
Contrastive Predict-and-Search for Mixed Integer Linear Programs

Taoan Huang 1 Aaron Ferber 2 Arman Zharmagambetov 3 Yuandong Tian 3 Bistra Dilkina 1

Abstract
Mixed integer linear programs (MILP) are flexi-
ble and powerful tools for modeling and solving
many difficult real-world combinatorial optimiza-
tion problems. In this paper, we propose a novel
machine learning (ML)-based framework Con-
PaS that learns to predict solutions to MILPs with
contrastive learning. For training, we collect high-
quality solutions as positive samples. We also
collect low-quality or infeasible solutions as neg-
ative samples using novel optimization-based or
sampling approaches. We then learn to make dis-
criminative predictions by contrasting the positive
and negative samples. During testing, we predict
and fix the assignments for a subset of integer vari-
ables and then solve the resulting reduced MILP
to find high-quality solutions. Empirically, Con-
PaS achieves state-of-the-art results compared to
other ML-based approaches in terms of the quality
of and the speed at which solutions are found.

1. Introduction
Combinatorial optimization (CO) concerns a wide variety of
real-world problems, including resource allocation (Manne,
1960), traffic management (Luathep et al., 2011), network
design (Huang & Dilkina, 2020) and production planning
(Pochet & Wolsey, 2006) problems, and the majority of
them are NP-hard. Therefore, designing efficient and effec-
tive CO algorithms is important and challenging. Mixed
integer linear programs (MILP) can flexibly encode and
solve a broad family of CO. A MILP is a mathematical
program that optimizes a linear objective subject to linear
constraints, with some of the variables constrained to take
integer values. Significant research and engineering effort
has been dedicated to developing MILP solvers, such as

1Department of Computer Science, University of Southern
California, Los Angeles, CA, USA 2Department of Computer Sci-
ence, Cornell University, Ithaca, NY, USA 3AI at Meta (FAIR),
Menlo Park, CA, USA. Correspondence to: Taoan Huang <taoan-
hua@usc.edu>, Bistra Dilkina <dilkina@usc.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

SCIP (Maher et al., 2017), Gurobi (Gurobi Optimization,
LLC, 2022) and CPLEX (Cplex, 2009). The backbones of
these solvers are Branch-and-Bound (BnB) (Land & Doig,
2010), Branch-and-Cut (Mitchell, 2002) or Branch-Cut-and-
Price (Desrosiers & Lübbecke, 2011), which are optimal
tree search algorithms enhanced by a group of heuristics.

MILPs from the same application domain often share simi-
lar structures and characteristics in many real-world settings.
The performance of MILP solvers crucially depends on how
effective the heuristics are for that application. Recently,
there has been an increased interest in data-driven heuris-
tic designs for MILP for various decision-making in BnB
(see Section 3.2 for a summary). Another line of research
focuses on heuristics that generate high-quality solutions
for MILPs. In particular, it focuses on generating partial
assignments of high-quality feasible solutions. Previously,
Nair et al. (2020) propose Neural Diving (ND), where they
learn to partially assign values to integer variables and del-
egate the reduced sub-MILP to a MILP solver, e.g., SCIP.
The fraction of variables to assign values to is controlled by
a hyperparameter called the coverage rate. A SelectiveNet
(Geifman & El-Yaniv, 2019) is trained for each coverage
rate that jointly decides which variables to fix and the val-
ues to fix to during testing. The main two disadvantages
of ND are that (1) enforcing variables to fixed values leads
to low-quality or infeasible solutions if the predictions are
not accurate enough and (2) it requires training multiple
SelectiveNet to obtain the appropriate coverage rate, which
is computationally expensive. To mitigate these issues, Han
et al. (2022) propose a Predict-and-Search (PaS) framework
that deploys a search inspired by the trust region method.
Instead of fixing variables, PaS searches for high-quality
solutions within a pre-defined proximity of the predicted
partial assignment, which allows better feasibility and find-
ing higher-quality solutions than ND. For both ND and PaS,
the effectiveness (i.e., the quality of the solution found) and
efficiency (i.e., the speed at which high-quality solutions
are found) depend on the accuracy of the machine learning
(ML) prediction and the number of variables (controlled by
hyperparameters) whose values to fix.

In this paper, we propose a novel ML-based framework
ConPaS, Contrastive Predict-and-Search for MILPs. In-
spired by the recent success in contrastive learning (CL) for
refining solutions with large neighborhood search (LNS)

1

Contrastive Predict-and-Search for Mixed Integer Linear Programs

for MILPs (Huang et al., 2023), ConPaS leverages CL for
another important task of learning to construct high-quality
(partial) solutions to MILPs. A key to adapting CL to this
task is devising an appropriate and effective way of col-
lecting positive and negative samples in this new context.
Similar to both ND (Nair et al., 2020) and PaS (Han et al.,
2022), we collect a set of optimal and near-optimal solu-
tions as positive samples; but different from ND and PaS,
we additionally collect negative samples for CL. We pro-
pose to collect two types of negative samples - infeasible
solutions and low-quality solutions that are similar to the
positive samples - with novel approaches tailored to our
task. For infeasible solutions, we use a sampling approach
that randomly perturbs a small fraction of the positive sam-
ples. For low-quality solutions, we formulate the task as
a maximin optimization. During training, instead of using
a binary cross entropy loss to penalize the inaccurate pre-
dictions for each variable separately, we use a contrastive
loss that encourages the model to predict solutions that are
similar to the positive samples but dissimilar to the negative
ones, with similarity measured by dot products (Oord et al.,
2018; He et al., 2020).

Empirically, we test ConPaS on a variety of MILP bench-
marks, including problems from the NeurIPS Machine
Learning for Combinatorial Optimization (ML4CO) com-
petition (Gasse et al., 2022). We show that ConPaS
achieves state-of-the-art anytime performance on finding
high-quality solutions to MILPs, significantly outperform-
ing other learning-based methods such as ND and PaS in
terms of solution quality and speed. In addition, ConPaS
shows great generalization performance on test instances
that are 50% larger than the training instances.

2. Background
We first define mixed integer linear programs and then pro-
vide detailed introductions to both Neural Diving (Nair et al.,
2020) and Predict-and-Search (Han et al., 2022).

2.1. Mixed Integer Linear Programming

A mixed integer linear program (MILP) M = (A, b, c, q)
is defined as

min cTx s.t. Ax ≤ b and x ∈ {0, 1}q × Rn−q, (1)

where x = (x1, . . . , xn)
T denotes the q binary variables and

n− q continuous variables to be optimized, c ∈ Rn is the
vector of objective coefficients, A ∈ Rm×n and b ∈ Rm

specify m linear constraints. A solution x is feasible if
it satisfies all the constraints. This paper focuses on the
mixed-binary formulation above; however, our approach
can also handle general integers using the same engineering
techniques introduced in (Nair et al., 2020).

2.2. Neural Diving

Neural Diving (ND) (Nair et al., 2020) learns to generate a
Bernoulli distribution for the solution values of binary vari-
ables. It learns the conditional distribution of the solution x
given a MILP M = (A, b, c, q) defined as

p(x|M) =
exp(−E(x|M))∑

x′∈SM
p

exp(−E(x′|M))
,

where SM
p is a set of optimal or near-optimal solutions to M

and E(x|M) is an energy function of a solution x defined
as cTx if x is feasible or ∞ otherwise. ND learns pθ(x|M)
parameterized by a graph convolutional network to approxi-
mate p(x|M) assuming conditional independence between
variables p(x|M) ≈

∏
i≤q pθ(xi|M). Since the full pre-

diction pθ(x|M) might not give a feasible solution, ND
predicts only a partial solution controlled by the coverage
rates and employs SelectiveNet (Geifman & El-Yaniv, 2019)
to learn which variables’ values to predict for each coverage
rates. ND uses binary cross-entropy loss combined with the
loss function for SelectiveNet to train the neural network.
During testing, the input MILP M is then reduced to solving
a smaller MILP after fixing the selected variables.

2.3. Predict-and-Search

Predict-and-Search (PaS) (Han et al., 2022) uses the same
framework as ND to learn to predict p(x|M). Instead of
using SelectiveNet to learn to fix variables, PaS searches
for near-optimal solutions within a neighborhood based on
the prediction. Specifically, given the prediction pθ(xi|M)
for each binary variable, PaS greedily selects k0 binary
variables X0 with the smallest pθ(xi|M) and k1 binary vari-
ables X1 with the largest pθ(xi|M), such that X0 and X1

are disjoint (k0 + k1 ≤ q). PaS fixes all variables in X0 to 0
and X1 to 1 in the sub-MILP but also allows ∆ ≥ 0 of the
fixed variables to be flipped when solving it. Formally, let

B(X0,X1,∆) = {x :
∑

xi∈X0

xi +
∑

xi∈X1

1− xi ≤ ∆}

and D be the feasible region of the original MILP, PaS
solves the following optimization problem:

min cTx s.t. x ∈ D ∩B(X0,X1,∆). (2)

Restricting the solution space to B(X0,X1,∆) can be seen
as a generalization of the fixing strategy employed in ND
where ∆ = 0. Though in ND, X0 and X1 are constructed
using sampling methods based on the neural network output.

3. Related Work
In this section, we first summarize other related works on
solution predictions for CO. We then summarize related
works on MILP solving using machine learning and existing
CL methods for solving CO problems.

2

Contrastive Predict-and-Search for Mixed Integer Linear Programs

3.1. Solution Predictions for CO

There are other works on learning to predict solutions to
MILPs in addition to ND and PaS. Ding et al. (2020) learn
to predict backbone variables (Dubois & Dequen, 2001)
whose values stay unchanged across different optimal and
near-optimal solutions and then search for optimal solutions
based on the predicted backbone variables. However, this
approach does not apply to many CO problems since back-
bone variables do not necessarily exist. Recently, Yoon
et al. (2023) propose threshold-aware learning to optimize
the coverage rate in ND and is one of the state-of-the-art
approaches1. However, this approach also fixes variables
when solving the sub-MILP. Khalil et al. (2022) and Li
et al. (2018) learn to guide decision-making, such as warm-
starting and node selection, in CO solvers, such as MIP
solvers and local search, via solution predictions.

3.2. Machine Learning-Guided MILP solving

Several studies have applied ML to improve BnB for MILP
solving. A huge body of such studies focuses on learning
to either select variables to branch on (Khalil et al., 2016;
Gasse et al., 2019; Gupta et al., 2020; Zarpellon et al., 2021)
or select nodes to expand (He et al., 2014; Labassi et al.,
2022). There are also a few studies on learning to sched-
ule and run primal heuristics (Khalil et al., 2017; Chmiela
et al., 2021) and to select cutting planes (Tang et al., 2020;
Paulus et al., 2022; Huang et al., 2022). Large Neighbor-
hood Search is a popular heuristic search for MILPs to
find high-quality primal solutions quickly. Several learn-
ing methods (Song et al., 2020; Sonnerat et al., 2021; Wu
et al., 2021; Huang et al., 2023) have been proposed to guide
selecting partial solutions to iteratively refine in the search.

3.3. Contrastive Learning for CO

Contrastive learning has been studied extensively for vi-
sual representations (Hjelm et al., 2019; He et al., 2020;
Chen et al., 2020) and graph representations (You et al.,
2020; Tong et al., 2021) but it has not been explored much
for solving CO problems. Mulamba et al. (2021) derive a
contrastive loss for decision-focused learning to solve CO
problems with uncertain inputs that can be learned from
historical data, where they view non-optimal solutions as
negative samples. Duan et al. (2022) pre-train good repre-
sentations for the boolean satisfiability problem with CL.

In a closely related work, Huang et al. (2023) propose CL-
LNS that uses CL to learn heuristics to refine solutions for
MILP in LNS. In contrast, ConPaS learns to construct a por-
tion of a high-quality solution from scratch and then search

1We do not compare with this approach (Yoon et al., 2023)
since it is concurrent with our work and the authors are not ready
to share their code when we contacted them.

for it. ConPaS uses a novel data collection for negative
samples and a novel contrastive loss function that considers
positive samples with different qualities. While CL-LNS has
a limited application to only LNS, the prediction from Con-
PaS’s ML model can be useful in different search algorithms
for MILP. First, ConPaS and CL-LNS are complementary to
each other and ConPaS can be used to warm start CL-LNS
(or any variants of LNS), similar to what proposed in (Son-
nerat et al., 2021). One could also leverage the prediction
from ConPaS to assign variable branching priorities or gen-
erate cuts to improve the performance of BnB. In addition
to CL-LNS, CL has also been applied to predict branching
priorities for variables in BnB for MILP solving (Cai et al.,
2024).

4. Contrastive Predict-and-Search
In this section, we introduce our novel framework ConPaS,
Contrastive Predict-and-Search for MILPs. For a given
MILP M , our goal is to use CL to predict the conditional
distribution of the solution p(x|M), such that it leads to
high-quality solutions fast when it is used to guide down-
stream MILP solving. In this paper, we mainly focus on
using the prediction in Predict-and-Search (optimization
problems (2)) following Han et al. (2022). However, such
prediction can be used to decompose the feasible regions of
the input MILP for exact solving (Ding et al., 2020) or seed
LNS with a better primal solution for heuristic solving (Son-
nerat et al., 2021). We employ CL rather than other learning
techniques because it has been theoretically demonstrated to
be effective (Tian, 2022) and has empirically outperformed
alternative approaches in related combinatorial optimization
problems (Duan et al., 2022; Huang et al., 2023; Mulamba
et al., 2021). Figure 1 gives an overview of ConPaS. Next,
we describe our novel data collection, our supervised CL
and how we apply solution predictions in the search.

4.1. Training Data Collection

In ConPaS, we use CL to learn to make discriminative pre-
dictions of optimal solutions by contrasting positive and
negative samples. Since finding good assignments for in-
teger variables is essentially the most challenging part of
solving a MILP, we follow previous work (Nair et al., 2020)
to learn p(x|M) approximately as

∏
i≤q pθ(xi|M) where

we mainly focus on predicting pθ(xi|M) for binary vari-
ables (i ≤ q). Therefore, our definition of positive and
negative samples of solutions mainly concerns partial so-
lutions on binary variables (since the optimal solutions for
continuous variables can be computed in polynomial time
once the binary ones are fixed). Now, we describe how we
collect positive and negative samples.

3

Contrastive Predict-and-Search for Mixed Integer Linear Programs

MILP instances for training
For each
instance

Negative samples:
Obtain infeasible or low-
quality solutions that are
similar to each positive
sample.

Positive samples:
Solve the instance to
obtain optimal and near-
optimal solutions.

Training data collection

Supervised
contrastive learning
to predict optimal
solution

Dataset Predict-and-Search
(Han et al., 2022):
1. Predict scores for variables
2. Fix some variables greedily
based on scores
3. Search for the unfixed
variables while allowing to
change a few fixed ones

Testing

Figure 1: Overview of ConPaS. For training, we collect data from a set of MILP instances, including positive samples that
are optimal and near-optimal solutions. We have two variants of ConPaS, namely ConPaS-LQ and ConPaS-Inf, that collect
negative samples that are low-quality or infeasible solutions, respectively. We use the data in supervised CL to predict
optimal solutions. During testing, the predictions are used in Predict-and-Search (Han et al., 2022).

4.1.1. POSITIVE SAMPLES COLLECTION

For a given MILP M , we collect a set of optimal or near-
optimal solutions SM

p as our positive samples following
previous works (Nair et al., 2020; Han et al., 2022). This
is done by solving M exhaustively with a MILP solver and
collecting up to up solutions with the minimum objective
values. In experiments, up is set to 50.

4.1.2. NEGATIVE SAMPLES COLLECTION

Negative samples are critical parts of CL to help distinguish
between high-quality and low-quality (or even infeasible)
solutions. We propose to collect negative samples that are
similar to the positive ones. From a theoretical point of view,
the InfoNCE loss (Oord et al., 2018; He et al., 2020) we use
for training later can automatically focus on hard negative
pairs (i.e., samples with similar representation but of very
different qualities) and learn representations to separate
them apart (Tian, 2022).

Given a MILP M , we collect a set of un negative samples
SM
n where un = β|SM

p | and β is a hyperparameter to con-
trol the ratio between the number of positive and negative
samples. In experiments, β is set to 10. We propose two
novel approaches to collect them: (1) a sampling approach
to collect infeasible solutions and (2) an optimization-based
approach to collect low-quality solutions.

Infeasible Solutions as Negative Samples. We introduce
a sampling approach. For each positive sample x ∈ SM

p ,
we collect β infeasible solutions as negative samples. We
randomly perturb 10% of the binary variable values in x (i.e.,
flipping from 0 to 1 or 1 to 0). If the MILP M contains only
binary variables, we validate that the perturbed solutions are
indeed infeasible if they violate at least one constraint in M .
If M contains both binary and continuous variables, we fix
the binary variables to the values in the perturbed solutions

and ensure that no feasible assignment of the continuous
variables exists using a MILP solver. If less than β negative
samples are found after validating 2β perturbed samples,
we increase the perturbation rate by 5% and repeat the same
process until we have β samples.

Low-Quality Solutions as Negative Samples. We intro-
duce an optimization-based approach. For each positive
sample x = (x1, . . . , xn) ∈ SM

p , we find the worst β feasi-
ble solutions that differ from x in at most 10% of the binary
variables. If the MILP M = (A, b, c, q) contains only bi-
nary variables, we find negative samples x′ by solving the
following Local Branching (Fischetti & Lodi, 2003) MILP:

max cTx′

s.t. Ax′ ≤ b, x′ ∈ {0, 1}q × Rn−q, (3)∑
i≤q:xi=0 x

′
i +

∑
i≤q:xi=1(1− x′

i) ≤ k.

The above MILP is essentially solving the same problem as
M , but with a negated objective function that tries to find
solution x′ as low-quality as possible and a constraint that
allows changing at most k of the binary variables. After
solving it, we consider only solutions as negative samples
if they are worse than a given threshold. k is initially set to
10%× q, but if less than β negative samples are found with
the current k, we increase it by 5% and resolve optimization
problem (3). We repeat the same process until we have β
negative samples.

If M contains continuous variables, the goal is to find par-
tial solutions on binary variables, such that we get as low-
quality solutions x′ as possible when we fix the binary
values and optimize for the rest of the continuous variables.
Formally, solving for the partial solutions on binary vari-

4

Contrastive Predict-and-Search for Mixed Integer Linear Programs

ables x′
1, . . . , x

′
q can be written as a maximin optimization:

maxx′
1,...,x

′
q
minx′

q+1,...,x
′
n
cTx′

s.t. Ax′ ≤ b, x′ ∈ {0, 1}q × Rn−q, (4)∑
i≤q:xi=0 x

′
i +

∑
i≤q:xi=1(1− x′

i) ≤ k.

Solving the above maximin optimization exactly is pro-
hibitively hard and, to the best of our knowledge, there are
no general-purpose solvers for it (Beck & Schmidt, 2021,
Chapter 7). Therefore, we use a heuristic approach where
we iteratively solve the inner minimization problem and
add a constraint cTx′ > cTx∗ to enforce the next solution
found is strictly better than the current best-found solution
x∗ to the maximin problem. It terminates until no better
solution can be found. For faster convergence, we some-
times enforce the next solution found to be at least ϵ > 0
better than x∗, i.e., we add cTx′ ≥ cTx∗ + ϵ, where ϵ is a
hyperparameter tuned adaptively in a binary search manner.
If we find less than β samples, we adjust k the same way as
in the previous case.

4.2. Supervised Contrastive Learning

In this subsection, we introduce the neural network archi-
tecture for ConPaS and describe the contrastive loss for
training.

4.2.1. NEURAL NETWORK ARCHITECTURE

Following previous work (Han et al., 2022), we use a bi-
partite graph to represent the input MILP M . The bipartite
graph has n variables and m constraints on two sides, respec-
tively, with an edge connecting a variable and a constraint if
the variable has a non-zero coefficient in the constraint. Fol-
lowing Nair et al. (2020) and Han et al. (2022), we use node
and edge features in the bipartite graph proposed by Gasse
et al. (2019). We learn pθ(x|M) represented by a graph
convolutional network (GCN) parameterized by learnable
weights θ. The GCN takes the bipartite graph representation
of M and the features as input. We perform two rounds of
message passing through the GCN to obtain an embedding
of the variables, which is then passed through a multi-layer
perceptron (MLP) followed by a sigmoid activation layer
to obtain the final output pθ(xi|M). Details of the GCN
architecture are included in Appendix.

4.2.2. TRAINING WITH A CONTRASTIVE LOSS

Given a set of MILP instances M for training, let D =
{(SM

p ,SM
n) : M ∈ M} be the set of positive and negative

samples for all training instances. A contrastive loss is a
function whose value is low when the predicted pθ(x|M)
is similar to the positive samples SM

p and dissimilar to the
negative samples SM

n . With similarity measured by dot
products, we use an alternative form of InfoNCE (Oord

et al., 2018; He et al., 2020), a supervised contrastive loss,
that takes into account the solution qualities of both positive
and negative samples:

L(θ) =
∑

(SM
p ,SM

n)∈D

−1

|SM
p |

∑
xp∈SM

p

l(θ|xp,M)

where

l(θ|xp,M) = log
exp(xT

ppθ(xp|M)/τ(xp|M))∑
x̃∈SM

n ∪{xp}
exp(x̃Tpθ(x̃|M)/τ(x̃|M))

and we let 1
τ(x|M) ∝ −E(x|M) if x is feasible to M where

E(x|M) is the same energy function used in previous works
(Han et al., 2022; Nair et al., 2020); otherwise τ(x|M) is
set to a constant τ (τ = 1 in experiments). Intuitively,
setting τ(x|M) in this manner encourages the predictions
pθ(x|M) to be more similar to positive samples xp with
better objectives.

4.3. Predict-and-Search

We apply the predicted solution to reduce the search space
of the input MILP the same way as Predict-and-Search (Han
et al., 2022). We greedily select X0 and X1 based on the
prediction and solve the optimization problem defined by
Equation (2) given hyperparameters k0, k1 and ∆.

5. Empirical Evaluation
In this section, we introduce the setup for empirical evalua-
tion and then present the results.

5.1. Setup

Benchmark Problems We evaluate on four NP-hard
benchmark problems that are widely used in existing studies
(Gasse et al., 2019; Han et al., 2022), which consist of two
graph optimization problems, namely the minimum vertex
cover (MVC) and maximum independent set (MIS) prob-
lems, and two non-graph optimization problems, namely
the combinatorial auction (CA) and item placement (IP)
problems. Both MVC and MIS instances are generated ac-
cording to the Barabasi-Albert random graph model (Albert
& Barabási, 2002), with 6,000 nodes and an average degree
of 5. CA instances are generated with 2,000 items and 4,000
bids according to the arbitrary relations in Leyton-Brown
et al. (2000). IP instances are provided by the NeurIPS
ML4CO competition (Gasse et al., 2022). The workload
appointment (WA) problem is another benchmark problem
from the competition. However, they are not challenging
enough for the baselines and our approach. Therefore, we
exclude the results on WA from the main paper and report
them in Appendix. For each benchmark problem, we have

5

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Table 1: The average numbers of variables and constraints in the test instances.

Benchmark Problem MVC MIS CA IP
#Binary Variables 6,000 6,000 4,000 1,050

#Continuous Variables 0 0 0 33
#Constraints 29,975 29,975 2,675 195

SCIP ND PaS ConPaS-Inf ConPaS-LQ

0 250 500 750 1000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(a) MVC

0 250 500 750 1000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(b) MIS

0 250 500 750 1000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

(c) CA

0 250 500 750 1000
Runtime in Seconds

10−1

100

Pr
im

al
 G
ap

(d) IP

Figure 2: The primal gap (the lower, the better) as a function of runtime averaged over 100 test instances. ConPaS-LQ
and ConPaS-Inf are two variants of ConPaS that use low-quality and infeasible solutions, respectively, as negative samples
introduced in Section 4.1.2.

400, 100 and 100 instances in the training, validation and
test sets, respectively. For each test set, Table 1 shows its
average numbers of variables and constraints. More details
of instance generation are included in Appendix.

Baselines We compare ConPaS with three baselines: (1)
SCIP (v8.0.1) (Maher et al., 2017), the state-of-the-art open-
source ILP solver. We allow restart and presolving with the
aggressive mode turned on for primal heuristics to focus
on improving the objective value; (2) Neural Diving (ND)
(Nair et al., 2020); and (3) Predict-and-Search (PaS) (Han
et al., 2022). We have considered another version of PaS
where we replace the neural network output with the LP
relaxation solutions of the MILP. However, this approach
causes very high infeasibility rates when solving the opti-
mization problem defined by Equation (2). We also compare
ConPaS with Gurobi (v10.0.0) (Gurobi Optimization, LLC,
2022) and present the results in Appendix.

For ML-based approaches, a separate model is trained for
each benchmark problem. For PaS, we train the models with
the code by Han et al. (2022). For ND, we implement it and
fine-tune its hyperparameters for each problem since their
code is not available.

Metrics We use the following metrics to evaluate all ap-
proaches: (1) The primal gap (Berthold, 2006) is the normal-
ized difference between the primal bound v and a precom-
puted best known objective value v∗, defined as |v−v∗|

max(v,v∗,ε)

if v exists and v · v∗ ≥ 0, or 1 otherwise. We use ε = 10−8

to avoid division by zero; v∗ is the best primal bound found
within 60 minutes by any approach in the portfolio for com-

parison; (2) The primal integral (Achterberg et al., 2012) at
runtime cutoff t is the integral on [0, t] of the primal gap as
a function of runtime. It captures the quality of the solutions
found and the speed at which they are found; and (3) The
survival rate (Sonnerat et al., 2021) to meet a certain primal
gap threshold is the fraction of instances with primal gaps
below the threshold.

Hyperparameters We conduct experiments on 2.4 GHz
Intel Core i7 CPUs with 16 GB memory. Training is done
on a NVIDIA P100 GPU with 32 GB memory. For data
collection, we collect 50 best found solutions for each train-
ing instance with an hour runtime using Gurobi (v10.0.0).
For training, we use the Adam optimizer (Kingma & Ba,
2015) with learning rate 10−3. We use a batch size of 8 and
train for 100 epochs (the training typically converges in less
than 50 epochs and 5 hours). For testing, we set the runtime
cutoff to 1,000 seconds to solve the reduced MILP of each
test instance with SCIP (v8.0.1).2 To tune (k0, k1,∆) (see
definition in Section 2.3) for both PaS and ConPaS, we first
fix ∆ = 5 or 10 and vary k0, k1 to be 0%, 10%, . . . , 50% of
the number of binary variables to test their performance on
the validation set to get their initial values. We then adjust
∆, k0, k1 around their initial values to find the best ones.
The fine-tuned values are reported in Appendix.

5.2. Results

We test two variants of ConPaS, denoted by ConPaS-Inf and
ConPaS-LQ, that use infeasible solutions and low-quality so-

2Note that our approach is agnostic to the solver for the reduced
MILP. The test results with Gurobi are reported in Appendix.

6

Contrastive Predict-and-Search for Mixed Integer Linear Programs

lutions as negative samples, respectively. Figure 2 shows the
primal gap as a function of runtime. Overall, SCIP performs
the worst. PaS achieves lower average primal gaps than ND
on three of the problems at 1,000 seconds runtime cutoff.
Both ConPaS-Inf and ConPaS-LQ show significantly better
anytime performance than all baselines on all benchmark
problems. ConPaS-LQ performances slightly better than
ConPaS-Inf. At the 1,000-second runtime cutoff, ConPaS-
Inf achieves 3.54%-52.83% lower average primal gaps and
ConPaS-LQ achieves 9.82%-86.02% lower average primal
gaps than the best baseline.

Figure 3 shows the survival rate to meet a certain primal
gap threshold. The primal gap threshold is chosen as the
medium of the average primal gap at 1,000 seconds runtime
cutoff among all approaches rounded to the nearest 0.50%.
ND surprisingly has the lowest survival rate (even lower
than SCIP) on the CA instances, indicating high variance
in performance of both SCIP and ND3, but ND is better
than both SCIP and PaS on both the two graph optimization
problems. PaS has higher survival rates on the CA and
IP instances. ConPaS-Inf and ConPaS-LQ have the best
survival rate at 1,000-second runtime cutoff on all instances.
Specifically, on the MVC and MIS instances, at the runtime
cutoffs when they both first reach 100% survival rates, the
best baseline only achieves about 10%-80% survival rates.
These results indicate that ConPaS not only finds better
solutions on average but also finds them on more instances.
Figure 4 shows the average primal integral at 1,000 seconds
runtime cutoff. The result demonstrates that both ConPaS-
Inf and ConPaS-LQ not only find better solutions than the
other approaches but also find them at a faster speed.

Next, we test the generalization performance and conduct an
ablation study on the loss functions. Given the large compu-
tation overhead, we focus on two representative benchmark
problems, a graph optimization problem MVC and a non-
graph optimization problem CA.

5.2.1. GENERALIZATION TO LARGER INSTANCES

We test the generalization performance of the trained models
on larger instances. We generate 100 large MVC instances
according to the Barabasi-Albert random graph model (Al-
bert & Barabási, 2002), with 9,000 nodes and an average
degree of 5. We also generate 100 large CA instances with
3,000 items and 6,000 bids according to the arbitrary rela-
tions in Leyton-Brown et al. (2000). These larger instances
have 50% more variables and constraints than the previous
test instances. In Figure 5, we show the results of the average
primal gaps, survival rates and the average primal integral
over 100 test instances. All ML-based approaches demon-
strate good generalizability. On large MVC instances, ND,

3When the primal gap threshold is set to 5.00%, ND has a 98%
survival rate whereas SCIP has only 56%.

Table 2: Comparison of different loss functions. We report
the primal gaps (PG) and the primal integrals (PI) at the
1,000-second runtime cutoff averaged over 100 instances.

MVC CA
PG PI PG PI

PaS 0.17% 13.9 1.16% 28.9
ConPaS-LQ-unweighted 0.12% 3.3 0.57% 24.3
ConPaS-LQ 0.10% 2.9 0.16% 19.7

PaS and ConPaS-Inf perform similarly in terms of the pri-
mal gap, while ConPaS-Inf improves the primal gap faster
than the other approaches. On large CA instances, both
ConPaS-Inf and ConPaS-LQ are significantly better than the
other baselines in terms of all performance metrics. Overall,
on both large MVC and CA instances, ConPaS-LQ is the
best and its primal integral at 1,000 seconds runtime cutoff
is 57.9%-70.3% lower than the best baseline PaS. It also
reaches 100% survival rates fastest for the given thresholds.

5.2.2. ABLATION STUDY

We conduct an ablation study on ConPaS-LQ to assess the
effectiveness of the alternate form of InfoNCE loss. The
results are shown in Table 2, where ConPaS-LQ-unweighted
refers to training using the original InfoNCE loss without
considering different qualities of the samples where we fine-
tune and set τ(x|M) to constant 1. ConPaS-LQ refers to the
one that takes into account the solution qualities. ConPaS-
LQ is still able to outperform PaS. Its performance further
improves when the modified loss function is used.

Table 3: The primal gap and primal integral at 1,000 sec-
onds runtime cutoff on the CA instances with different k0
averaged over 100 instances.

Primal Gap (%) Primal Integral
k0 PaS ConPaS-LQ PaS ConPaS-LQ

800 6.28 6.59 114.4 117.5
1200 5.45 5.05 104.3 97.3
1600 2.91 2.06 75.6 70.4
2000 1.17 0.55 28.9 19.7
2400 2.19 1.40 27.5 22.9
2700 5.63 4.58 58.0 47.4
3000 12.74 11.56 127.8 115.8

5.2.3. THE EFFECT OF HYPERPARAMETERS

We study the effect of hyperparameters. Specifically, we fo-
cus our study on PaS and ConPaS-LQ on the CA instances.
We first empirically study how many training instances are
needed for each approach. We train separate models with
50% and 25% of the training instances and test their per-
formance on the test instances. Figure 6 shows the results
on the primal gap and primal integral. The two models for
ConPaS-LQ trained with 50% and 100% of the instances per-

7

Contrastive Predict-and-Search for Mixed Integer Linear Programs

SCIP ND PaS ConPaS-Inf ConPaS-LQ

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 0
.5
0%

(a) MVC

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 1
.0
0%

(b) MIS

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 1
.0
0%

(c) CA

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 1
2.
00
%

(d) IP

Figure 3: The survival rate (the higher, the better) to meet a certain primal gap threshold over 100 test instances as a function
of runtime. The primal gap threshold is set to the median of the average primal gaps at 1,000 seconds runtime cutoff among
all approaches rounded to the nearest 0.50%.

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

10

20

30

40

Pr
im

al
 In

te
gr
al

(a) MVC

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

10

20

30

40

Pr
im

al
 In

te
gr
al

(b) MIS

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

50

100

150

Pr
im

al
 In

te
gr
al

(c) CA

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

100

200

300

400

Pr
im

al
 In

te
gr
al

(d) IP

Figure 4: The primal integral (the lower, the better) at 1,000 seconds runtime cutoff, averaged over 100 test instances. The
error bars represent the standard deviation. A tabular representation is provided in the Appendix Table 6.

0 250 500 750 1000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 0
.5
0%

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

20

40

60

80

Pr
im

al
 In

te
gr
al

(a) MVC (large instances).

0 250 500 750 1000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

0 250 500 750 1000
Runtime in Seconds

0.0

0.2

0.4

0.6

0.8

1.0

Su
rv
iv
al
 R
at
e
 i
th

Pr
im
al
 G
ap
 ≤
 5
.0
0%

SCIP ND PaS

Con
PaS

-Inf

Con
PaS

-LQ
0

50

100

150

Pr
im

al
 In

te
gr
al

(b) CA (large instances).

Figure 5: Generalization to 100 large instances: The primal gap as a function of runtime, the survival rate as a function of
runtime and the primal integral at 1,000 seconds runtime cutoff. The primal gap threshold for the survival rate is chosen as
the medium of the average primal gaps at 1,000 seconds runtime cutoff among all approaches rounded to the nearest 0.50%.
A tabular representation for the primal integral plots is provided in Appendix.

8

Contrastive Predict-and-Search for Mixed Integer Linear Programs

PaS
PaS-50%
PaS-25%
ConPaS-LQ
ConPaS-LQ-50%
ConPaS-LQ-25%

0 250 500 750 1000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

PaS
PaS

-50%
PaS

-25%

Con
PaS

-LQ

Con
PaS

-LQ
-50%

Con
PaS

-LQ
-25%

0
10
20
30
40
50
60
70

Pr
im

al
 In

te
gr
al

Figure 6: Training on different fractions of training instances: The primal gap as a function of runtime and the primal
integral at 1,000 seconds runtime cutoff. ConPaS-LQ-50% and ConPaS-LQ-25% denote the versions of ConPaS trained
with only 50% and 25% of the training instances, respectively (similarly for PaS).

form similarly to each other. This is also true for PaS, but its
two models are both worse than ConPaS-LQ. When we use
25% of the training instances, we observe a drop in perfor-
mance for both approaches. However, in this case, ConPaS-
LQ performs much better than PaS and only slightly worse
than PaS trained on 100% or 50% instances. These em-
pirical results indicate that CL can achieve better perfor-
mance using fewer training instances than other learning
approaches.

We also study the effect of different (k0, k1,∆) for PaS and
ConPaS-LQ on the CA instances. For CA instances, fixing
both k1 and ∆ to 0 always gives better primal gaps and pri-
mal integrals than other values. Therefore, we vary only k0.
We present the results on primal gaps and primal integrals
in Table 5. Overall, setting k0 = 2, 000 gives the best per-
formance for both PaS and ConPaS-LQ. Either increasing
or decreasing k0 from 2,000 hurts their performance. How-
ever, if we increase k0 from 2,000, both of them converge
to the eventual solutions fast and therefore have compara-
ble primal integrals with small k0, even though sometimes
their primal gaps are worse. In general, having a smaller
k requires the search to search for the values on more vari-
ables; therefore, it converges slower and has a larger primal
integral. On the other hand, having a larger k reduces the
search space more, therefore, it converges faster but to a
worse solution.

6. Conclusion
We proposed ConPaS, a contrastive predict-and-search
framework for MILPs. We learned to predict high-quality
solutions by contrasting optimal and near-optimal solutions
with infeasible or low-quality solutions. In testing, we
solved a reduced MILP by restricting the search space to
proximity to the predicted solutions. In experiments, we
showed that ConPaS found solutions better and faster than
the baselines, which include two state-of-the-art ML-based
approaches. ConPaS also demonstrated generalizability to
larger instances that were unseen during training. Solving

MILPs based on solution predictions, such as ConPaS, ND
and PaS, does not guarantee completeness or optimality.
The contrastive-learned model in ConPaS can be used in
different ways, e.g., setting branching priority in Branch-
and-Cut. We believe it is important and interesting for future
work to integrate it into optimal tree searches.

Impact Statement
This paper presents work whose goal is to advance the field
of machine learning for combinatorial optimization. There
are many potential societal consequences of our work, none
of which we feel must be specifically highlighted here.

Acknowledgments
The research at the University of Southern California was
supported by the National Science Foundation (NSF) un-
der grant number 2112533. We also thank the anonymous
reviewers for their helpful feedback.

References
Achterberg, T., Berthold, T., and Hendel, G. Rounding

and propagation heuristics for mixed integer program-
ming. In Operations research proceedings 2011, pp. 71–
76. Springer, 2012.

Albert, R. and Barabási, A.-L. Statistical mechanics of
complex networks. Reviews of modern physics, 74(1):47,
2002.

Beck, Y. and Schmidt, M. A gentle and incomplete intro-
duction to bilevel optimization. 2021. URL https:
//optimization-online.org/?p=17182.

Berthold, T. Primal heuristics for mixed integer programs.
PhD thesis, Zuse Institute Berlin (ZIB), 2006.

Cai, J., Huang, T., and Dilkina, B. Learning backdoors for
mixed integer programs with contrastive learning. arXiv
preprint arXiv:2401.10467, 2024.

9

https://optimization-online.org/?p=17182
https://optimization-online.org/?p=17182

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Chmiela, A., Khalil, E., Gleixner, A., Lodi, A., and Pokutta,
S. Learning to schedule heuristics in branch and bound.
Advances in Neural Information Processing Systems, 34:
24235–24246, 2021.

Cplex, I. I. V12. 1: User’s manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

Desrosiers, J. and Lübbecke, M. E. Branch-price-and-cut
algorithms. Encyclopedia of Operations Research and
Management Science. John Wiley & Sons, Chichester, pp.
109–131, 2011.

Ding, J.-Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y.,
and Song, L. Accelerating primal solution findings for
mixed integer programs based on solution prediction. In
Proceedings of the aaai conference on artificial intelli-
gence, volume 34, pp. 1452–1459, 2020.

Duan, H., Vaezipoor, P., Paulus, M. B., Ruan, Y., and Mad-
dison, C. Augment with care: Contrastive learning for
combinatorial problems. In International Conference on
Machine Learning, pp. 5627–5642. PMLR, 2022.

Dubois, O. and Dequen, G. A backbone-search heuristic
for efficient solving of hard 3-sat formulae. In IJCAI,
volume 1, pp. 248–253, 2001.

Fischetti, M. and Lodi, A. Local branching. Mathematical
programming, 98(1):23–47, 2003.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Gasse, M., Bowly, S., Cappart, Q., Charfreitag, et al. The
machine learning for combinatorial optimization compe-
tition (ml4co): Results and insights. In NeurIPS 2021
Competitions and Demonstrations Track, pp. 220–231.
PMLR, 2022.

Geifman, Y. and El-Yaniv, R. Selectivenet: A deep neural
network with an integrated reject option. In International
conference on machine learning, pp. 2151–2159. PMLR,
2019.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A.,
and Bengio, Y. Hybrid models for learning to branch.
Advances in neural information processing systems, 33:
18087–18097, 2020.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2022. URL https://www.gurobi.com.

Han, Q., Yang, L., Chen, Q., et al. A gnn-guided predict-and-
search framework for mixed-integer linear programming.
In ICLR, 2022.

He, H., Daume III, H., and Eisner, J. M. Learning to search
in branch and bound algorithms. Advances in neural
information processing systems, 27, 2014.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. Mo-
mentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729–9738,
2020.

Hjelm, R. D., Fedorov, A., Lavoie-Marchildon, S., Grewal,
K., Bachman, P., Trischler, A., and Bengio, Y. Learning
deep representations by mutual information estimation
and maximization. International conference on learning
representations, 2019.

Huang, T. and Dilkina, B. Enhancing seismic resilience of
water pipe networks. In Proceedings of the 3rd ACM SIG-
CAS Conference on Computing and Sustainable Societies,
pp. 44–52, 2020.

Huang, T., Ferber, A. M., Tian, Y., Dilkina, B., and Steiner,
B. Searching large neighborhoods for integer linear pro-
grams with contrastive learning. In International Con-
ference on Machine Learning, pp. 13869–13890. PMLR,
2023.

Huang, Z., Wang, K., Liu, F., Zhen, H.-L., Zhang, W., Yuan,
M., Hao, J., Yu, Y., and Wang, J. Learning to select
cuts for efficient mixed-integer programming. Pattern
Recognition, 123:108353, 2022.

Khalil, E., Le Bodic, P., Song, L., Nemhauser, G., and Dilk-
ina, B. Learning to branch in mixed integer programming.
In Proceedings of the AAAI Conference on Artificial In-
telligence, 2016.

Khalil, E. B., Dilkina, B., Nemhauser, G. L., Ahmed, S.,
and Shao, Y. Learning to run heuristics in tree search. In
Ijcai, pp. 659–666, 2017.

Khalil, E. B., Morris, C., and Lodi, A. Mip-gnn: A data-
driven framework for guiding combinatorial solvers. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pp. 10219–10227, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. 2015.

Labassi, A. G., Chételat, D., and Lodi, A. Learning to
compare nodes in branch and bound with graph neural
networks. Advances in neural information processing
systems, 2022.

10

https://www.gurobi.com

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Land, A. H. and Doig, A. G. An automatic method for
solving discrete programming problems. In 50 Years of
Integer Programming 1958-2008, pp. 105–132. Springer,
2010.

Leyton-Brown, K., Pearson, M., and Shoham, Y. Towards a
universal test suite for combinatorial auction algorithms.
In Proceedings of the 2nd ACM conference on Electronic
commerce, pp. 66–76, 2000.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
Advances in neural information processing systems, 31,
2018.

Luathep, P., Sumalee, A., Lam, W. H., Li, Z.-C., and Lo,
H. K. Global optimization method for mixed transporta-
tion network design problem: a mixed-integer linear pro-
gramming approach. Transportation Research Part B:
Methodological, 45(5):808–827, 2011.

Maher, S. J., Fischer, T., Gally, T., et al. The scip optimiza-
tion suite 4.0. 2017.

Manne, A. S. On the job-shop scheduling problem. Opera-
tions research, 8(2):219–223, 1960.

Mitchell, J. E. Branch-and-cut algorithms for combinatorial
optimization problems. Handbook of applied optimiza-
tion, 1(1):65–77, 2002.

Mulamba, M., Mandi, J., Diligenti, M., Lombardi, M.,
Lopez, V. B., and Guns, T. Contrastive losses and solution
caching for predict-and-optimize. In 30th International
Joint Conference on Artificial Intelligence, pp. 2833. In-
ternational Joint Conferences on Artificial Intelligence,
2021.

Nair, V., Bartunov, S., Gimeno, F., et al. Solving mixed
integer programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Paulus, M. B., Zarpellon, G., Krause, A., Charlin, L., and
Maddison, C. Learning to cut by looking ahead: Cut-
ting plane selection via imitation learning. In Interna-
tional conference on machine learning, pp. 17584–17600.
PMLR, 2022.

Pochet, Y. and Wolsey, L. A. Production planning by mixed
integer programming, volume 149. Springer, 2006.

Song, J., Yue, Y., Dilkina, B., et al. A general large neigh-
borhood search framework for solving integer linear pro-
grams. Advances in Neural Information Processing Sys-
tems, 33:20012–20023, 2020.

Sonnerat, N., Wang, P., Ktena, I., Bartunov, S., and
Nair, V. Learning a large neighborhood search al-
gorithm for mixed integer programs. arXiv preprint
arXiv:2107.10201, 2021.

Tang, Y., Agrawal, S., and Faenza, Y. Reinforcement learn-
ing for integer programming: Learning to cut. In Interna-
tional conference on machine learning, pp. 9367–9376.
PMLR, 2020.

Tian, Y. Understanding deep contrastive learning via
coordinate-wise optimization. In Advances in Neural
Information Processing Systems, 2022.

Tong, Z., Liang, Y., Ding, H., Dai, Y., Li, X., and Wang, C.
Directed graph contrastive learning. Advances in Neural
Information Processing Systems, 34:19580–19593, 2021.

Wu, Y., Song, W., Cao, Z., and Zhang, J. Learning large
neighborhood search policy for integer programming. Ad-
vances in Neural Information Processing Systems, 34:
30075–30087, 2021.

Yoon, T., Choi, J., Yun, H., and Lim, S. Threshold-aware
learning to generate feasible solutions for mixed integer
programs. arXiv preprint arXiv:2308.00327, 2023.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen,
Y. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33:
5812–5823, 2020.

Zarpellon, G., Jo, J., Lodi, A., and Bengio, Y. Parameter-
izing branch-and-bound search trees to learn branching
policies. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 2021.

11

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Appendix
A. GCN Architecture
We follow previous work (Gasse et al., 2019; Han et al., 2022) to use a bipartite graph representation to encode a MILP M .
For the node (variable and constraint)and edge features of the bipartite graph, we use the same features as (Han et al., 2022).

We use the same GCN architecture as previous work (Han et al., 2022). The GCN takes as input the bipartite graph
representation of a MILP M with its features and outputs pθ(x|M), a [0, 1]-score vector for the binary variables. For node
features, we use 2-layer multi-layer perceptrons (MLP) with 64 hidden units per layer and ReLU as the activation function
to map them to R64. We then perform two rounds of message-passings, the first one from variable nodes to constraint nodes
and the second one from constraint nodes to variable nodes, using graph convolution layers (Gasse et al., 2019) to obtain a
final variable embedding. The final variable embedding is then passed through a 2-layer MLP with 64 hidden units per layer
and ReLU as the activation function followed by a sigmoid layer to obtain the output pθ(x|M).

B. Benchmark Problem Descriptions and MILP Formulations
We present the problem descriptions and MILP formulations for the minimum vertex cover (MVC), maximum independent
set (MIS) and combinatorial auction (CA) problems. The descriptions and formulations for the item placement and workload
appointment problems can be found at the ML4CO competition (Gasse et al., 2022) website4.

In the MVC problem, given an undirected graph G = (V,E) with a weight wv associated with each node v ∈ V , we want
to select a subset of nodes V ′ ⊆ V with the minimum sum of weights such that at least one endpoint of the edge is selected
in V ′ for any edge in E:

min
∑

v∈V wvxv

s.t. xu + xv ≥ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

In the MIS problem, given an undirected graph G = (V,E), we want to select the largest subset of nodes V ′ ⊆ V such that
no two nodes in the subsets are connected by an edge in G:

min−
∑

v∈V xv

s.t. xu + xv ≤ 1, ∀(u, v) ∈ E,

xv ∈ {0, 1}, ∀v ∈ V.

In the CA problem, given n bids {(Bi, pi) : i ∈ [n]} for m items, where Bi is a subset of items and pi is the bidding price
for Bi, we want to allocate items to bids such that the total revenue is maximized:

min−
∑

i∈[n] pixi

s.t.
∑

i:j∈Bi
xi ≤ 1, ∀j ∈ [m],

xi ∈ {0, 1}, ∀i ∈ [n].

C. Hyperparameters
In this section, we discuss the hyperparameters used for SCIP, ND, PaS and ConPaS.

For SCIP, we fine-tune its restart, presolving and primal heuristic modes on the validation instances. We observe that
allowing both restarts and presolving with the aggressive mode turned on for primal heuristics yields the best performance
for SCIP. For SCIP with the default mode, it delivers similar primal performance for the CA problem but is worse than the
fine-tuned version on others. We also observe that allowing restarts is especially helpful for the IP problem.

For ND, following Nair et al. (2020), we train a model separately for each coverage rate value. Due to limited computing
resources, we train models with coverage rate values in {0.2, 0.3, 0.4}. The best coverage rates we found for the MVC,
MIS, CA and IP problems are 0.2, 0.2, 0.4 and 0.3, respectively.

4ML4CO Competition Website: https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

12

https://github.com/ds4dm/ml4co-competition/blob/main/DATA.md

Contrastive Predict-and-Search for Mixed Integer Linear Programs

SCIP
PaS
ConPaS-LQ

0 250 500 750 1000
Runtime in Seconds

10−2

10−1

Pr
im

al
 G
ap

SCIP PaS

Con
PaS

-LQ
0
5

10
15
20
25
30
35

Pr
im

al
 In

te
gr
al

Figure 7: The primal gap as a function of runtime and the primal integral at 1,000 seconds runtime cutoff. Note that the
curves of PaS and ConPaS highly overlap with each other.

Table 4: Hyperparameters (k0, k1,∆) used for PaS and ConPaS.

PaS ConPaS-Inf ConPaS-LQ
MVC (500, 100, 10) (800, 200, 20) (800, 200, 20)
MIS (600, 600, 5) (1200, 600, 10) (1000, 600, 15)
CA (2000, 0, 0) (2000, 0, 0) (2000, 0, 0)
IP (400, 5, 3) (400, 5, 5) (400, 5, 2)

For PaS and ConPaS, the values of k0, k1 and ∆ are summarized in Table 4. Note that the best hyperparameters for both MVC
and MIS are quite different for PaS and ConPaS. On MVC instances for PaS, we observe that (k0, k1,∆) = (600, 200, 20)
has a smaller primal integral than (500, 100, 10) but has a larger primal gap at 1,000 seconds runtime cutoff. We also
test (k0, k1,∆) = (500, 100, 10) for ConPaS-LQ, it converges to the same primal gaps (with < 0.002% differences) as
(800, 200, 20) but has a 34.1% increase in primal integral. On MIS instances for PaS, we observe that increasing k0 or
∆ (or both) leads to significantly worse performance. However, if we use (k0, k1,∆) = (600, 600, 6) for ConPaS-LQ, it
converges to the same primal gaps (with < 0.032% differences) as (1000, 600, 15) but has a 131.8% increase in primal
integral (still being better than any other baseline).

Table 5: The primal gap and primal integral at 1,000 seconds runtime cutoff on the CA instances with different k0 averaged
over 100 instances.

Primal Gap (%) Primal Integral
k0 PaS ConPaS-LQ PaS ConPaS-LQ

800 6.28 6.59 114.4 117.5
1200 5.45 5.05 104.3 97.3
1600 2.91 2.06 75.6 70.4
2000 1.17 0.55 28.9 19.7
2400 2.19 1.40 27.5 22.9
2700 5.63 4.58 58.0 47.4
3000 12.74 11.56 127.8 115.8

Table 6: Tabular representation of the primal integral plots in Figures 4 and 5: The primal integral and the standard deviation
at 1,000 seconds runtime cutoff, averaged over 100 instances.

SCIP ND PaS ConPaS-Inf ConPaS-LQ
MVC 44.5±2.7 10.7±1.2 13.9±6.3 3.1±0.9 2.8±0.6
MIS 46.3±2.9 22.9±14.9 34.5±5.8 5.5±1.3 5.4±1.3
CA 138.9±28.6 71.0±18.2 28.9±5.6 24.0±6.2 19.7±4.8
IP 349.3±87.1 244.0±76.4 236.8±80.6 221.8±73.0 192.0±67.8

MVC (large) 88.3±5.0 8.8±2.2 5.0±2.1 3.7±1.1 2.1±0.8
CA (large) 167.2±8.2 151.4±21.5 96.9±17.1 39.4±10.4 28.7±5.7

13

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Gurobi PaS ConPaS-LQ

0 250 500 750 1000
Runtime in Seconds

10−3

10−2

10−1
Pr
im

al
 G
ap

(a) MVC.

0 250 500 750 1000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(b) MIS.

0 250 500 750 1000
Runtime in Seconds

10−3

10−2

10−1

Pr
im

al
 G
ap

(c) CA.

Figure 8: Comparisons with Gurobi: The primal gap (the lower, the better) as a function of runtime averaged over 100 test
instances.

Gur
obi PaS

Con
PaS

-LQ
0

1

2

3

4

5

Pr
im

al
 In

te
gr
al

(a) MVC.

Gur
obi PaS

Con
PaS

-LQ
0
5

10
15
20
25
30

Pr
im

al
 In

te
gr
al

(b) MIS.

Gur
obi PaS

Con
PaS

-LQ
0.0
2.5
5.0
7.5

10.0
12.5
15.0

Pr
im

al
 In

te
gr
al

(c) CA.

Figure 9: Comparisons with Gurobi: The primal integral (the lower, the better) at 1,000 seconds runtime cutoff, averaged
over 100 test instances. The error bars represent the standard deviation.

D. Additional Experimental Results
D.1. Results on the Workload Appointment Problem

Figure 7 presents the results on the WA instances. Both PaS and ConPaS-LQ outperform SCIP significantly in terms of the
primal gap and the primal integral. However, both approaches converge quickly to low primal gaps, with ConPaS-LQ being
very slightly better than PaS.

D.2. Comparisons with Gurobi

We compare the performance of ConPaS-LQ against PaS and Gurobi on the MVC, MIS and CA instances. Note that in this
experiment, we use Gurobi in the Predict-and-Search phase for both PaS and ConPaS-LQ to ensure a fair comparison. The
hyperparameters (k0, k1,∆) are reported in Table 7. Figure 8 shows the primal gap as a function of runtime. Figure 9 shows
the primal integral at 1,000 seconds runtime cutoff. The results show that both PaS and ConPaS-LQ outperform Gurobi
significantly on MVC and MIS instances. Overall, ConPaS-LQ is still the best when applied on Gurobi.

D.3. Prediction Accuracy

To assess the accuracy of the predicted solutions by the neural networks, we report the classification accuracy over all binary
variables (with the threshold set to 0.5) in Table 8. We report it for both PaS and ConPaS-LQ on the MVC and CA problems
on 100 validation instances. The accuracy is the fraction of correctly classified variables averaged over 50 positive samples
for each instance, and we report the average accuracy over 100 validation instances. Since the classification accuracy is
sensitive to the threshold, we also report the AUROC. On the MVC instances, though ConPaS has a lower accuracy (w.r.t.
the threshold of 0.5), it has higher AUROC than PaS. On the CA instances, their accuracies and AUROCs are similar.

14

Contrastive Predict-and-Search for Mixed Integer Linear Programs

Table 7: Comparisons with Gurobi: Hyperparameters (k0, k1,∆) used for PaS and ConPaS-LQ.

PaS ConPaS-LQ
MVC (500, 100, 10) (500, 100, 15)
MIS (500, 500, 10) (500, 500, 10)
CA (1500, 0, 0) (1500, 0, 0)

Table 8: Prediction accuracy and AUROC on 100 validation instances.

MVC CA
Accuracy AUROC Accuracy AUROC

PaS 81.2% 0.88 88.3% 0.87
ConPaS-LQ 76.9% 0.91 86.9% 0.86

However, we would like to point out that a better accuracy/AUROC does not necessarily indicate a better downstream search
performance.

15

