark that
in the case of K = 2, the action right is learned independently of the state position (middle plot in
Figure 2) although it is only executed in a subspace of the action space. In the case of K = 3, actions
are completely state-independent. In non-trivial tasks, the state dependence induced by the AQuaDem
framework is essential, as we show in the ablation study in Appendix C and in the analysis of the
actions learned in a more realistic setup in Appendix B.

Figure 2: Visualisation of the action map-
ping learned by BC and the candidate actions
learned with AQuaDem for K = 2 and K = 3
and T = 0.01. Each color represents a head of
the Ψ network.

Influence of the temperature. The temperature controls the degree of smoothness of the soft-
minimum defined in Equation (1). We show that with larger temperatures, the soft-minimum
converges to the average which is well represented in Figure 3 rightmost plot where the profile of
AQuaDem’s action candidates conflate with actions learned by BC. With lower temperatures, the
actions taken by the demonstrator are recovered, but if the temperature is too low (T = 0.001), some
actions that are not taken by the demonstrator might appear as candidates (blue arrows in the leftmost
figure). This occurs because the soft minimum converges to a hard minimum with lower temperatures
meaning that as long as one candidate is close enough to the demonstrated action, the other candidates
can be arbitrarily far off. In this work, we treat the temperature as a hyperparameter, although a
natural direction for future work is to aggregate actions learned for different temperatures.

Figure 3: Influence of the
temperature on resulting
candidate actions learned
with AQuaDem.

3.3 DISCUSSION

On losing the optimal policy. In any form of discretization scheme, the resulting class of poli-
cies might not include the optimal policy of the original MDP. In the case of AQuaDem, this
mainly depends on the quality of the demonstrations. For standard continuous control methods, the
parametrization of the policy also constrains the space of possible policies, potentially not including
the optimal one. This is a lesser problem since policies tend to be represented with functions with
universal approximation capabilities. Nevertheless, for most continuous control methods, the policy
improvement step is approximate, while in the case of AQuaDem it is exact, since it amounts to
selecting the argmax of the Q-values.
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On the multimodality of demonstrations. The multimodality of demonstrations enables us to
define multiple plausible actions for the agent to take in a given state, guided by the priors of the
demonstrations. We argue that the assumption of multimodality of the demonstrator should actually be
systematic (Mandlekar et al., 2021). Indeed, the demonstrator can be e.g. non-Markovian, optimizing
for something different than a reward function like curiosity (Barto et al., 2013), or they can be in the
process of learning how to interact with the environment. When demonstrations are gathered from
multiple demonstrators, this naturally leads to multiple modalities in the demonstrations. And even in
the case where the demonstrator is optimal, multiple actions might be equally good (e.g. in navigation
tasks). Finally, the demonstrator can interact with an environment without any task specific intent,
which we refer to as play (Lynch et al., 2020) and also induces a multimodal behavior.

4 EXPERIMENTS

In this section, we evaluate the AQuaDem framework on three different downstream tasks setups: RL
with demonstrations, RL with play data and Imitation Learning. For all experiments, we detail the
networks architectures, hyperparameters search, and training procedures in the Appendix.

4.1 REINFORCEMENT LEARNING WITH DEMONSTRATIONS

Setup. In the Reinforcement Learning with demonstrations setup (RLfD), the environment of
interest comes with a reward function and demonstrations (which include the reward), and the goal is
to learn a policy that maximizes the expected return. This setup is particularly interesting for sparse
reward tasks, where the reward function is easy to define (say reaching a goal state) and where RL
methods typically fail because the exploration problem is too hard. We consider the Adroit tasks
(Rajeswaran et al., 2017) represented in Figure 9, for which human demonstrations are available (25
episodes acquired using a virtual reality system). These environments come with a dense reward
function that we replace with the following sparse reward: 1 if the goal is achieved, 0 otherwise.

Algorithm & baselines. The algorithm we propose is a two-fold training procedure: 1) we learn a
discretization of the action space in a fully offline fashion using the AQuaDem framework from human
demonstrations; 2) we train a discrete action deep RL algorithm on top of this this discretization. We
refer to this algorithm as AQuaDQN. The RL algorithm considered is Munchausen DQN (Vieillard
et al., 2020) as it is the state of the art on the Atari benchmark (Bellemare et al., 2013) (although we
use the non-distributional version of it which simply amounts to DQN (Mnih et al., 2015) with a
regularization term). To make as much use of the demonstrations as possible, we maintain two replay
buffers: one containing interactions with the environment, the other containing the demonstrations
that we sample using a fixed ratio similarly to DQfD (Hester et al., 2018), although we do not
use the additional recipes of DQfD (multiple n-step evaluation of the bootstrapped estimate of Q,
BC regularization term) for the sake of simplicity. When sampling demonstrations, the actions are
discretized by taking the closest AQuaDem action candidate (using the Euclidean norm). We consider
SAC and SAC from demonstrations (SACfD) –a modified version of SAC where demonstrations are
added to the replay buffer (Vecerik et al., 2017)– as baselines against the proposed method. We do
not include naive discretization baselines here, as the dimension of the action space is at least 24,
which would lead to a 224 ' 16M actions with a binary discretization scheme.

Figure 4: AQuaDem dis-
cretization loss.

Evaluation & results. We train the different methods on 1M envi-
ronment interactions on 10 seeds for the chosen hyperparameters (a
single set of hyperameters for all tasks) and evaluate the agents ev-
ery 50k environment interactions (without exploration noise) on 30
episodes. An episode is considered a success if the goal is achieved
during the episode. The AQuaDem discretization is trained offline
using 50k gradient steps on batches of size 256. The number of ac-
tions considered were 10, 15, 20 and we found 10 to be performing
the best. Figure 4 shows the AQuaDem loss through the training pro-
cedure of the discretization step, and the Figure 5 shows the returns
of the trained agents as well as their success rate. On Door, Pen, and
Hammer, the AQuaDQN agent reaches high success rate, largely
outperforming SACfD in terms of success and sample efficiency.
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Figure 5: Performance of AQuaDQN against SAC and SACfD baselines. Agents are evaluated every
50k environment steps over 30 episodes. We represent the median performance in terms of success
rate (bottom) and returns (top) as well as the interquartile range over 10 seeds.

On Relocate, all methods reach poor results (although AQuaDQN slightly outperforms the baselines).
The task requires a larger degree of generalisation than the other three since the goal state and the
initial ball position are changing at each episode. We show in Figure 6 that when tuned uniquely on
the Relocate environment and with more environment interactions, AQuaDQN manages to reach a
50% success rate where other methods still fail. Notice that on the Door environment, the SAC and
SACfD agents outperform the AQuaDQN agent in terms of final return (but not in term of success
rate). The behavior of these agents are however different from the demonstrator since they consist
in slapping the handle and abruptly pulling it back. We provide videos of all resulting agents (one
episode for each seed which is not cherry picked) to demonstrate that AQuaDQN consistently learns
a behavior that is qualitatively closer to the demonstrator.

Figure 6: Performance of AQuaDQN against SAC and SACfD
baselines when all are tuned on the Relocate environment. We
represent the median performance in terms of success rate as well
as the interquartile range over 10 seeds.

4.2 IMITATION LEARNING

Setup. In Imitation Learning, the task is not specified by the reward function but by the demon-
strations themselves. The goal is to mimic the demonstrated behavior. There is no reward function
and the notion of success is ill-defined (Hussenot et al., 2021). A number of existing works (Ho and
Ermon, 2016; Ghasemipour et al., 2019; Dadashi et al., 2021) cast the problem into matching the state
distributions of the agent and of the expert. Imitation Learning is of particular interest when designing
a satisfying reward function –one that would lead the desired behavior to be the only optimal policy–
is harder than directly demonstrating this behavior. In this setup, there is no reward provided, not in
the environment interactions nor in the demonstrations. We again consider the Adroit environments
and the human demonstrations which consist of 25 episodes acquired via a virtual reality system.

Algorithm & baselines. Again, the algorithm we propose has two stages. 1) We learn –fully
offline– a discretization of the action space using AQuaDem. 2) We train a discrete action version
of the GAIL algorithm (Ho and Ermon, 2016) in the discretized environment. More precisely, we
interleave the training of a discriminator between demonstrations and agent experiences, and the
training of a Munchausen DQN agent that maximizes the confusion of this discriminator. The
Munchausen DQN takes one of the candidates actions given by AQuaDem. We call this algorithm
AQuaGAIL. As a baseline, we consider the GAIL algorithm with a SAC (Haarnoja et al., 2018) agent
directly maximizing the confusion of the discriminator. This results in a very similar algorithm as the
one proposed by Kostrikov et al. (2019). We also include the results of BC (Pomerleau, 1991).
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Figure 7: Performance of AQuaGAIL against GAIL and BC baselines. Agents are evaluated every
50k environment steps over 30 episodes. We represent the median success rate (top row) on the task
as well as the Wasserstein distance (bottom row) of the agent’s state distribution to the expert’s state
distribution as well as the interquartile range over 10 seeds.

Evaluation & results. We train AQuaGAIL and GAIL for 1M environment interactions on 10
seeds for the selected hyperparameters (a single set for all tasks). BC is trained for 60k gradient steps
with batch size 256. We evaluate the agents every 50k environment steps during training (without
exploration noise) on 30 episodes. The AQuaDem discretization is trained offline using 50k gradient
steps on batches of size 256. The results are provided in Figure 7. Evaluating imitation learning
algorithms has to be done carefully as the goal to “mimic a behavior” is ill-defined. Here, we provide
the results according to two metrics. On top, the success rate is defined in Section 4.1. Notice that
the human demonstrations do not have a success score of 1 on every task. We see that, except for
Relocate, which is a hard task to solve with only 25 human demonstrations due to the necessity to
generalize to new positions of the ball and the target, AQuaGAIL solves the tasks as successfully as
the humans, outperforming GAIL and BC. Notice that our results corroborate previous work (Orsini
et al., 2021) that showed poor performance of GAIL on human demonstrations after 1M steps. The
second metric we provide, on the bottom, is the Wasserstein distance between the state distribution of
the demonstrations and the one of the agent. We compute it using the POT library (Flamary et al.,
2021) and use the Sinkhorn distance, a regularized version of the Wasserstein distance, as it is faster
to compute. The “human” Wasserstein distance score is computed by randomly taking 5 episodes
out of the 25 human demonstrations and compute the Wasserstein distance to the remaining 20. We
repeat this procedure 100 times and plot the median (and the interquartile range) of the obtained
values. Remark that AQuaGAIL is able to get much closer behavior to the human than BC and GAIL
on all four environments in terms of Wasserstein distance. This supports that AQuaDem leads to
policies much closer to the demonstrator. We provide videos of the trained agents as an additional
qualitative empirical evidence to support this claim.

4.3 REINFORCEMENT LEARNING WITH PLAY DATA

Setup. The Reinforcement Learning with play data is an under-explored yet natural setup (Gupta
et al., 2019). In this setup, the environment of interest has multiple tasks, a shared observation and
action space for each task, and a reward function specific to each of the tasks. We also assume that
we have access to play data, introduced by Lynch et al. (2020), which consists in episodes from a
human demonstrator interacting with an environment with the sole intention to play with it. The goal
is to learn an optimal policy for each of the tasks. We consider the Robodesk tasks (Kannan et al.,
2021) shown in Figure 9, for which we acquired play data. We expand on the environment as well as
the data collection procedure in the Appendix D.2.

Algorithm & baselines. Similarly to the RLfD setting, we propose a two-fold training procedure:
1) we learn a discretization of the action space in a fully offline fashion using the AQuaDem framework
on the play data, 2) we train a discrete action deep RL algorithm using this discretization on each
tasks. We refer to this algorithm as AQuaPlay. Unlike the RLfD setting, the demonstrations do not
include any task specific reward nor goal labels meaning that we cannot incorporate the demonstration
episodes in the replay buffer nor use some form of goal-conditioned BC. We use SAC as a baseline,
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which is trained to optimize task specific rewards. Since the action space dimensionality is fairly low
(5-dimensional), we can include naive discretization baselines “bang-bang” (BB) (Bushaw, 1952)
based on different granularities: we refer to them as BB-2, BB-3 and BB-5.

Evaluation & results. We train the different methods on 1M environment interactions on 10 seeds
for the chosen hyperparameters (a single set of hyperameters for all tasks) and evaluate the agents
every 50k environment interactions (without exploration noise) on 30 episodes. The AQuaDem
discretization is trained offline on play data using 50k gradient steps on batches of size 256. The
number of actions considered were 10, 20, 30, 40 and we found 30 to be performing the best. It is
interesting to notice that it is higher than for the previous setups. It aligns with the intuition that
with play data, several behaviors needs to be modelled. The results are provided in Figure 8. The
AQuaPlay agent consistently outperforms SAC in this setup. Interestingly, the performance of the BB
agent decreases with the discretization granularity, well exemplifying the curse of dimensionality of
the method. In fact, BB with a binary discretization (BB-2) is competitive with AQuaPlay, which
validates that discrete action RL algorithms are well performing if the discrete actions are sufficient
to solve the task. Note however that the Robodesk environment is a relatively low-dimensional action
environment, making it possible to have BB as a baseline, which is not the case of e.g. Adroit where
the action space is high-dimensional.

Figure 8: Performance of AQuaPlay against SAC and “bang-bang” baselines. Agents are evaluated
every 50k environment steps over 30 episodes. We represent the median return as well as the
interquartile range over 10 seeds.

5 RELATED WORK

Continuous action discretization. The discretization of continuous action spaces has been in-
troduced in control problems by Bushaw (1952) with the “bang-bang” controller (Bellman et al.,
1956). This naive discretization is problematic in high-dimensional action spaces, as the number of
actions grows exponentially with the action dimensionality. To mitigate this phenomenon, a possible
strategy is to assume that action dimensions are independent (Tavakoli et al., 2018; Andrychowicz
et al., 2020; Vieillard et al., 2021), or to assume some causal dependence between them and use
an autoregressive discretization (Metz et al., 2017; Tessler et al., 2019; Tang and Agrawal, 2020).
The AQuaDem framework circumvents the curse of dimensionality as the discretization is based
on the demonstrations and hence is dependent on the multimodality of the actions picked by the
demonstrator rather than the dimensionality of the action space. Close to our setup is the case where
the action space is both discrete and continuous (Neunert et al., 2020) or the action space is discrete
and large (Dulac-Arnold et al., 2015). Those setups are interesting directions for extending AQuaDem.
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Q-learning in continuous action spaces. Policy-based methods consist in solving continuous or
discrete MDPs based on maximizing the expected return over the parameters of a family of policies. If
the return is estimated through Monte Carlo rollouts, this leads to algorithms that are typically sample-
inefficient and difficult to train in high-dimensional action spaces (Williams, 1992; Schulman et al.,
2015; 2017). As a result, a number of policy-based methods inspired from the policy gradient theorem
(Sutton et al., 2000), aim at maximizing the return using an approximate version of the Q-value thus
making them more sample-efficient. One common architecture is to parameterize a Q-value, which is
estimated by enforcing Bellman consistency, and define a policy using an optimization procedure of
the parametrized Q-value. Typical strategies to solve the Q-value maximization include enforcing
the Q-value to be concave (Gu et al., 2016; Amos et al., 2017) making it easy to optimize through e.g.
gradient ascent, to use a black box optimization method (Kalashnikov et al., 2018; Simmons-Edler
et al., 2019; Lim et al., 2018), to solve a mixed integer programming problem (Ryu et al., 2020), or
to follow a biased estimate of the policy gradient based on the approximate Q-value (Konda and
Tsitsiklis, 2000; Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto et al., 2018). Recently, Asadi
et al. (2021) proposed to use a network that outputs actions together with their associated Q-values,
tuned for each of the tasks at hand, on low-dimensional action spaces. Note that maximizing the
approximate Q-value is a key problem that does not appear in discrete action space environments,
thus justifying the interest of the AQuaDem framework.

Hierarchical Imitation Learning. A number of approaches have explored the learning of primi-
tives or options from demonstrations together with a high-level controller that is either learned from
demonstrations (Kroemer et al., 2015; Krishnan et al., 2017; Le et al., 2018; Ding et al., 2019; Lynch
et al., 2020), or learned from interactions with the environment (Manschitz et al., 2015; Kipf et al.,
2019; Shankar et al., 2019), or hand specified (Pastor et al., 2009; Fox et al., 2019). AQuaDem can
be loosely interpreted as a two-level procedure as well, where the primitives (action discretization
step) are learned fully offline, however there is no concept of goal nor temporally extended actions.

Modeling multimodal demonstrations. A number of works have modeled the demonstrator data
using multimodal architectures. For example, Chernova and Veloso (2007); Calinon and Billard
(2007) introduce Gaussian mixture models in their modeling of the demonstrator data. More recently,
Rahmatizadeh et al. (2018) use Mixture density networks together with a recurrent neural network
to model the temporal correlation of actions as well as their multimodality. (Yu et al., 2018) also
uses Mixture density networks to meta-learn a policy from demonstrations for one-shot adaptation.
Another recent line of works has considered the problem of modeling demonstrations using an
energy-based model, which is well adapted for multimodalities (Jarrett et al., 2020; Florence et al.,
2021). Singh et al. (2020) also exploit the demonstrations prior for downstream tasks by learning a
prior using a state-conditioned action generative model coupled with a continuous action algorithm.
This is different from AQuaDem that exploits the demonstrations prior to learn a discrete action space
in order to use discrete action RL algorithms.

6 PERSPECTIVES AND CONCLUSION

With the AQuaDem paradigm, we provide a simple yet powerful method that enables to use discrete-
action deep RL methods on continuous control tasks using demonstrations, thus escaping the com-
plexity or curse of dimensionality of existing discretization methods. We showed in three different
setups that it provides substantial gains in sample efficiency and performance and that it leads to
qualitatively better agents, as enlightened by the videos provided in the supplementary material.

There are a number of different research avenues opened by AQuaDem. Other discrete action specific
methods could be leveraged in a similar way in the context of continuous control: count-based
exploration (Tang et al., 2017), planning (Browne et al., 2012) or offline RL (Lagoudakis and Parr,
2003; Riedmiller, 2005). Similarly a number of methods in Imitation Learning (Brantley et al.,
2019; Wang et al., 2019) or in offline RL (Fujimoto and Gu, 2021; Wu et al., 2019) are evaluated on
continuous control tasks and are based on Behavioral Cloning regularization which could be refined
using the same type of multioutput architecture used in this work. Another possible direction for the
AQuaDem framework is to be analyzed in the light of risk-MDPs as the constraint of the action space
arguably reduces a notion of risk when acting in this environment. Finally, as the gain of sample
efficiency is clear in different experimental settings, we believe that the AQuaDem framework could
be an interesting avenue for learning controllers on physical systems.
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A CONNECTION TO GAUSSIAN MIXTURE MODELS

The BC loss can be interpreted as a maximum likelihood objective under the assumption that
the demonstrator data comes from a Gaussian distribution. Similarly to Mixture density networks
(Bishop, 1994), we propose to replace the Gaussian distribution by a mixture of Gaussian distributions.
Suppose we represent the probability density of an action conditioned on a state by a mixture of K
Gaussian kernels: p(a|s) =

∑K
k=1 αk(s)dk(a|s), where αk(s) is the mixing coefficient (that can be

interpreted as a state conditioned prior probability), and dk(a|s) is the conditional density of the
target a. Now assuming that the K kernels are centered on Ψk(s)k=1:K and have fixed covariance
σ2
1 where σ is a hyperparameter, we can write the log-likelihood of the demonstrations data D as:

LL(D) =
∑
s,a∈D

log(p(s)p(a|s)) =
∑
s,a∈D

log p(s) + log
( K∑
k=1

αk(s)dk(a|s)
)

=
∑
s,a∈D

log p(s) + log
(
C

K∑
k=1

αk(s) exp
(
− ‖Ψk(s)− a|2

σ2

))
.

Therefore minimizing the negative log likelihood reduces to minimizing:∑
s,a∈D

− log
( K∑
k=1

αk(s) exp
(
− ‖Ψk(s)− a‖2

σ2

))
.

We propose to use a uniform prior αk(s) = 1
K when learning the locations of the centroids, which

leads exactly to Equation (1) where the variance σ2 is the temperature T . Note that we initially
learned the state conditioned prior αk(s), but we found no empirical evidence that it may be used to
improve the performance of the downstream algorithms defined in Section 4.

B ACTION VISUALIZATION IN A HIGH-DIMENSIONAL ENVIRONMENT

For the Door environment (see Figure 9) we represent the actions candidates learned using the
AQuaDem framework with videos that can be found in the supplementary material in the folder
visualizations (for the best hyperparameters in the RL with demonstrations setting see Ap-
pendix D.4.1). As the action space is of high dimensionality, we choose to represent each action
dimension on the x-axis, and the value for each dimension on the y-axis. We connect the dots
on the x-axis to facilitate the visualization through time. We replay a trajectory from the human
demonstrations and show at each step the 10 actions proposed by the AQuaDem network, and the
action actually taken by the human demonstrator. Each action candidate has a color consistent
across time (meaning that the blue action always correspond to the same head of the Ψ network).
Interestingly, the video shows that actions are very state dependent (except some default 0-action)
and evolve smoothly through time.

C ABLATION STUDY

In this section, we provide two ablations of the AQuaDQN algorithm. The first ablation is to learn
a fixed set of actions independently of the state (which reduces to K-means). The second ablation
consists in using random actions rather than the actions learned by the AQuaDem framework (the
actions are given by the AQuaDem network, randomly initialized and not trained). We use the same
hyperparameters as the one selected for AQuaDQN. In each case, for a number of actions in {5, 10,
25}, the success rate of the agent is 0 for all tasks throughout the training procedure.

D IMPLEMENTATION

D.1 GRID WORLD VISUALIZATIONS

We learn the discretization of the action space using the AQuaDem framework. The architecture of
the network is a common hidden layer of size 256 with relu activation, and a subsequent hidden layer
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of size 256 with relu activation for each action. We minimize the AQuaDem loss using the Adam
optimizer with the learning rate 0.0003 and the dropout regularization rate 0.1 on 20000 gradient
steps.

D.2 ENVIRONMENTS

We considered the Adroit environments and the Robodesk environments, for which we described the
observation space and the action space in Table 1.

Environment Observation Space Action Space

Door 39 28
Hammer 46 26
Pen 45 24
Relocate 39 30
Robodesk 76 5

Table 1: Environment description of the Adroit and Robodesk observation and action space.

Figure 9: Visualizations of the Adroit and Robodesk environments.

Adroit The Adroit environments (Rajeswaran et al., 2017) consists in a shadow hand solving 4
tasks (Figure 9). The environments come with demonstrations which are gathered using virtual reality
by a human.

Robodesk The Robodesk environment (Kannan et al., 2021) consists of a simulated Franka Emika
Panda robot interacting with a table where multiple tasks are possible. The version of the simulated
robot in the Robodesk environment only includes 5 DoFs (vs the 7 DoFs available, 2 were made
not controllable). We evaluate AQuaPlay on the 9 base tasks described in Robodesk: open slide,
open drawer, push green, stack, upright block off table, flat block in bin,
flat block in shelf, lift upright block, lift ball.

We used the RLDS creator github.com/google-research/rlds-creator to generate
play data, together with a Nintendo Switch Pro Controller. The data is composed by 50 episodes of
approximately 3 minutes where the goal of the demonstrator is to interact with the different elements
of the environment.

D.3 HYPERPARAMETER SELECTION PROCEDURE

In the section we provide the hyperparameter selection procedure for the different setups. For
the RLfD setting (Section 4.1) and the IL setting (Section 4.2) the number of hyperparameters is
prohibitive to perform grid search. Therefore, we propose to sample hyperparameters uniformly
within the set of all possible hyperparameters. For each environment, we sample 1000 configurations
of hyperparameters, and train each algorithm including the baselines. We compute the average
success rate of each individual value on the top 50% of all corresponding configurations (since
poorly performing configurations are less informative) and select the best performing hyperparameter
value independently. This procedure enables to 1) limit combinatorial explosion with the number of
hyperparameters 2) provide a fair evaluation between the baselines and the proposed algorithms as
they all rely on the same amount of compute. In the supplementary material, we provide histograms
detailing the influence of each hyperparameter. For the RLfP setting, we fixed the parameters related
to the DQN algorithm with the ones selected in the RLfD setting to limit the hyperparameter search,
which enables to perform grid search for 3 seeds, and select the best set of hyperparameters.
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D.4 REINFORCEMENT LEARNING WITH DEMONSTRATIONS

D.4.1 AQUADQN

We learn the discretization of the action space using the AQuaDem framework. The architecture of
the network is a common hidden layer of size 256 with relu activation, and a subsequent hidden layer
of size 256 with relu activation for each action. We minimize the AQuaDem loss using the Adam
optimizer and dropout regularization.

We train a DQN agent on top of the discretization learned by the AQuaDem framework. The
architecture of the Q-network we use is the default LayerNorm architecture from the Q-network of
the ACME library (Hoffman et al., 2020), which consists in a hidden layer of size 512 with layer
normalization and tanh activation, followed by two hidden layers of sizes 512 and 256 with elu
activation. We explored multiple Q-value losses for which we used the Adam optimizer: regular
DQN (Mnih et al., 2015), double DQN with experience replay (Van Hasselt et al., 2016; Schaul et al.,
2016), and Munchausen DQN (Vieillard et al., 2020); the latter led to the best performance. We
maintain a fixed ratio of demonstration episodes and agent episodes in the replay buffer similarly
to Hester et al. (2018). We also provide as a hyperparameter an optional minimum reward to the
transitions of the expert to have a denser reward signal. The hyperparameter sweep for AQuaDQN
can be found in Table 2. The complete breakdown of the influence of each hyperparameter is provided
in hps lfd aquadqn.html in the supplementary.

Hyperparameter Possible values

aquadem learning rate 3e-5, 0.0001, 0.0003, 0.001, 0.003
aquadem input dropout rate 0, 0.1, 0.3
aquadem hidden dropout rate 0, 0.1, 0.3
aquadem temperature 0.0001, 0.001, 0.01
aquadem # actions 10, 15, 20

dqn learning rate 0.00003, 0.0001, 0.003
dqn n step 1, 3, 5
dqn epsilon 0.001, 0.01, 0.1
dqn ratio of demonstrations 0, 0.1, 0.25, 0.5
dqn min reward of demonstrations None, 0.01

Table 2: Hyperparameter sweep for the AQuaDQN agent

When selecting hyperparameters specifically for Relocate, for Figure 6, the main difference in the
chosen values is a dropout rate set to 0.

D.4.2 SAC AND SACFD

We reproduced the authors’ implementations (with an adaptive temperature) and use MLP networks
for both the actor and the critic with two hidden layers of size 256 with relu activation. We use an
Adam optimizer to train the SAC losses. We use a replay buffer of size 1M, and sample batches
of size 256. We introduce a parameter of gradient updates frequency n which indicates a number
of n gradient updates on the SAC losses every n environment steps. SACfD is a version of SAC
inspired by DDPGfD (Vecerik et al., 2017) where we add expert demonstrations to the replay buffer
of the SAC agent with a ratio between the agent episodes and the demonstration episodes which is a
hyperparameter. We also provide as a hyperparameter an optional minimum reward to the transitions
of the expert to have a denser reward signal. We found that the best hyperparameters for SAC are
the same for SACfD. The HP sweep for SAC and SACfD can be found in Table 3 and Table 4. The
complete breakdown of the influence of each hyperparameter is provided in hps lfd sac.html
and hps lfd sacfd.html in the supplementary.
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Hyperparameter Possible values

learning rate 3e-5, 1e-4, 0.0003
n step 1, 3, 5
tau 0.005, 0.01, 0.05
reward scale 0.1, 0.3, 0.5

Table 3: Hyperparameter sweep for SAC.

Hyperparameter Possible values

learning rate 3e-5, 1e-4, 0.0003
n step 1, 3, 5
tau 0.005, 0.01, 0.05
reward scale 0.1, 0.3, 0.5

ratio of demonstrations 0, 0.001, 0.1, 0.25
mini reward of demonstrations None, 0.01, 0.1

Table 4: Hyperparameter sweep for SACfD.

D.5 IMITATION LEARNING

D.5.1 AQUAGAIL

We learn the discretization of the action space using the AQuaDem framework. The architecture ofthe
network is a common hidden layer of size 256 with relu activation, and a subsequent hidden layer
of size 256 with relu activation for each action. We minimize the AQuaDem loss using the Adam
optimizer and dropout regularization. The discriminator is a MLP whose number of layers, number
of units per layers are hyperparameters. We use the Adam optimizer with two possible regularization
scheme: dropout and weight decay. The discriminator outputs a value p from which we compute
three possible rewards − log(p), −0.5 log(p) + log(1− p), log(1− p) corresponding to the reward
balance hyperparameter. The direct RL algorithm is Munchausen DQN, with the same architecture
and hyperparameters described in Section D.4.1. The hyperparameter sweep for AQuaGAIL can be
found in Table 5. The complete breakdown of the influence of each hyperparameter is provided in
hps il aquagail.html in the supplementary.

Hyperparameter Possible values

discriminator learning rate 1e-7, 3e-7, 1e-6, 3e-5, 1e-4
discriminator num layers 1, 2
discriminator num units 16, 64, 256
discriminator regularization none, dropout, weight decay
discriminator weight decay 5, 10, 20
discriminator input dropout rate 0.5, 0.75
discriminator hidden dropout rate 0.5, 0.75
discriminator observation normalization True, False
discriminator reward balance 0., 0.5, 1.

dqn learning rate 3e-5, 1e-4, 3e-4
dqn n step 1, 3, 5
dqn epsilon 0.001, 0.01, 0.1

aquadem learning rate 3e-5, 1e-4, 3e-4, 1e-3, 3e-3
aquadem temperature 0.0001, 0.001, 0.01
aquadem num actions 10, 15, 20
aquadem input dropout rate 0, 0.1, 0.3
aquadem hidden dropout rate 0, 0.1, 0.3

Table 5: Hyperparameter sweep for the AQuaGAIL agent.
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D.5.2 GAIL

We used the same discriminator architecture and hyperparameters as the one described in Section
D.5.1. The direct RL agent is the SAC algorithm whose architecture and hyperparameters are
described in Section D.4.2. The hyperparameter sweep for GAIL can be found in Table 6. The
complete breakdown of the influence of each hyperparameter is provided in hps il gail.html
in the supplementary.

Hyperparameter Possible values

discriminator learning rate 1e-7, 3e-7, 1e-6, 3e-5, 1e-4
discriminator num layers 1, 2
discriminator num units 16, 64, 256
discriminator regularization none, dropout, weight decay
discriminator weight decay 5, 10, 20
discriminator input dropout rate 0.5, 0.75
discriminator hidden dropout rate 0.5, 0.75
discriminator observation normalization True, False
discriminator reward balance 0., 0.5, 1.

sac learning rate 3e-5, 1e-4, 3e-4
sac n step 1, 3, 5
sac tau 0.005, 0.01, 0.05
sac reward scale 0.1, 0.3, 0.5

Table 6: Hyperparameter sweep for the discriminator part of the GAIL agent.

D.5.3 BEHAVIORAL CLONING

The BC network is a MLP whose number of layers, number of units per layers and activation functions
are hyperparameters. We use the Adam optimizer with two possible regularization scheme: dropout
and weight decay. The observation normalization hyperparameter is set to True when each dimension
of the observation are centered with the mean and standard deviation of the observations in the
demonstration dataset. The complete breakdown of the influence of each hyperparameter is provided
in hps il bc.html in the supplementary.

Hyperparameter Possible values

learning rate 1e-5, 3e-5, 1e-4, 3e-4, 1e-3
num layers 1, 2. 3
num units 16, 64, 256
activation relu, tanh
observation normalization True, False
weight decay 0, .01, 0.1
input dropout rate 0, 0.15, 0.3
hidden dropout rate 0, 0.25, 0.5

Table 7: Hyperparameter sweep for the BC agent.

D.6 REINFORCEMENT LEARNING WITH PLAY DATA

D.6.1 SAC

We used the exact same implementation as the one described in Section D.4.2. The HP sweep can be
found in Table 8.

D.6.2 DQN WITH NAIVE DISCRETIZATION

We used the exact same implementation as the one described in Section D.4.1, and also use the best
hyperparameters found in the RLfD setting. As the action space is (−1, 1)5, we use three different
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Hyperparameter Possible values

learning rate 1e-5, 3e-5, 3e-4, 1e-4
n step 1, 3, 5
reward scale 0.1, 1, 10
tau 0.005, 0.01, 0.05

Table 8: Hyperparameter sweep for SAC for the Robodesk environment. The best hyperparameter set
was chosen as the one that maximizes the performance on average on all tasks.

discretization meshes: {−1, 1}, {−1, 0, 1}, {−1,−0.5, 0., 0.5, 1} which induce a discrete action
space of dimension 25, 35, 55 respectively. We refer to the resulting algorithm as BB-2, BB-3, and
BB-5 (where BB stands for “Bang-bang”).

D.6.3 AQUAPLAY

We used the exact same implementation as the one described in Section D.4.1, and also use the best
hyperparameters found in the RLfD setting for the Munchausen DQN agent. We performed a sweep
on the discretization step that we report in Table 9.

Hyperparameter Possible values

learning rate 0.0001, 0.0003, 0.001
dropout rate 0, 0.1, 0.3
temperature 1e-4, 1e-3, 1e-2
# actions 10, 20, 30, 40

Table 9: Hyperparameter sweep for the AQuaPlay agent. The best hyperparameter set was chosen as
the one that maximizes the performance on average on all tasks.
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