
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

RETHINK MAXIMUM STATE ENTROPY

Anonymous authors
Paper under double-blind review

ABSTRACT

In the absence of specific tasks or extrinsic reward signals, a key objective for an
agent is the efficient exploration of its environment. A widely adopted strategy to
achieve this is maximizing state entropy, which encourages the agent to uniformly
explore the entire state space. Most existing approaches for maximum state en-
tropy (MaxEnt) are rooted in two foundational approaches, which were proposed
by Hazan and Liu & Abbeel, respectively. However, a unified perspective on these
methods is lacking within the community.
In this paper, we analyze these two foundational approaches within a unified
framework and demonstrate that both methods share the same reward function
when employing the kNN density estimator. We also show that the η-based policy
sampling method proposed by Hazan is unnecessary and that the primary distinc-
tion between the two lies in the frequency with which the locally stationary reward
function is updated. Building on this analysis, we introduce MaxEnt-(V)eritas,
which combines the most effective components of both methods: iteratively up-
dating the reward function as defined by Liu & Abbeel, and training the agent
until convergence before updating the reward functions, akin to the procedure
used by Hazan. We prove that MaxEnt-V is an efficient ε-optimal algorithm for
maximizing state entropy, where the tolerance ε decreases as the number of iter-
ations increases. Empirical validation in three Mujoco environments shows that
MaxEnt-Veritas significantly outperforms the two MaxEnt frameworks in terms
of both state coverage and state entropy maximization, with sound explanations
for these results.

1 INTRODUCTION

Reinforcement Learning (RL) has demonstrated remarkable success in domains such as
robotics (Mnih et al., 2015) and games (Silver et al., 2016). Nevertheless, a fundamental challenge in
RL is the effective exploration of the state space in the absence of extrinsic reward signals. Recently,
state entropy H(s) has emerged as a robust metric for quantifying the diversity of state coverage,
thereby making the maximum state entropy (MaxEnt) framework a widely adopted paradigm for
exploration (Liu & Abbeel, 2021; Mutti et al., 2021; Seo et al., 2021; Yuan et al., 2023; Hazan et al.,
2019; Zhang et al., 2021; Nedergaard & Cook, 2022; Yarats et al., 2021; Tiapkin et al., 2023; Kim
et al., 2024). The principal objective of the MaxEnt framework is to derive a policy that facilitates
uniform exploration of all possible states.

Most existing approaches to state entropy maximization are grounded in two foundational works: the
first, proposed by Hazan (Hazan et al., 2019) (MaxEnt-H), introduces a provably efficient ε-optimal
algorithm for maximizing the entropy of visited states, assuming access to (sub)-optimal planning
policies (e.g., by training deep reinforcement learning agents to convergence). Building on this foun-
dation, subsequent work has focused on reducing computational complexity (Tiapkin et al., 2023),
extending the approach to Rényi entropy (Zhang et al., 2021), and other advancements (Nedergaard
& Cook, 2022; Yarats et al., 2021). While these importance sampling-based methods have made
significant theoretical contributions, they operate under the assumption that we can “compute the
(approximately) optimal policy” to solve a MDP at each iteration given the locally stationary reward
function. This assumption is often unrealistic in non-tabular settings. The other type, introduced by
Liu & Abbeel (2021) (MaxEnt-LA), decomposes k-nearest neighbor (kNN) entropy estimation into
”particles” and uses these as non-stationary dense rewards to train a deep reinforcement learning
(DRL) agent. These kNN-based methods (Singh et al., 2003) have been widely applied to improve

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sample efficiency, facilitate unsupervised pre-training for downstream tasks, and more. Although
lacking theoretical guarantees, MaxEnt-LA and its subsequent developments achieve state-of-the-
art performance in complex environments (Liu & Abbeel, 2021; Seo et al., 2021; Yuan et al., 2023;
Kim et al., 2024). Given the prominence of these two methods and their following variants, a natural
question arises: Is there a connection between them for exploration, particularly in the absence of
extrinsic rewards? In this paper, we provide an explicit answer to this question.

Algorithm 1 Pipeline of MaxEnt frameworks. Blue text represents steps specific to MaxEnt-H,
while red text corresponds to steps for MaxEnt-LA.
Require: Step size η and the set of sampling probability A0 = {α0}. Initialize RL agent as
π0.

1: for t = 0, 1 · · ·T − 1 do
2: MaxEnt-H samples {π0, π1 · · ·πt} with probability {α0, α1 · · ·αt} to induce states.

MaxEnt-LA samples {π0, π1 · · ·πt} uniformly to induce states.
3: Define intrinsic reward functions rHt (s) or rLA

t (s) based on states induced by {π0, π1 · · ·πt}.

4: MaxEnt-H initializes π and trains it with rHt (s) until convergence to get πt+1.
MaxEnt-LA continues to train π with rLA

t (s) for one step to get πt+1.
5: MaxEnt-H updates the set of sampling probabilities as At+1 = (1− η)At ∪ {αt+1 = η}.
6: end for
7: return {π0, π1 · · ·πT }, {α0, α1 · · ·αT }.

We present a unified framework for both approaches in Algorithm 1: at each iteration, both MaxEnt
frameworks (Hazan et al., 2019; Liu & Abbeel, 2021) begin by defining an intrinsic reward function
based on the state distributions induced by previous policies, followed by training the current policy
using this reward function. Subsequently, MaxEnt-H updates the sampling strategy for previous
policies using a hyper-parameter η. Both methods then proceed to the next iteration. Three distinc-
tions can be summarized as follows: (D1) They employ different methods for defining the reward
function rt (Step 3). (D2) The policy sampling strategies diverge: MaxEnt-H utilizes an evolving
distribution based on η, whereas MaxEnt-LA samples policies uniformly (Steps 2 and 5). (D3) The
frequency of reward function updates during the training process also differs: MaxEnt-H trains the
agent to convergence (or until a tolerance level is reached) before updating the reward function,
while MaxEnt-LA updates the reward function after each individual training step (Step 4).

For D1, we prove that the reward function in MaxEnt-LA (Liu & Abbeel, 2021; Seo et al., 2021) is
proportional to the reward function defined by Hazan when the kNN density estimator is employed.
Concerning D2, we show that the η-based approach is superfluous for achieving a meaningful toler-
ance ε, especially in non-tabular state spaces; sampling previous policies randomly, as in MaxEnt-
LA, is sufficiently effective. Consequently, the primary distinction lies in the frequency of reward
function updates (D3). In this context, we argue that frequent updates to the reward function are
suboptimal, as they cause the RL agent to continuously maximize a non-stationary reward function.
Instead, the RL agent should be allowed to train until it performs satisfactorily, as evaluated by the
current reward function, similar to the approach taken by MaxEnt-H.

Building on this rethinking, we propose that state maximization in non-tabular environments can be
achieved with a highly simplified algorithm by integrating key elements from both approaches: all
you need is to iteratively update the reward function as defined in MaxEnt-LA and to train
the RL agent until convergence (or until a predefined tolerance is reached), given the locally
stationary reward function. We refer to this method as MaxEnt-(V)eritas. Theoretically, we
demonstrate that MaxEnt-V is a provably efficient ε-optimal algorithm for maximizing state entropy,
where the tolerance ε decreases at an approximate rate of B+β log T

T , with B and β representing the
bounds of the reward functional, which is assumed to be β-smooth and B-bounded. Empirically,
we evaluate MaxEnt-V against the methods of Hazan et al. (2019) and Liu & Abbeel (2021) in the
Mujoco robotic simulation environments, and it consistently outperforms both approaches in terms
of state coverage and state entropy maximization. Our primary contributions are as follows:

• We elucidate the relationship between the two seminal MaxEnt frameworks proposed by
Hazan and Liu&Abbeel. Specifically, we demonstrate that both approaches share an intrin-
sic reward function, that the η-based sampling method introduced by Hazan is redundant,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and that the principal distinction between the two lies in the frequency with which the
reward function is updated.

• Building on the analysis, we introduce a novel intrinsically motivated policy learn-
ing method, termed MaxEnt-Veritas, which leverages the reward function proposed by
Liu&Abbeel and sample policies randomly to facilitate pure exploration in non-tabular
environments.

• MaxEnt-V is evaluated against the two MaxEnt frameworks across three exploration en-
vironments based on Mujoco. It consistently outperforms all competing approaches in
experiments focused on exploring novel states.

2 PRELIMINARY

Markov decision process: an infinite-horizon Markov decision process (MDP) is defined by a 5-
tuple (S,A, P, r, γ), where S is the set of all possible states, A is the set of actions, P (si+1|si, ai) :
S × A → S is the transition probability density function. γ ∈ [0, 1) is a discount factor. r(si, ai) :
S × A → R is a stationary reward function. The performance of an infinite trajectory τ of states
and actions is judged through the (discounted) cumulative reward it accumulates, defined as V (τ =
{s0, a0, s1, a1 · · · }) =

∑∞
i=0 γ

i[r(si, ai)].

Induced state distributions: Given a policy π(a|s) : S → A, the probability of the π-induced tra-
jectory can be written as P (τ |π) = P (s0)

∏∞
i=0 π(ai|si)P (si+1|si, ai). The i-step state distribution

and the (discounted) state distribution of π are:

dπ,i(s) = P (si = s|π) =
∑

{τ |si=s}

P (τ |π)

dπ(s) =

∞∑
i=0

γi[dπ,i(si)]

(1)

The goal is to find an optimal policy π∗ that induces a state distribution with maximum entropy:

π∗ = arg min
π

H(dπ(s)) = arg min
π

[−Es∈S (log(dπ(s)))] (2)

In practice, we can execute policy π from different initial states s0 to sample a large number of states
s. The estimated distribution d̂π(s) can then be approximated by the empirical probability of these
sampled states.

2.1 MAXENT BY HAZAN (MAXENT-H)

Mixtures of stationary policies: Given k policies C = {π0, π1 · · ·πk−1}, and corresponding
sampling probabities A = {α0, α1 · · ·αk−1}, MaxEnt-H defined πmix = (A,C) to be a mixture
over these stationary policies. The (non-stationary) policy πmix is one where, at the first timestep
t = 0, MaxEnt-H samples policy πi with probability αi and then uses this policy for all subsequent
time steps. The induced state distribution is:

dπmix(s) =

k−1∑
i=0

αidπi(s) (3)

While the entropy objective is not smooth, MaxEnt-H considers a smoothed alternative Hσ =
−Es∼dπ

log(dπ(s) + σ). We shall assume in the following discussion that the reward functional
Hσ is β-smooth, B-bounded. The main theorem of MaxEnt-H for state entropy maximization is:

Lemma 1 (Hazan et al., 2019) We assumes that the RL agent in Algorithm 1 (blue) converges to
an ε1-optimal solution , given current reward function rHt (s) = ∇H(d̂πt

(s)) := dH(X)
dX |X=d̂πt (s)

.

Meanwhile, we assume to guarantee the estimation error of state distribution∥d̂πt
(s)−dπt

(s)∥∞ <
ε0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

For any ε > 0, set σ = 0.1ε
2|S| , ε1 = 0.1ε, ε0 = 0.1ε2

80|S| and η = 0.1ε2

40|S| . When Algorithm 1 (blue) is run
for T iterations with the reward functional Hσ , where:

T ≥ 40|S|
0.1ε2

log
log |S|
0.1ε

, (4)

we have that:
Hσ(dπmix,T) ≥ max

π
Hσ(dπ)− ε (5)

2.2 MAXENT BY LIU & ABBEEL (MAXENT-LA)

MaxEnt-LA does not formulate the problem as a traditional MDP with a stationary reward function.
Instead, it seeks to directly replace extrinsic rewards with decomposed kNN entropy estimates over
time, which are inherently non-stationary. Let skNN

i be the kNNs of si, the kNN entropy estimate
HkNN is given by (Singh et al., 2003):

HkNN(d(s)) =
1

N

N∑
i=1

log
N · ||si − skNN

i ||p2 · πp/2

k · Γ(p/2 + 1)
+ Ck ∝ 1

N

N∑
i=1

log ∥si − skNN
i ∥p2, (6)

where Ck = log k − Ψ(k) is a bias correction constant, in which Ψ is the digamma function; Γ is
the gamma function; p is the dimentionality of s. The rLA

t (s) is defined as:

rLA(s) = log(∥s− skNN∥p2) (7)

Notice that, skNN is computed using all historical states. Such a reward function is not be repre-
sentable as a stationary aim due to that the ∥s − skNN∥2 are no longer conditionally independent
given the states.

3 ANALYSIS OF MAXENT FRAMEWORKS

As illustrated in Algorithm 1, the pipeline of both MaxEnt frameworks can be described as itera-
tively updating the non-stationary intrinsic reward function rt(s) and training an agent to maximize
the (discounted) accumulated rewards based on this function. Based on the comparison, the key
differences can be summarized as follows:

• (D1) The reward functions, rLA
t and rHt (Step 3).

• (D2) The method for sampling policies (Steps 2 and 5). MaxEnt-V samples previous poli-
cies using a dynamic η-based distribution, while MaxEnt-LA samples them uniformly.

• (D3) The frequency of reward function updates during the training process (Step 4).
MaxEnt-V trains the agent until an ε1-optimal solution is achieved for rHt in each itera-
tion, whereas MaxEnt-LA updates the agent’s parameters for a single step in each iteration.

In this section, we will discuss each of these points in detail. We begin by examining the definition
of the reward functions, as follows:

Proposition 1 Assuming the use of the kNN density estimator to approximate dπ(s) in a state dis-
tribution, we have rH(s) ∝ rLA(s).

Given the definition rHt (s) = ∇H(d̂πt
(s)) := dH(X)

dX |X=d̂πt (s)
, we have:

rHt (s) = log(
1

d̂πt
(s)

)− 1 (8)

when we adopt kNN density estimator, we have:

d̂πt
(s) =

k · Γ(p/2 + 1)

N · ||si − skNN
i ||p2 · πp/2

(9)

Then,

rHt (s) = log(
N · ||si − skNN

i ||p2 · πp/2

k · Γ(p/2 + 1)
)− 1 (10)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Recall that rLA(s) = log(∥s − skNN∥p2), we have rH(s) ∝ rLA(s). In short, rH and rLA can be
regarded as equivalent during the training process if probability values are estimated using kNNs.
We now move on to the second difference. With respect to the policy sampling method in MaxEnt-
H, it is essential to consider the maximum possible state entropy value, i.e., maxH(s) = log |S|, in
Lemma 1. Notice that, however, the maximum state entropy value is not strictly log |S| due to the
influence of the smoothness factor σ in MaxEnt-H. In this paper, we omit further discussion of this
aspect given the tiny magnitude of σ. In this context, we have that:

Proposition 2 When Algorithm 1 (blue) is performed, the step size must satisfy η < log2(|S|)
400|S| in

order to achieve any tolerance ε < log |S|. For any |S| ≥ 2, this implies a step size η < 0.00136 to
ensure a tolerance ε < log |S|.

Considering the small value of η, the MaxEnt-H sampling method essentially behaves as uniform
sampling when T is not significantly large (recall that probability αt = η(1 − η)t−1 when t >
0). However, in practice, the T of MaxEnt-H cannot be substantial, as each iteration corresponds
not to a single training step, but rather to training the agent until convergence. Another critical
issue is that the probability αt = η(1 − η)t−1, with a fixed η, can never satisfy the condition∑T

t=0 αt = 1. In the MaxEnt-H paper, the authors addressed this issue by setting α0 = 1 prior to
iteration 1. However, this was not implemented in their experiments, as it would cause the agent
to select π0 (random action selection) most of the time if T is small. Instead, they attempt to
solve an optimization problem subject to the constraint

∑T
t=0 αt = 1, subsequently normalizing the

probabilities by dividing by the sum
∑T

t=0 αt. Further details can be found in Section 5.1. In this
context, η becomes a dynamic value and thus contradicts the theoretical framework established by
MaxEnt-H. Consequently, we argue that η-based sampling is redundant in the context of MaxEnt
framework.

Given the analysis of D1 and D2, the only substantial difference between MaxEnt-H and MaxEnt-
LA lies in the frequency of reward function updates. We argue that it is preferable to train the RL
agent until convergence (as in MaxEnt-H), rather than after each individual step (as in MaxEnt-
LA), before updating the reward function. This approach intuitively improves the stationarity of the
reward function (or goal) that the agent seeks to maximize. If the reward function is updated after
every training step, the agent will be encouraged to learn different reward functions at each step.

Unfortunately, training agents to convergence in each iteration naturally limits T to a small value
in practice, as it is infeasible to train millions of DRL agents. This leads to another gap between
theoretical guarantees given by MaxEnt-H and real-world applications:

Proposition 3 When Algorithm 1 (blue) is run for T iterations, for any tolerance ε < log |S|, we
have the number of iterations T > 1329|S|

log2 |S| .

This proposition demonstrates that MaxEnt requires a large T to provide a meaningful guarantee ε <
log |S|. For instance, if |S| = 10, MaxEnt-H would require approximately T = 4, 000 iterations to
guarantee ε ≈ log |S|, which essentially corresponds to no policy improvement. In the experimental
implementation of MaxEnt-H, the state spaces S were discretized into 64 to 194, 400, 000 bins,
depending on the environment, yet T was set to a maximum of 30.

In summary, the reward functions can be regarded as equivalent, and the η-based sampling method
should be dismissed in favor of simplicity, in line with Occam’s Razor. Meanwhile, we should train
the agent until convergence using the locally stationary reward functions. Unfortunately, theoretical
guarantees given by MaxEnt-H are not practical for guiding empirical approaches in non-tabular
environments. This raises a natural question: Can we develop a novel MaxEnt algorithm with
meaningful guarantees within a reasonable number of iterations? We will address this in the next
section.

4 TRUE MAXIMUM STATE ENTROPY (MAXENT-VERITAS)

We propose MaxEnt-Veritas, a streamlined approach that peels MaxEnt algorithms to the bone by
eliminating all redundancies and integrating only the effective elements from both frameworks. In

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Pipeline of MaxEnt-Veritas
Require: Initialize the RL agent as π0.

1: for t = 0, 1 · · ·T − 1 do
2: Samples {π0, π1 · · ·πt} uniformly to induce states.
3: Define intrinsic reward functions rt(s) = log(∥s − skNN∥p2) based on states induced by

{π0, π1 · · ·πt}, same to rLA
t (s).

4: Trains a RL agent to get πt+1 which can maximize rt(s) .
5: end for
6: return {π0, π1 · · ·πT }.

essence, the procedure involves iteratively updating rLA
t (s) and then training the RL agent with this

reward until convergence, as outlined in Algorithm 2. For Step 4 in Algorithm 2, we initialize the
RL agent with the policy that achieves the highest score, as evaluated by the current reward function,
from the set {π0, π1, . . . , πt}. .

Intuitively, this algorithm encourages agents to avoid previously visited states while updating the
long-term memory of ”visited states” more gradually, resembling Baars’ global workspace the-
ory (Baars, 1988). Theoretically, Algorithm 2 is a provably efficient method for state entropy maxi-
mization:

Theorem 1 We assume that the reward functional R(dπ(s)) = HkNN(dπ(s)) is β-smooth and B-
bounded, where dπ(s) is approximated with kNN density estimator. Additionally, we assume that the
RL agent at the iteration t in Algorithm 2 converges to a ε1,t-optimal solution with locally stationary
reward functions rt(s) = log(∥s− skNN∥2), and the estimation error of the state distribution is ε0,t.
When Algorithm 2 is run for T iterations , we have that:

R(dπmix,T+1) ≥ max
π

R(dπ)− ε (11)

in which

ε =
B

T + 2
+ 2βε̄0 + ε̄1 +

β

T + 2
[ρ+ ln(T + 2) + ϵT+2] (12)

where ε̄0 =
(ε0,0+ε0,1···+ε0,T)

T+2 is the average estimation error of state distribution, ε̄1 =
(ε1,0+ε1,1···+ε1,T)

T+2 is the average training error given reward functions over all iterations, ρ < 0.58

is the Euler-Mascheroni constant and ϵT ≤ 1
8T 2 which approaches 0 as T goes to infinity. ,

The value of ε is determined by T , ε̄1, and ε̄0. The gap can be reduced by either increasing the
number of iterations or minimizing the training/estimation error in each iteration, which aligns well
with intuition. If we further assume access to ε0-optimal estimation oracles and ε1-optimal planning
oracles, as in MaxEnt-H (Lemma 1), ε̄0 and ε̄1 are constants. Under these conditions, ε decreases
approximately at a rate of B+βInT

T as T increases.

It is important to note that Theorem 1 differs significantly from the main theorem of MaxEnt-H,
which can be expressed as ε = Be−Tη + 2βε0 + ε1 + ηβ (Hazan et al., 2019). When η → 0 in
MaxEnt-H, the policy selection method can be thought of as uniform sampling. In this scenario,
however, ε does not decrease as T increases. This self-contradiction arises from the multiplication
by 1

η during the derivation of ε.

Furthermore, Theorem 1 provides a clear explanation as to why we assert that one-step updates,
as in MaxEnt-LA, are not optimal. If only one step is updated in each iteration, with a different
rt(s), it becomes exceedingly difficult to guarantee an acceptable tolerance ε1. Of course, when
rt(s) changes much more slowly than the convergence speed of the DRL agent, it is feasible to train
the RL agent for only a small number of steps in each iteration. This explains why MaxEnt-LA
performs well in many scenarios. However, this trade-off between non-stationarity and the number
of training steps per iteration must be carefully fine-tuned based on the specific application.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

5 EMPIRICAL ANALYSIS

The experimental section is organized as follow. In Section 5.1, we quantitatively illustrate that
the sampling method of MaxEnt-H is redundant by conducting ablation studies on η. Afterwards,
we quantitatively demonstrate that MaxEn-V outperforms other MaxEnt frameworks in maximizing
state entropy (Section 5.2) and state coverage. We implement the Soft Actor Critic (SAC) (Haarnoja
et al., 2018b) with never-give-up regularizer (Badia et al., 2020) for Mujoco environments as the re-
spective oracle algorithms. Fig. 1 illustrates the environments in which we conduct our experiments.
In Walker2D, the agent can only move forward or backward within a 2D spatial plane, whereas the
Ant and Humanoid agent can navigate freely in all directions within a 3D space. Please see Ap-
pendix A.2 for more details on experimental settings.

Ant Walker2D Humanoid

Figure 1: Visual interfaces of Mujoco robotic simulations

5.1 IS THE η-BASED SAMPLING METHOD REDUNDANT IN NON-TABULAR ENVIRONMENTS?

Recall that Theorem 2 demonstrates that a very small η must be selected to achieve any meaningful
tolerance with the theoretical guarantees provided by MaxEnt-H. With such a small value of η,
the sampling method proposed in MaxEnt-H essentially behaves as uniform sampling when T is
not significantly large. Thus, we contend that η-based sampling is redundant. In this section, we
empirically validate this assertion. As discussed in Section 3, the sum of probabilities based on η
is not equal to 1. Consequently, the official MaxEnt-H implementation utilizes the CVXPY Python
package (Diamond & Boyd, 2016) to provide an approximate solution by solving the following
optimization problem:

arg min
xt

(xt − [α0, α1 · · ·αt])

subject to xt > 0, |xt| = 1
(13)

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Policy Index

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

= 0.1
xt at iteration t = 5
xt at iteration t = 10
xt at iteration t = 20

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Policy Index

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

= 0.01
xt at iteration t = 5
xt at iteration t = 10
xt at iteration t = 20

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Policy Index

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

= 0.001
xt at iteration t = 5
xt at iteration t = 10
xt at iteration t = 20

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Policy Index

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y

Uniform
xt at iteration t = 5
xt at iteration t = 10
xt at iteration t = 20

Figure 2: The practical sampling probabilities of MaxEnt-H given different η at iteration 5, 10, and 20. Smaller
the η, closer to the uniform sampling. If we wants a meaningful guarentee where η < 0.00136, the sampling
method is already very close to uniform sampling.

MaxEnt-H then uses the values within xt as the sampling probabilities at iteration t. We present the
practical sampling probabilities xt in iterations t = 5, 10, 20 for η = [0.1, 0.01, 0.001] in Fig. 2.
As illustrated in Fig. 2, when the official MaxEnt-H implementation selects η = 0.1, the sampling
method based on η predominantly samples recent policies. However, to guarantee any meaningful
tolerance (Theorem 2), the method effectively resorts to uniform sampling (see η = 0.001 in Fig.
2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Ant Walker2D Humanoid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

11.65

11.70

11.75

11.80

11.85

11.90

St
at

e
En

tro
py

 = 0.1
 = 0.01
 = 0.001

Uniform
Random Action

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

St
at

e
En

tro
py

 = 0.1
 = 0.01
 = 0.001

Uniform
Random Action

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

St
at

e
En

tro
py = 0.1

 = 0.01
 = 0.001

Uniform
Random Action

Figure 3: Results of different η. The Y-axis shows the state entropy of the policy evolving with the number of
epochs. The experimental settings are identical to the official MaxEnt-H implementation.

More critically, we perform an ablation study on η using the official MaxEnt-H implementation1. We
examine η = [0.1, 0.01, 0.001] alongside uniform sampling, where η = 0.1 corresponds to the value
utilized in the official MaxEnt-H implementation, and η = 0.001 guarantees a meaningful tolerance
according to Theorem 2. As illustrated in Fig. 3, uniform sampling consistently surpasses the other
η values in terms of both entropy and the monotonicity of the learning curves. Consequently, we
empirically demonstrate that the η-based sampling method is redundant.

5.2 RESULTS OF STATE ENTROPY AND STATE COVERAGE

In the following, we compare our approach with the two other MaxEnt frameworks, using the num-
ber of unique visited states and the state entropy induced by all policies throughout the entire training
process as evaluation metrics. Given the continuous high-dimensional state spaces, counting visited
states becomes practically challenging. To address this during probability estimation, we reduced
the state vectors to a 7-dimensional representation by combining the agent’s location x-y or x-z in
the grid with a 5-dimensional random projection of the remaining variables. The distribution dπ(s)
is estimated using the kNN density estimation, with k fixed at 3. For illustration, all methods are
evaluated using the same histogram structure by selecting the x-y or x-z coordinates, bounded by
[[−40, 40], [−40, 40]] for Ant, [[−20, 5], [0.5, 2]] for Walker2D, and [[−10, 10], [−10, 10]] for Hu-
manoid. Within these bounds, we assign all samples to a 100× 100 histogram and count the visited
states.

Ant Walker2D Humanoid

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

0

500

1000

1500

2000

2500

Un
iq

ue
 V

isi
te

d
St

at
es

MaxEnt-V
MaxEnt-LA
MaxEnt-H

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

1500

2000

2500

3000

3500

4000

4500

Un
iq

ue
 V

isi
te

d
St

at
es

MaxEnt-V
MaxEnt-LA
MaxEnt-H

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of epochs

0

250

500

750

1000

1250

1500

1750

Un
iq

ue
 V

isi
te

d
St

at
es

MaxEnt-V
MaxEnt-LA
MaxEnt-H

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

4.0

4.5

5.0

5.5

6.0

St
at

e
En

tro
py

MaxEnt-V
MaxEnt-LA
MaxEnt-H

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

5.0

5.5

6.0

6.5

7.0

St
at

e
En

tro
py

MaxEnt-V
MaxEnt-LA
MaxEnt-H

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Number of epochs

2.5

3.0

3.5

4.0

4.5

5.0

5.5

St
at

e
En

tro
py

MaxEnt-V
MaxEnt-LA
MaxEnt-H

Figure 4: Performance of state entropy maximization and state coverage. Evaluated by discrete Shannon
entropy and total unique visited states in the training process.

1https://github.com/abbyvansoest/maxent/tree/master

8

https://github.com/abbyvansoest/maxent/tree/master

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Ant Walker2D Humanoid

Figure 5: The log-probability of occupancy of the two-dimensional state space, corresponding to the maximum
entropy achieved by different methods

It is important to note that we do not follow the experimental setup of MaxEnt-H in this section,
as it trains the oracles with health constraints but disregards these constraints when using the mixed
policy to induce states. This discrepancy leads to training and testing in different environments and
allows illegal actions, which may result in unrealistic behaviors, such as the robot being ”launched
into the sky.” To address this, we maintain the health constraints consistently in both training and
testing scenarios. Although this approach reduces state coverage, the skills learned are more plausi-
ble. We include videos in the supplementary materials to demonstrate how the agents behave
after or during training. We set η = 0.1 for MaxEnt-H, consistent with the official MaxEnt-H im-
plementation. The learning curves, with the y-axis representing the number of unique visited spatial
coordinates and Shannon state entropy values, are shown in Fig. 4. Overall, our method outperforms
the baseline approaches in terms of both exploration range and sample efficiency.

Fig. 5 displays the log-probability of occupancy in the two-dimensional state space, corresponding
to the maximum entropy achieved by the different methods. The visualization for Ant serves as a
clear illustrative example for the three approaches. In the first iteration, the states used for intrinsic
reward computation are induced by a random policy π0, which are concentrated near the starting
point. Since we adopt a kNN estimator, the optimal policy, π1, in iteration 1 is simply to move
as far away from the starting point as possible, i.e., moving in one direction until the time limit is
reached. Subsequently, π2 is encouraged to stay away from both the starting point and the direction
occupied by π1. As a result, in each iteration, the optimal policy consistently moves radially in a
different direction. If training continues, the MaxEnt-V agent explores the state space in a radial
pattern, resembling a ”fireworks” effect.

In contrast, MaxEnt-H with η = 0.1 samples states using only recent policies to define rHt (s),
quickly forgetting visited states, as shown in Fig. 2. Consequently, its exploration traces are confined
within a smaller range. For MaxEnt-LA, the issue arises from updating the intrinsic reward function
too frequently, causing the agent to be discouraged from revisiting previously visited states. This
method faces a fundamental limitation due to the rapid decay of rewards: once a state is visited,
its reward diminishes significantly, preventing the agent from revisiting it, even if it might lead to
unexplored downstream states (Bellemare et al., 2016; Stanton & Clune, 2018; Ecoffet et al., 2019;
Badia et al., 2020).

In the other two environments, although MaxEnt-V does not dramatically outperform the others in
terms of spatial coverage, it learns distinct action modes compared to the other two methods. In
Walker2D, MaxEnt-V is the only approach that learns to move forward, as indicated by the points
with x values greater than 0 in Fig. 5. In Humanoid, MaxEnt-V is the only method that learns to
move backward, represented by points with x < 0 in Fig. 5.

6 RELATED WORKS

Before introducing reinforcement learning (RL) methods for exploration, it is essential to clarify the
distinction between maximum state entropy and the well-known Soft Q-learning and Soft Actor-
Critic (SAC) algorithms (Haarnoja et al., 2017; 2018a). These methods hypothesize that robust
policies can be learned by exploring the policy space and provide a framework for maximizing both
extrinsic rewards and policy entropy H(π(a|s)), with theoretically grounded policy improvement
guarantees. However, these methods (Haarnoja et al., 2018b; Yang et al., 2021; Eysenbach & Levine,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2021) lack the capability to explore environments in the absence of extrinsic rewards. To address
this limitation, Hazan et al. (2019) has suggested that exploration agents should instead maximize a
convex entropy function of the visitation distribution over the state space, i.e., H(s).

State Entropy Maximization for Exploration Following MaxEnt-H, several variants have been
proposed in recent years. Its Rényi variant (Zhang et al., 2021) follows a similar structure, with
only minor adjustment on the reward function, i.e., r̂(s) = log p̂(α−1)(s). Other improvements
includes integration of representation learning (Nedergaard & Cook, 2022; Yarats et al., 2021), and
efforts to reduce sample complexity (Tiapkin et al., 2023), just to name a few. In contrast, MaxEnt-
LA can be considered as an intrinsic learning method. In scenarios where extrinsic rewards are
unavailable intrinsic exploration aims to develop an intrinsic reward function as a substitute. This
make these methods seamlessly embrace any existing RL algorithms by simply changing rewards.
For non-tabular state entropy maximization without learning probability density models, RE3 (Seo
et al., 2021) propose to implement random encoder instead of a pre-trained one via contrastive
learning. After that, RISE (Yuan et al., 2023) extends it to Rényi entropy. Recently, Kim proposed
to maximize the value-conditional state entropy, which separately estimates the state entropies that
are conditioned on the value estimates of each state, then maximizes their average (Kim et al., 2024).

Another type of related approaches to ”maximum state entropy” (Mutti et al., 2021; Jain et al.,
2024) focuses on maximizing trajectory-wise state entropy, which intuitively encourages visiting
diverse states within a finite number of steps or within a single episode. Although these methods
share a similar name with state entropy maximization, their objectives are fundamentally different.
Therefore, in this work, we do not delve deeply into them.

Parametric Methods for Exploration In addition to MaxEnt-based non-parametric exploration
methods, deep neural network-based parametric methods (Pathak et al., 2017; Ecoffet et al., 2019;
Burda et al., 2019; Badia et al., 2020; Dewan et al., 2024) have garnered significant attention in
recent years. These methods encourage agents to explore novel states in a non-stationary manner by
assigning greater rewards to states that are less frequently visited by estimating predictive forward
models and use the prediction error as the intrinsic motivation. These curiosity-driven approaches
have their roots traced back to the 1970’s when Pfaffelhuber introduced the concept of “observer’s
information” (Pfaffelhuber, 1972) and Lenat (Lenat, 1976) introduced the concept of “interesting-
ness” in mathematics to promote the novel hypotheses and concepts (Amin et al., 2021). Recently,
popular prediction error-based approaches fall under this category. The recent surge in popularity of
these networks is strongly related to advancements in deep neural networks (DNNs). For instance,
ICM (Pathak et al., 2017) and RND (Burda et al., 2019), utilize a CNN as the internal model to pre-
dict the next image, while GIRIL implements a variational autoencoder (VAE) to model transitions
in environments. After that, some approaches find the novelty vanishing problem and try to solve it
by introducing an episodic mechanism (Ecoffet et al., 2019; Badia et al., 2020).

7 CONCLUSION

In this paper, we analyze two fundamental approaches for state entropy maximization in reinforce-
ment learning. We find that the η-based sampling, a key procedure in MaxEnt-H, is superfluous for
achieving any meaningful tolerance. In contrast, MaxEnt-LA updates its intrinsic reward function
too frequently, resulting in the agent being encouraged to maximize different reward functions at
each step, which makes it difficult to explore a broader state space.

This rethinking leads to a simple method that incorporates only the efficient components of both
approaches, which we term MaxEnt-(V)eritas. Compared to MaxEnt-H, it mainly replaces the η-
based sampling with uniform sampling. For MaxEnt-LA, MaxEnt-V updates the reward function
gradually rather than at every training step.

We empirically validate our analysis and evaluate MaxEnt-V in three robotic Mujoco environments.
An ablation study on η demonstrates that better results are achieved as η → 0, corresponding to
uniform sampling. Additionally, MaxEnt-V significantly outperforms the baseline methods in terms
of state coverage and state entropy maximization.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Bernard J. Baars. A Cognitive Theory of Consciousness. Cambridge University Press, New York,
1988.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martı́n Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never
give up: Learning directed exploration strategies. arXiv preprint arXiv:2002.06038, 2020.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and
Trends® in Machine Learning, 8(3-4):231–357, 2015.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019.

Shaurya Dewan, Anisha Jain, Zoe LaLena, and Lifan Yu. Curiosity & entropy driven unsupervised
rl in multiple environments. arXiv preprint arXiv:2401.04198, 2024.

Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. arXiv preprint arXiv:2103.06257, 2021.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Arnav Kumar Jain, Lucas Lehnert, Irina Rish, and Glen Berseth. Maximum state entropy exploration
using predecessor and successor representations. Advances in Neural Information Processing
Systems, 36, 2024.

Dongyoung Kim, Jinwoo Shin, Pieter Abbeel, and Younggyo Seo. Accelerating reinforcement learn-
ing with value-conditional state entropy exploration. Advances in Neural Information Processing
Systems, 36, 2024.

Douglas Bruce Lenat. AM: an artificial intelligence approach to discovery in mathematics as heuris-
tic search. Stanford University, 1976.

Hao Liu and Pieter Abbeel. Behavior from the void: Unsupervised active pre-training. Advances in
Neural Information Processing Systems, 34:18459–18473, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via policy gra-
dient of a non-parametric state entropy estimate. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 35, pp. 9028–9036, 2021.

Alexander Nedergaard and Matthew Cook. k-means maximum entropy exploration. arXiv preprint
arXiv:2205.15623, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

E Pfaffelhuber. Learning and information theory. International journal of neuroscience, 3(2):83–88,
1972.

Younggyo Seo, Lili Chen, Jinwoo Shin, Honglak Lee, Pieter Abbeel, and Kimin Lee. State entropy
maximization with random encoders for efficient exploration. In International Conference on
Machine Learning, pp. 9443–9454. PMLR, 2021.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Harshinder Singh, Neeraj Misra, Vladimir Hnizdo, Adam Fedorowicz, and Eugene Demchuk. Near-
est neighbor estimates of entropy. American journal of mathematical and management sciences,
23(3-4):301–321, 2003.

Christopher Stanton and Jeff Clune. Deep curiosity search: Intra-life exploration can improve perfor-
mance on challenging deep reinforcement learning problems. arXiv preprint arXiv:1806.00553,
2018.

Daniil Tiapkin, Denis Belomestny, Daniele Calandriello, Eric Moulines, Remi Munos, Alexey Nau-
mov, Pierre Perrault, Yunhao Tang, Michal Valko, and Pierre Menard. Fast rates for maximum
entropy exploration. arXiv preprint arXiv:2303.08059, 2023.

Qisong Yang, Thiago D Simão, Simon H Tindemans, and Matthijs TJ Spaan. Wcsac: Worst-case soft
actor critic for safety-constrained reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 35, pp. 10639–10646, 2021.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In International Conference on Machine Learning, pp. 11920–11931.
PMLR, 2021.

Mingqi Yuan, Man-On Pun, and Dong Wang. Rényi state entropy maximization for exploration
acceleration in reinforcement learning. IEEE Transactions on Artificial Intelligence, 2023.

Chuheng Zhang, Yuanying Cai, Longbo Huang, and Jian Li. Exploration by maximizing rényi
entropy for reward-free rl framework. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 10859–10867, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PROOFS

A.1.1 PROOFS OF PROPOSITION 2

Proof.

Given Lemma 1, we have η = 0.1ε2

40|S| . To obtain any ε < log |S|, we have:

η <
log2(|S|)
400|S|

(14)

For any |S| ≥ 2, we find the maximum value of log2(|S|)
400|S| in the following. Let x = |S|, we first find

the first and second derivative of the function f(x) = log2(x)
400x :

f ′(x) =
2 log(x)− (log(x))2

400x2
(15)

f ′′(x) =
3 log(x)− 1

200x3
(16)

The function is convex when:

f ′′(x) =
3 log(x)− 1

200x3
≥ 0 (17)

That is:
x ≥ e1/3 ≈ 1.37 (18)

Thus, for any x = |S| ≥ 2, the function is convex. Let f ′(x) = 0, we have the maximum value of
the function to be:

f(e2) =
log2(e2)

400e2
< 0.00136 (19)

So,

η <
log2(|S|)
400|S|

< max[
log2(|S|)
400|S|

] < 0.00136 (20)

A.1.2 PROOFS OF PROPOSITION 3

Proof.

Given Lemma 1, we have T > 40|S|
0.1ε2 log

log |S|
0.1ε to guarantee the tolerance ε. To obtain any ε <

log |S|, we have:

T >
40|S|

0.1 log2 |S|
log

log |S|
0.1 log |S|

T >
1329|S|
log2 |S|

(21)

A.1.3 PROOFS OF THEOREM 1

Proof.

We assume that the reward functional R = HkNN is β-smooth, B-bounded, for all X,Y .

∥∇R(X)−∇R(Y)∥∞ ≤ β∥X − Y ∥∞ (22)

− βI ⪯ ∇2R(X) ⪯ βI; ∥∇R(X)∥∞ ≤ B (23)

Let π∗ be the optimal policy, we have (Hazan et al., 2019):

R(dπmix,t+1
) = R((1− 1

t+ 2
)dπmix,t +

1

t+ 2
dπt+1

) Equation 3

≥ R(dπmix,t) +
1

t+ 2
⟨dπt+1 − dπmix,t ,∇R(dπmix,t)⟩ − (

1

t+ 2
)2β∥dπt+1 − dπmix,t∥22 smoothness

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where

⟨dπt+1
,∇R(dπmix,t)⟩ ≥ ⟨dπt+1

,∇R(d̂πmix,t)⟩ − β∥dπmix,t − d̂πmix,t∥∞
≥ ⟨dπ∗ ,∇R(d̂πmix,t)⟩ − βε0,t − ε1,t ≥ ⟨dπ∗ ,∇R(dπmix,t)⟩ − 2βε0,t − ε1,t

The first and last inequalities is from Eq. (22) (Bubeck et al., 2015), while the second inequality
above is given by the conclusion of Theorem 1 which is ∇R(d̂πmix,t) = rHt ∝ rLA

t and the definition
of training error ε1,t. For the optimal policy π∗:

Vπt+1
= ⟨dπt+1

, rLA
t ⟩ ≥ Vπ∗ − ε1,t = ⟨dπ∗ , rLA

t ⟩ − ε1,t (24)

Reconsider R(dπmix,t+1), we have:

R(dπmix,t+1
) ≥ R(dπmix,t) +

1

t+ 2
⟨dπ∗ − dπmix,t ,∇R(dπmix,t)⟩ −

2

t+ 2
βε0,t −

1

t+ 2
ε1,t − (

1

t+ 2
)2β

≥ (1− 1

t+ 2
)R(dπmix,t) +

1

t+ 2
R(dπ∗)− 2

t+ 2
βε0,t −

1

t+ 2
ε1,t − (

1

t+ 2
)2β

Then,

R(dπ∗)−R(dπmix,t+1
) ≤ (1− 1

t+ 2
)(R(dπ∗)−R(dπmix,t)) +

2

t+ 2
βε0,T +

1

t+ 2
ε1,T + (

1

t+ 2
)2β.

Thus far, the steps are largely analogous to those in MaxEnt-H. The key differences lie in the defi-
nition of rt and the sampling strategy: we sample each policy with probabilities α0 = α1 = ... =
αt+1 = 1/(t+2), whereas MaxEnt-H defines the probabilities as αt = ηt. This distinction leads to
markedly different conclusions when telescoping the inequality above:

R(dπ∗)−R(dπmix,T+1
) ≤(1− 1

T + 2
)(R(dπ∗)−R(dπmix,T))

+
2

T + 2
βε0,T +

1

T + 2
ε1,T + (

1

T + 2
)2β.

≤T + 1

T + 2
[

T

T + 1
(R(dπ∗)−R(dπmix,T−1

))

+
2

T + 1
βε0,T−1 +

1

T + 1
ε1,T−1 + (

1

T + 1
)2β]

+
2

T + 2
βε0,T +

1

T + 2
ε1,T + (

1

T + 2
)2β.

· · ·

=(
T + 1

T + 2
× T

T + 1
· · · × 1

2
)(R(dπ∗)−R(dπmix,0))

+
2β

T + 2

T∑
t=0

ε0,t +
1

T + 2

T∑
t=0

ε1,t

+
β

T + 2

[
1

T + 2
+

1

T + 1
· · ·+ 1

2
+ 1

]
.

The last term is a harmonic series, so we have:

R(dπ∗)−R(dπmix,T+1
) ≤ B

T + 2
+

2β
∑T

t=0 ε0,t
T + 2

+

∑T
t=0 ε1,t
T + 2

+
β

T + 2
[ρ+ ln(T + 2) + ϵT+2]

where ρ < 0.58 is the Euler-Mascheroni constant and and ϵT ≤ 1
8T 2 which approaches 0 as T goes

to infinity.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 DETAILS OF EXPERIMENTAL SETTING

All experiments are conducted on single V-100 GPUs, where the maximum memory usage is up to
5G for each single training process. In Walker2D, the agent can only move forward or backward
within a 2D spatial plane, whereas the Ant and Humanoid agent can navigate freely in all directions
within a 3D space. Both agents are reset to starting points near (0, 0) if they fail to meet the health
conditions specified by the default setting (Brockman et al., 2016). The default number of steps
for truncation id fixed as default setting 1000, without any fine-tuning. The details of the three
environments are given below.

Ant is a three-dimensional robot composed of a single torso, which is a freely rotating body, and
four legs connected to it. Each leg consists of two links. The observation is a 29D vector. The
29-dimensional state space was first reduced to dimension 7, combining the agent’s x and y location
in the gridspace with a 5-dimensional random projection of the remaining 27 states.

Walker2D The walker2D is a two-dimensional two-legged figure that consist of seven main body
parts - a single torso at the top (with the two legs splitting after the torso), two thighs in the middle
below the torso, two legs in the bottom below the thighs, and two feet attached to the legs on
which the entire body rests. The observation is a 18D vector. The 18-dimensional state space
was first reduced to dimension 7, combining the agent’s x and z location in the gridspace with a
5-dimensional random projection of the remaining 16 states.

Humanoid The 3D bipedal robot is designed to simulate a human. It has a torso (abdomen) with
a pair of legs and arms. The legs each consist of three body parts, and the arms 2 body parts
(representing the knees and elbows respectively). The observation is a 378D vector. The 378-
dimensional state space was first reduced to dimension 7, combining the agent’s x and y location in
the gridspace with a 5-dimensional random projection of the remaining 376 states.

The random encoders implemented in this work have been widely adopted by previous methods (Seo
et al., 2021; Hazan et al., 2019; Kim et al., 2024).

Hyper-parameters Value
initial temperature 0.2

gamma 0.99
actor lr 3e-4
critic lr 3e-4

q lr 3e-4
soft update rate 0.005

hidden dim 256
memory size 1e+6

layer num 3
batch size 128
layer num 3

activation function torch.relu
last activation None

Table 1: Hyper-parameters of SAC

We adopt SAC as backbones. For the SAC2 oracle, we summarizes our hyper-parameters in Table
1.

In this paper, particularly in the experiment section, we choose Soft Actor-Critic (SAC) as our ora-
cles. Here, we will succinctly outline the key equations of SAC. Diverging from the standard MDP,
SAC incorporates a policy entropy term to enhance exploration within the conditioned action space,
i.e., max[r + βH(π(a|s))] where β is temperature.It is crucial to note that the policy entropy term
used in SAC is distinct from the state entropy concept discussed in our study. This distinction arises
from the different domains in which these two entropy forms operate. While the policy entropy in
SAC focuses on the conditional action-selection process, the state entropy we examine pertains to
the diversity of state visitations. This clarification is essential for understanding the unique con-

2https://github.com/seolhokim/Mujoco-Pytorch

15

https://github.com/seolhokim/Mujoco-Pytorch

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

tributions and applications of each entropy type within the realm of reinforcement learning. SAC
iteratively update critic using soft Q function Qϕ and actor πθ by minimizing the KL divergence
between the soft value function and policy distribution. Besides, temperature is also adaptive. More
formally, three objective functions are:

JQ(Qϕ, r) = E{st+1,st,at,rt}∼D[
(
Qϕ(st,at)− rt

− γ(Qϕ̂(st+1, πθ(st+1))− βlogπθ(st+1))
)2
]

(25)

Jπ(πθ) = Est∼D[−γ(Qϕ(st, πθ(st))− βlogπθ(st))] (26)

J(β) = Est∼D[−β(Ĥ + logπθ(st))] (27)

where D denotes replay buffer, Ĥ is the expected target policy entropy, Qϕ̂ is the target critic deep
neural network.

In practice, we found that the Never-Give-Up regularizer (Badia et al., 2020) is highly effective in
preventing SAC from converging to local optima. Specifically, a kNN-based term,

∑
skNN∈τ ∥s −

skNN∥2, is introduced to the reward functions of MaxEnt-H, MaxEnt-LA, and MaxEnt-V.

16

	Introduction
	Preliminary
	MaxEnt by Hazan (MaxEnt-H)
	MaxEnt by Liu & Abbeel (MaxEnt-LA)

	Analysis of MaxEnt Frameworks
	True Maximum State Entropy (MaxEnt-Veritas)
	Empirical Analysis
	Is the -based Sampling Method Redundant in Non-Tabular Environments?
	Results of State Entropy and State Coverage

	Related Works
	Conclusion
	Appendix
	Proofs
	Proofs of Proposition 2
	Proofs of Proposition 3
	Proofs of Theorem 1

	Details of Experimental Setting

