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Abstract

Graph neural networks (GNNs) have shown remarkable capabilities in learn-1

ing from graph-structured data, outperforming traditional multilayer perceptrons2

(MLPs) in numerous graph applications. Despite these advantages, there has been3

limited theoretical exploration into why GNNs are so effective, particularly from4

the perspective of feature learning. This study aims to address this gap by examin-5

ing the role of graph convolution in feature learning theory under a specific data6

generative model. We undertake a comparative analysis of the optimization and7

generalization between two-layer graph convolutional networks (GCNs) and their8

convolutional neural network (CNN) counterparts. Our findings reveal that graph9

convolution significantly enhances the regime of low test error over CNNs. This10

highlights a substantial discrepancy between GNNs and MLPs in terms of general-11

ization capacity, a conclusion further supported by our empirical simulations on12

both synthetic and real-world datasets.13

1 Introduction14

Graph neural networks (GNNs) have recently demonstrated remarkable capability in learning graph15

representations, yielding superior results across various downstream tasks, such as node classifica-16

tions [1, 2, 3], graph classifications [4, 5, 6, 7] and link predictions [8, 9, 10], etc. However, the17

theoretical understanding of why GNNs can achieve such success is still in its infancy. Compared to18

multilayer perceptron (MLPs), GNNs enhance representation learning with an added message passing19

operation [11]. Take graph convoluational network (GCN) [1] as an example, it aggregates a node’s20

attributes with those of its neighbors through a graph convolution operation. This operation, which21

leverages the structural information (adjacency matrix) of graph data, forms the core distinction22

between GNNs and MLPs. Empirical evidence from three node classification tasks, as shown in23

Figure 1, suggests GCNs outperform MLPs. Motivated by the superior performance of GNNs, we24

pose a critical question about graph convolution:25

What role does graph convolution play during gradient descent training, and what mechanism26

enables a GCN to exhibit better generalization after training?27

Several recent studies have embarked on a theoretical exploration of graph convolution’s role in28

GNNs. For instance, [12] considered a setting of linear classification of data generated from a29

contextual stochastic block model [13]. Their findings indicate that graph convolution extends the30

regime where data is linearly separable by a factor of approximately 1/
√
D compared to MLPs, with31

D denoting a node’s expected degree. [14] further investigated the impact of graph convolutions in32

multi-layer networks, showcasing improved non-linear separability. While insightful, these studies33

assume the Bayes optimal classifier of GNNs, thereby missing a comprehensive characterization34

of the GNNs’ optimization process. This leaves a notable gap in understanding of the optimization35
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and generalization capabilities of GNNs, a gap that existing theoretical explorations have yet to36

adequately address.37

Figure 1: Performance comparison be-
tween GCN and MLP on node classifi-
cation tasks.

To respond to the growing demand for a comprehensive38

understanding of graph convolution, we delve into the fea-39

ture learning analysis [15, 16]. In our study, we introduce40

a data generation model—termed SNM-SBM—that com-41

bines a signal-noise model [15, 17] for feature creation42

and a stochastic block model [18] for graph construction.43

Our analysis is centered on the convergence and general-44

ization attributes of two-layer graph convolution networks45

(GCNs) when trained via gradient descent, compared with46

the established outcomes for two-layer convolutional neu-47

ral networks (CNNs) as presented by [15]. While both48

GCNs and CNNs demonstrate to achieve near-zero training49

error, our study effectively sheds light on the discrepancies50

in their generalization abilities. We emphasize the crucial contribution of graph convolution to the51

enhanced performance of GNNs. Our study’s key contributions are as follows:52

• We establish global convergence guarantees for graph neural networks training on data drawn53

from SNM-SBM model by characterizing the signal learning and noise memorization in feature54

learning. We demonstrate that, despite the nonconvex optimization landscape, GCNs can achieve55

zero training error after a polynomial number of iterations.56

• We further establish population loss bounds of overfitted GNN models trained by gradient descent.57

We show that under certain conditions on the signal-to-noise ratio, GNNs trained by gradient58

descent can achieve near zero test error.59

• We show a contrast in the generalization of GCNs and CNNs. We identify a regime where GCNs60

can attain nearly zero test error, whereas the test error of CNNs is greater than a constant. This61

conclusion is further supported by empirical verification on synthetic and real-world datasets.62

2 Problem Setup and Preliminary63

Data model In our approach, we utilize a signal-noise model for feature generation, combined with64

a stochastic block model for graph structure generation. Specifically, we define the feature matrix65

as X ∈ Rn×2d, with n representing the number of samples and 2d being the feature dimensionality.66

Each feature associated with a data point is generated from a signal-noise model (SNM), conditional67

on the Rademacher random variable y ∈ {−1, 1}, and a latent vector µ ∈ Rd:68

x = [x(1),x(2)] = [yµ, ξ], (1)

where x(1),x(2) ∈ Rd, and ξ ∼ N (0, σ2
p · (I−∥µ∥−2

2 ·µµ⊤)) is a Gaussian with σ2
p as the variance.69

The term I − ∥µ∥−2
2 · µµ⊤ is employed to guarantee that the noise vector is orthogonal to the70

signal vector µ. Moreover, we implement a stochastic block model with inter-class edge probability71

p and intra-class edge probability s. Specifically, the entry of adjacency matrix A = (aij)n×n72

is Bernoulli distributed, with aij ∼ Ber(p) when yi = yj , and aij ∼ Ber(s) when yi = −yj .73

The combination of a stochastic block model with the signal-noise model (1) is represented as74

SNM− SBM(n, p, s,µ, σp, d). Note that when p = s = 0, SNM− SBM reduces to a SNM, and75

its samples are used in MLP.76

GCN. Graph neural network (GNNs) fuse graph structure information and node features to learn77

representation of nodes. Consider a two-layer GCN f with graph convolution operation on the78

first layer. The output of the GCN is given by f(W, x̃) = F+1(W+1, x̃)− F−1(W−1, x̃), where79

F+1(W+1, x̃) and F−1(W+1, x̃) are defined as follows:80

Fj(Wj , x̃) =
1

m

m∑
r=1

[
σ(w⊤

j,rx̃
(1)) + σ(w⊤

j,rx̃
(2))
]
. (2)

Here, X̃ ≜ [x̃1, x̃2, · · · , x̃n]
⊤ = D̃−1ÃX ∈ Rn×2d with Ã = A+ In representing the adjacency81

matrix with self-loop, and D̃ is a diagonal matrix that records the degree of each node, namely,82
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D̃ii =
∑

j Ãij . For simplicity we denote Di ≜ D̃ii. Therefore, in contrast to the CNN model (6),83

the GCNs (2) incorporate the normalized adjacency matrix D̃−1Ã, also termed as graph convolution,84

which serves as a pivotal component.85

With the training data S ≜ {xi, yi}ni=1 and A drawn from SNM− SBM(n, p, s,µ, σp, d), we86

consider to learn the network’s parameter W by optimizing the cross-entropy loss function:87

LGCN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W, x̃i)), (3)

where ℓ(y · f(W,x)) = log(1+ exp(−f(W,x) · y)). The gradient descent update for the first layer88

weight W in GCN can be expressed as:89

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LGCN
S (W(t))

= wj, r(t) − η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ξ̃i⟩) · jyiξ̃i −
η

nm

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµ⟩) · jỹiµ, (4)

where we define the loss derivative as ℓ′i ≜ ℓ′(yi · fi) = − exp(−yi·fi)
1+exp(−yi·fi) , “aggregated label” ỹi =90

D−1
i

∑
k∈N (i) yk and “aggregated noise vector ” ξ̃i = D−1

i

∑
k∈N (i) ξk, with N (i) being a set91

that contains all the neighbor of node i. Our primary objective is to demonstrate the enhanced92

feature learning capabilities of GNNs in comparison to CNNs. This is achieved by examining the93

generalization ability of the GNN model through the lens of population loss, which can be formulated94

as LGCN
D (W) = Ex,y∼D=SNM−SBMℓ(y · f(W, x̃)).95

In this study, our primary objective is to demonstrate the enhanced feature learning capabilities of96

GNNs in comparison to CNNs. This is achieved by examining the generalization ability of the97

GNN model through the lens of test error (population loss), which is defined based on unseen test98

data. Given n training data points and the corresponding graph structure, we train a GNN model.99

We then generate a new test data point following the SNM− SBM distribution. Its connection100

in the graph to the training data points are still following the stochastic block model, forming101

an adjacency matrix A′ ∈ R(n+1)×(n+1). We specifically study the population loss by taking102

the expectation over the randomness of the new test data, which is formulated as LGCN
D (W) =103

E(x,y,A′)∼SNM−SBMℓ(y · f(W,x)).104

3 Theoretical Results105

In this section, we introduce our key theoretical findings that explain the optimization and general-106

ization processes of feature learning in GCNs. Through the application of the gradient descent rule107

outlined in Equation (4), we observe that the gradient descent iterate w
(t)
j,r is a linear combination of108

its random initialization w
(0)
j,r , the signal vector µ and the noise vectors in the training data ξi

1 for109

i ∈ [n] [15]. Consequently, for r ∈ [m], the decomposition of weight can be expressed:110

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ
(t)
j,r,i · ∥ξi∥

−2
2 · ξi +

n∑
i=1

ρ(t)
j,r,i

· ∥ξi∥−2
2 · ξi. (5)

where γ
(t)
j,r and ρ

(t)
j,r,i = {ρ(t)j,r,i, ρ

(t)
j,r,i

} serve as coefficients. To facilitate a fine-grained analysis111

for the evolution of coefficients, we introduce the notations ρ
(t)
j,r,i ≜ ρ

(t)
j,r,i1(ρ

(t)
j,r,i ≥ 0), ρ(t)

j,r,i
≜112

ρ
(t)
j,r,i1(ρ

(t)
j,r,i ≤ 0). We refer to Equation (5) as the signal-noise decomposition of w(t)

j,r. Our analysis113

is based on the following assumptions:114

Assumption 3.1. Suppose that115

1. The dimension d is sufficiently large: d = Ω̃(m2∨[4/(q−2)]n4∨[(2q−2)/(q−2)]).116

1By referring to Equation (4), we assert that the gradient descent update moves in the direction of ξ̃i for each
i ∈ [n]. Then we can apply the definition of ξ̃i = D−1

i

∑
k∈N (i) ξk.
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2. The size of training sample n and width of GCNs m adhere to n,m = Ω(polylog(d)).117

3. The learning rate η satisfies η ≤ Õ(min{∥µ∥−2
2 , σ−2

p d−1}).118

4. The edge probability p, s = Ω(
√
log(n)/n) and Ξ ≜ p−s

p+s is a positive constant.119

5. The standard deviation of Gaussian initialization σ0 is chosen such that σ0 ≤120

Õ(m−2/(q−2)n−[1/(q−2)]∨1 ·min{(σp

√
d/(n(p+ s)))−1,Ξ−1∥µ∥−1

2 } .121

We introduce a critical quantity called signal-to-noise ratio (SNR), which can measure the relative122

learning speed between signal and noise, as is calculated through SNR = ∥µ∥2/(σp

√
d). To prepare123

for our main result, we provide an effective SNR for GNNs, defiend as SNRG = ∥µ∥2/(σp

√
d) ·124

(n(p + s))(q−2)/(2q). Given the above assumptions and definitions of SNR, we present our main125

result for GNN as follows:126

Theorem 3.2. Let T = Θ̃(η−1mσ
−(q−2)
0 Ξ−q∥µ∥−q

2 + η−1ϵ−1m3∥µ∥−2
2 ). Under Assumption 3.1,127

if n · SNRq
G = Ω̃(1), then with probability at least 1− d−1, there exists a 0 ≤ t ≤ T such that:128

• The GCN learns the signal: maxr γ
(t)
j,r = Ω̃(1) for j ∈ {±1}.129

• The GCN does not memorize the noises in the training data: maxj,r,i |ρ(T )
j,r,i| =130

Õ(σ0σp

√
d/n(p+ s)).131

• The training loss converges to ϵ, i.e., LGCN
S (W(t)) ≤ ϵ.132

• The trained GCN achieves a small test loss: LGCN
D (W(t)) ≤ c1ϵ+ exp(−c2n

2).133

where c1 and c2 are positive constants.134

Figure 2: Illustration of performance
comparison between GNN and CNN.
The orange band highlights where
GNN can outperform CNN.

Theorem 3.2 reveals that, provided n · SNRq
G = Ω̃(1), the135

GCN can learn the signal by achieving maxr γ
(t)
j,r = Ω(1),136

and on the other hand, the noise memorization during gra-137

dient descent training is suppressed by maxj,r,i |ρ(T )
j,r,i| =138

Õ(σ0σp

√
d/n(p+ s)), given that σ0σp

√
d/n(p+ s) ≪ 1139

according to assumption 3.1. Because the signal learned by140

the network is large enough and much stronger than the noise141

memory, it generalizes well to test sample. Consequently,142

the learned neural network can achieve both small training143

and test losses. It’s worth noting that when the graph’s de-144

gree is reduced to 1, the effective SNR for GNNs converges145

to the vanilla SNR, namely SNRG = SNR. This reduces to146

CNN, whose feature learning is established by [15].147

Our result show that whether a graph neural network learns148

the signal or noise depends on the SNR, and the number of149

samples n, at the same time. According to [15], who give the150

characterization of feature learning of CNNs, CNNs can focus on the signal learning and generalize151

well on the unseen data when n · SNRq = Ω̃(1). On the other hand, when n · SNRq = Õ(1), CNNs152

mainly memorize the noise from data, thus achieve a large test error. To highlight the differences in153

generalization between GNNs and CNNs, we show that, if n · SNRq
G = Ω̃(1) and n · SNRq = Õ(1),154

then the trained GNNs achieve small test error, given by LGCN
D (W(t)) = o(1). In contrast, the155

trained CNNs achieve large test error, LCNN
D (W(t)) ≥ C. The first condition n · SNRq

G = Ω̃(1) is156

by Theorem 3.2, while second the condition n · SNRq
G = Ω̃(1) is based on the findings of [15] for157

CNN. As a conclusion, we clearly provide a condition that GNNs can generalize better than CNNs.158

This observation is further visualized in Figure 2. Through the precise characterization of feature159

learning from optimization to generalization for GNN, we have successfully demonstrated that the160

graph neural network can gain superiority with the help of graph convolution.161
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A Appendix for Problem Setup271

Notations We use lower bold-faced letters for vectors, upper bold-faced letters for matrices, and272

non-bold-faced letters for scalars. For a vector v, its ℓ2-norm is denoted as ∥v∥2. For a matrix A,273

we use ∥A∥2 to denote its spectral norm and ∥A∥F for its Frobenius norm. We employ standard274

asymptotic notations such as O(·), o(·), Ω(·), and Θ(·) to describe the limiting behavior. We use275

Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors in these notations respectively. Moreover, we276

denote an = poly(bn) if an = O((bn)
p) for some positive constant p and an = polylog(bn) if277

an = poly(log(bn)). Lastly, sequences of integers are denoted as [m] = {1, 2, . . . ,m}.278

The signal-noise model we have adopted is inspired by the structure of an image composed of multiple279

patches, where we consider a two-patch model for simplicity. The first patch x(1), represented by280

the signal vector, corresponds to the target in an image. The second patch x(2), represented by the281

noise vector, corresponds to the background. It’s worth mentioning that a series of recent works282

[17, 15, 19, 20] have explored similar signal-noise models to illustrate the feature learning process of283

neural networks.284

CNN. We introduce a two-layer CNN model, denoted as f , which utilizes a non-linear activation285

function, σ(·). Specifically, we employ a polynomial ReLU activation function defined as σ(z) =286

max{0, z}q, where q > 2 is a hyperparameter. Mathematically, given the input data x, the CNN’s287

output is represented as f(W,x) = F+1(W+1,x) − F−1(W−1,x), where F+1(W+1,x) and288

F−1(W+1,x) are defined as follows:289

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx
(1)) + σ(w⊤

j,rx
(2))
]
, (6)

where m is the width of hidden layer, the second layer parameters are fixed as either +1 or −1,290

and wj,r ∈ Rd refers to the weight of the first layer’s r-th. The symbol W collectively represents291

the model’s weights. Moreover, each weight in the first layer is initialized from a random draw292

of a Gaussian random variable, wj,r ∼ N (0, σ2
0 · Id×d) for all r ∈ [m] and j ∈ {−1, 1}, with σ0293

regulating the initialization magnitude for the first layer’s weight.294

Upon receiving training data S ≜ {xi, yi}ni=1 drawn from SNM− SBM(n, p = 0, s = 0,µ, σp, d),295

we aim to learn the parameter W by by minimizing the empirical cross-entropy loss function:296

LCNN
S (W) =

1

n

n∑
i=1

ℓ(yi · f(W,xi)), (7)
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where ℓ(y · f(W,x)) = log(1 + exp(−f(W,x) · y)). The update rule for the gradient descent used297

in the CNN is then given as:298

w
(t+1)
j,r = w

(t)
j,r − η · ∇wj,r

LCNN
S (W(t))

= w
(t)
j,r −

η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, ξi⟩) · jyiξi −
η

nm

n∑
i=1

ℓ
′(t)
i · σ′(⟨w(t)

j,r, yiµ⟩) · jµ, (8)

where we define the loss derivative as ℓ′i ≜ ℓ′(yi · fi) = − exp(−yi·fi)
1+exp(−yi·fi) . It’s important to clarify that299

the model we use for the MLP part is a CNN. We categorize it as an MLP for comparison purposes.300

B Remark on Assumption 3.1301

Remark B.1. (1) The requirement for the dimension d ensures that the learning process operates in302

a suitably over-parameterized environment [21, 15] when the second layer remains fixed. (2) It’s303

necessary for the sample size and neural network width to be at least polylogarithmic in the dimension304

d. This condition ensures certain statistical properties of the training data and weight initialization305

hold with a probability of at least 1− d−1. (3) The condition on η is to ensure that gradient descent306

can effectively minimize the training loss. (4) The assumption regarding edge probability guarantees307

a sufficient level of concentration in the degree and an adequate display of homophily of graph data.308

(5) Lastly, the conditions imposed on initialization strength σ0 are intended to guarantee that the309

training loss can effectively converge to a sufficiently small value and to discern the differential310

learning speed between signal and noise.311

C Related Work312

Role of Graph Convolution in GNNs. Enormous empirical studies of various GNNs models with313

graph convolution [22, 23, 24, 25, 26, 27] have been demonstrating that graph convolutions can314

enhance the performance of traditional classification methods, such as a multi-layer perceptron (MLP).315

Towards theoretically understanding the role of graph convolution, [28] identify conditions under316

which MLPs and GNNs extrapolate, thereby highlighting the superiority of GNNs for extrapolation317

problems. Their theoretical analysis leveraged the concept of the over-parameterized networks and318

the neural tangent kernel [29]. [30] use a similar approach to examine the role of graph convolution319

in deep GNNs within a node classification setting. They discover that excessive graph convolution320

layers can hamper the optimization and generalization of GNNs, corroborating the well-known321

over-smoothing issue in deep GNNs [31]. Another work by [32] propose two smoothness metrics322

to measure the quantity and quality of information derived from graph data, along with a novel323

attention-based framework. Some rent works [12, 14, 23] have demonstrated that graph convolution324

broadens the regime in which a multi-layer network can classify nodes, compared to methods that325

do not utilize the graph structure, especially when the graph is dense and exhibits homophily. [33]326

attribute the major performance gains of GNNs to their inherent generalization capability through327

graph neural tangent kernel (GNTK) and extrapolation analysis . As for neural network theory, these328

works either gleaned insights from GNTK [34, 30, 35] or studied the role of graph convolution within329

a linear neural network setting. Unlike them, our work is beyond NTK and investigates a more330

realistic setting concerning the convergence and generalization of neural networks in terms of feature331

learning.332

Feature Learning in Neural Networks. This work builds upon a growing body of research on how333

neural networks learn features. [17] formulated a theory illustrating that when data possess a “multi-334

view” feature, ensembles of independently trained neural networks can demonstrably improve test335

accuracy. Further, [16] demonstrated that adversarial training can purge certain small dense mixtures336

from the hidden weights during the training process of a neural network, thus refining the hidden337

weights. [36] established that the initial gradient update contains a rank-1 ‘spike’, which leads to an338

alignment between the first-layer weights and the linear component feature of the teacher model. [15]339

investigated the benign overfitting phenomenon in training a two-layer convolutional neural network340

(CNN), illustrating that under certain conditions related to the signal-to-noise ratio, a two-layer CNN341

trained by gradient descent can achieve exceedingly low test loss through feature learning. Alongside342

related works [37, 19, 38, 39, 40, 41, 42, 43, 44], all these studies have highlighted the existence of343
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feature learning in neural networks during gradient descent training, forming a critical line of inquiry344

that this work continues to explore.345

D Conclusion and Limitations346

This paper utilizes a signal-noise decomposition to study the signal learning and noise memorization347

process in training a two-layer GCN. We provide specific conditions under which a GNN will348

primarily concentrate on signal learning, thereby achieving low training and testing errors. Our349

results theoretically demonstrate that GCNs, by leveraging structural information, outperform CNNs350

in terms of generalization ability across a broader benign regime. As a pioneering work that studies351

feature learning of GNNs, our theoretical framework is constrained to examining the role of graph352

convolution within a specific two-layer GCN and a certain data generalization model. In fact, the353

feature learning of a neural network can be influenced by a myriad of other factors, such as the depth354

of GNN, activation function, optimization algorithm, and data model [44, 19, 40]. Future work can355

extend our framework to consider the influence of a wider array of factors on feature learning within356

GCNs.357

E Proof Sketches358

In this section, we present proof sketches inspired by the study of feature learning in CNNs [15]. This359

foundation allows us to extend and adapt these concepts to a novel context for GNNs. We discuss360

the primary challenges encountered during the study of GNN, and illustrate the key techniques we361

employed in our proofs to overcome these challenges. These main techniques are elaborated in the362

following sections, and detailed proofs can be found in the appendix.363

E.1 Iterative of coefficients under graph convolution364

To analyze the feature learning process of graph neural networks during gradient descent training, we365

introduce an iterative methodology, based on the signal-noise decomposition in decomposition (5)366

and gradient descent update (4). The following lemma offers us a means to monitor the iteration of367

the signal learning and noise memorization under graph convolution:368

Lemma E.1. The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

in decomposition (5) adhere to the following equa-369

tions:370

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0, (9)

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµi⟩)yiỹi∥µ∥22, (10)

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j), (11)

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

+
η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j). (12)

Lemma E.1 simplifies the analysis of the feature learning in GCNs by reducing it to the examination371

of the discrete dynamical system expressed by Equations (10 - 12). Our proof strategy emphasizes an372

in-depth evaluation of the coefficient values γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

throughout the training. Note that graph373

convolution aggregates information from neighboring nodes to the central node, which often leads to374

the loss of statistical stability for the aggregated noise vectors and labels. To overcome this challenge,375

we utilize a dense graph input, achieved by setting the edge probability as stated in 3.1.376

E.2 A two-phase dynamics analysis377

We then provide a two-stage dynamics analysis based on the behavior of loss derivative to track the378

trajectory of coefficients for signal learning and noise memorization:379
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Stage 1. Intuitively, the initial neural network weights are small enough so that the neural network380

at initialization has constant level cross-entropy loss derivatives on all the training data: ℓ
′(0)
i =381

ℓ′[yi · f(W(0), x̃i)] = Θ(1) for all i ∈ [n]. This is guaranteed under Condition 3.1 on σ0. Motivated382

by this, the dynamics of the coefficients in Equations (10 - 12) can be greatly simplified by replacing383

the ℓ
′(t)
i factors by their constant upper and lower bounds. The following lemma summarizes our384

main conclusion at stage 1 for signal learning:385

Lemma E.2. Under the same conditions as Theorem 3.2, there exists T1 =386

Õ(η−1mσ2−q
0 Ξ−q∥µ∥−q

2 ) such that maxr γ
(T1)
j,r = Ω(1) for j ∈ {±1}, and |ρ(t)j,r,i| =387

O
(
σ0σp

√
d/
√

n(p+ s)
)

for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.388

The proof can be found in Appendix I.1. Lemmas E.2 leverages the period of training when the389

derivatives of the loss function are of a constant order. It’s important to note that graph convolution390

plays a significant role in diverging the learning speed between signal learning and noise memorization391

in this first stage. Note that graph convolution can potentially cause unstable iterative dynamics of392

coefficients during the feature learning process. To mitigate this issue, we introduce “homophily” by393

setting p > s, which helps in stabilizing the coefficient iterations.394

Originally, the learning speeds are roughly determined by ∥µ∥2 and ∥ξ∥2 respectively without graph395

convolution [15]. Instead, with graph convolution, the learning speeds are approximately determined396

by |ỹ|∥µ∥2 and ∥ξ̃∥2 respectively. Here, |ỹ|∥µ∥2 is close to ∥µ∥2, but ∥ξ̃∥2 is much smaller than397

∥ξ∥2 (see Figure 6 for an illustration). This means that graph convolution can slow down noise398

memorization, thus enabling GNNs to focus more on signal learning.399

Stage 2. Building on the results from the first stage, we then move to the second stage of the training400

process. In this stage, the loss derivatives are no longer constant, and we demonstrate that the training401

error can be minimized to an arbitrarily small value. Importantly, the scale differences established402

during the first stage of learning continue to be maintained throughout the second stage:403

Lemma E.3. Under the same conditions as Theorem 3.2, for any t ∈ [T1, T ], it holds that404

maxr γ
(T1)
j,r ≥ 2,∀j ∈ {±1} and |ρ(t)j,r,i| ≤ σ0σp

√
d/(n(p+ s)) for all j ∈ {±1}, r ∈ [m]405

and i ∈ [n]. Moreover, we have LGCN
S (W(t)) ≤ ϵ.406

Lemma E.3 presents two primary outcomes. Firstly, throughout this training phase, it ensures that the407

coefficients of noise vectors, denoted as ρ(t)j,r,i, retain a significantly small value while coefficients of408

feature vector, denoted as γ(t)
j,r can achieve large value. Furthermore, it offers a convergence for GNN,409

showing the training loss will tend to receive an arbitrarily small value.410

E.3 Test error analysis411

Finally, it is a challenge for the generalization analysis of graph neural networks. To address this412

issue, we introduce an expectation over the distribution for a single data point. We consider a new413

data point (x, y) drawn from the distribution SNM-SBM. The lemma below further gives an upper414

bound on the test loss of GNNs post-training:415

Lemma E.4. Let T be defined in Theorem 3.2. Under the same conditions as Theorem 3.2, for any416

t ≤ T with LGCN
S (W(t)) ≤ 1, it holds that LGCN

D (W(t)) ≤ c1 · LGCN
S (W(t)) + exp(−c2n

2).417

The proof is presented in the appendix. Lemma E.4 demonstrates that GNNs achieve a small test418

error (benign overfitting) and completes the last step of feature learning theory.419

F Experiments420

In this section, we validate our theoretical findings through numerical simulations using synthetic421

data, specifically generated according to the SNM-SBM model. We set the signal vector, µ, to422

drawn from a standard normal distribution N (0, I). The noise vector, ξ, is drawn from a Gaussian423

distribution N (0, σ2
pI). We train a two-layer CNN defined as per equation (6) and a two-layer GNN424

as per equation (2) with polynomial ReLU q = 3. We used the gradient descent method with a425
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learning rate of η = 0.03. The primary task we focused on was node classification, where the goal426

was to predict the class labels of nodes in a graph.427

Feature learning dynamics. Firstly, we display the training loss, test loss, training accuracy, and428

test accuracy for both the CNN and GNN in Figure 3. In this case, we further set the training data size429

to n = 250, input dimension to d = 500, noise strength to σp = 20, and edge probability to p = 0.5,430

s = 0.08. We observe that both the GNN and CNN can achieve zero training error. However, while431

the GNN obtains nearly zero test error, the CNN fails to generalize effectively to the test set. This432

simulation result serves to validate our theoretical results in Theorem 3.2.433

Figure 3: Training loss, testing loss, training accuracy, and testing accuracy for both CNN and GNN
over a span of 100 training epochs.

Verification via real-world data. We conducted an experiment using real-world data, specifically434

by replacing the synthetic feature with MNIST input features. We select numbers 1 and 2 from the ten435

digital numbers, and applied both CNN and GNN models as described in our paper. Detailed results436

and visualizations can be found in the Figure 4. The results were consistent with our theoretical437

conclusions, reinforcing the insights derived from our analysis. We believe that this experiment adds438

a valuable dimension to our work, bridging the gap between theory and practice.439

Phase diagram. We then explore a range of Signal-to-Noise Ratios (SNRs) from 0.045 to 0.98,440

and a variety of sample sizes, n, ranging from 200 to 7200. Based on our results, we train the neural441

network for 200 steps for each combination of SNR and sample size n. After training, we calculate442

the test accuracy for each run. The results are presented as a heatmap in Figure 5. Compared to443

CNNs, GCNs demonstrate a perfect accuracy score of 1 across a more extensive range in the SNR444

and n plane, indicating that GNNs have a broader benign overfitting regime with high test accuracy.445

This further validates our theoretical findings.446

Figure 4: The verification of our theoretical result with a real-world data. The input feature is form
MNIST dataset, where we select number 1 and 2 as two classes. The graph structure is sampled
form stochastic block model. We show the training loss, testing loss, training accuracy, and testing
accuracy for both CNN and GNN over a span of 100 training epochs. The results confirm the benefit
of GNN over CNN on the real world dataset.

G Preliminary Lemmas447

In this section, we present preliminary lemmas which form the foundation for the proofs to be detailed448

in the subsequent sections. The proof will be developed after the lemmas presented.449

G.1 Preliminary Lemmas without Graph Convolution450

In this section, we introduce necessary lemmas that will be used in the analysis without graph451

convolution, following the study of feature learning in CNN [15]. In particular, Lemma G.1 states452
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(a) CNN (b) GCN

Figure 5: Test accuracy heatmap for CNNs and GCNs after training.

that noise vectors are “almost orthogonal” to each other and Lemma G.2 indicates that random453

initialization results in a controllable inner product between the weights at initialization and the data454

vectors.455

Lemma G.1. [15] Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,456

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2,

|⟨ξi, ξi′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ),

for all i, i′ ∈ [n].457

Lemma G.2. [15] Suppose that d = Ω(log(nm/δ)), m = Ω(log(1/δ)). Then with probability at458

least 1− δ,459

|⟨w(0)
j,r ,µ⟩| ≤

√
2 log(8m/δ) · σ0∥µ∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d,

for all r ∈ [m], j ∈ {±1} and i ∈ [n]. Moreover,460

σ0∥µ∥2/2 ≤ max
r∈[m]

j · ⟨w(0)
j,r ,µ⟩ ≤

√
2 log(8m/δ) · σ0∥µ∥2,

σ0σp

√
d/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξi⟩ ≤ 2
√
log(8mn/δ) · σ0σp

√
d,

for all j ∈ {±1} and i ∈ [n].461

G.2 Preliminary Lemmas on Graph Properties462

We now introduce important lemmas that are critical to our analysis. The key idea to ensure a463

relatively dense graph. In a sparser graph, the concentration properties of graph degree (Lemma464

G.3), the graph convoluted label (G.4), the graph convoluted noise vector (Lemma G.7 and Lemma465

G.5) are no longer guaranteed. This lack of concentration affects the behavior of coefficients during466

gradient descent training, leading to deviations from our current main results.467

Lemma G.3 (Degree concentration). Let p, s = Ω

(√
log(n/δ)

n

)
and δ > 0, then with probability at468

least 1− δ, we have469

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Proof. It is known that the degrees are sums of Bernoulli random variables.470

Di = 1 +

n∑
j ̸=i

aij ,
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where aij = [A]ij . Hence, by the Hoeffding’s inequality, with probability at least 1− δ/n471

|Di − E[Di]| <
√
log(n/δ)(n− 1).

Note that aii = 1 is a fixed value, which means that it is not a random variable, thus the denominator472

in the exponential part is n− 1 instead of n. Now we calculate the expectation of degree:473

E[Dii] = 1 +
n

2
s+ (

n

2
− 1)p = n(p+ s)/2 + 1− p,

then we have474

|Di − n(p+ s)/2 + 1− p| ≤
√
n log(n/δ).

Because that p, s = Ω

(√
log(n/δ)

n

)
, we further have,475

n(p+ s)/4 ≤ Di ≤ 3n(p+ s)/4.

Applying a union bound over i ∈ [n] conclude the proof.476

Lemma G.4. Suppose that δ > 0 and n ≥ 8 p+s
(p−s)2 log(4/δ). Then with probability at least 1− δ,477

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

Proof of Lemma G.4. By Hoeffding’s inequality, with probability at least 1− δ/2, we have478 ∣∣∣∣∣ 1Di

∑
k∈N (i)

yk − p− s

p+ s
yi

∣∣∣∣∣ ≤
√

log(4/δ)

2n(p+ s)
.

Therefore, as long as n ≥ 8 p+s
(p−s)2 log(4/δ), we have:479

1

2

p− s

p+ s
|yi| ≤ |ỹi| ≤

3

2

p− s

p+ s
|yi|.

This proves the result for the stability of sign of graph convoluted label.480

Lemma G.5. Suppose that δ > 0 and d = Ω(n2(p+ s)2 log(4n2/δ)). Then with probability at least481

1− δ,482

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)),

for all i ∈ [n].483

Proof of Lemma G.5. It is known that:484

∥ξ̃i∥22 =
1

D2
i

d∑
j=1

(
Di∑
k=1

ξjk

)2

=
1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk +
1

D2
i

d∑
j=1

Di∑
k ̸=k′

ξjk′ξjk.

By Bernstein’s inequality, with probability at least 1− δ/(2n) we have485 ∣∣∣∣∣∣
d∑

j=1

Di∑
k=1

ξ2jk − σ2
pdDi

∣∣∣∣∣∣ = O(σ2
p ·
√
dDi log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)/(n(p+ s))), we have486

3σ2
pdDi/4 ≤

d∑
j=1

Di∑
k=1

ξ2jk ≤ 5σ2
pdDi/4.
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By Lemma G.3, we have,487

2σ2
pd/(4n(p+ s)) ≤ 1

D2
i

d∑
j=1

Di∑
k=1

ξ2jk ≤ 6σ2
pd/(4n(p+ s)).

Moreover, clearly ⟨ξk, ξk′⟩ has mean zero. For any k, k′ with k ̸= k′, by Bernstein’s inequality, with488

probability at least 1− δ/(2n2) we have489

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Applying a union bound we have that with probability at least 1− δ,490

|⟨ξk, ξk′⟩| ≤ 2σ2
p ·
√

d log(4n2/δ).

Therefore, as long as d = Ω(n2(p+ s)2 log(4n2/δ)), we have491

σ2
pd/(4n(p+ s)) ≤ ∥ξ̃i∥22 ≤ 3σ2

pd/(4n(p+ s)).

Remark G.6. We compare the noise vector both before and after applying graph convolution. By492

examining Lemma G.1 and Lemma G.5, we discover that the expectation of the ℓ2 norm of noise493

vector is reduced by a factor of
√
n(p+ s)/2. This factor represents the square root of the expected494

degree of the graph, indicating a significant change in the noise characteristics as a result of the495

graph convolution process. We provide a demonstrative visualization in Figure 6.496

497

Figure 6: An illustrative example of noise vector before and after graph aggregation. In this example,
we consider d = 3 and all degree are 1. The black vectors stand for noise vectors ξ before graph
convolution. Each of them are orthogonal to each other. The red vectors represent noise vectors after
graph convolution ξ̃. They are graph convoluted noise vectors of two original noise vectors. Note
that the ℓ2 norm between two kinds of vector follows ∥ξ̃∥2 =

√
2
2 ∥ξ∥2. This plot demonstrates how

graph convolution shrinks the ℓ2 norm of noise vectors.

Lemma G.7. Suppose that d = Ω(n(p+ s) log(nm/δ)), m = Ω(log(1/δ)). Then with probability498

at least 1− δ,499

|⟨w(0)
j,r , ξ̃i⟩| ≤ 4

√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

σ0σp

√
d/(n(p+ s))/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξ̃i⟩ ≤ 2
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)),

for all j ∈ {±1} and i ∈ [n].500

Proof of Lemma G.7. According to the fact that the weight wj,r(0) and noise vector ξ are sampled501

from Gaussian distribution, we know that ⟨w(0)
j,r , ξ̃i⟩ is also Gaussian. By Lemma G.5, with probability502

at least 1− δ/4, we have that503

σp

√
d/(n(p+ s))/

√
2 ≤ ∥ξ̃i∥2 ≤

√
3/2 · σp

√
d/(n(p+ s))
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holds for all i ∈ [n]. Therefore, applying the concentration bound for Gaussian variable, we obtain504

that505

|⟨w(0)
j,r , ξ̃i⟩| ≤ 4

√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)).

Next we finish the argument for the lower bound of maximum through the follow expression:506

P (max⟨w(0)
j,r , ξ̃i⟩ ≥ σ0σp

√
d/(n(p+ s))/4) = 1− P (max⟨w(0)

j,r , ξ̃i⟩ < σ0σp

√
d/(n(p+ s))/4)

= 1− P (max⟨w(0)
j,r , ξ̃i⟩ < σ0σp

√
d/(n(p+ s))/4)2m

≥ 1− δ/4.

Together with Lemma G.5, we finally obtain that507

σ0σp

√
d/(n(p+ s))/4 ≤ max

r∈[m]
j · ⟨w(0)

j,r , ξ̃i⟩ ≤ 2
√
log(8mn/δ) · σ0σp

√
d/(n(p+ s)).

508

H General Lemmas for Iterative Coefficient Analysis509

In this section, we deliver lemmas that delineate the iterative behavior of coefficients under gradient510

descent. We commence with proving the coefficient update rules as stated in Lemma E.1 in Section511

H.1. Subsequently, we establish the scale of training dynamics in Section H.2.512

H.1 Coefficient update rule513

Lemma H.1 (Restatement of Lemma E.1). The coefficients γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

defined in Eq. (5) satisfy514

the following iterative equations:515

γ
(0)
j,r , ρ

(0)
j,r,i, ρ

(0)
j,r,i

= 0,

γ
(t+1)
j,r = γ

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
′(t)
i σ′(⟨w(t)

j,r, ỹiµ⟩)yiỹi∥µ∥
2
2,

ρ
(t+1)
j,r,i = ρ

(t)
j,r,i −

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = j),

ρ(t+1)
j,r,i

= ρ(t)
j,r,i

− η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · 1(yk = −j),

for all r ∈ [m], j ∈ {±1} and i ∈ [n].516

Remark H.2. This lemma serves as a foundational element in our analysis of dynamics. Initially, the517

study of neural network dynamics under gradient descent required us to monitor the fluctuations in518

weights. However, this Lemma enables us to observe these dynamics through a new lens, focusing on519

two distinct aspects: signal learning and noise memorization. These are represented by the variables520

γ
(t)
j,r and ρ

(t)
j,r,i, respectively. Furthermore, the selection of our data model was a conscious decision,521

designed to clearly separate the signal learning from the noise memorization aspects of learning.522

By maintaining a clear distinction between signal and noise, we can conduct a precise analysis of523

how each model learns the signal and memorizes the noise. This approach not only simplifies our524

understanding but also enhances our ability to dissect the underlying mechanisms of learning.525

Proof of Lemma H.1. Basically, the iteration of coefficients is derived based on gradient descent526

rule (4) and weight decomposition (5). We first consider γ̂(0)
j,r , ρ̂

(0)
j,r,i = 0 and527

γ̂
(t+1)
j,r = γ̂

(t)
j,r −

η

nm
·

n∑
i=1

ℓ
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·
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k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)

j,r, ξ̃k⟩) · ∥ξi∥
2
2 · yk,
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Taking above equations into Equation (4), we can obtain that528

w
(t)
j,r = w

(0)
j,r + j · γ̂(t)

j,r · ∥µ∥
−2
2 · µ+

n∑
i=1

ρ̂
(t)
j,r,i∥ξi∥

−2
2 · ξi.

This result verifies that the iterative update of the coefficients is directly driven by the gradient529

descent update process. Furthermore, the uniqueness of the decomposition leads us to the precise530

relationships γ(t)
j,r = γ̂

(t)
j,r and ρ

(t)
j,r,i = ρ̂

(t)
j,r,i. Next, we examine the stability of the sign associated531

with noise memorization by employing the following telescopic analysis. This method allows us to532

investigate the continuity and consistency of the noise memorization process, providing insights into533

how the system behaves over successive iterations.534

ρ
(t)
j,r,i = −

t−1∑
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∑
k∈N (i)

D−1
k

η

nm
· ℓ′(s)k · σ′(⟨w(s)

j,r , ξ̃k⟩) · ∥ξi∥
2
2 · jyk.

Recall the sign of loss derivative is given by the definition of the cross-entropy loss, namely, ℓ′(t)i < 0.535

Therefore,536

ρ
(t)
j,r,i = −

t−1∑
s=0

η

nm
·
∑

k∈N (i)

D−1
k · ℓ′(t)k · σ′(⟨w(t)
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2
2 · 1(yk = j), (13)

ρ(t)
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= −
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k · ℓ′(t)k · σ′(⟨w(t)
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2
2 · 1(yk = −j). (14)

Writing out the iterative versions of (13) and (14) completes the proof.537

Remark H.3. The proof strategy follows the study of feature learning in CNN as described in [15].538

However, compared to CNNs, the decomposition of weights in GNN is notably more intricate. This539

complexity is particularly evident in the dynamics of noise memorization, as represented by Equations540

13) and 14). The reason for this increased complexity lies in the additional graph convolution541

operations within GNNs. These operations introduce new interaction and dependencies, making the542

analysis of weight dynamics more challenging and nuanced.543

H.2 Scale of training dynamics544

Our proof hinges on a meticulous evaluation of the coefficient values γ(t)
j,r , ρ

(t)
j,r,i, ρ

(t)
j,r,i

throughout the545

entire training process. In order to facilitate a more thorough analysis, we first establish the following546

bounds for these coefficients, which are maintained consistently throughout the training period.547

Consider training the Graph Neural Network (GNN) for an extended period up to T ∗. We aim to548

investigate the scale of noise memorization in relation to signal learning.549

Let T ∗ = η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d) be the maximum admissible iterations. De-550

note α = 4 log(T ∗). In preparation for an in-depth analysis, we enumerate the necessary conditions551

that must be satisfied. These conditions, which are essential for the subsequent examination, are also552

detailed in Condition 3.1:553

η = O
(
min{nm/(qσ2

pd), nm/(q2q+2αq−2σ2
pd), nm/(q2q+2αq−2∥µ∥22)}

)
, (15)

σ0 ≤ [16
√

log(8mn/δ)]−1 min
{
Ξ−1∥µ∥−1

2 , (σp

√
d/(n(p+ s)))−1

}
, (16)

d ≥ 1024 log(4n2/δ)α2n2. (17)

Denote β = 2maxi,j,r{|⟨w(0)
j,r , ỹi · µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|}, it is straightforward to show the following554

inequality:555

4max

{
β, 8n

√
log(4n2/δ)

d
α

}
≤ 1. (18)
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First, by Lemma G.4 with probability at least 1− δ, we can upper bound β by 4
√

log(8mn/δ) · σ0 ·556

max{Ξ∥µ∥2, σp

√
d/(n(p+ s))}. Combined with the condition (16), we can bound β by 1. Second,557

it is easy to check that 8n
√

log(4n2/δ)
d α ≤ 1 by inequality (17).558

Having established the values of α and β at hand, we are now in a position to assert that the following559

proposition holds for the entire duration of the training process, specifically for 0 ≤ t ≤ T ∗.560

Proposition H.4. Under Condition 3.1, for 0 ≤ t ≤ T ∗, where T ∗ =561

η−1poly(ϵ−1, ∥µ∥−1
2 , d−1σ−2

p , σ−1
0 , n,m, d), we have that562

0 ≤ γ
(t)
j,r , ρ

(t)
j,r,i ≤ α, (19)

0 ≥ ρ(t)
j,r,i

≥ −α, (20)

for all r ∈ [m], j ∈ {±1} and i ∈ [n], where α = 4 log(T ∗).563

To establish Proposition H.4, we will employ an inductive approach. Before proceeding with the564

proof, we need to introduce several technical lemmas that are fundamental to our argument.565

We note that although the setting is slightly different from the case in [15]. With the same analysis,566

we can obtain the following result.567

Lemma H.5 ([15]). For any t ≥ 0, it holds that ⟨w(t)
j,r−w

(0)
j,r ,µ⟩ = j ·γ(t)

j,r for all r ∈ [m], j ∈ {±1}.568

In the subsequent three lemmas, our proof strategy is guided by the approach found in [15]. However,569

we extend this methodology by providing a fine-grained analysis that takes into account the additional570

complexity introduced by the graph convolution operation.571

Lemma H.6. Under Condition 3.1, suppose (19) and (20) hold at iteration t. Then572
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where ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ , for all r ∈ [m], j ∈ {±1} and i ∈ [n].573

Remark H.7. Lemma H.6 asserts that the inner product between the updated weight and the graph574

convolution operation closely approximates the graph-convoluted noise memorization.575

Proof of Lemma H.6. It is known that,576
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where we define ρ̂j,r,i ≜
∑

k∈N (i) D
−1
i

∑
i′ ̸=k ρ

(t)
j,r,i′ the second inequality is by Lemma G.1 and the577

last inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in (19).578
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Similarly, we can show that:579
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where the first inequality is by Lemma G.1 and the second inequality is by |ρ(t)j,r,i′ |, |ρ
(t)
j,r,i′ | ≤ α in580

(19), which completes the proof.581

Lemma H.8. Under Condition 3.1, suppose (19) and (20) hold at iteration t. Then582
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for all r ∈ [m] and j ̸= yi. If max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1), we further have that Fj(W

(t)
j , x̃i) = O(1).583

Remark H.9. Lemma H.8 further establishes that the update in the direction of ξ̃ can be constrained584

within specific bounds when j ̸= yi. As a result, the output function remains controlled and does not585

exceed a constant order.586

Proof of Lemma H.8. For j ̸= yi, we have that587
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where the first inequality is by Lemma H.6 and the second inequality is due to ρ̂
(t)
j,r,i ≤ 0 based on590

Lemma G.4. Then we can get that591
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where the first inequality is by (21), (22) and the second inequality is by (18) and max{γ(t)
j,r , ρ

(t)
j,r,i} =592

O(1).593

Lemma H.10. Under Condition 3.1, suppose (19) and (20) hold at iteration t. Then594
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for all r ∈ [m], j = yi and i ∈ [n]. If max{γ(t)
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j,r,i} = O(1), we further have that595
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Remark H.11. Lemma H.10 further establishes that the update in the direction of µ and ξ̃ can be597

constrained within specific bounds when j = yi. As a result, the output function remains controlled598

and does not exceed a constant order with an additional condition.599

Proof of Lemma H.10. For j = yi, we have that600
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j,r, ỹi · µ) + σ(⟨w(t)

j,r, ξ̃i⟩)]

≤ 2 · 3q max
j,r,i

{
γ
(t)
j,r , |ρ̂

(t)
j,r,i|, |⟨w

(0)
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Then the second inequality is by (18) where β = 2maxi,j,r{|⟨w(0)
j,r , ỹi · µ⟩|, |⟨w

(0)
j,r , ξ̃i⟩|} ≤ 1 and604

condition that max{γ(t)
j,r , ρ

(t)
j,r,i} = O(1).605
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Equipped with Lemmas H.5 - H.10, we are now prepared to prove Proposition H.4. These lemmas606

provide the foundational building blocks and insights necessary for our proof, setting the stage for a607

rigorous and comprehensive demonstration of the proposition608

Proof of Proposition H.4. Following a similar approach to the proof found in [15], we employ an609

induction method. This technique allows us to build our argument step by step, drawing on established610

principles and extending them to our specific context, thereby providing a robust and systematic611

demonstration.612

At the initial time step t = 0, the outcome is clear since all coefficients are set to zero.613

Next, we hypothesize that there exists a time T̃ less that T ∗ during which Proposition H.4 holds true614

for every moment within the range 0 ≤ t ≤ T̃ − 1. Our objective is to show that this proposition615

remains valid at t = T̃ .616

We aim to validate that equation (20) is applicable at t = T̃ , meaning that,617
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for the given parameters. It’s important to note that ρ(t)
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= 0 when j = yi. So we only need to618

consider instances where j ̸= yi.619
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Lemma H.6 leads us to the following relationships:621
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with the final inequality being supported by the induction hypothesis.623
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where we apply the inequalities ℓ
′(T̃−1)
i ≤ 1 and ∥ξi∥2 = O(σ2

pd), and use the conditions η =625
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Next, we aim to show that (19) is valid for t = T̃ . We can express:627
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with the last inequality being a result of Lemma H.8. Additionally, we recall the update rules for628
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We define tj,r,i as the final moment t < T ∗ when ρ
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Next, we aim to establish an upper bound for I1:632

|I1| ≤ 2qn−1m−1η
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where we apply Lemmas H.6 and G.1 for the first inequality, utilize the conditions β ≤633

0.1α and 8n
√

log(4n2/δ)
d α ≤ 0.1α for the second inequality, and finally, the constraint η ≤634

nm/(q2q+2αq−2σ2
pd) for the last inequality.635

Second, we bound I2. For tj,r,i < t < T̃ and yk = j, we can lower bound ⟨w(t)
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where the first inequality is by Lemma H.6, the second inequality is by ρ̂
(t)
j,r,i > 1

4
p−s
p+sα and637

⟨w(0)
j,r , ξ̃i⟩ ≥ −0.5β due to the definition of tj,r,i and β, the last inequality is by β ≤ 0.1α and638

8n
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log(4n2/δ)
d α ≤ 0.1α. Similarly, for tj,r,i < t < T̃ and yk = j, we can also upper bound639

⟨w(t)
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where the first inequality is by Lemma H.6, the second inequality is by induction hypothesis ρ̂(t)j,r,i ≤ α,641

the last inequality is by β ≤ 0.1α and 8n
√

log(4n2/δ)
d α ≤ 0.1α.642
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Hence, we can derive the following expression for I2:643
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where we apply (25) for the first inequality, utilize Lemma G.1 for the second, employ the constraint644

η = O
(
nm/(q2q+2αq−2σ2

pd)
)

in (15) for the third, and finally, the conditions α = 4 log(T ∗) and645

log(T ∗)q ≥ log(T ∗) for the subsequent inequalities. By incorporating the bounds of I1 and I2 into646

(26), we conclude the proof for ρ.647

In a similar manner, we can establish that γ(T̃ )
j,r ≤ α by using η = O

(
nm/(q2q+2αq−2∥µ∥22)

)
in648

(15). Thus, Proposition H.4 is valid for t = T̃ , completing the induction process. As a corollary to649

Proposition H.4, we identify a crucial characteristic of the loss function during training within the650

interval 0 ≤ t ≤ T ∗. This characteristic will play a vital role in the subsequent convergence analysis.651

652

I Two Stage Dynamics Analysis653

In this section, we employ a two-stage dynamics analysis to investigate the behavior of coefficient654

iterations. During the first stage, the derivative of the loss function remains almost constant due to655

the small weight initialization. In the second stage, the derivative of the loss function ceases to be656

constant, necessitating an analysis that meticulously takes this into account.657

I.1 First stage: feature learning versus noise memorization658

Lemma I.1 (Restatement of Lemma E.2). Under the same conditions as Theorem 3.2, in particular659

if we choose660

n · SNRq · (n(p+ s))q/2−1 ≥ C log(6/σ0∥µ∥2)22q+6[4 log(8mn/δ)](q−1)/2, (27)

where C = O(1) is a positive constant, there exists time T1 = C log(6/σ0∥µ∥2)2
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2Ξ
q

such that661

• maxr γ
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j,r ≥ 2 for j ∈ {±1}.662

• |ρ(t)j,r,i| ≤ σ0σp

√
d/(n(p+ s))/2 for all j ∈ {±1}, r ∈ [m], i ∈ [n] and 0 ≤ t ≤ T1.663

Remark I.2. In this lemma, we establish that the rate of signal learning significantly outpaces that of664

noise memorization within GNNs. After a specific number of iterations, the GNN is able to learn the665

signal from the data at a constant or higher order, while only memorizing a smaller order of noise.666

Proof of Lemma I.1. Let us define667

T+
1 =

nmη−1σ2−q
0 σ−q

p d−q/2(n(p+ s))(q−2)/2

2q+4q[4 log(8mn/δ)](q−2)/2
. (28)

We will begin by establishing the outcome related to noise memorization. Let Ψ(t) be the maximum668

value over all j, r, i of |ρ(t)j,r,i|, that is, Ψ(t) = maxj,r,i{ρ(t)j,r,i,−ρ(t)
j,r,i

}. We will employ an inductive669

argument to demonstrate that670

Ψ(t) ≤ σ0σp

√
d/(n(p+ s)) (29)
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is valid for the entire range 0 ≤ t ≤ T+
1 . By its very definition, it is evident that Ψ(0) = 0. Assuming671

that there exists a value T̃ ≤ T+
1 for which equation (29) is satisfied for all 0 < t ≤ T̃ − 1, we can672

proceed as follows.673
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where the second inequality is due to the constraint |ℓ′(t)i | ≤ 1, the third inequality is derived from674

Lemmas G.1 and G.7, the fourth inequality is a consequence of the condition d ≥ 16Dn2 log(4n2/δ),675

and the final inequality is a result of the inductive assumption (29). Summing over the sequence676

t = 0, 1, . . . , T̃ − 1, we obtain677
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2
,

where the second inequality is justified by T̃ ≤ T+
1 in our inductive argument. Hence, by induction,678

we conclude that Ψ(t) ≤ σ0σp

√
d/n(p+ s)/2 for all t ≤ T+

1 .679

Next, we can assume, without loss of generality, that j = 1. Let T1,1 represent the final time for t680

within the interval [0, T+
1 ] such that maxr γ

(t)
1,r ≤ 2, given σ0 ≤

√
n(p+ s)/d/σp. For t ≤ T1,1,681

we have maxj,r,i{|ρ(t)j,r,i|} = O(σ0σp

√
d/(n(p+ s))) = O(1) and maxr γ

(t)
1,r ≤ 2. By applying682

Lemmas H.8 and H.10, we deduce that F−1(W
(t)
−1, x̃i), F+1(W

(t)
+1, x̃i) = O(1) for all i with yi = 1.683

Consequently, there exists a positive constant C1 such that −ℓ
′(t)
i ≥ C1 for all i with yi = 1.684

By (10), for t ≤ T1,1 we have685
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1,r) · ỹi∥µ∥22

≥ γ
(t)
1,r +

C1η

nm
·
∑
yi=1

σ′(yiΞ · ⟨w(0)
1,r,µ⟩+ yiΞ · γ(t)

1,r) ·
p− s

p+ s
∥µ∥22.

23



Denote γ̂
(t)
1,r = γ
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1,r + ⟨w(0)

1,r,µ⟩ and let A(t) = maxr γ̂
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where the second inequality arises from the lower bound on the quantity of positive data as established687

in Lemma G.4, the third inequality is a result of the increasing nature of the sequence A(t), and688

the final inequality is derived from A(0) = maxr⟨w(0)
1,r,µ⟩ ≥ σ0∥µ∥2/2, as proven in Lemma G.7.689

Consequently, the sequence A(t) exhibits exponential growth, and we can express it as690
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,

where the second inequality is justified by the relation 1 + z ≥ exp(z/2) for z ≤ 2 and our specific691

conditions on η and σ0 as listed in Condition 3.1. The last inequality is a consequence of Lemma G.7692

and the definition of A(0). Thus, A(t) will attain the value of 2 within T1 iterations, defined as693

T1 =
log(6/σ0∥µ∥2)2q+1m

C1ηqσ
q−2
0 ∥µ∥q2Ξq

.

Since maxr γ
(t)
1,r ≥ A(t) − 1, maxr γ

(t)
1,r will reach 2 within T1 iterations. Next, we can confirm that694
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2q+5q[4 log(8mn/δ)](q−1)/2
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1 /2,

where the inequality is consistent with our SNR condition in (27). Therefore, by the definition of695

T1,1, we deduce that T1,1 ≤ T1 ≤ T+
1 /2, utilizing the non-decreasing property of γ. The proof696

for j = −1 follows a similar logic, leading us to the conclusion that maxr γ
(T1,−1)
−1,r ≥ 2 while697

T1,−1 ≤ T1 ≤ T+
1 /2, thereby completing the proof.698

699

I.2 Second stage: convergence analysis700

After the first stage and at time step T1 we know that:701
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And at the beginning of the second stage, we have following property holds:702

• maxr γ
(T1)
j,r ≥ 2,∀j ∈ {±1}.703

• maxj,r,i |ρ(T1)
j,r,i | ≤ β̂ where β̂ = σ0σp

√
d/(n(p+ s))/2.704
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Lemma E.1 implies that the learned feature γ
(t)
j,r will not get worse, i.e., for t ≥ T1, we have that705

γ
(t+1)
j,r ≥ γ

(t)
j,r , and therefore maxr γ
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j,r ≥ 2. Now we choose W∗ as follows:706
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.

While the context of CNN presents subtle differences from the scenario described in CNN [15], we707

can adapt the same analytical approach to derive the following two lemmas:708

Lemma I.3 ([15]). Under the same conditions as Theorem 3.2, we have that ∥W(T1) −W∗∥F ≤709

Õ(m3/2∥µ∥−1
2 ).710

Lemma I.4 ([15]). Under the same conditions as Theorem 3.2, we have that711

∥W(t) −W∗∥2F − ∥W(t+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(t))− ηϵ

for all T1 ≤ t ≤ T ∗.712

Lemma I.5 (Restatement of Lemma E.3). Under the same conditions as Theorem 3.2, let T =713
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2ηϵ

⌋
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2 ). Then we have maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ =714
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ϵ
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for all T1 ≤ t ≤ T , and we can find an iterate with training loss smaller than ϵ within T iterations.716

Proof of Lemma I.5. We adapt the convergence proof for CNN[15] to extend the analysis to GNN.717

By invoking Lemma I.4, for any given time interval t ∈ [T1, T ], we can deduce that718

∥W(s) −W∗∥2F − ∥W(s+1) −W∗∥2F ≥ (2q − 1)ηLS(W
(s))− ηϵ,

which is valid for s ≤ t. Summing over this interval, we arrive at719
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This inequality holds for all T1 ≤ t ≤ T . Dividing both sides of (30) by (t− T1 + 1), we obtain720
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By setting t = T , we find that721
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⌋
.722

Since the mean value is less than ϵ, it follows that there must exist a time interval T1 ≤ t ≤ T for723

which LS(W
(t)) < ϵ.724

Finally, we aim to demonstrate that maxj,r,i |ρ(t)j,r,i| ≤ 2β̂ holds for all t ∈ [T1, T ]. By inserting725

T = T1 +
⌊
∥W(T1)−W∗∥2

F

2ηϵ

⌋
into equation (30), we obtain726
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where the inequality is a consequence of ∥W(T1)−W∗∥F ≤ Õ(m3/2∥µ∥−1
2 ) as shown in Lemma I.3.727
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Let’s define Ψ(t) = maxj,r,i |ρ(t)j,r,i|. We will employ induction to prove Ψ(t) ≤ 2β̂ for all t ∈ [T1, T ].728

At t = T1, by the definition of β̂, it is clear that Ψ(T1) ≤ β̂ ≤ 2β̂.729

Assuming that there exists T̃ ∈ [T1, T ] such that Ψ(t) ≤ 2β̂ for all t ∈ [T1, T̃ − 1], we can consider730

t ∈ [T1, T̃ − 1]. Using the expression:731
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we can proceed to analyze:732
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The second inequality is derived from Lemmas G.1 and G.7, while the final inequality is based on the733

assumption that d ≥ 16n2 log(4n2/δ). By taking a telescoping sum, we can express the following:734
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where (i) follows from our induction assumption that Ψ(t) ≤ 2β̂, (ii) is derived from the relationship735

|ℓ′| ≤ ℓ, (iii) is obtained by the sum of maxi
∑

k∈N (i) D
−1
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(s)
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due to the summation of
∑T̃−1
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(s)) ≤
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(s)) = Õ(η−1m3∥µ∥22) as shown in737

(31), (v) is based on the condition nSNRq · (n(p + s))q/2−1 ≥ Ω̃(1), and (vi) follows from the738
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definition of β̂ = σ0σp

√
d/(n(p+ s))/2 and Õ(m2n2/q(n(p+s))1−2/qβ̂q−2) = Õ(m2n2/q(n(p+739

s))1−2/q(σ0σp

√
d/(n(p+ s)))q−2) ≤ 1.740

Thus, we conclude that Ψ(T̃ ) ≤ 2β̂, completing the induction and establishing the desired result.741

I.3 Population loss742

Consider a new data point (x, y) drawn from the SNM-SBM distribution. Without loss of generality,743

we suppose that the first patch is the signal patch and the second patch is the noise patch, i.e.,744

x = [y · µ, ξ]. Moreover, by the signal-noise decomposition, the learned neural network has745

parameter:746

w
(t)
j,r = w

(0)
j,r + j · γ(t)

j,r ·
µ

∥µ∥22
+

n∑
i=1

ρ
(t)
j,r,i ·

ξi
∥ξi∥22

+

n∑
i=1

ρ(t)
j,r,i

· ξi
∥ξi∥22

for j ∈ {±1} and r ∈ [m].747

Although the framework of CNN diverges in certain nuances from the situation of CNN outlined in748

[15], we are able to employ a similar analytical methodology to deduce the subsequent two lemmas:749

Lemma I.6. Under the same conditions as Theorem 3.2, we have that maxj,r |⟨w(t)
j,r, ξ̃i⟩| ≤ 1/2 for750

all 0 ≤ t ≤ T , and i ∈ [n].751

Lemma I.7. Under the same conditions as Theorem 3.2, with probability at least 1 − 4mT ·752

exp(−C−1
2 σ−2

0 σ−2
p d−1n(p+ s)), we have that maxj,r |⟨w(t)

j,r, ξ̃⟩| ≤ 1/2 for all 0 ≤ t ≤ T , where753

C2 = Õ(1).754

Lemma I.8 (Restatement of Lemma E.4). Let T be defined in Lemma E.2 respectively. Under755

the same conditions as Theorem 3.2, for any 0 ≤ t ≤ T with LS(W
(t)) ≤ 1, it holds that756

LD(W
(t)) ≤ c1 · LS(W

(t)) + exp(−c2n
2).757

Proof of Lemma I.8. Consider the occurrence of event E , defined as the condition under which758

Lemma I.7 is satisfied. We can then express the loss LD(W
(t)) as a sum of two components:759

E
[
ℓ
(
yf(W(t), x̃)

)]
= E[1(E)ℓ

(
yf(W(t), x̃)

)
]︸ ︷︷ ︸

Term I1

+E[1(Ec)ℓ
(
yf(W(t), x̃)

)
]︸ ︷︷ ︸

Term I2

. (33)

Next, we proceed to establish bounds for I1 and I2.760

Bounding I1: Given that LS(W
(t)) ≤ 1, there must be an instance (x̃i, yi) for which761

ℓ
(
yif(W

(t), x̃i)
)
≤ LS(W

(t)) ≤ 1, leading to yif(W
(t), x̃i) ≥ 0. Hence, we obtain:762

exp(−yif(W
(t), x̃i))

(i)

≤ 2 log
(
1 + exp(−yif(W

(t), x̃i))
)
= 2ℓ

(
yif(W

(t), x̃i)
)
≤ 2LS(W

(t)),
(34)

where (i) follows from the inequality z ≤ 2 log(1 + z),∀z ≤ 1. If event E occurs, we deduce:763

|yf(W(t), x̃(2))− yif(W
(t), x̃

(2)
i )| ≤ 1

m

∑
j,r

σ(⟨wj,r, ξ̃i⟩) +
1

m

∑
j,r

σ(⟨wj,r, ξ̃⟩)

≤ 1. (35)

Here, f(W(t), x̃(2)) refers to the input x̃ = [0, x̃(2)]. The second inequality is justified by Lemmas I.7764

and I.6. Consequently, we have:765
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I1 ≤ E[1(E) exp(−yf(W(t), x̃))]

= E[1(E) exp(−yif(W
(t), x̃(1))) exp(−yif(W

(t), x̃(2)))]

≤ 2e · C · E[1(E) exp(−yif(W
(t), x̃

(1)
i )) exp(−yif(W

(t), x̃
(2)
i ))]

≤ 2e · E[1(E)LS(W
(t))],

where the inequalities follow from the properties of cross-entropy loss, (35), Lemma G.4, and (34).766

The constant c1 encapsulates the factors in the derivation.767

Estimating I2: We now turn our attention to the second term I2. By selecting an arbitrary training768

data point (xi′ , yi′) with yi′ = y, we can derive the following:769
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≤ 2 + Õ((σ0

√
d)q)∥ξ̃∥q, (36)

where the inequalities follow from the properties of the cross-entropy loss and the constraints defined770

in Lemma H.8. The last inequality is a result of the boundedness of the inner product with ξ̃.771

Continuing, we have:772

I2 ≤
√
E[1(Ec)] ·

√
E
[
ℓ
(
yf(W(t), x̃)
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√
P(Ec) ·
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+ polylog(d)

]
≤ exp(−c1n

2),

where c1 is a constant, the first inequality is by Cauchy-Schwartz inequality, the second inequality is773

by (36), the third inequality is by Lemma I.7 and the fact that
√
4 + Õ((σ0

√
d)2q)E[∥ξ̃∥2q2 ] =774

O(poly(d)), and the last inequality is by our condition σ0 ≤ Õ(m−2/(q−2)n−1) ·775

(σp

√
d/(n(p+ s)))−1 in Condition 3.1. Plugging the bounds of I1, I2 completes the proof.776

J Additional Experimental Procedures and Results777

J.1 Dataset in Node Classification778

In Figure 1, we execute node classification experiments on three frequently used citation networks:779

Cora, Citeseer, and Pubmed [1]. Detailed information about these datasets is provided below and780

summarized in Table 1.781

• The Cora dataset includes 2,708 scientific publications, each categorized into one of seven782

classes, connected by 5,429 links. Each publication is represented by a binary word vector,783
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Table 1: Details of Datasets
Dataset Nodes Edges Classes Features Train/Val/Test

Cora 2,708 5,429 7 1,433 0.05/0.18/0.37
Citeseer 3,327 4,732 6 3,703 0.04/0.15/0.30
Pubmed 19,717 44,338 3 500 0.003/0.03/0.05

Figure 7: Test accuracy heatmap for GCNs after training.

which denotes the presence or absence of a corresponding word from a dictionary of 1,433784

unique words.785

• The Citeseer dataset comprises 3,312 scientific publications, each classified into one of six786

classes, connected by 4,732 links. Each publication is represented by a binary word vector,787

indicating the presence or absence of a corresponding word from a dictionary that includes788

3,703 unique words.789

• The Pubmed Diabetes dataset includes 19,717 scientific publications related to diabetes,790

drawn from the PubMed database and classified into one of three classes. The citation791

network is made up of 44,338 links. Each publication is represented by a TF-IDF weighted792

word vector from a dictionary consisting of 500 unique words.793

J.2 Phase transition in GCN794

In Figure 5, we illustrated the variance in test accuracy between CNN and GCN within a chosen range795

of SNR and sample numbers, where GCN was shown to achieve near-perfect test accuracy. Here,796

we broaden the SNR range towards the smaller end and display the corresponding phase diagram797

of GCN in Figure 7. When the SNR is exceedingly small, we observe that GCNs return lower test798

accuracy, suggesting the possibility of a phase transition in the test accuracy of GCNs.799

J.3 Software and hardware800

We implement our methods with PyTorch. For the software and hardware configurations, we ensure801

the consistent environments for each datasets. We run all the experiments on Linux servers with802

NVIDIA V100 graphics cards with CUDA 11.2.803
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