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ABSTRACT

Antibodies are vital proteins offering robust protection for the human body from
pathogens. The development of general protein and antibody-specific pre-trained
language models both facilitate antibody prediction tasks. However, there have
been limited studies that comprehensively explore the representation capability of
distinct pre-trained language models on different antibody tasks. To investigate
the problem, we aim to answer several key questions in this paper, such as how
pre-trained language models perform in antibody tasks with different specificity
and how introducing specific biological mechanisms to the pre-training process
can benefit the model. Additionally, we evaluate if the learned antibody pre-trained
representations can be applied to real-world antibody problems, like drug discovery
and immune process understanding. Previously, no benchmark available largely
hindered the study to answer these questions. To aid in our investigation, we provide
an AnTibody Understanding Evaluation (ATUE) benchmark. We comprehensively
evaluate the performance of protein pre-trained language models by empirical
study along with conclusions and new insights. Our ATUE and code are released at
https://github.com/dqwang122/EATLM.

1 INTRODUCTION

Antibodies are a type of protein that is useful for diagnosing and treating a variety of dis-
eases, including SARS-CoV-2 (Zhu et al., 2022). It is crucial to understand the information
contained in antibody sequences to develop effective therapeutic antibodies and advance our
understanding of the immune system (Greiff et al., 2020; Lu et al., 2018; Yermanos et al.,
2018). Recent advances in general Pre-trained Protein Language Models (PPLM) and spe-
cific Pre-trained Antibody Language Models (PALM) offer new possibilities for antibody-related
tasks. For example, PPLMs have shown promising results in transferring learned represen-
tations to antibody tasks (Kim et al., 2021; Zaslavsky et al., 2022) and PALMs have been
found to improve model performance in antibody paratope predictions (Leem et al., 2022).

Figure 1: Performance of pre-trained lan-
guage models on tasks with different an-
tibody specificity.

Despite these successes, few studies have thoroughly ex-
amined the capability of different pre-trained language
models (e.g. general PPLMs and specific PALMs) on
various antibody tasks, which hinders the development
of better architectures for antibody discovery and modi-
fication. To investigate this problem, we compared the
performance of the pre-trained protein language model
ESM (Rives et al., 2021), the pre-trained antibody lan-
guage model AntiBERT (Leem et al., 2021), a pre-trained
antibody language model EATLM by introducing antibody
specific mechanisms, and a model trained from scratch
(No Pretrain) on three antibody tasks with varying levels
of specificity. The result is illustrated in Figure 1. Here,
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specificity refers to the antibody’s unique evolution processes distinct from that of protein to obtain
functionality, such as the ability to bind antigen (The definition is discussed in detail in §3.1).

We can see that while ESM performs well in tasks that are less antibody specific, its performance
decreases significantly in tasks that are more specific. Additionally, AntiBERT does not demonstrate a
clear advantage over the non-pre-trained model in the high-specificity task. These results highlight the
limitations of current pre-training language models for antibody-related studies. Using general PPLM
representations directly may harm performance, and current pre-training strategies for PALMs may
not fit the specific biological functions of antibodies. This emphasizes the need for a comprehensive
model design guideline for various antibody tasks. Our main focus is to address the following
questions:

(I) How well will pre-trained language models perform on antibody tasks with varying specificity?
Addressing of the question is mainly hindered by two challenges: the lack of a reliable antibody-
specific benchmark for performance evaluation and comprehensive studies of current PPLMs and
PALMs. (II) Can incorporating biological mechanisms, specifically antibody-specific evolution,
into the pre-training process provide additional benefits for antibody representation learning?
This idea has been explored in several computational biology studies, which have demonstrated
promising results in antibody-related tasks such as disease diagnosis and therapeutic antibody
development (Yermanos et al., 2018; Miho et al., 2019). Then, it is interesting to know whether
antibody representation learning can benefit from the incorporation of antibody-specific evolution
information. (III) Are the pre-trained antibody representations useful in practical applications, such
as drug discovery and immune process understanding? Antibodies are critical in drug development,
and it is essential to determine whether pre-training representations can be beneficial for biologists to
comprehend antibody functions or develop drugs.

To investigate these questions, we first propose antibody study benchmark AnTibody Understanding
Evaluation (ATUE). This is the first antibody benchmark with four real-world supervised tasks related
to therapeutic antibody engineering, B cell analysis, and antibody discovery. These tasks cover a
range of specificity levels to evaluate models on different aspects of antibody biological functions.
Based on ATUE, we conduct empirical studies to investigate the representation ability of distinct
pre-trained language models. To explore the impact of incorporating specific biological mechanisms
in antibody pre-training, two objectives are introduced to tailor masked language modeling for
evolution: (1) Ancestor germline prediction guides the model to discriminate the evolutionary
relationship between antibody and ancestral sequences. (2) Mutation position prediction mimics
hypermutation during the evolution. These methods are used to investigate the representation ability
of antibody evolution-tailored language model. Finally, we take a close look at the SARS-CoV-2
antibody discovery to investigate the pre-trained representation under a real-world scenario.

We have three main contributions in this study:
• We created the first comprehensive antibody benchmark called ATUE to help with antibody

application studies, which includes four real-world supervised tasks ranging from low to high
specificity. We also introduce two new objectives for antibody pretraining that incorporate
antibody-specific evolutionary information.

• We made key observations for providing guidelines for better antibody representation. Firstly,
PPLMs perform well on antibody tasks that have a high relationship with structure, but they
perform poorly on tasks with high antibody specificity. Secondly, in most cases, PALMs perform
as well as or even better than PPLMs with less pre-training data. Thirdly, PALMs can be improved
by incorporating the evolution process, but the evolution information from MSAs does not always
benefit antibody tasks.

• We identified 11 potential SARS-CoV-2 binders that have highly identical sequences to existing
therapeutic antibodies that bind to the virus, which could accelerate real-world antibody discovery.

2 RELATED WORK

Our work focuses on researching the effectiveness of protein and pre-trained antibody language
models for antibody-specific tasks. Below we review the representative existing methods. We list the
details in Table 1.
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Pretrained Protein Language Models (PPLMs) There is an increasing interest in exploring large-
scale language models using protein sequences (Rao et al., 2019; Madani et al., 2020; Meier et al.,
2021; Chen et al., 2022). These models have been shown to achieve state-of-art capacity in predicting
protein structure and function. ProtTrans (Elnaggar et al., 2021) and ESM-1b (Rives et al., 2021)
take individual protein sequences as input and adopt Transformer language models for pre-training,
demonstrating that self-supervision is a promising paradigm for protein secondary structure, contact,
homology predictions, and function prediction. To extract evolutionary information from protein
sequences, Rao et al. (2021) proposed the MSA-transformer/MSA-1b model utilizing multiple
sequence alignment (MSA) instead of a single query sequence as input. This model is superior to ESM-
1b for structure prediction, demonstrating evolution information can benefit protein representation
learning. Despite the progress in the field, few studies reported their results on antibody tasks.

Pretrained Antibody Language Models (PALMs) Encouraged by the success of PLMs in protein
representation learning, series work seeks to learn antibody representations based on sequences of
antibodies. AntiBERTy (Ruffolo et al., 2021) proposed the first antibody-specific language model,
exploring a Transformer trained on 558M natural antibody sequences in the OAS database. Olsen
et al. (2022b) train two language models for antibodies: A heavy chain version Ablang-H and a light
chain version Ablang-L. The study reported transfer learning results on restoring missing residues
of antibody sequences, which is a task similar to pre-training objectives. AntiBERTa (Leem et al.,
2021) train the antibody language model on OAS and finetuning AntiBERTa for paratope position
prediction, achieving state-of-the-art performance. Recently, Li et al. (2022) proposed an antibody-
specific language model and explored its performance in SARS-CoV-2 antigen binding, showing
context-dependent representations of antibody sequences benefit binding prediction.

Table 1: Pre-training language models for protein and antibody. Evolution denotes whether
evolutionary-related sequences are used during the pretraining. MLM is masked language modeling
pretraining objective. HC, antibody heavy chain; LC, antibody light chain.

Model Category Dataset Evolution Objective Antibody Tasks

ESM-1 (Rives et al., 2021) PPLM UniRef50 (27M) × MLM -
MSA-1b (Rao et al., 2021) PPLM UniRef50 (26M MSAs) ✓ MLM -

Ablang-H (Olsen et al., 2022b) PALM OAS (14M HC) × MLM Reconstruction
Ablang-L (Olsen et al., 2022b) PALM OAS (0.19M LC) × MLM Reconstruction
AntiBERTa (Leem et al., 2021) PALM OAS (72M) × MLM Paratope Prediction

EATLM PALM OAS (20M) ✓ MLM, AGP & MPP ATUE

3 FRAMEWORK

In this section, we first give a brief introduction to the antibody and its specific evolution. Then
we propose the first antibody-specific benchmark (ATUE) composed of four tasks with different
specificities. Finally, we implement several PPLMs and PALMs baselines and design an evolution-
aware PALM to incorporate the biological mechanism into the pre-training process.

3.1 BACKGROUND

Antibody Antibodies are vital proteins generated by the immune system to remove harmful foreign
pathogens in the human body. they can specifically bind to antigens on the pathogen and recognize
it. Antibodies are composed of two identical heavy chains and two identical light chains and form
a large Y-shaped structure. Two tips on it contain highly variable loops, called Complementarity
Determining Regions (CDR), which function for antigen binding.

Antibody Specific Evolution Notably, the antibody evolution process is significantly different from
that of proteins, providing a good opportunity for us to investigate the impact of general PPLMs on
specific subdomains. To perform its protective function, the antibody sequence undergoes evolution
selection to search for optimal patterns that can specifically recognize pathogens (Honjo & Habu,
1985). Deciphering the information stored in antibody sequences may benefit our understanding of
disease and accelerate therapeutic antibody development (Greiff et al., 2020; Lu et al., 2018; Yermanos
et al., 2018). During evolution, the random recombination of V/D/J-gene segments provides the
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Figure 2: Antibody prediction tasks. The specificity of tasks ranges from low to high.

initial diversity for the ancestor sequence (germline). Upon exposure to a pathogen, this sequence
undergoes frequent sequence mutations to search for progeny antibody sequences with optimal
binding specificity. In other words, gene recombination provides millions of germlines in the human
body, and the germlines further mutate into a huge number of progeny antibodies. Thus, the ancestor
relationship between an antibody and its corresponding germline as well as the mutation it undergoes
together determine the unique biological functions. In brief, the evolutionary relationships between
antibodies arise to gain new functions such as antigen binding. It is significantly different from that
of proteins, which are to maintain certain functions across different organisms. We further illustrate
this process in Figure 7 in §A.1.

Unsupervised Antibody Corpus To obtain the evolutionary information of antibody sequences, we
utilize Observed Antibody Space (OAS), a database containing more than 1.5 billion natural antibody
sequences (Kovaltsuk et al., 2018; Olsen et al., 2022a) The antibody sequences in the database have
been precisely annotated with evolutionary and structural information, including the paired germline
and CDR3 for each antibody. To pair the antibody with its germline used in the pretraining task, we
used the annotated sequences provided in the OAS database. Further information on data processing
can be found in §A.2.

3.2 ANTIBODY UNDERSTANDING EVALUATION (ATUE)

We provide four biologically relevant downstream prediction tasks to serve as antibody benchmarks,
covering four major application aspects for antibodies in the real world: therapeutic antibody
engineering, disease diagnostics, antibody discovery, and B cell maturation analysis. The antibody
specificity of these tasks ranges from low to high, offering scaled tasks with subdomain specificity
for pre-trained language model evaluation. Detailed information is listed in Figure 2. All data are
publicly open and used under the right license. For each task, we focus on the following aspects and
leave the details in Appendix (§A.3 and §A.4):

[Definition] The formal definition of the task and the understanding ability required.
[Impact] The importance of the task in the biological area.
[Dataset] The data source and size.
[Specificity] Antibody’s specific evolution characteristics are different from general proteins.

We use several classification metrics to evaluate the performance. Accuracy (ACC) calculates the
ratio of correct predictions. Matthews Correlation Coefficient (MCC) is the coefficient between true
and predicted values. F1 is the average weighted score of precision and recall. AUC is the area under
the ROC curve, which shows the performance at all classification thresholds.

Antigen Binding Prediction is a binary sequence classification task to determine whether the CDR
region of the antibody can bind to the specific antigen.

[Impact] A better understanding of the binding affinity between antibodies and antigens can
accelerate the affinity optimization of therapeutic antibodies.
[Dataset] We collect the antigen binding data from Mason et al. (2021) and follow the
training/validation/test split of 15,128/3,242/3,242.
[Specificity] Low. All the antibodies sequence in the dataset are derived from a single
germline sequence indicating the task is not antibody-specific evolution-related.
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Paratope Prediction It is to identify binding positions on the antibody sequence, which is a sequence
labeling task to predict a 0/1 label for each residue of CDR fragments.

[Impact] The exploration of paratope (binding positions between antibody and antigen) can
help to understand the binding mechanisms of therapeutic antibodies.
[Dataset] The paratope data is collected from Liberis et al. (2018) with 1,662 CDR segments
on 277 antibodies.
[Specificity] This task is medium specificity related because only partial antibodies from the
database are derived from evolution.

B Cell Maturation Analysis It is a 6-category classification task to distinguish the maturation stage
of B cell antibody sequences. Each sequence belongs to one of {immature, transitional, mature,
plasmacytes, memory IgD+, memory IgD-}. It requires the model to learn a representation sensitive
to different maturation states.

[Impact] It benefits the understanding of the mechanism during immune evolution, which is a
critical biological process in the immune system affecting the function and antigen specificity
of antibodies (Ghraichy et al., 2021; Meffre et al., 2000).
[Dataset] We collect 88,094 sequences from Mroczek et al. (2014) with 6 maturation stages.
[Specificity] High. Antibody evolution is highly coupled with B cell maturation (Meffre et al.,
2000).

Antibody Discovery The task is a binary sequence classification task to distinguish which antibody
is directly responsible for SARS-CoV-2 binding. The task is highly challenging from two aspects: (1)
Less than 1% of antibodies from SARS-CoV-2 patients are directly responsible for virus binding. (2)
It is hard to get a reliable sequence-level classifier using unreliable and noisy individual-level labels.

[Impact] Antibody discovery from B cell repertoire has been widely recognized as a important
approach to accelerate antibody discovery for diverse antigens (Weiner, 2015; Pedrioli &
Oxenius, 2021), and achieved great success for SARS-CoV-2 antibody discovery (Kovaltsuk
et al., 2018; Cao et al., 2020; Shiakolas et al., 2022).
[Dataset] We collected antibody sequences from 133 SARS-CoV-2 patients and 87 health
persons from OAS and followed the processing pipeline of Kim et al. (2021). Inspired
Zaslavsky et al. (2022), we match the high-ranked sequences with the sequences in the CoV-
AbDab (Raybould et al., 2021) database, which have been proved to bind SARS-CoV-2 using
wet-lab experiments.
[Specificity] High. It is widely reported antibodies derived from the same disease such as
SARS-CoV-2 share strong convergent germline signals (Galson et al., 2020).

3.3 EXPERIMENT SETUP

Based on the antibody benchmark ATUE, we evaluate the performance of current pertaining language
models in different specificity tasks. Furthermore, to investigate the benefit of introducing the
biological mechanism, we incorporate evolution information as the extra pretraining objectives for
PALMs and propose EATLM. The detailed description of the objective and the implementation can be
found in §A.5

Current Pre-trained language models Existing antibody and protein language models are sum-
marized in Table 1. Since the code and pre-training data of AntiBERTa are not released, we train a
BERT model named AntiBERT on the full OAS database following the same setting as the original
study. MSA-1b (Rao et al., 2021) takes protein-specific evolutionary sequences (Multiple Sequence
Alignment, MSA) as the input. Because it is hard to align sequences between antibodies due to the
diversity of CDR3, we take the germline and create pseudo-MSAs with depth 2. We add a linear
layer on top of the language models and finetune the whole model on the downstream tasks.

Evolution-aware antibody pretraining method To incorporate the biological mechanism into the
pre-training, we propose a model with evolution information: Antibody EvoluTion-aware pretraining
Language Model. The antibody can be represented as A and the germline of the individual antibody
can be represented as G. Typically, PALMs are trained with basic masked language modeling (MLM).
Based on it, we design another two pre-training objectives to simulate the biological mechanism of
antibody evolution. The evolutionary relationship between the antibody and its germline includes
two folds: (i) Whether the antibody and the germline have an evolutionary relationship. (ii) How
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Table 2: Performance of PPLMs and PALMs on antibody tasks with increasing specificity. The
reported results are the average of repetitive experiments with the standard derivation. EATLM w/o
AGP indicates that we remove AGP objective from the pre-taining phase.

Antigen Binding (Low) Paratope (Medium) Cell (High)

AUC F1 MCC AUC F1 MCC ACC

non-pretrain 0.858±0.014 0.584±0.330 0.432±0.183 0.845±0.014 0.605±0.033 0.463±0.037 0.554 ± 0.042

ESM-1 0.917±0.001 0.854±0.002 0.689±0.002 0.886±0.009 0.669±0.024 0.547±0.026 0.503 ± 0.031
MSA-1b 0.921±0.001 0.857±0.004 0.689±0.014 0.887±0.009 0.679±0.019 0.557±0.025 0.416 ± 0.050

Ablang-H 0.918±0.001 0.861±0.003 0.704±0.010 0.878±0.009 0.674±0.018 0.546±0.023 0.570 ± 0.010
Ablang-L 0.917±0.002 0.856±0.001 0.682±0.001 0.882±0.010 0.680±0.018 0.553±0.023 0.546 ± 0.008
AntiBERT 0.918±0.003 0.843±0.009 0.678±0.008 0.879±0.011 0.690±0.020 0.559±0.026 0.565 ± 0.028

EATLM 0.922±0.004 0.862±0.004 0.699±0.010 0.887±0.008 0.698±0.017 0.575±0.024 0.581 ± 0.005
EATLM w/o AGP 0.920±0.003 0.855±0.000 0.697±0.008 0.883±0.011 0.676±0.021 0.552±0.027 0.559 ± 0.012
EATLM w/o MPP 0.923±0.001 0.855±0.002 0.687±0.005 0.883±0.011 0.691±0.022 0.566±0.030 0.563 ± 0.010
EATLM w/o AGP & MPP 0.918±0.001 0.845±0.005 0.681±0.005 0.880±0.009 0.674±0.018 0.552±0.023 0.559 ± 0.009

to mutate residues from the germline to get the specific antibody. Two evolution-related objectives
are introduced to solve the above questions: Ancestor Germline Prediction (AGP) and Mutation
Position Prediction (MPP). For ancestor germline prediction, we substitute the paired germline
G with random germline G′ in the batch via a probability p. The model is made to distinguish the
ancestor germline of the antibody by capturing the shared features. To predict mutation position, for
each token in the germline G, the objective is to predict a 0/1 label for each token to indicate whether
this token has been mutated. For the antibody sequence S, we mask the mutation position and predict
these tokens.

Hyper-parameters We use the base Transformer architecture (Vaswani et al., 2017) with 12 layers, 12
heads, and 768 hidden states. For each task in ATUE, we finetune the model with supervised data. We
follow the standard split of Antigen Binding Prediction. For other tasks that do not provide a standard
split, we use a 10-fold cross-validation. Since our pre-training model learns the representation of the
antibody sequence, we expand the CDR fragment to the full antibody by searching the biological
database for therapeutic antibody engineering tasks. We also use the same Transformer architecture
to train from scratch for each downstream task. This model is indicated as non-pretrain since it is
not pre-trained on a protein/antibody database.

Reproduction We conduct 10-fold validation on paratope prediction, B cell maturation analysis, and
antibody discovery. For antigen binding prediction, we conduct three repetitive experiments with
different random seeds. We report the average results and the standard derivation.

4 RESULTS AND ANALYSIS

In this section, we present the experimental results and analysis for the representation capability
of existing PPLMs, PALMs, and the EATLM method with evolutionary incorporation, using ATUE
benchmark. Additionally, we summarize our observations aiming to address the problems highlighted
in the introduction.

4.1 MAIN RESULTS

Antigen binding We evaluate the performance PLMs models for antibody binding and paratope
prediction, which are less antibody specific. The results in Table 2 indicate that PPLMs and PALMs
perform similarly on these tasks, suggesting that PALMs can learn comparable general protein
representations to PPLMs. Among different PALMs, Ablang-H outperforms Ablang-L and AntiBERT.
It indicates that separate training for heavy and light chain sequences is beneficial for these tasks.
Moreover, the introduction of AGP and MPP provides improvement over AUC and F1 metrics.

Paratope prediction The results presented in Table 2 demonstrate that for paratope prediction,
both PPLMs and PALMs can significantly boost the prediction accuracy over the model with pre-
training. However, PALMs do not exhibit a significant advantage over PPLMs. EATLM outperforms
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other models, particularly in terms of F1 and MCC, while other models exhibit high recall and low
precision, indicating that they tend to predict more residues as binding sites. With the incorporation
of mutation residue prediction, EATLM can focus on the specific mutated positions adapted to bind
with antigen. Among the two PPLMs, MSA-1b outperforms ESM-1 on F1 and MCC, which benefits
from the structure information learning from MSAs.

Immature B cell
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Mature B cell

Plasmacytes PC
Memory IgD-
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Immature B cell
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Mature B cell

Plasmacytes PC

Memory IgD-

Memory IgD+

0.896 0.042 0.015 0.016 0.016 0.015

0.037 0.406 0.168 0.18 0.048 0.16

0.021 0.133 0.455 0.182 0.053 0.156

0.018 0.083 0.126 0.598 0.05 0.126

0.026 0.079 0.138 0.159 0.502 0.096

0.018 0.122 0.189 0.173 0.051 0.446 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 3: B cell evolution category prediction.
For each pij in i−th row and j-th column, it
means the frequency for the model to predict
the antibody in i category to j category. The
number is normalized by row.

B Cell Analysis In this task, we investigate the
ability of different pre-trained language models to
distinguish between various B cell mature states dur-
ing evolution. The findings, as demonstrated in Table
2, indicate that PPLMs are not effective in discerning
minor differences between B cell sequences, result-
ing in mediocre results. Both ESM-1 and MSA-1b
perform significantly worse than randomly initial-
ized models. MSA-1b, in particular, performs poorly
among all pre-trained language models, implying that
representations that excel in protein structure predic-
tion may be detrimental to antibody-specific tasks.
Conversely, all PALMs show promising results for
the task. This may be due to the fact that the general
protein has little correlation with the specific antibody
mature process and cannot capture this feature during
protein pretraining. Our EATLM significantly outperforms the other PALMs. This is because our
model can effectively capture the evolution feature and better distinguish between B cells at different
stages of maturation by explicitly modeling the biological mechanism.

We conduct further analysis to figure out whether our EATLM successfully captures sequence char-
acteristics during the evolutionary process. We explore the probabilities of predicting antibodies in
class i to class j. The results shown in Figure 3 reveal EATLM can easily classify the immature B
cell with an accuracy of 0.9. It is consistent with the biological study that CDR3 sequence length in
immature B cells is significantly shorter than that of the other mature B cells (Ghraichy et al., 2021).
From the diagonal, we can figure out that our model tends to mistake the B cell sequences with their
previous or post-evolutionary stage, consistent with the biological process.

No Pretrain
EATLMAntiBERTAblang_heavyAblang_lightESM_1Expected1

2

Cumulat
ive sum o

f matche
d antibod

ies

Number of antibodies 
Figure 4: The cumulative sum of matched
sequences number in the order of the pre-
dicted probability. EATLM outperforms other
PALMs and PPLMs for finding SARS-CoV-2
binder faster highlighted in 1⃝ and finding all
antibodies faster highlighted in 2⃝.

Antibody Discovery We investigated the potential
of PPLMs and PALMs in aiding the discovery of
antigen-specific antibodies for real-world problems.
To achieve this, we followed a two-step process sim-
ilar to Zaslavsky et al. (2022). Firstly, we created
a sequence classifier to differentiate SARS-CoV-2
antibodies using noisy individual-level labels. Sec-
ondly, we compared the highly-ranked sequences
with true binding sequences in the CoV-AbDab (Ray-
bould et al., 2021) database to determine if there are
similarities. We used a 90% sequence identity thresh-
old to determine the likelihood of biological function-
ality similar to the existing binders. The experimental
design for this is outlined in §A.7.

Figure 4 shows the cumulative sum of matched se-
quences in the order of predicted probabilities by
different pre-trained language models for the SARS-
CoV-2 specific antibody discovery task. We can ob-
serve that PALMs outperform PPLMs in identifying potential binders, as the sequences predicted
with high probability by PALMs match better with the existing binders. Moreover, among PALMs,
EATLM significantly outperforms other models, with the red line indicating its performance. Initially,
EATLM is the quickest method to find potential binders, but it loses to Ablang-H, and eventually
overtakes again and converges. This suggests that EATLM is the most effective method for identifying
all potential binders in this dataset.
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Furthermore, we list 11 potential binder sequences discovered by EATLM in Table 3. Without
supervised labels, EATLM gives a high probability of 2 SARS-CoV-2 existing binding antibodies.
Besides, EATLM suggests 9 potential sequences with high CDR-H3 sequence identity, indicating
the potential for diverse-epitope antibody discovery and selection. These results demonstrate the
potential of EATLM in therapeutic antibody discovery.

To validate whether the antibody sequences with 90% sequence identity can indeed bind the same
target, we investigate the 3D structure of the true binding antibody. Table 4 shows only one single
residue difference between the predicted binder and the existing binder, suggesting the predicted
binders are highly possible to interact with SARS-CoV-2.

Table 3: The CDR3-H3 region of high-ranked sequences to bind to
SARS. We show the CDR3 fragment of the heavy chain in the antibody
sequences. ‘Identity’ is the similarity between the predicted binder and
the true binder. The epitope of the true binders is shown. The origin of
the majority of the true binder sequences is B cells from patients. The
different amino acids between the predicted binder and the existing
binder are highlighted in red

No Predicted Binder Existing Binder Epitope Identity

1 AREGIVGATTGFDY AREGIVGATTGFDY spike 1.000
2 ARDLGGYFDY ARDLGGYFDY RBD 1.000
3 AKDQDDAYYYYYYMDV AKDQDDGYYYYYYMDV NTD 0.938
4 ASYYYDSSGYHYGMDV ASYYYDSSGYYYGMDV RBD 0.938
5 ARRGLGLYYYGMDV ARRGDGLYYYGMDV S2 0.929
6 ARAFRGSYYYGMDV ARATRGSYYYGMDV S2 0.929
7 ARLSGSSWYFDY ARLSGSSWDFDY spike 0.917
8 ARLGSSSWYFDY ARVGSSSWYFDY spike 0.917
9 ARGWLRGYFDL ARRGWLRGYFDL RBD 0.909

10 ARDWGELYFDY ARDWGEYYFDY RBD 0.909
11 ARDLGGVFDY ARDLGGYFDY RBD 0.900

Table 4: 3D structure
of the true SARS-CoV-
2 binding antibody No.3.
G2A highlights the single
atom difference in No.3,
indicating the predicted
binder is highly likely to
bind the virus.

G2A
PDB:7N62

SARS‑CoV‑2 NTD

4.2 HOW DOES EVOLUTION PRETRAINING TASK INFLUENCE THE REPRESENTATION?

To comprehend the reasons for the better performance of EATLM on antibody-related tasks, we
conduct the analysis of the pre-trained representations. The objective of this analysis is to evaluate
the effectiveness of the evolution-aware pre-training strategies from two perspectives: (1) Does the
pre-trained representation of antibodies reflect their ancestor relationship? (2) Does the specificity of
antibodies get captured by the evolution objective?

Ancestor Gerlime Visualization We perform UMAP visualization analyses in Figure 5. First, we
observe that antibodies evolved from the same germline are nicely clustered together (Figure 5a and
5b), indicating the learned embedding is encoded with germline information. Besides, sequences with
similar scales of evolutionary distance tend to cluster together, and a clear gradation of evolutionary
distance can be observed in Figure 5c and 5d. The visualization provides a sanity check for the ability
of EATLM to extract the sequence information of antibodies.

Accuracy of Mutation Position Based on the specific evolution process described in §3.1, we can
find the mutation during the evolution process bring specificity to the antibody. Thus, we explore the
model’s ability to predict mutated residue from the masked token, which can reflect the specificity
feature the model captures. We find that although AntiBERT can predict with an accuracy of 0.889
on all positions, it fails on mutation positions with a 0.031 accuracy. In contrast, EATLM achieves
an accuracy of 0.443 on mutation position, which indicates that the model captures the specificity
information. Note that during the MPP training, we mask the mutation position on antibody sequences,
which are different from its germline. Thus, the model cannot get the mutated residue from the
germline directly. The only way is to learn the underlying mutation rules. The full results are shown
in Table 8 in Appendix.
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Figure 5: UMAP Visualization. (a-b) for sequences with different germlines. One color indicates one
germline with its descendant. (c-d) for evolutionary phylogeny distance. The shade of color indicates
its distance from the ancestor germline.

4.3 KEY OBSERVATIONS

The performance of pre-trained language models is highly dependent on the specificity of
the task. In tasks with low antibody-specificity, PPLMs perform similarly to PALMs, indicating
that using general protein representations from PPLMs is an effective way to transfer learning in
these tasks. On medium specificity tasks such as paratope prediction, PALMs show their advantage
and outperform PPLMs. However, for tasks with high specificity, PPLMs have significantly lower
performance, suggesting that general pre-trained protein models are insufficient for antibody-specific
representation learning. Additionally, incorporating protein evolution information does not always
benefit antibody tasks, especially those that require antibody evolution information, as shown by the
20% decrease in performance observed with MSA-1b compared to the model without pre-training.
This finding is consistent with the biological understanding that the mechanism of antibody evolution
is significantly different from that of proteins.

Performa
nce Incre

ase (%)

Task SpecificityLow Medium High
010‑10‑20

20

‑30 No PretrainESM‑1
AntiBERTEATLM
MSA‑1b
Ablang‑HAblang‑L

Figure 6: Performance summary of vari-
ous pre-trained language models.

Incorporation of biological evolution mechanism into
PALM generally benefits antibody prediction tasks.
The inclusion of evolution-related training objectives as-
sists in identifying mutation positions on antibodies, which
is a distinguishing feature from germline. Notably, the
performance increase of EATLM in comparison to other
PALMs is linked with the level of task specificity. The
ablation study showed removing the evolution-related pre-
training objectives leads to decreased performance, con-
firming their contribution to the prediction task. Further
research in this direction is promising and could offer more
in-depth insights.

Antibody pre-trained representations are helpful for real-world drug discovery. By utilizing
the language model, we predict the likelihood of each antibody binding with SARS-CoV-2. Despite
lacking precise sequence-level labels, we successfully identify 11 promising antibody binders.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we conduct a detailed investigation into the effects of pre-trained protein and antibody
language models on various antibody tasks. To facilitate research in the antibody and machine
learning fields, we provide ATUE consisting of four important antibody tasks from four different
biological categories with varying levels of antibody specificity.

However, there are certain constraints to our research. Firstly, due to the scarcity of data, the diversity
of tasks in our ATUE is limited. As more data becomes available, we anticipate expanding our
benchmark to include a greater range of diseases and larger data sets. Additionally, we did not
examine any 3D structure information during antibody pre-training. As antibody structures offer
more information than just sequences, such as geometry, incorporating structural information in
future studies may lead to improved results.
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A APPENDIX

A.1 ANTIBODY SPECIFIC EVOLUTION

Antibodies, composed of two identical heavy chains and two identical light chains, form a large
Y-shaped structure, where the two tips are responsible for pathogens binding. Antibody evolution,
described by sequence-sequence relationships between ancestor and progeny antibodies, reflects
antibodies’ key antigen-binding function (Honjo & Habu, 1985). During antibody evolution (Figure
7), the initial diversity is encoded into the ancestor sequence through randomly recombination of V-,
D- and J-gene segments. Upon exposure to a pathogen, the sequence undergoes frequent sequence
mutations to search for progeny sequences with optimal binding specificity. Sequence evolution
analysis has been employed by many computational biology studies and shows promising results in
antibody-related tasks, such as disease diagnosis and therapeutic antibody development (Yermanos
et al., 2018; Miho et al., 2019).

Importantly, antibody evolution is significantly different from that of proteins. Antibodies only
contain hundreds of thousands ancestor sequences so-called germline. To bind dozens of millions of
diverse antigens, antibodies need to mutate from the ancestor sequences to gain new functions (Figure
7). Therefore, the non-conserved amino acids (mutated ones) plays important roles for structure and
function. On the contrary, the conserved amino acids (not mutated) in proteins determine structure
and function. During protein evolution, evolutionary pressure to maintain protein structure and
functions leads to the conservation or co-evolution of residues located in structural folding core for
binding interface. Diverse methods have been developed to extract the co-evolution information from
conserved amino acids sequences for structure and function prediction, such as AlphaFold (Jumper
et al., 2021).

In brief (Figure 7), antibody evolution specificity distinct from that of proteins can be defined with
two main features: (i) ancestor germlines; (ii) the mutated amino acids of germlines.
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Figure 7: Evolution specificity of B cell antibodies comparing with general proteins. The evolutionary
sequence relationships are highlighted using blue dash lines.

A.2 DATA PROCESSING DETAILS

Pairing Antibody with Germline For germline annotation in the pre-training task, we used
the annotated germline sequences provided in the OAS database (Kovaltsuk et al., 2018). For
downstream benchmarks tasks like B-cell classification, therapeutic antibody engineering, and
disease diagnosis, we completely followed the methods shown in the OAS database paper. IgBLAST,
an immunoinformatic benchmarking tool for the analysis of B-cell antibody repertoires was used for
germline annotation (Ye et al., 2013). The antibody nucleotide-containing FASTA file was aligned
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to germline and translated to amino acids using IgBLASTn. The antibody amino-acid sequence
was aligned using IgBLASTp. The germline databases for human patients used ImMunoGeneTics
(IMGT) germline sequences derived from Lefranc et al. (1999). For each antibody, usually, multiple
germline sequences can be obtained and only the single sequence showing the highest confidence
score for the alignment was chosen.

Pre-training Data Processing We downloaded OAS Oct 2021 version from its website and
removed duplicate sequences. To avoid data leakage, we cluster sequences based on the CDR3
sequence and filter each cluster by 70% identity over the whole sequence using Linclust (Steinegger
& Söding, 2018). Then, we shuffle the dataset and split it into 100k-size chunks. The last chunk is
used as the validation set. The dataset size is 20,245,249 and 45,249 are used for validation.

Table 5: ATUE benchmark. The five downstream tasks are divided into three biological categories
and each category focuses on different input levels. ‘Q6’ indicates the classification task have 6
classes. For disease diagnosis, the size indicate the number of profiles, where each profile contains
thousands to millions of sequences.

Specificity Task Name Input Formalization Size

Low Antigen Binding Prediction CDR fragment Q2 Cls. 21,612 seqs
Medium Paratope Prediction CDR residue Q2 Labeling 1,662 seqs, 21,342 positions

High SARS Antibody Classification Sequence Q2 Cls. 22,000 seqs
High B Cell Classification Sequence Q6 Cls. 88,094 seqs

A.3 ATUE DETAILS

We summarize the tasks used in ATUE in Table 5 and discuss each task in detail in this section.

Antigen Binding Accurate antigen-binding prediction approaches could allow significantly more
efficient antibody discovery with higher affinity. Machine learning methods have already achieved
some success in antibody binding capacity optimization. We collect the antigen-binding data from
Mason et al. (2021) and follow the training/validation/test split of 15,128/3,242/3,242. The original
dataset only has CDR3 fragments, and we extend them to the full antibody sequences. For cross-
validation, we split the dataset by antibody sequences to ensure that no antibody sequences overlap
between 90% training and 10% validation.

Paratope Prediction Paratope is the antibody residues involved in antigen binding. The ability
to accurately map the paratope can provide detailed knowledge about the binding mechanism and
accelerate antibody discovery. 1D sequence-based deep learning methods have been employed for
paratope prediction. The paratope data is collected from Liberis et al. (2018) with 1,662 CDR
segments on 277 antibodies. Each antibody contains three CDR fragments (CDR1, CDR2 and CDR3)
in the heavy chain and three CDR fragments in the light chain. We also search the full sequence
for each antibody and use the whole sequence as input. For cross-validation, we split the dataset by
antibody sequences to ensure that no antibody sequences overlap between 90% training and 10%
validation.

Table 6: The statistics of B cell classification.

Type Size
Immature b cell 14,145
Transitional b cell 13,197
Mature b cell 16,139
Plasmacytes PC 22,236
Memory IgD- 8,437
Memory IgD+ 13,940
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B Cell Analysis We formulate a 6-category classification task for B cell maturation analysis, which
includes {immature, transitional, mature, memory IgD+, memory IgD-, plasmacytes,}. The analysis
of B cell maturation plays an important role in understanding the mechanisms underlying B cell
responses in the immune system Ghraichy et al. (2021); Meffre et al. (2000).

The order of B cell type follows the evolutionary process in the immune system, from an immature
state to a transitional state, and finally becomes a memory B cell. Both memory IgD- and IgD+
belong to memory B cells with different isotypes, and they have a high affinity to foreign antigens.
Among the other categories, the Plasmacytes PC sequences also have some affinity ability. It is widely
reported that changes in antibody sequence patterns correlate with B-cell maturation. Therefore, we
use this task to evaluate the representation learning capacity of the language model.

We collect 88,094 sequences from Mroczek et al. (2014). They extracted from the peripheral blood
of healthy adults and got six types of B cells with different maturity and antibody sequences. The
distribution of various types of B cells in the dataset is shown in Table 6

Antibody Discovery Antibody discovery from B cell repertoire has been widely recognized
as a novel trend to improve the efficiency of antibody discovery for diverse antigens (Weiner,
2015; Pedrioli & Oxenius, 2021). However, previous studies highly rely on expensive wet-lab
experiments (Cao et al., 2020; Shiakolas et al., 2022). Deep learning-based methods have shown the
potential capacity to help antibody discovery by reducing cost and increasing efficiency (Widrich
et al., 2020; Wang et al., 2022). Here, we ask whether pre-trained models can benefit real-world
problems and enable fast-track neutralization of SARS-CoV-2 antibody discovery.

In the first step, we develop a sequence classifier to distinguish which antibody sequence from
the numerous sequences is responsible for the recognition of SARS-CoV-2. This task is highly
challenging since we can hardly get the sequence-level disease label that indicates whether the
antibody sequence is related to the disease. Thus, we follow the practice of Roskin et al. (2020);
Zaslavsky et al. (2022) to use the individual label as the rough sequence label and train a sequence-
level predictor. Then, with the help of a sequence-level predictor, we can give each sequence a most
likely label to help antibody discovery, whose accuracy has been verified by the excellent results on
individual prediction, which may accelerate the discovery of new antibody sequences.

We follow the condition of Kim et al. (2021) to filter SARS-CoV-2 antibody data from the OAS
database. The basic condition is ‘Chain = heavy; Isotype = IGHG; BSource = PBMC; Species
= human; Vaccine = None’. We further add the condition of ‘Unique Sequences >= 10000’. For
health/SARS we set the ‘Disease’ field to ‘None’, ‘SARS-CoV-2’. Then we obtain 87/133 patient
profiles for each type. To make a balanced dataset, we limit the size of the health profile and mix up
the healthy ones and the ones with the SARS-CoV-2. For cross-validation, we randomly split the
dataset by profiles 10 times: 90% for training and 10% for validation. We further select sequences
with top100 redundancy to make the positive labels more accurate.

A.4 QUANTITATIVE ANALYSIS OF ATUE TASK SPECIFICITY

It is important to include statistical significance tests relative to the antibody-specific features in
antibody functional tasks we proposed in the ATUE benchmark. According to the evolution process
shown in Figure 7, antibody evolution specificity distinct from that of proteins can be defined with
two main features: (i) ancestor germlines; (ii) the mutated amino acids of germlines. We implemented
statistical significance tests of (i) ancestor germlines subtype usage; (ii) the number of mutated amino
acids in antibodies against different labels of downstream tasks in ATUE to quantitatively assess the
"Task specificity". The analysis is now summarized in Table 7. Generally, it is clearly shown that
ATUE benchmark comprises antibody tasks showing different scales of antibody specificity for later
modeling analysis. Moreover, they are used for statistical analysis of task specificity and pre-training
model objectives in our study.

Antigen Binding In the Antigen binding dataset, both antibody binding and none antigen-binding
sequences share the same germline subtype sequence (IGHV3.1) (Figure 8A) as well as the same
number of germline mutations 8B). Therefore, None of two antibody-specific features show significant
distribution differences between data with different labels, demonstrating antigen binding is a task
with low antibody specificity.
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Table 7: Task antibody specificity. Summary of the statistical significance test of two antibody-
specific features for different tasks in the ATUE benchmark.

Task Statistical significance (p-value) General Specificity
Germline Usage Mutations Numbers

Antigen Binding Nan Nan Low
Paratope Prediction 0.296 0 Medium
B cell classification 0 0 High

SARS antibody discovery 0 0 High

A B

Figure 8: (A)IGHV gene segment usage distribution between binding and non-binding antibody. (B)
Germline mutation number distribution between binding antibodies and non-binding antibodies.

Paratope Prediction For the paratope prediction task, we first evaluate the germline subtype
distribution difference between sequences with different numbers of binding sites (Figure 9A).
Kruskal Wallis test showed a p-value of 0.296 suggesting germline subtype usage is not statistically
significant. Also, we find the binding sites can be significantly mapped with more germline mutations
than the non-binding sites, which is consistent with the knowledge of antibody specificity definition
(Figure 9B). One out of two antibody-specific features shows significant distribution differences
between data with different labels. Therefore, we define this task as a medium specificity task.

A B

Figure 9: (A) Number of binding sites distribution between different IGHV gene segments. Com-
parison is performed using the Kruskal-Wallis test with a p-value of 0.296. (B) Germline mutation
number distribution between binding and non-binding positions. Comparisons performed using t-tests
show p-value equals 0.
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B Cell Analysis As shown in Figure 10, the distribution of the germline usage as well as the number
of germline mutations are significantly different between antibodies in B cells with different develop-
mental stages. This observation is highly consistent with previous studies Mroczek et al. (2014);
Ghraichy et al. (2021). Since both of the antibody-specific features show significant distribution
differences, this task is defined as a high-specificity task.

A B

Figure 10: (A)IGHV gene segment usage distribution between different B cells. Comparison is
performed using the chi-squared test with a p-value of 0. (B) Germline mutation number distribution
between different types of B cells. Comparisons performed using the Kruskal-Wallis test show the
p-value equals 0.

SARS Antibody Discovery Antibodies in SARS patients and healthy ones show a significant
difference in their germline subtype usage and the number of germline mutations (Figure 11). This
observation is highly consistent with previous studies showing SARS antibody convergent among
patients Galson et al. (2020). Since both of the antibody-specific features are highly significant, this
task is defined as a high-specificity task.

A B

Figure 11: (A)IGHV gene segment usage distribution between antibodies in SARS patients and
healthy ones. Comparison is performed using the chi-squared test with a p-value of 0. (B) Germline
mutation number distribution between antibodies in SARS patients and healthy ones. Comparisons
performed using the Kruskal-Wallis test show a p-value equals 0.

A.5 MODEL TRAINING DETAILS

Antibody can be represented as A = {a1, a2, · · · , am} and the germline of individual antibody can
be represented as G = {g1, g2, · · · , gn}, where m and n are the lengths. Each token ai or gj in the
sequence is called a residue that belongs to the amino acid set A. A includes 20 common amino acids
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with a residue ‘X’ that indicates the residue is unknown (mostly in the germline). Typically, antibody
PLMs are trained with basic mask language modeling objective lMLM on the antibody sequences
S = A = {a1, · · · , am, }.

A.5.1 EVOLUTION-AWARE PRETRAINING

In order to incorporate the evolutionary information into the pre-training, we pair the antibody
sequence A with its germline G and concatenate them into a long sequence with a special token
‘[SEP]’ as the delimiter: S = {s1, · · · , sm+n+1} = {a1, · · · , am, [SEP], g1, · · · , gn}. Thus, we
optimize the MLM objective on the long sequence S:

lMLM = − 1

|M |
∑
i∈M

log p(si|S\M ), (1)

where M is the index set of masked tokens. It helps the model learn the basic residue distribution for
antibody sequences. Besides, it can also capture the interaction between residues of the antibody and
its germline.

DTVMTQS……QYKHWPPYTFGRGTKLEIR EIVMTQS……QYNNWPXXXXXXXXXXXXX[SEP]

Transformer Encoder 

[CLS]

Antibody Germline

Ancestor Germline Prediction
(AGP)

1 1 0 0 0 … 1 1D T K H P Y …

Mutation Position Prediction
(MPP)

𝒀𝝐{𝟎, 𝟏}

mask mutation substitute germline

(a) Pre-training with two biological evolution tasks.
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(b) Finetuning for three biological categories in ATUE.

Figure 12: EATLM. In Figure 12a, AGP randomly unpairs the germline sentence and predicts the
ancestor relationship. MPP predicts the mutation position on the germline and the masked mutation
residue on the antibody. Based on the input, the three categories in ATUE can be divided into
sequence-level and individual-level (Figure 12b). For individual-level disease diagnostics, we score
each sequence in the individual profile and calculate the trimmed mean over all sequences to get the
individual score.

Ancestor Germline Prediction The ancestor relationship between the antibody and its germline
determines the shared biological functions obtained in the evolution. Antibody sequences with similar
residues evolved from different germline sequences may have different biological functions. When
stimulated by a foreign antigen, the common ancestor germline evolves to various antibody sequences.
Similar antibody sequences may have different germline sequences, which will affect their biological
functions. Thus, the aim of this task is to determine whether the antibody has an evolutionary
relationship with the given germline. During training, we substitute the paired germline G with
random germline G′ = {g1, · · · , gn} in the batch via a probability p = 0.3. The new sequence is
denoted as S′ = {a1, · · · , am, [SEP], g′1, · · · , g′n} and the training loss can be described as:

la = − log p(y|S′), (2)
where y ∈ {0, 1} indicate whether the noisy germline G′ is the ancestor of the antibody S. It can
help the model to distinguish the ancestor germline of the antibody by capturing the shared features.

Mutation Position Prediction The somatic hypermutations on the germline further give progeny
antibodies the specificity of binding with the specific antigen. In order to model this specificity, this
task focuses on predicting the mutation positions and the residues mutated. Specifically, for each
token gj in the germline G, the target is to predict a label yj ∈ {0, 1} to indicate whether this token
has been mutated. For the antibody sequence S, we mask the mutation position and predict these
tokens. The objective can be formalized as:

lm = − 1

n

∑
j∈{1,··· ,n}

log p(yj |S\M ′)− 1

|M |
∑
i∈M ′

log p(ai|S\M ′). (3)
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Here, M ′ is the ground-truth mutation position and we mask these tokens on the antibody sequence.
This task is more difficult than MLM which equally masks tokens in the L, because the tokens on the
mutation position of A get less information from the germline, compared with other shared residues
between the antibody and the germline. By optimizing this objective, the model learns to capture the
specificity obtained from the somatic hypermutation in the evolutionary process.

A.5.2 IMPLEMENTATION DETAILS

We use the base Transformer architecture (Vaswani et al., 2017) with 12 layers, 12 heads, and 768
hidden states. The total parameters are 86M. We use Adam optimizer (Kingma & Ba, 2015) with a
maximum learning rate of 2e-4 and a warm-up step of 24,000. The maximum length is set to 400 since
most antibody sequences are shorter than 180. We first pre-train our model with the MLM objective.
During the pre-training, 15% tokens are randomly selected with 80% masked, 10% replaced, and
10% kept. Then we conduct further pre-training on two antibody-related tasks with a smaller learning
rate of 1e-5.

For each task in ATUE, we finetune the model with supervised data. We follow the standard split of
Antigen Binding Prediction. For other tasks that do not provide a standard split, we conduct 10-cross
validation and report the average results. Since our pre-training model learns the representation of the
antibody sequence, we expand the CDR fragment to the full antibody by searching the biological
database for therapeutic antibody engineering tasks. For finetuning, we limit the max epochs to 30
and use the Adam optimizer with a max learning rate of 3e-5. We use the mean representation of 12
layers as the sequence representation.

Table 8: The pretraining details for different models. The ‘Germline’ is the prediction accuracy
of AGP, and the ‘Position’ and ‘Mutation’ are the accuracy of mutation positions and the mutated
residues respectively.

Model Size Loss Step Germline Position Mutation

AntiBERT 85M 0.437 568000 / / 0.031
AntiBERT w AGP 85M 0.558 587000 0.330 / /
AntiBERT w MPP 85M 1.744 622000 / 0.965 0.410

ESM-1 FT 85M 0.2636 136000 / / /
ESM-1b FT 650M 0.2704 278000 / / /

EATLM w/o AGP & MPP 85M 0.143 108000 / / /
EATLM w/o AGP 85M 1.744 134000 / 1.000 0.442
EATLM w/o MPP 85M 0.001 126000 1.000 / /
EATLM 85M 1.856 252500 0.996 1.000 0.443

EATLM-large w/o AGP & MPP 650M 0.149 193000 / / /
EATLM-large w/o AGP 650M 1.753 267000 / 1.000 0.438
EATLM-large w/o MPP 650M 0.001 200000 1.000 / /
EATLM-large 650M 1.773 384000 0.996 1.000 0.431

The model is trained with 108,000 steps and gets a 0.9606 token accuracy on the MLM task. It takes
further steps for AGP and MPP. The model quickly converges for AGP and gets a 0.99 accuracy on
the ancestor germline prediction because more than 80% residues are shared between the antibody
and its germline. For MPP, it can predict the mutation position with the accuracy of 1.000 and obtains
a 0.442 accuracy in the mutation position (EATLM w/o AGP). It means that the model can easily
find the mutation positions by the self-attention between the antibody and germline, but it is still
difficult to predict which residues this position will mutate to. We assume it is because the ancestor
germline can undergo different somatic hypermutations and get various progeny antibodies, resulting
in different valid mutations at the same position. We also compare this mutation accuracy with the
model without MPP, which is only trained with MLM on the concatenation of the antibody and its
germline. With a high prediction accuracy of 0.889 on all positions, it achieves only a 0.031 accuracy
on the mutations. It implies that the masking among all positions on the sequence can do accurate
predictions of the shared residues but hardly capture the mutation information.
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We also conduct AGP and MPP to finetune the baseline model AntiBERT. The pre-training results
are shown in Table 8. We can find that without the concatenation of the antibody and its germline, it
is difficult to predict the ancestor relationship. It also underperforms than EATLM in MPP.

Negative sampling ratio We have tried the ratio of 0.1/0.3/0.5/0.75 and found that this ratio has
little influence on performance and convergence speed. As we discussed above, the model can quickly
converge for AGP and get an accuracy of 0.99.

Finetuned Protein Language Models and Larger Architecture We pre-train our method with a
larger architecture and compare it with ESM-1b, which also has 650M parameters. We also further
pre-trained the ESMs to transfer to the antibody field. After that, we evaluate them on the antigen
binding and paratope prediction task. The results are shown in Table 9. The result shows that the
larger architecture does show an advantage in terms of performance improvement. For antigen
binding, ESM-1b has better performance than ESM-1. However, in paratope prediction, it performs
worse. In addition, for ESM, fine-tuning the antibody dataset may cause the overfitting problem,
leading to a decrease in the performance of all three tasks.

Table 9: The performance of larger models and finetuned protein language models on three tasks.
The ESM-1 and ESM-1b models have 85M and 650M respectively. The EATLM-large have similar
architecture with ESM-1b. ‘FT’ indicates the model is further finetuned on our antibody pre-training
dataset.

Antigen Binding Paratope

AUC F1 MCC AUC F1 MCC

ESM-1 0.917+0.001 0.854+0.002 0.689+0.002 0.886+0.009 0.669+0.024 0.547+0.026
ESM-1 FT 0.914+0.001 0.858+0.001 0.695+0.003 0.883+0.009 0.657+0.031 0.534+0.030
ESM-1b 0.924+0.002 0.860+0.002 0.707+0.003 0.873+0.009 0.655+0.042 0.524+0.036
ESM-1b FT 0.916+0.003 0.844+0.003 0.686+0.004 0.869+0.010 0.660+0.021 0.527+0.015

EATLM 0.922+0.052 0.862+0.021 0.699+0.027 0.887+0.008 0.698+0.017 0.575+0.024
EATLM-large 0.921+0.004 0.854+0.004 0.677+0.010 0.887+0.007 0.685+0.015 0.561+0.020

A.6 LIMITATION ABOUT EATLM

First, EATLM doesn’t use any 3D structure information during pre-training. As a special subgroup of
proteins, antibody structures provide much more information such as geometry than sequences. In the
future, recruiting structure information for antibody pre-training may be able to improve the results.
However, the data scale available for antibody structure is dramatically less than that of antibody
sequences. The largest dataset of antibody structures only contains thousands of 3D high-resolution
structures, while the number of antibody sequences is in billions. Using structure prediction methods
like AlphaFold may help to bridge the gap between sequences and structures. Second, EATLM
requires germline as input during downstream tasks, this will slow down the prediction speed.

A.7 NEW SARS BINDER DISCOVERY

The main challenge for disease diagnosis is to distinguish the disease-related antibodies from millions
of antibody sequences in the individual profile, as stated in Section A.3. Here, with the help of a
sequence-level predictor, we can give each sequence a most likely label to help antibody discovery,
whose accuracy has been verified by the excellent results on individual prediction, which may
accelerate the discovery of new antibody sequences.

SARS Sequence-level Predictor We first train a sequence-level predictor for SARS-CoV-2. The
results are shown in Table 10. Compared with Figure 4 in the main text, we find that good results in
the sequence-level predictor do not necessarily mean good results in the antibody discovery. It can be
mainly affected by the noisy label of the sequence level.

Figure out SARS Binders As shown in Table 3 in the main body, we find 2 true SARS binders and
9 potential binders with the help of EATLM. Specifically, we first use our sequence-level predictor to
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Table 10: Sequence-level predictor for SARS-CoV-2.

Sequence-level
SARS

AUC F1 MCC

No pretrain 0.894±0.029 0.801±0.045 0.637±0.078
ESM-1 0.903±0.061 0.799±0.032 0.648±0.093
MSA-1b 0.914±0.025 0.810±0.050 0.671±0.080

Ablang-H 0.915±0.027 0.817±0.038 0.668±0.068
Ablang-L 0.893±0.035 0.801±0.054 0.637±0.099
AntiBERT 0.916±0.026 0.810±0.033 0.661±0.060

EATLM 0.904±0.027 0.808±0.035 0.643±0.069
EATLM w/o AGP 0.904±0.029 0.808±0.039 0.644±0.078
EATLM w/o MPP 0.901±0.026 0.808±0.035 0.648±0.069
EATLM w/o MPP & AGP 0.901±0.026 0.807±0.034 0.645±0.067

get a probability score for each sequence in the SARS dataset. Then we select the sequence with a
high-ranked score (the probability > 0.5) and compare them with the public Cov-AbDab database
Raybould et al. (2021) 1, which contains data on published/patented antibodies known to bind to
SARS-CoV-2 (Raybould et al., 2021). Since the CDR3 fragment in the heavy chain is the most
relevant to the binding of antibody and antigen, we calculate the edit distance between the CDR3
fragments in heavy chains (CDR-H3) with those of the known binder and use a threshold of 85%
similarity as the sequence identity. 85% Hamming distance for B cell antibody sequence clustering
(identify similar B cell antibody sequences responding to the same antigen/epitope) was previously
suggested in this paper (Gupta et al., 2017). This method then was widely used for B cell antibody
repertoire analysis in different studies (Montague et al., 2021; Wang et al., 2022).

SARS Binder Analysis To provide a more intuitive analysis of the similarity between our predicted
antibody and true SARS-CoV-2 binders, we investigate the 3D structure of the true binding antibodies
and the mutation site of our predicted sequence on the corresponding structure. High resolution
structure of true binding antibody #3 in Table 3 with SARS-CoV-2 are shown in Figure 13 (PDB
code: 7N62). The interaction interface between the antibodies and SARS-CoV-2 spike/RBD is
shown in Figure 3 in the main body. CDR-H3 were shown in orange. Only one single residue
highlighted in red is different between the predicted binder and the true binder. Obviously, these
different residues don’t localize to the direct binding site and CDR-H3 founding core, suggesting
the sequence difference likely will not affect antibody-virus interaction. Furthermore, we found the
epitopes of the 11 identified SARS-CoV-2 antibodies cover a wide range of different structures from
traditional RBD domain to novel non-RBD epitopes like S2 and NTD as shown in Table 3. This
result shows our method enables diverse-epitope antibody discovery.

Table 11: SARS-CoV-2 antibody hit rate with different probability thresholds. ‘Total’ is the total
number of sequences whose probabilities are higher than the threshold. ‘Hit’ is the number of
sequences that meet the similarity requirements with existing binders.

Threshold Total Hit Hit rate (%)
0.5 13253 66 0.498
0.7 10227 54 0.528
0.8 9338 49 0.525
0.9 8178 47 0.562

Probability Threshold Sensitivity In order to investigate the influence of the threshold used to
determine the potential binders, we try different thresholds in Table 11. Here, the probability threshold
means that if the sequence predictor gives a probability higher than the threshold for one sequence, it
will be viewed as a potential binder. If the predicted binder has a sequence similarity higher than

1http://opig.stats.ox.ac.uk/webapps/covabdab/

21



Published as a conference paper at ICLR 2023

Figure 13: High-resolution structure of mutation in the predicted binder (AKDQDDAYYYYYYMDV)
with the existing binding antibody (AKDQDDGYYYYYYMDV).

85% with the existing binders in Cov-AbDab, we view it as one hit. As the threshold score increases,
the hit rate corresponding increases from 0.528% to 0.562%, indicating that our model may enable
priority selection of SARS-CoV-2 antibodies and reduce experimental costs.

Sequence Similarity Sensitivity In previous work, two antibodies with CDR-H3 similarity over
85% can be viewed as similar and have a high probability to share the same functionality. And here
we also check the influence on the binder matching of different thresholds of similarity. The results
are shown in Figure 14. Here, we fix the probability threshold as 0.5. As we can see, the baselines
have similar trends in all thresholds. If we relax the threshold, there will be more matching sequences.
However, the predictors will have less advantage over the random order, which indicates that the
ranking is less important if we relax the similarity threshold.

The Potential of New Binder Discovery During the training of our sequence-level predictor, we
have no reliable ground-truth labels, which means that the model has never known which sequences
can bind to SARS in a real-world scenario. However, the model can learn from the noisy data and
rank the real SARS binders with high probabilities. Sequence identity of 1 means that the CDR-H3
fragment can be directly found in the Cov-AbDab database, which implies that the sequences have
been verified by wet laboratory testing. The other sequences with an identity over 90% are thought
to have a similar binding performance to existing binders, indicating that they are promising SARS
binders that can help the discovery of therapeutic antibodies for SARS-CoV-2.
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Figure 14: The cumulative count of matching sequences number. The dashed line is the expected
results for random order. The x-axis is the sequence number and the y-axis is the cumulative matched
sequence number.
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A.8 EXTENTED STUDY FOR DISEASE DIAGNOSIS

It would be interesting to see whether our sequence classifier can be used for other applications,
such as disease diagnosis. Each human is estimated to maintain about 108 − 1010 distinct antibody
sequences, constructing an informative encyclopedia recording the past and present health and disease.
Interpreting the pattern of the sequences has already proved useful in disease diagnosis and allows us
to assess many infectious diseases without expensive laboratory testing. However, it is difficult to
distinguish which antibody sequence from the numerous sequences is responsible for the recognition
of the specific antigen, which hinders the discovery of the antibody for diseases (Zaslavsky et al.,
2022; Lu et al., 2018; Greiff et al., 2020).

Benefiting from the recent high-throughput sequencing, we can obtain millions of antibody sequences
from the individual human. At the same time, we can get a disease label that indicates whether the
human is infected by the disease. The main challenge is that we can hardly get the sequence-level
disease label that indicates whether the antibody sequence is related to the disease. Thus, we follow
the practice of Roskin et al. (2020) to use the individual label as the rough sequence label and train a
sequence-level predictor. Then we use this predictor to predict sequences of the individual profile and
make the trimmed mean score as the individual score.

We use the same data processing as Antibody Discovery stated in Section A.3. For
health/SARS/HIV/Ebola/Allergy/SLE/MS, we set the ‘Disease’ field to ‘None’, ‘Ebola’, ‘Allgery’,
‘SLE’,‘MS’. Then we obtain 87/133/51/14/12/8/8 patient profiles for each type. We also do 10-cross
validation and select sequences with high redundancy.

Disease Classification We use all these disease profiles to build the Q7 classification task for
disease diagnosis. Previous biological studies mainly use this multi-classification task for disease
diagnosis Zaslavsky et al. (2022); Wang et al. (2022), highlighting the discriminatory power among
different diseases is important for disease diagnosis. The results are shown in Table 12. We found
both PPLM and PALM show comparable results as the randomly initialized model, suggesting the
finetuning part plays a more important role and the pre-trained language model cannot help this task.

Table 12: The Q7 disease classification task. ‘ACC’ is the accuracy rate.

ACC

No pretrain 0.754±0.023

ESM-1 0.747±0.016
ESM-1 FT 0.762±0.024
MSA-1b 0.746±0.019

Ablang-H 0.704±0.033
Ablang-L 0.702±0.040
AntiBERT 0.750±0.016

EATLM 0.756±0.020
EATLM w/o AGP 0.754±0.020
EATLM w/o MPP 0.755±0.020
EATLM w/o AGP & MPP 0.756±0.021

Sequence-level Predictor for Various Disease As before, we train a sequence-level predictor
for each disease. The results are shown in Table 13. Compared with Table 4 in the main text, we
find that good results in the sequence-level predictor do not necessarily mean good results in the
individual-level predictor. It is mainly due to the trimmed mean we use to get individual-level results,
which is a central estimate that is robust to noise labels. Overall, our model has comparable results to
other models in terms of sequence prediction with noisy labels and has better results for individual
diagnosis.

Individual-level Predictor for Various Disease It is observed our evolution-aware EATLM per-
forms the best in the individual-level classifier to determine whether the patient suffering from SARS.
Besides, PALMs significantly outperform PPLMs. The results are shown in Table 14.
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Table 13: Sequence-level predictor for disease diagnosis.

Sequence-level
SARS HIV

AUC F1 MCC AUC F1 MCC

No Pretrain 0.894±0.029 0.801±0.045 0.637±0.078 0.893±0.081 0.622±0.223 0.563±0.209

ESM-1 0.903±0.061 0.799±0.032 0.648±0.093 0.927±0.039 0.739±0.082 0.701±0.080
MSA-1b 0.914±0.025 0.810±0.050 0.671±0.080 0.903±0.064 0.680±0.103 0.617±0.102

Ablang-H 0.915±0.027 0.817±0.038 0.668±0.068 0.895±0.058 0.684±0.087 0.604±0.108
Ablang-L 0.893±0.035 0.801±0.054 0.637±0.099 0.881±0.072 0.668±0.111 0.584±0.131
AntiBERT 0.916±0.026 0.810±0.033 0.661±0.060 0.921±0.046 0.742±0.088 0.689±0.101

EATLM 0.904±0.027 0.808±0.035 0.643±0.069 0.930±0.044 0.744±0.079 0.677±0.105
EATLM w/o AGP 0.904±0.029 0.808±0.039 0.644±0.078 0.933±0.041 0.747±0.077 0.679±0.103
EATLM w/o MPP 0.901±0.026 0.808±0.035 0.648±0.069 0.932±0.037 0.749±0.072 0.682±0.096
EATLM w/o MPP & AGP 0.901±0.026 0.807±0.034 0.645±0.067 0.930±0.045 0.749±0.074 0.678±0.098

Ebola Allergy

AUC F1 MCC AUC F1 MCC

No Pretrain 0.967±0.031 0.796±0.115 0.787±0.113 0.994±0.006 0.976±0.017 0.958±0.019

ESM-1 0.970±0.035 0.845±0.098 0.836±0.097 0.994±0.006 0.988±0.006 0.975±0.011
MSA-1b 0.970±0.026 0.803±0.103 0.799±0.096 0.966±0.019 0.918±0.037 0.835±0.093

Ablang-H 0.951±0.024 0.700±0.087 0.691±0.079 0.821±0.093 0.734±0.091 0.459±0.190
Ablang-L 0.945±0.027 0.719±0.110 0.710±0.100 0.782±0.136 0.735±0.104 0.381±0.262
AntiBERT 0.959±0.030 0.804±0.110 0.795±0.106 0.993±0.008 0.984±0.009 0.970±0.014

EATLM 0.969±0.036 0.848±0.096 0.841±0.094 0.995±0.006 0.988±0.005 0.975±0.011
EATLM w/o AGP 0.967±0.032 0.843±0.097 0.835±0.093 0.996±0.004 0.983±0.006 0.968±0.007
EATLM w/o MPP 0.969±0.037 0.840±0.094 0.828±0.098 0.996±0.004 0.980±0.005 0.961±0.011
EATLM w/o MPP & AGP 0.970±0.025 0.821±0.098 0.811±0.091 0.996±0.002 0.981±0.007 0.963±0.009

SLE MS

AUC F1 MCC AUC F1 MCC

No Pretrain 0.994±0.004 0.982±0.009 0.960±0.012 0.841±0.182 0.847±0.129 0.617±0.378

ESM-1 0.992±0.005 0.979±0.014 0.954±0.021 0.879±0.127 0.845±0.123 0.621±0.358
MSA-1b 0.998±0.001 0.988±0.007 0.973±0.011 0.853±0.150 0.836±0.135 0.594±0.392

Ablang-H 0.994±0.003 0.964±0.022 0.931±0.021 0.836±0.184 0.828±0.108 0.562±0.353
Ablang-L 0.995±0.002 0.977±0.017 0.956±0.021 0.846±0.175 0.852±0.115 0.633±0.351
AntiBERT 0.994±0.009 0.952±0.068 0.919±0.096 0.893±0.095 0.854±0.112 0.701±0.214

EATLM 0.990±0.008 0.970±0.018 0.939±0.018 0.847±0.135 0.798±0.156 0.572±0.294
EATLM w/o AGP 0.990±0.007 0.962±0.031 0.929±0.040 0.846±0.132 0.799±0.162 0.584±0.284
EATLM w/o MPP 0.981±0.021 0.940±0.063 0.891±0.086 0.809±0.185 0.807±0.152 0.535±0.381
EATLM w/o MPP & AGP 0.988±0.010 0.952±0.051 0.915±0.070 0.827±0.159 0.798±0.147 0.547±0.311
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Table 14: Individual-level predictor for disease diagnosis.

Pateint-level
SARS HIV

AUC F1 MCC AUC F1 MCC

No pretrain 0.975±0.033 0.962±0.024 0.902±0.062 0.920±0.092 0.815±0.117 0.776±0.122

ESM-1 0.979±0.017 0.933±0.032 0.824±0.090 0.967±0.056 0.883±0.107 0.849±0.135
MSA-1b 0.989±0.012 0.954±0.033 0.887±0.078 0.962±0.039 0.833±0.068 0.789±0.072

Ablang-H 0.988±0.013 0.968±0.024 0.920±0.063 0.960±0.040 0.788±0.134 0.744±0.137
Ablang-L 0.990±0.015 0.938±0.039 0.843±0.091 0.931±0.069 0.798±0.131 0.742±0.170
AntiBERT 0.983±0.017 0.976±0.022 0.938±0.056 0.969±0.053 0.878±0.112 0.850±0.134

EATLM 0.977±0.028 0.983±0.017 0.955±0.045 0.978±0.054 0.914±0.081 0.884±0.106
EATLM w/o AGP 0.983±0.019 0.973±0.025 0.929±0.066 0.978±0.054 0.903±0.076 0.869±0.099
EATLM w/o MPP 0.987±0.015 0.969±0.024 0.921±0.061 0.976±0.053 0.906±0.092 0.880±0.112
EATLM w/o MPP & AGP 0.986±0.014 0.969±0.023 0.920±0.061 0.973±0.052 0.919±0.096 0.896±0.117

Ebola Allergy

AUC F1 MCC AUC F1 MCC

No Pretrain 0.994±0.017 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000

ESM-1 1.000±0.000 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000
MSA-1b 1.000±0.000 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000

Ablang-H 0.944±0.167 0.767±0.213 0.750±0.254 1.000±0.000 0.960±0.080 0.916±0.169
Ablang-L 0.961±0.100 0.731±0.205 0.703±0.277 1.000±0.000 0.960±0.080 0.916±0.169
AntiBERT 0.978±0.067 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000

EATLM 1.000±0.000 0.947±0.111 0.944±0.114 1.000±0.000 1.000±0.000 1.000±0.000
EATLM w/o AGP 1.000±0.000 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000
EATLM w/o MPP 1.000±0.000 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000
EATLM w/o MPP & AGP 0.994±0.017 0.933±0.133 0.934±0.132 1.000±0.000 1.000±0.000 1.000±0.000

SLE MS

AUC F1 MCC AUC F1 MCC

No Pretrain 1.000±0.000 1.000±0.000 1.000±0.000 0.700±0.200 0.900±0.137 0.893±0.400

ESM-1 1.000±0.000 1.000±0.000 1.000±0.000 0.900±0.200 0.933±0.133 0.900±0.200
MSA-1b 1.000±0.000 1.000±0.000 1.000±0.000 0.700±0.400 0.893±0.137 0.700±0.400

Ablang-H 1.000±0.000 1.000±0.000 1.000±0.000 0.800±0.245 0.893±0.137 0.700±0.400
Ablang-L 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.960±0.080 0.800±0.400
AntiBERT 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000

EATLM 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.867±0.163 0.800±0.245
EATLM w/o AGP 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.867±0.163 0.800±0.245
EATLM w/o MPP 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.827±0.150 0.600±0.374
EATLM w/o MPP & AGP 1.000±0.000 1.000±0.000 1.000±0.000 1.000±0.000 0.827±0.150 0.800±0.374
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