

000 001 002 003 004 005 HNDIFF: HAZE-NOISE DIFFUSION FOR IMAGE DE- 006 HAZING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

ABSTRACT

031 Existing diffusion-based methods have recently made significant progress in im-
032 age dehazing. However, they typically neglect the physics of haze formation and
033 reconstruct clean images from pure Gaussian noise, thereby limiting their restora-
034 tion potential. To address this issue, we propose Haze-Noise Diffusion (HNDiff),
035 a novel diffusion framework that embeds the atmospheric scattering model as an
036 inductive bias. By grounding diffusion in physical principles, HNDiff ensures that
037 the restoration aligns more closely with underlying mechanisms of haze forma-
038 tion. In its forward process, we introduce joint haze-noise diffusion with a haze-
039 aware noise scheduler, which progressively adds both haze and noise to an image.
040 Essentially, the scheduler adapts noise levels according to haze density, mean-
041 ing that regions with heavier haze receive stronger noise injection to encourage
042 content generation, while clearer regions receive lighter noise to better preserve
043 details, which directly links the forward degradation process with the physics of
044 haze. In the reverse process, we then derive a physically consistent dehazing-
045 denoising process that simultaneously removes haze and noise to restore a clean
046 image in a manner aligned with the forward degradation process. To further en-
047 hance practicality, we propose Latent HNDiff, which compiles clean latent priors
048 that can be seamlessly integrated into existing dehazing networks to boost per-
049 formance. Extensive experiments show that our work significantly improves leading
050 dehazing backbones and achieves state-of-the-art results on benchmark datasets.
051
052

1 INTRODUCTION

053 Hazy weather conditions caused by atmospheric scattering frequently degrade image visibility by
054 reducing contrast and obscuring scene details. Such degradation not only impairs human perception
055 but also severely hinders the performance of many vision applications, such as object detection (Kim
056 et al., 2024a; Wang et al., 2024a), semantic segmentation (Benigmim et al., 2024; Weber et al.,
057 2024), and face recognition (Kim et al., 2024b; Mi et al., 2024). To address the challenges, single
058 image dehazing has emerged as a feasible solution to restore a clear image from a single hazy input.
059 However, such a task remains highly ill-posed due to the complex interplay of scattering coefficients,
060 atmospheric light, and scene depth.

061 Driven by advances in deep learning, CNN-based methods (Dong et al., 2020; Wu et al., 2021; Bai
062 et al., 2022; Cui et al., 2023) have achieved impressive results in image dehazing. Transformer-based
063 approaches (Qin et al., 2020; Guo et al., 2022; Qiu et al., 2023; Cui et al., 2024; Fang et al., 2025)
064 further improved performance by exploring long-range dependencies and global context. Recently,
065 Mamba-based methods (Zheng & Wu, 2024; Li et al., 2025) have emerged as an efficient alternative
066 with linear computational complexity. Despite the advancements, these methods still struggle in
067 heavy haze scenarios, where most information is lost, leading to limited restoration quality.

068 In parallel, diffusion models (Ho et al., 2020; Rombach et al., 2022) have shown strong genera-
069 tive ability in image synthesis, producing results with rich details and sharp textures. Motivated
070 by this progress, several studies (Yang et al., 2024; Wang et al., 2025) have applied diffusion algo-
071 rithms to image dehazing. Yet, conventional diffusion models are fundamentally misaligned with
072 the nature of haze. That is, they reconstruct clean images from pure Gaussian noise, and their
073 stochastic nature (Ye et al., 2024) often causes deviations from the original image, thereby reducing
074 restoration fidelity. More importantly, they usually neglect the physical properties of haze forma-
075 tion, resulting in suboptimal restoration performance. According to the Atmospheric Scattering

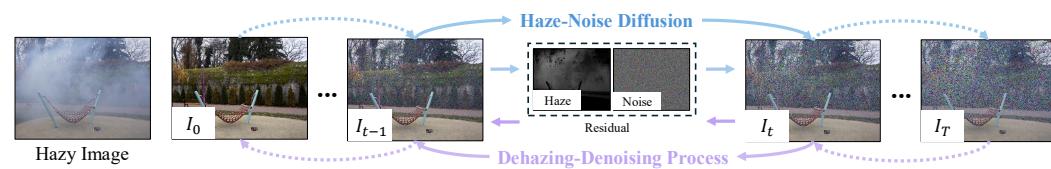


Figure 1: HNDiff leverages the ASM inductive bias, progressively adding haze and noise in the forward process and removing them in the reverse process for image dehazing.

Model (ASM) (Narasimhan & Nayar, 2003), a hazy image results from attenuated scene radiance and global atmospheric light. Haze density may vary spatially across the image, as it depends on both the light scattering effect and scene depth, and intensifies with the increasing scattering coefficient. Thus, haze exhibits structured, spatially varying degradations, unlike the random Gaussian noise typically assumed in conventional diffusion models.

Based on this observation, we present *Haze-Noise Diffusion* (HNDiff), a new framework that re-defines the forward process through a haze-noise diffusion mechanism. Instead of injecting only Gaussian noise, we integrate the ASM into the diffusion process, mimicking the physical formation of haze by highlighting its spatially varying characteristics.

In the forward process, HNDiff carries out the haze-noise diffusion mechanism, which gradually adds both Gaussian noise and haze to a clean image, as illustrated in Figure 1. To better control this process, we introduce the haze-aware noise scheduler, which dynamically adjusts the noise level according to haze density: hazier regions are assigned higher noise to boost generative capacity, while clearer regions receive less noise to preserve detail fidelity. Progressive haze diffusion and adaptive noise scheduling require transmission maps from ASM, which are generally unavailable. To overcome this limitation, we consider the haze residual, defined as the incremental haze accumulated as the scattering coefficient increases. We develop a continuous accumulation formulation to represent this residual implicitly in HNDiff and thus eliminate the need for explicit transmission maps. Through this design, the forward process remains ingeniously consistent with ASM, enabling progressive haze addition in tandem with adaptive noise injection.

In the reverse process, we derive the dehazing-denoising process, which is grounded by the physical principles of ASM and can implicitly approximate noise and haze residuals through dedicated estimators, thereby removing haze and noise to restore clean images. However, directly applying diffusion in the image space incurs substantial computational overhead and may suffer from fidelity issues in severely degraded regions due to the stochastic nature of the diffusion process. To address these problems, we propose latent HNDiff, a prior generation network that integrates flexibly with dehazing backbones, allowing for more accurate and visually consistent restoration. This latent approach not only reduces computational cost but also enhances the applicability of the framework across diverse dehazing models.

The key contributions of our work are summarized as follows: First, we propose HNDiff, a novel diffusion-based framework that incorporates ASM as an inductive bias, specifically designed for image dehazing. Second, HNDiff implements a haze-noise diffusion process that adds both haze and noise in the forward pass, and a corresponding dehazing-denoising process with two dedicated estimators to respectively remove haze and noise in the backward pass. Third, we design the haze-aware noise scheduler to adaptively adjust noise levels based on hazy densities. Fourth, extensive experiments demonstrate that HNDiff consistently improves three representative dehazing models and achieves state-of-the-art performance on seven benchmark datasets.

2 RELATED WORK

2.1 IMAGE DEHAZING

CNN-based Dehazing. Deep learning has revolutionized image dehazing with CNN-based methods (Dong et al., 2020; Wu et al., 2021; Bai et al., 2022; Yang et al., 2022; Cui et al., 2023) achieving impressive breakthroughs. For instance, Dong et al. (2020) propose a boosted decoder combined with a dense feature fusion module to progressively restore haze-free images. Wu et al. (2021) introduce contrastive regularization within an autoencoder to learn from hazy and clear images for efficient dehazing. More recently, Cui et al. (2023) present a dual-domain selection mechanism and an efficient multi-scale network to further enhance restoration quality.

108 **Transformer-based Dehazing.** In addition to CNNs, Transformer-based methods have shown
 109 great promise in image dehazing by leveraging attention mechanisms to model long-range dependencies
 110 and global context (Qin et al., 2020; Guo et al., 2022; Song et al., 2023; Qiu et al., 2023;
 111 Valanarasu et al., 2022; Cui et al., 2024; Fang et al., 2025). For example, Qiu et al. (2023) approx-
 112 imate softmax-attention with a Taylor expansion to achieve linear complexity to reduce the com-
 113 putational overhead, complemented by multi-scale attention refinement for effective dehazing. Cui
 114 et al. (2024) design a multi-shape attention module with rectangle and dilated operations to enlarge
 115 receptive fields and boost performance. Fang et al. (2025) integrate phase and attention modules to
 116 leverage YCbCr textures for recovering clearer features in both frequency and spatial domains.

117 **Mamba-based Dehazing.** Mamba-based methods have recently emerged as efficient alternatives
 118 for image dehazing, capturing global context with linear computational complexity. Zheng & Wu
 119 (2024) combine convolution for local feature extraction with state space models to capture long-
 120 range dependencies in dehazing. Li et al. (2025) design an S-shaped stripe-based scanning strategy
 121 to better preserve locality and continuity, and use a channel-wise attention mechanism to aggregate
 122 sequences for more effective restoration.

123 **ASM-based Dehazing.** Beyond architectural advances, several studies (Shao et al., 2020; Chen
 124 et al., 2021; Yang et al., 2022; Wu et al., 2023; Fang et al., 2024; Shin et al., 2025) explicitly exploit
 125 the Atmospheric Scattering Model (ASM) to improve dehazing. Wu et al. (2023) design an ASM-
 126 based data generation pipeline to synthesize hazy images for training a VQGAN-based network.
 127 Fang et al. (2024) derive a cooperative unfolding network directly from ASM, jointly optimizing the
 128 transmission map and clean image. Shin et al. (2025) reformulate dehazing as an ASM-governed
 129 ODE flow, ensuring that the learned velocity field and transmission refinement remain consistent
 130 with the scattering physics.

131 Despite these advancements, most dehazing methods are still trained in an end-to-end regression
 132 manner that directly maps hazy inputs to clean outputs. Although some ASM-based approaches
 133 incorporate the Atmospheric Scattering Model as physical guidance to constrain this mapping, both
 134 regression-based and ASM-based methods still struggle under extremely dense haze, where severe
 135 information loss makes it difficult to recover realistic high-frequency details. In contrast, our method
 136 couples ASM with a diffusion process and leverages the generative capability of noise diffusion to
 137 compensate for missing content and restore plausible fine structures in heavily degraded regions.

138 2.2 DIFFUSION MODELS

139 **Diffusion for Low-level Vision.** Diffusion models (Ho et al., 2020; Rombach et al., 2022; Meng
 140 et al., 2022; Zhang et al., 2023; Wu et al., 2024) have shown strong generative capability in image
 141 synthesis and can produce results with rich details and sharp textures through forward noise diffusion
 142 and reverse denoising. This success has inspired much research exploring their potential in diffusion
 143 algorithms for various low-level vision tasks (Zhang et al., 2024; Garber & Tirer, 2024; Li et al.,
 144 2024; Liu et al., 2024a;b; Xia et al., 2023; Zheng et al., 2024; Rajagopalan et al., 2025; Luo et al.,
 145 2025; He et al., 2025). For example, Xia et al. (2023) employ diffusion models to extract compact
 146 priors used to guide a dynamic transformer for image recovery. Liu et al. (2024b) utilize a pre-
 147 trained diffusion model with task-specific priors for diverse image restoration tasks. Luo et al.
 148 (2025) present visual instruction-guided diffusion that models degradation patterns for all-in-one
 149 image restoration.

150 **Diffusion for Image Dehazing.** Within low-level vision, a number of studies have focused specif-
 151 ically on image dehazing using diffusion models (Yang et al., 2024; Wang et al., 2024b; Liu et al.,
 152 2024b; Rao et al., 2024; Wang et al., 2025; Liu et al., 2025; Zhou et al., 2025). For instance, Yang
 153 et al. (2024) exploit the semantic latent space of a pre-trained diffusion model to guide dehazing
 154 without retraining and iterative sampling. Wang et al. (2025) combine diffusion-based hazy image
 155 generation with accelerated fidelity-preserving sampling for efficient, high-quality dehazing. Liu
 156 et al. (2025) leverages diffusion models in the frequency domain with an amplitude residual encoder
 157 and a phase correction module to enhance unpaired image dehazing. Despite these advances, these
 158 methods rely on conventional noise diffusion initialized with pure Gaussian noise, which disregards
 159 the physical properties of haze formation. As a result, the stochastic nature (Ye et al., 2024) of
 160 the process often leads to deviations from the target restoration fidelity, often resulting in degraded
 161 performance and less consistent visual quality.

Degradation-aware Diffusion. Recently, a few studies have explored degradation-aware diffu-
 162 sion for image restoration. For example, Liu et al. (2024a) propose residual diffusion and operate

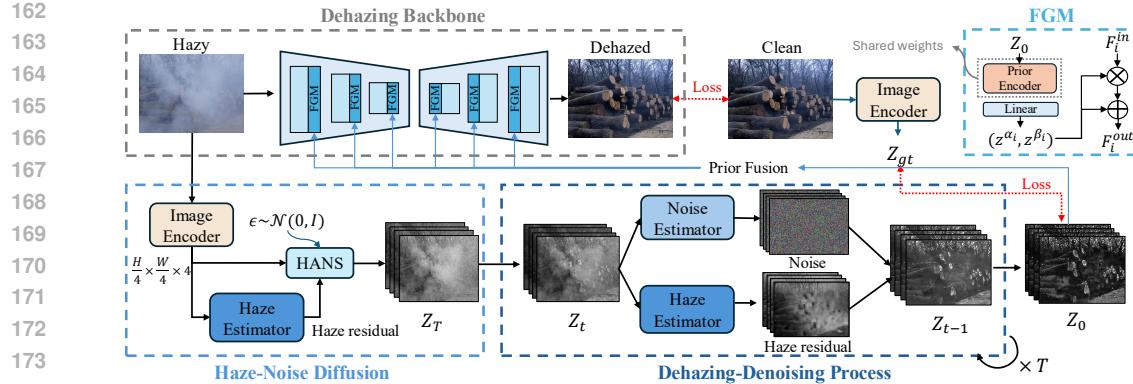


Figure 2: **Overview of Latent HNDiff.** The framework starts by using an image encoder to extract latent priors from a hazy input. These priors undergo a haze-noise diffusion process to produce the diffused hazy and noisy representation Z_T . During the reverse process, dehazing and denoising are performed jointly by iteratively estimating both noise and haze residuals to recover clean priors Z_0 . Lastly, they are then integrated into a dehazing backbone through the Feature Gating Module (FGM) to improve the overall restoration quality.

on the difference between hazy and clean images, while Zhou et al. (2025) introduce a physics-guided dehazing diffusion by reformulating haze accumulation as a time-indexed process. However, these approaches either neglect the role of physical scene transmission in modeling haze degradation within the diffusion process or overlook haze density in the noise scheduling. To address these issues, our approach embeds ASM into the diffusion process as an inductive bias and adaptively adjusts noise addition according to haze density, achieving significantly improved dehazing performance.

3 METHOD

This section presents the proposed *Haze-Noise Diffusion* (HNDiff), a novel framework that integrates the Atmospheric Scattering Model (ASM) (Narasimhan & Nayar, 2003) into the diffusion process for image dehazing. As depicted in Figure 1, HNDiff defines a physics-guided forward *Haze-Noise Diffusion* process equipped with a *Haze-Aware Noise Scheduler* (HANS) and a reverse *Dehazing–Denoising Process*. In the forward direction, an input image is progressively degraded by jointly introducing haze and Gaussian noise through an increasing scattering coefficient, while HANS adaptively controls the noise level according to the local haze density so that the corruption follows ASM-guided haze formation. In the reverse direction, HNDiff starts from a hazy input perturbed by Gaussian noise and iteratively removes both haze and noise in a manner consistent with the ASM. For high-fidelity restoration and better efficiency, as illustrated in Figure 2, we further propose *Latent HNDiff*, where HNDiff serves as a prior generation network in the latent space and the learned prior is injected into a dehazing backbone via a Feature Gating Module (FGM), enabling plug-and-play enhancement of existing dehazing architectures. In the following, Section 3.1 details the *Haze-Noise Diffusion* process and HANS, Section 3.2 presents the *Dehazing–Denoising Process*, and Section 3.3 describes Latent HNDiff together with the FGM integration.

3.1 HAZE-NOISE DIFFUSION

Haze in image formation arises from atmospheric scattering, where scene radiance is attenuated during transmission and blended with global atmospheric light, leading to reduced visibility and a loss of detail. This process can be mathematically modeled by the ASM:

$$I_H(x) = I_0(x) \tau(x) + A(1 - \tau(x)), \text{ where } \tau(x) = e^{-\sigma(x)d(x)} \quad (1)$$

with x denoting the pixel index. In (1), $I_H \in \mathbb{R}^{H \times W \times 3}$, $I_0 \in \mathbb{R}^{H \times W \times 3}$, $\tau \in \mathbb{R}^{H \times W \times 1}$, $A \in \mathbb{R}^3$, $\sigma \in \mathbb{R}^{H \times W \times 1}$, and $d \in \mathbb{R}^{H \times W \times 1}$ denote the hazy image, the clean scene radiance, the transmission map, the global atmospheric light, the scattering coefficient, and the scene depth, respectively. This formulation explicitly models haze formation, where larger scattering coefficients σ or greater depths d yield smaller transmission τ , increasing haze density and reducing scene visibility. However, existing diffusion-based dehazing methods typically adopt conventional diffusion models that add zero-mean Gaussian noise and drive the image toward pure noise, which does not reflect the

structured, spatially varying haze described in (1). To bridge this gap, we introduce a *haze–noise diffusion* process in which ASM-based haze formation acts as a mean shift of the Gaussian corruption, so that the forward process follows a physically meaningful clean-to-hazy evolution while stochastic noise is injected around this trajectory.

Forward Haze-Noise Diffusion. In the forward process of HNDiff, we propose a haze-noise diffusion that embeds the physical haze formation process into noise diffusion. Specifically, a clean image is progressively degraded by both haze and Gaussian noise. The forward transition at time step t is defined as

$$I_t(x) = I_{t-1}(x)e^{-\alpha_t\sigma(x)d(x)} + A\left(1 - e^{-\alpha_t\sigma(x)d(x)}\right) + \beta_t(x)\epsilon_t(x), \quad (2)$$

where I_t denotes the intermediate hazy and noisy image at step t , α_t is the scaling factor, $\epsilon_t \sim \mathcal{N}(0, \mathbf{I})$ represents Gaussian noise, and $\beta_t(x)$ is the noise scaling coefficient at pixel x . As seen in (2), I_{t-1} is further degraded according to (1), with scene radiance attenuated by the α_t -scaled scattering coefficient, while noise is injected with another scaling coefficient $\beta_t(x)$.

Haze-Aware Noise Scheduler. Since haze density varies spatially, the generative capacity controlled by noise diffusion should also adapt across pixels. We therefore introduce a haze-aware noise scheduler, which defines the pixel-wise noise scaling coefficient as $\beta_t(x) = 1 - e^{-\alpha_t\sigma(x)d(x)}$. This design makes the injected noise explicitly dependent on haze density: pixels with heavier haze receive larger $\beta_t(x)$, thus introducing stronger noise that triggers diffusion to reconstruct severely degraded details; conversely, pixels with lighter haze yield smaller $\beta_t(x)$, injecting less noise to preserve content fidelity through regression. This adaptive scheduling enables the forward process to jointly model haze degradation and stochastic corruption.

Sampling Probability and Reparameterization. Inspired by Liu et al. (2024a), we regard degradation in the forward process as a deterministic mean shift. From (2), each step from I_{t-1} to I_t can thus be expressed as a Gaussian transition, where the mean is shifted by haze and stochastic perturbations are introduced by Gaussian noise:

$$q(I_t(x) | I_{t-1}(x), \phi) := \mathcal{N}\left(I_t(x) \mid I_{t-1}(x)e^{-\alpha_t\sigma(x)d(x)} + A\left(1 - e^{-\alpha_t\sigma(x)d(x)}\right), \beta_t^2(x)\right), \quad (3)$$

where $\phi = \{d(x), \sigma(x), A\}$. By iterating (3), we obtain a sequence of progressively hazy and noisy images $\{I_1, I_2, \dots, I_T\}$ through a T -step diffusion process, with the complete forward sampling probability $q(I_{1:T}(x) | I_0(x), \phi) = \prod_{t=1}^T q(I_t(x) | I_{t-1}(x), \phi)$. However, existing dehazing datasets provide only hazy-clean image pairs and do not include ϕ (i.e., atmospheric light, scattering coefficients, and scene depth necessary to compute transmission).

To address this limitation, we apply the reparameterization trick (Ho et al., 2020) to (3) and obtain the conditional distribution after T steps as

$$q(I_T(x) | I_0(x), \phi) = \mathcal{N}\left(I_T(x) \mid I_0(x)e^{-\sum_{t=1}^T \alpha_t\sigma(x)d(x)} + A\left(1 - e^{-\sum_{t=1}^T \alpha_t\sigma(x)d(x)}\right), \bar{\beta}_T^2(x)\right), \quad (4)$$

where $\alpha_t = \frac{1}{T}$, $\forall t \in \{1, 2, \dots, T\}$, and $\bar{\beta}_T(x) = \sqrt{\frac{(1 - e^{-(1/T)\sigma(x)d(x)})(1 - e^{-2\sigma(x)d(x)})}{1 + e^{-(1/T)\sigma(x)d(x)}}}$. The complete derivation of (4) is provided in Appendix A.1. It follows that the hazy and noisy image I_T can be sampled from $q(I_T | I_0)$ via

$$I_T(x) = I_0(x)e^{-\sigma(x)d(x)} + A\left(1 - e^{-\sigma(x)d(x)}\right) + \bar{\beta}_T(x)\epsilon(x) = I_H(x) + \bar{\beta}_T(x)\epsilon(x), \quad (5)$$

where I_T is generated in a single step by injecting noise into the hazy image I_H via the haze-aware noise scheduler. This formulation preserves the Gaussian nature of the diffusion process while embedding ASM directly into the mean of the distribution through a physically grounded shift. As $\bar{\beta}_T(x)$ still relies on the transmission map, we introduce a learnable haze estimator to implicitly approximate it. The optimization details for the haze estimator are provided in Section 3.3.

3.2 DEHAZING-DENOISING PROCESS

In the reverse generation procedure, we aim to progressively remove both haze and noise from the degraded observation I_T to recover the clean image I_0 . Unlike conventional diffusion models that start from pure Gaussian noise, our method initializes from the hazy-noisy sample I_T drawn from

270 the Gaussian distribution (4). Inspired by the deterministic sampling formulation in Song et al.
 271 (2021), we define the reverse transition distribution as
 272

$$273 \quad p_\theta(I_{t-1}(x) | I_t(x)) = q_\delta(I_{t-1}(x) | I_t(x), I_0(x), \phi). \quad (6)$$

274 The transition probability q_δ in (6) is defined as
 275

$$276 \quad q_\delta(I_{t-1}(x) | I_t(x), I_0(x), \phi) = \mathcal{N}(I_{t-1}(x) | \mu_t(x), \delta_t^2(x)), \quad \text{where} \quad (7)$$

$$277 \quad 278 \quad \mu_t(x) = I_0(x) e^{-\sum_{s=1}^{t-1} \alpha_s \sigma(x) d(x)} + A \left(1 - e^{-\sum_{s=1}^{t-1} \alpha_s \sigma(x) d(x)} \right) + \sqrt{\bar{\beta}_{t-1}^2(x) - \delta_t^2(x)} \epsilon_{t-1}(x), \quad (8)$$

279 and $\delta_t^2 = \eta \cdot \frac{\beta_t^2 \bar{\beta}_{t-1}^2}{\beta_t^2}$ is a variance term that controls sampling stochasticity. When $\eta = 0$, this yields
 280 a deterministic sampling. From 4, we can derive
 281

$$282 \quad 283 \quad I_0(x) = (I_t - (1 - e^{-\sum_{s=1}^{t-1} \alpha_s \sigma(x) d(x)}) A - \bar{\beta}_t \epsilon_t) e^{\sum_{s=1}^{t-1} \alpha_s \sigma(x) d(x)}. \quad (9)$$

284 By substituting (9) into (7) and simplifying, we obtain the sampling equation for $I_{t-1}(x)$ as
 285

$$286 \quad I_{t-1}(x) = \left(I_t(x) - N_t(x) \left(1 - e^{-\alpha_t \sigma(x) d(x)} \right) \right) e^{\alpha_t \sigma(x) d(x)}, \quad (10)$$

287 where $N_t(x) = A + \epsilon_t(x)$ denotes the atmospheric noise, which is composed of the atmospheric
 288 light term and a Gaussian noise term. To reconstruct I_0 , we iterate (10) with two learnable esti-
 289 mators. One is the noise estimator $N_t^\theta(I_t, I_H, t)$, which approximates N_t . The other is the haze
 290 estimator $1 - e^{-\alpha_t o^\theta(I_t, I_H, t)}$, which approximates the residual transmission term $1 - e^{-\alpha_t \sigma d}$ (the
 291 complement of the transmission), where $o^\theta(I_t, I_H, t)$ is a learnable network estimating the scatter-
 292 ing-depth product σd . Here, we omit A for simplicity, as it can be incorporated separately into the
 293 haze reconstruction. Complete derivations of the variational lower bound and sampling formulation
 294 are provided in Appendix A.2, A.3. In the following, we detail the optimization of the haze estimator
 295 and noise estimators in the latent space.
 296

297 3.3 LATENT HNDIFF

298 Performing diffusion-based restoration directly in image space, as noted in Rombach et al. (2022);
 299 Chen et al. (2023), incurs substantial computational overhead, fidelity degradation, and slower, less
 300 stable convergence. To address these challenges, and inspired by prior works (Rombach et al., 2022;
 301 Chen et al., 2023; Xia et al., 2023), we present **Latent HNDiff**. As illustrated in Figure 2, La-
 302 tent HNDiff applies HNDiff in the latent space and serves as a prior generator to enhance dehazing
 303 through a three-stage training strategy. By embedding physically grounded haze formation into the
 304 latent diffusion process, Latent HNDiff encourages latent features to encode haze-aware informa-
 305 tion, thereby capturing meaningful physical representations.
 306

Stage 1: Ground-truth Prior Pretraining. We first pretrain a dehazing network equipped with
 307 an Image Encoder (IE) and a Feature Gating Module (FGM). Given a hazy image I_H and its clean
 308 counterpart I_0 , we concatenate them and feed the result into the IE to extract the ground-truth prior
 309 $Z_{gt} = \text{IE}(\text{Concat}(I_H, I_0)) \in \mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times 4}$. The prior Z_{gt} is fused with encoder and decoder features
 310 $F_i^{in} \in \mathbb{R}^{h_i \times w_i \times c_i}$ at each scale i of the dehazing network through the FGM, producing the fused
 311 features F_i^{out} . Within FGM, Z_{gt} is first passed through a shared-weight Prior Encoder (PE) to obtain
 312 a compact representation, which is then linearly projected to generate modulation parameters that
 313 adaptively modulate the input features:
 314

$$z_{gt} = \text{PE}(Z_{gt}) = \text{MLP}(\text{AvgPool2D}(\text{Unshuffle}(Z_{gt}))) \in \mathbb{R}^{1 \times C} \text{ and} \quad (11)$$

$$315 \quad F_i^{out} = F_i^{in} \times z^{\alpha_i} + z^{\beta_i}, \text{ where } (z^{\alpha_i} \in \mathbb{R}^{1 \times c_i}, z^{\beta_i} \in \mathbb{R}^{1 \times c_i}) = \text{Linear}(z_{gt}). \quad (12)$$

316 C in (11) denotes the channel dimension of the projected prior vector, while c_i in (12) represents the
 317 number of feature channels at the i -th scale of the dehazing network. The fused features across all
 318 scales are subsequently decoded to yield the dehazed image I_{dehz} , which is supervised by the clean
 319 reference I_0 , ensuring that the network effectively learns to exploit the ground-truth prior Z_{gt} .
 320

Stage 2: Latent HNDiff Optimization. We estimate the ground-truth prior Z_{gt} from I_H us-
 321 ing HNDiff in the absence of the clean counterpart I_0 . Specifically, a second IE extracts $Z_H \in$
 322 $\mathbb{R}^{\frac{H}{4} \times \frac{W}{4} \times 4}$ from I_H . We then apply haze-noise diffusion (5) to Z_H using the haze estimator and
 323 haze-aware noise scheduler, obtaining a degraded latent Z_T . Next, the dehazing-denoising process

324 Table 1: Quantitative results on six benchmark datasets. Values in parentheses represent the im-
 325 provements of HNDiff over the corresponding baselines.

327 Model	NH-HAZE		O-HAZE		Dense-HAZE		RW ² AH		SOTS-Indoor		SOTS-Outdoor	
	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
MSBDN	17.97	0.659	24.36	0.749	15.13	0.555	21.51	0.595	33.67	0.985	33.48	0.982
FFA-Net	18.13	0.647	22.12	0.770	15.70	0.549	18.73	0.556	36.39	0.989	33.57	0.984
Dehamer	20.66	0.684	25.11	0.777	16.62	0.560	20.84	0.581	36.63	0.988	35.18	0.986
MB-TaylorFormer	20.43	0.688	25.05	0.788	16.66	0.560	21.37	0.608	40.71	0.992	37.42	0.989
FocalNet	20.36	0.696	25.46	0.791	16.95	0.597	21.93	0.635	40.82	0.992	37.71	0.995
ConvIR	20.65	0.692	25.25	0.784	16.86	0.600	21.99	0.640	41.53	0.994	37.95	0.994
SGDN	20.13	0.680	24.59	0.778	16.60	0.571	22.24	0.631	41.01	0.992	36.22	0.986
HNDiff (FocalNet)	20.89 (+0.53)	0.697 (+0.001)	26.32 (+0.86)	0.801 (+0.010)	17.29 (+0.34)	0.599 (+0.002)	22.29 (+0.36)	0.647 (+0.012)	41.19 (+0.37)	0.994 (+0.002)	38.10 (+0.39)	0.996 (+0.001)
HNDiff (ConvIR)	21.23 (+0.58)	0.701 (+0.009)	26.20 (+0.95)	0.799 (+0.015)	17.18 (+0.32)	0.623 (+0.023)	22.25 (+0.26)	0.646 (+0.006)	42.10 (+0.57)	0.995 (+0.001)	38.83 (+0.88)	0.995 (+0.001)
HNDiff (SGDN)	20.64 (+0.51)	0.686 (+0.006)	25.40 (+0.81)	0.782 (+0.004)	17.17 (+0.57)	0.611 (+0.040)	22.81 (+0.57)	0.653 (+0.022)	41.47 (+0.46)	0.995 (+0.003)	37.10 (+0.88)	0.991 (+0.005)
Avg Gains	+0.54	+0.005	+0.87	+0.010	+0.41	+0.022	+0.40	+0.013	+0.47	+0.002	+0.72	+0.002

339
 340 (10) iteratively removes haze and noise, producing the refined prior Z_0 as an estimate of Z_{gt} . Previous
 341 diffusion-based approaches (Chen et al., 2023; Xia et al., 2023; Salimans & Ho, 2022; Rao
 342 et al., 2024) typically impose supervision only on the final reconstructed output, allowing gradients
 343 to propagate backward through the entire diffusion trajectory and thereby amortizing step-wise su-
 344 pervision. Inspired by this idea, we design a trajectory-level supervision scheme in the latent space.
 345 Specifically, we define a latent-prior loss as $\mathcal{L}_{prior} = \|Z_0 - Z_{gt}\|_1$, where Z_0 is reconstructed from
 346 Z_T by recursively applying the shared haze and noise estimators. This design enforces consistency
 347 between the reconstructed latent representation and the ground-truth prior across the entire diffusion
 348 process. Further details are provided in Appendix A.2.

349 **Stage 3: Joint Fine-tuning.** At last, we jointly optimize the pretrained IE, HNDiff, the FGM, and
 350 the dehazing backbone. The dehazed image I_{dehz} is reconstructed by integrating the learned prior
 351 Z_0 and is supervised with I_0 using the standard loss function of the dehazing backbone. This stage
 352 ensures that the learned diffusion prior Z_0 consistently enhances dehazing performance.

353 4 EXPERIMENTS

354 4.1 EXPERIMENTAL SETUP

356 **Implementation Details.** HNDiff is composed of four key components: the Image Encoder (IE),
 357 the Feature Gating Module (FGM), the Haze Estimator, and the Noise Estimator. The IE consists
 358 of six residual blocks and four CNN layers, while the FGM is implemented with a pooling opera-
 359 tion and a lightweight MLP. Both the Haze Estimator and Noise Estimator share the same network
 360 architecture, which is a simplified U-Net (Liu et al., 2024a). In practice, we set the diffusion step
 361 to $T = 4$. The overall framework (Stage 3) is optimized with the default hyperparameters of each
 362 dehazing backbone (e.g., learning rate, number of epochs, batch size, and optimizer) to ensure fair
 363 comparisons.

364 **Dehazing Models and Datasets.** We adopt three state-of-the-art image dehazing models, includ-
 365 ing FocalNet (Cui et al., 2023), ConvIR (Cui et al., 2024), SGDN (Fang et al., 2025) to validate the
 366 effectiveness of HNDiff. Following prior studies, we conduct experiments on one widely used syn-
 367 thetic dataset, SOTS-Indoor and **SOTS-Outdoor** (Li et al., 2018), and four real-world benchmarks:
 368 NH-HAZE (Ancuti et al., 2021), O-HAZE (Ancuti et al., 2018), Dense-HAZE (Ancuti et al., 2019),
 369 and RW²AH (Fang et al., 2025). The SOTS-Indoor dataset consists of 13,990 training pairs and 500
 370 testing pairs. **The SOTS-Outdoor dataset consists of 313,950 training pairs and 500 testing pairs.**
 371 Both NH-HAZE and Dense-HAZE provide 50 training pairs and 5 testing pairs. O-HAZE offers 40
 372 training pairs and 5 testing pairs. RW²AH is a real-world hazy dataset that includes 1,406 training
 373 pairs and 352 testing pairs.

374 4.2 EXPERIMENTAL RESULTS

375 **Quantitative Results.** As shown in Table 1, we compare the dehazing performance of state-of-
 376 the-art methods and their HNDiff-enhanced versions, where the values in parentheses indicate the
 377 improvements made by HNDiff over the corresponding dehazing baselines. The results clearly
 378 demonstrate that HNDiff consistently enhances the performance of each baseline and outperforms

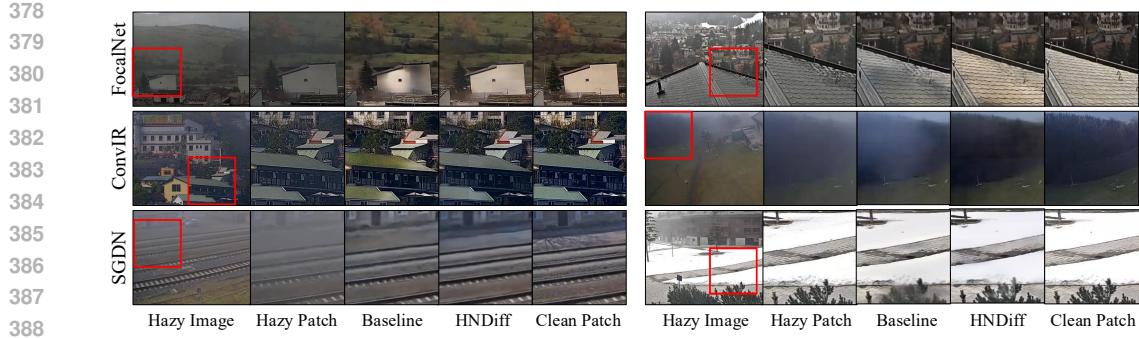
Figure 3: Qualitative results on the RW²AH dataset.

Figure 4: Qualitative results on the O-HAZE (left) and NH-HAZE (right) datasets. ‘‘Res’’ denotes residual maps between outputs and ground truth, where darker intensities indicate smaller errors.

previous state-of-the-art methods. Specifically, HNDiff yields average PSNR/SSIM improvements of $+0.54/+0.005$, $+0.87/+0.010$, $+0.41/+0.022$, $+0.40/+0.013$, $+0.47/+0.002$, and $**+0.72/+0.002**$ on the NH-HAZE, O-HAZE, Dense-HAZE, RW²AH, SOTS-Indoor, and **SOTS-Outdoor** test sets, respectively. Additionally, HNDiff achieves average PSNR/SSIM improvements of $**+0.48/+0.005**$, $**+0.59/+0.009**$, and $**+0.63/+0.013**$ on baselines FocalNet, ConvIR, and SGDN, respectively. Overall, HNDiff delivers an average gain of $**+0.57** PSNR and $+0.009$ SSIM across all datasets and baselines, highlighting its strong generalization ability and effectiveness as a prior generation network for image dehazing.$

Qualitative Results. We present qualitative comparisons between three baseline models and their HNDiff-enhanced counterparts. Figure 3 presents the results on the RW²AH test set, while Figure 4 shows the results on the NH-HAZE and O-HAZE test sets, including an additional ‘‘Res’’ column for better comparison. The residual maps are obtained by subtracting the ground truth from the model outputs, where lower intensities indicate smaller errors and thus higher reconstruction quality. As shown, HNDiff consistently produces cleaner and more visually compelling dehazed images compared to the baselines. By integrating HNDiff into the latent space of the dehazing networks, we exploit its capacity to model rich and realistic image priors while preserving fidelity to the underlying clean image structures. More qualitative results are provided in Appendix A.6.

4.3 ABLATION STUDIES

To assess the contributions of the proposed components in HNDiff, we conduct a series of ablation studies using FocalNet as the baseline dehazing model. Specifically, we evaluate the effectiveness of each component, compare the prior generator with different diffusion mechanisms, examine HNDiff against the baseline under equivalent parameter counts, investigate the impact of the three-stage training strategy, analyze the effect of varying the number of diffusion steps, inspect the haze residual modeling in latent space, and **compare the dehazing results of applying HNDiff in image space and latent space**. All experiments are conducted using the default training configuration of FocalNet and evaluated on the NH-HAZE test set.

Effectiveness of Each Component. Our ablation study, detailed in Table 2, evaluates the contribution of each component in HNDiff. *Net1* denotes the baseline dehazing model. *Net2* represents a conventional DDPM-based variant that employs only noise diffusion, while *Net3* is a variant that incorporates only haze diffusion and omits noise diffusion. *Net4* adopts both noise and haze diffusion but excludes the haze-aware noise scheduler (HANS). Finally, *Net5* is the complete HNDiff design.

432
433
434
Table 2: Ablation study on the effectiveness of
noise diffusion, haze diffusion, and HANS.

Model	Noise Diffusion	Haze Diffusion	HANS	PSNR (dB)
Net1				20.36 (baseline)
Net2	✓			20.46
Net3		✓		20.61
Net4	✓	✓		20.68
Net5	✓	✓	✓	20.89

435
436
437
438
Table 4: Comparison of different prior generators,
including U-Net and three diffusion mechanisms.

Model	Prior Generator	PSNR (dB)	SSIM
Net1	N/A	20.36	0.696
Net2	U-Net	20.41	0.696
Net3	DDPM	20.46	0.695
Net4	RDDM	20.43	0.690
Net5	HNDiff	20.89	0.697

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
The results show that both *Net2* and *Net3* surpass the baseline, demonstrating the individual benefits
of noise and haze diffusion. Moreover, *Net5* achieves the best performance, indicating that the joint
integration of both diffusion processes together with HANS provides complementary gains. These
findings highlight the importance of incorporating haze-aware design in order to enhance dehazing
effectiveness.455
456
457
458
459
460
461
462
Effectiveness of Three-stage Training Strategy. We evaluate the effectiveness of the three-stage
training strategy, as shown in Table 3. *Net1* represents the baseline dehazing model. *Net2* serves
as the upper bound using ground-truth prior Z_{gt} . *Net3* corresponds to optimizing HNDiff jointly
with the dehazing model without Stage 1 and Stage 2 pre-training, thus serving as a purely data-
driven baseline. *Net4* is the model obtained with Stage 1 and Stage 2 pre-training but without Stage
3 joint fine-tuning. Finally, *Net5* adopts the complete three-stage training and achieves the best
performance. These results clearly demonstrate the effectiveness of the three-stage training strategy
in exploiting the complementary benefits of pre-training and joint optimization.463
464
465
466
467
468
469
470
471
472
Comparison of Prior Generators with Different Diffusion Mechanisms. Table 4 evaluates
the baseline dehazing model augmented with different prior generation methods, including U-Net,
DDPM (Ho et al., 2020), RDDM (Liu et al., 2024a), and our proposed HNDiff. *Net1* denotes the
baseline model without a prior generator. *Net2* employs a U-Net to generate priors directly, without
any diffusion process. *Net3*, *Net4*, and *Net5* are the dehazing models enhanced with priors generated
by DDPM, RDDM, and HNDiff, respectively. Although integrating the standard diffusion process
(*Net3*) or the residual diffusion process (*Net4*) improves performance over the baseline, the gain
is just comparable to that of *Net2*, which uses a U-Net without diffusion. In contrast, HNDiff ex-
plicitly embeds the atmospheric scattering model into the diffusion process, yielding consistent and
superior improvements compared to both standard and residual diffusion mechanisms. We present
the dehazed results of different diffusion mechanisms in Appendix A.5.473
474
475
476
477
478
479
480
481
Comparison of HNDiff and Baselines with Equivalent Parameter Counts. To ensure a fair
comparison under similar parameter budgets, we evaluate HNDiff against enlarged baseline vari-
ants, as reported in Table 5. The *FocalNet⁺* variant increases the base channel size from 32 to 48,
while another variant *FocalNet^{*}* expands the number of residual blocks from 4 to 10. Although
both variants substantially increase model complexity in terms of parameters and FLOPs, they yield
only marginal PSNR gains over the baseline FocalNet. In contrast, HNDiff achieves the best perfor-
mance of 20.89dB in PSNR with a lower parameter count (7.82M) and significantly reduced FLOPs
(36.38G). These results demonstrate that integrating the proposed diffusion prior is more effective
than simply scaling the network capacity.482
483
484
485
Analysis of Diffusion Step Setting. Table 6 analyzes the impact of varying diffusion steps T
(0–8). Without diffusion guidance ($T = 0$), performance is limited to 20.36dB PSNR. Increasing
 T improves results, peaking at 20.89dB with $T = 4$, while larger T brings no further gains. These
results indicate that our model converges effectively with only four diffusion steps, demonstrating
that large numbers of diffusion iterations are unnecessary for achieving strong performance.432
433
434
Table 3: Ablation study on the effectiveness of
the three-stage training strategy.

Model	Stage 1	Stage 2	Stage 3	PSNR (dB)
Net1				20.36 (baseline)
Net2	✓			21.36 (upper bound)
Net3			✓	20.51
Net4	✓	✓		20.58
Net5	✓	✓	✓	20.89

432
433
434
Table 5: Comparison between HNDiff and base-
line variants with comparable parameter counts.

	FocalNet	FocalNet ⁺	FocalNet [*]	HNDiff
Params (M)	3.74	8.40	8.28	7.82
FLOPs (G)	30.53	68.54	64.05	36.38
PSNR (dB)	20.36	20.37	20.51	20.89

432
433
434
Table 6: Analysis of diffusion step setting.

Time step	0	2	4	6	8
PSNR (dB)	20.36	20.69	20.89	20.84	20.81

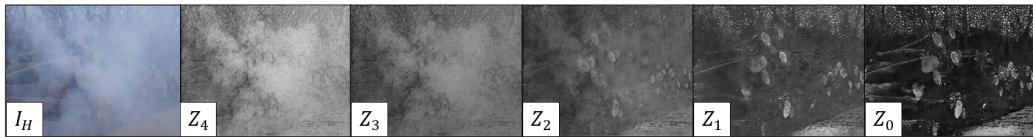


Figure 5: Visualization of latent representations across reverse diffusion steps.

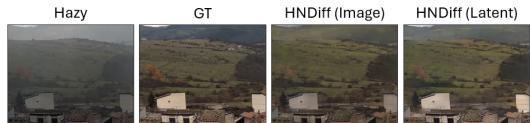


Figure 6: Qualitative results of applying HNDiff in image space and latent space.

Table 7: Comparison of applying HNDiff in image space and latent space on the RW²AH dataset.

Metric	FocalNet	HNDiff (Image)	HNDiff (Latent)
PSNR (dB)	21.18	21.37	21.52
SSIM	0.5970	0.6166	0.6254
FLOPs (G)	30.53	65.59	36.38

Analysis of Haze Residual Modeling in Latent Space. To verify that HNDiff models haze formation in latent space, we analyze diffusion prior outputs across reverse steps. Although the model is trained with $T = 4$ steps, we examine intermediate latent representations by performing $t \in [0, 1, 2, 3, 4]$ reverse steps starting from the fully hazy latent Z_4 , resulting in the sequence $[Z_4, Z_3, \dots, Z_0]$. For visualization, we compute the channel-wise mean of each latent and down-sample I_H to the same spatial resolution only for visualization. As shown in Figure 5, the representations progressively transition from hazy (Z_4) to clean (Z_0), confirming that HNDiff captures a progressive hazy-to-clean structure in the latent space and enables interpretable modeling.

Comparison of Applying HNDiff in Image Space and Latent Space. Table 7 compares an image-space variant, *HNDiff (Image)*, which applies our haze-noise diffusion directly to RGB images, and a latent-space variant, *HNDiff (Latent)*, which operates in the latent space of a FocalNet on the real-world RW²AH dataset. The two variants use the same U-Net as the haze/noise estimator and both improve over the baseline, while *HNDiff (Latent)* achieves the best performance (21.52 dB PSNR, 0.6254 SSIM) with only minimal additional FLOPs overhead (36.38G), confirming its advantage in content fidelity. Figure 6 further shows that *HNDiff (Latent)* produces results closer to the ground truth, supporting our choice of the latent formulation in the main experiments.

5 LIMITATIONS

HNDiff is tailored to the Atmospheric Scattering Model and thus cannot be directly applied to other degradations such as motion blur, raindrops, or low-light conditions. Extending it to these scenarios requires integrating degradation-specific priors (e.g., object motion, rain masks, exposure time), which we leave as future work.

6 CONCLUSION

We propose Haze-Noise Diffusion (HNDiff), a novel diffusion-based framework for image dehazing. HNDiff integrates the atmospheric scattering model into the diffusion framework, jointly performing haze diffusion and noise diffusion to account for the physical properties of haze formation. In the forward process, HNDiff progressively degrades a clean image by introducing both haze and noise through a haze-noise diffusion, with a haze-aware noise scheduler that adaptively adjusts noise levels according to haze density. In the reverse process, HNDiff restores the image by removing both haze and noise through its dehazing-denoising process. To enhance the existing dehazing methods, we incorporate HNDiff into their latent spaces as a prior generator, seamlessly integrating the learned prior into each encoder/decoder block via our proposed Feature Gating Module to generate higher-quality dehazed results. Extensive experimental results have demonstrated that our method effectively improves the performance of three state-of-the-art dehazing models across seven dehazing datasets.

ETHICS STATEMENT

This work focuses on designing a diffusion-based model for single-image dehazing. It does not involve human subjects, personal data, or sensitive content, and it follows the ICLR Code of Ethics.

540 All experiments are conducted on publicly available dehazing datasets with appropriate licenses.
 541 We do not anticipate any privacy, safety, or fairness concerns, and our method is intended solely to
 542 improve image quality in adverse weather conditions without harmful applications.
 543

544 **REPRODUCIBILITY STATEMENT**
 545

546 Detailed model architecture (Section 3.3), training settings and dataset preparation (Section 4.1),
 547 and complete proofs (Appendix A) are provided to ensure reproducibility. The full codebase and
 548 pretrained weights will be released publicly upon acceptance.
 549

550 **REFERENCES**
 551

552 Codruta O Ancuti, Cosmin Ancuti, Radu Timofte, and Christophe De Vleeschouwer. O-haze: a
 553 dehazing benchmark with real hazy and haze-free outdoor images. In *CVPRW*, 2018.
 554

555 Codruta O Ancuti, Cosmin Ancuti, Mateu Sbert, and Radu Timofte. Dense-haze: A benchmark for
 556 image dehazing with dense-haze and haze-free images. In *ICIP*, 2019.
 557

558 Codruta O Ancuti, Cosmin Ancuti, Florin-Alexandru Vasluijanu, and Radu Timofte. Ntire 2021
 559 nonhomogeneous dehazing challenge report. In *CVPR*, 2021.
 560

561 Haoran Bai, Jinshan Pan, Xinguang Xiang, and Jinhui Tang. Self-guided image dehazing using
 562 progressive feature fusion. *TIP*, 2022.
 563

564 Yasser Benigmim, Subhankar Roy, Slim Essid, Vicky Kalogeiton, and Stéphane Lathuilière. Col-
 565 laborating foundation models for domain generalized semantic segmentation. In *CVPR*, 2024.
 566

567 Zeyuan Chen, Yangchao Wang, Yang Yang, and Dong Liu. Psd: Principled synthetic-to-real dehaz-
 568 ing guided by physical priors. In *CVPR*, 2021.
 569

570 Zheng Chen, Yulun Zhang, Ding Liu, Jinjin Gu, Linghe Kong, Xin Yuan, et al. Hierarchical inte-
 571 gration diffusion model for realistic image deblurring. In *NeurIPS*, 2023.
 572

573 Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Focal network for image restoration. In
 574 *ICCV*, 2023.
 575

576 Yuning Cui, Wenqi Ren, Xiaochun Cao, and Alois Knoll. Revitalizing convolutional network for
 577 image restoration. *TPAMI*, 2024.
 578

579 Hang Dong, Jinshan Pan, Lei Xiang, Zhe Hu, Xinyi Zhang, Fei Wang, and Ming-Hsuan Yang.
 580 Multi-scale boosted dehazing network with dense feature fusion. In *CVPR*, 2020.
 581

582 Chengyu Fang, Chunming He, Fengyang Xiao, Yulun Zhang, Longxiang Tang, Yuelin Zhang, Kai
 583 Li, and Xiu Li. Real-world image dehazing with coherence-based pseudo labeling and cooperative
 584 unfolding network. *NeurIPS*, 2024.
 585

586 Wenxuan Fang, Junkai Fan, Yu Zheng, Jiangwei Weng, Ying Tai, and Jun Li. Guided real image
 587 dehazing using ycbcr color space. In *AAAI*, 2025.
 588

589 Tomer Garber and Tom Tirer. Image restoration by denoising diffusion models with iteratively
 590 preconditioned guidance. In *CVPR*, 2024.
 591

592 Chun-Le Guo, Qixin Yan, Saeed Anwar, Runmin Cong, Wenqi Ren, and Chongyi Li. Image dehaz-
 593 ing transformer with transmission-aware 3d position embedding. In *CVPR*, 2022.
 594

595 Chunming He, Chengyu Fang, Yulun Zhang, Longxiang Tang, Jinfa Huang, Kai Li, Zhenhua Guo,
 596 Xiu Li, and Sina Farsiu. Reti-diff: Illumination degradation image restoration with retinex-based
 597 latent diffusion model. In *ICLR*, 2025.
 598

599 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *NeurIPS*,
 600 2020.

594 Junsu Kim, Hoseong Cho, Jihyeon Kim, Yihalem Yimolal Tiruneh, and Seungryul Baek. Sddgr:
 595 Stable diffusion-based deep generative replay for class incremental object detection. In *CVPR*,
 596 2024a.

597 Minchul Kim, Yiyang Su, Feng Liu, Anil Jain, and Xiaoming Liu. Keypoint relative position en-
 598 coding for face recognition. In *CVPR*, 2024b.

600 Boyi Li, Wenqi Ren, Dengpan Fu, Dacheng Tao, Dan Feng, Wenjun Zeng, and Zhangyang Wang.
 601 Benchmarking single-image dehazing and beyond. *TIP*, 2018.

603 Boyun Li, Haiyu Zhao, Wenxin Wang, Peng Hu, Yuanbiao Gou, and Xi Peng. Mair: A locality-and
 604 continuity-preserving mamba for image restoration. In *CVPR*, 2025.

605 Guangyuan Li, Chen Rao, Juncheng Mo, Zhanjie Zhang, Wei Xing, and Lei Zhao. Rethinking
 606 diffusion model for multi-contrast mri super-resolution. In *CVPR*, 2024.

607 Chengxu Liu, Lu Qi, Jinshan Pan, Xueming Qian, and Ming-Hsuan Yang. Frequency domain-based
 608 diffusion model for unpaired image dehazing. In *ICCV*, 2025.

609 Jiawei Liu, Qiang Wang, Huijie Fan, Yinong Wang, Yandong Tang, and Liangqiong Qu. Residual
 610 denoising diffusion models. In *CVPR*, 2024a.

611 Yuhao Liu, Zhanghan Ke, Fang Liu, Nanxuan Zhao, and Rynson W.H. Lau. Diff-plugin: Revitaliz-
 612 ing details for diffusion-based low-level tasks. In *CVPR*, 2024b.

613 Wenyang Luo, Haina Qin, Zewen Chen, Libin Wang, Dandan Zheng, Yuming Li, Yufan Liu, Bing
 614 Li, and Weiming Hu. Visual-instructed degradation diffusion for all-in-one image restoration. In
 615 *CVPR*, 2025.

616 Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
 617 Sdedit: Guided image synthesis and editing with stochastic differential equations. In *International
 618 Conference on Learning Representations*, 2022.

619 Yuxi Mi, Zhizhou Zhong, Yuge Huang, Jiazheng Ji, Jianqing Xu, Jun Wang, Shaoming Wang,
 620 Shouhong Ding, and Shuigeng Zhou. Privacy-preserving face recognition using trainable fea-
 621 ture subtraction. In *CVPR*, 2024.

622 Srinivasa G. Narasimhan and Shree K. Nayar. Contrast restoration of weather degraded images.
 623 *TPAMI*, 2003.

624 Xu Qin, Zhilin Wang, Yuanchao Bai, Xiaodong Xie, and Huizhu Jia. Ffa-net: Feature fusion atten-
 625 tion network for single image dehazing. In *AAAI*, 2020.

626 Yuwei Qiu, Kaihao Zhang, Chenxi Wang, Wenhan Luo, Hongdong Li, and Zhi Jin. Mb-
 627 taylorformer: Multi-branch efficient transformer expanded by taylor formula for image dehazing.
 628 In *ICCV*, 2023.

629 Sudarshan Rajagopalan, Nithin Gopalakrishnan Nair, Jay N Paranjape, and Vishal M Patel. Gendeg:
 630 Diffusion-based degradation synthesis for generalizable all-in-one image restoration. In *CVPR*,
 631 2025.

632 Chen Rao, Guangyuan Li, Zehua Lan, Jiakai Sun, Junsheng Luan, Wei Xing, Lei Zhao, Huaizhong
 633 Lin, Jianfeng Dong, and Dalong Zhang. Rethinking video deblurring with wavelet-aware dynamic
 634 transformer and diffusion model. In *ECCV*, 2024.

635 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 636 resolution image synthesis with latent diffusion models. In *CVPR*, 2022.

637 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. In
 638 *ICLR*, 2022.

639 Yuanjie Shao, Lerenhan Li, Wenqi Ren, Changxin Gao, and Nong Sang. Domain adaptation for
 640 image dehazing. In *CVPR*, 2020.

Junseong Shin, Seungwoo Chung, Yunjeong Yang, and Tae Hyun Kim. Hazeflow: Revisit haze physical model as ode and non-homogeneous haze generation for real-world dehazing. In *ICCV*, 2025.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *ICLR*, 2021.

Yuda Song, Zhuqing He, Hui Qian, and Xin Du. Vision transformers for single image dehazing. *TIP*, 2023.

Jeya Maria Jose Valanarasu, Rajeev Yasarla, and Vishal M Patel. Transweather: Transformer-based restoration of images degraded by adverse weather conditions. In *CVPR*, 2022.

Jiabao Wang, Yuming Chen, Zhaohui Zheng, Xiang Li, Ming-Ming Cheng, and Qibin Hou. Crosskd: Cross-head knowledge distillation for object detection. In *CVPR*, 2024a.

Jing Wang, Songtao Wu, Zhiqiang Yuan, Qiang Tong, and Kuanhong Xu. Frequency compensated diffusion model for real-scene dehazing. *Neural Networks*, 2024b.

Ruiyi Wang, Yushuo Zheng, Zicheng Zhang, Chunyi Li, Shuaicheng Liu, Guangtao Zhai, and Xiaohong Liu. Learning hazing to dehazing: Towards realistic haze generation for real-world image dehazing. In *CVPR*, 2025.

Simon Weber, Bar Zöngür, Nikita Araslanov, and Daniel Cremers. Flattening the parent bias: Hierarchical semantic segmentation in the poincare ball. In *CVPR*, 2024.

Haiyan Wu, Yanyun Qu, Shaohui Lin, Jian Zhou, Ruizhi Qiao, Zhizhong Zhang, Yuan Xie, and Lizhuang Ma. Contrastive learning for compact single image dehazing. In *CVPR*, 2021.

Jia-Hao Wu, Fu-Jen Tsai, Yan-Tsung Peng, Chung-Chi Tsai, Chia-Wen Lin, and Yen-Yu Lin. Id-blau: Image deblurring by implicit diffusion-based reblurring augmentation. In *CVPR*, 2024.

Rui-Qi Wu, Zheng-Peng Duan, Chun-Le Guo, Zhi Chai, and Chongyi Li. Ridcp: Revitalizing real image dehazing via high-quality codebook priors. In *CVPR*, 2023.

Bin Xia, Yulun Zhang, Shiyin Wang, Yitong Wang, Xinglong Wu, Yapeng Tian, Wenming Yang, and Luc Van Gool. Diffir: Efficient diffusion model for image restoration. In *ICCV*, 2023.

Yang Yang, Chaoyue Wang, Risheng Liu, Lin Zhang, Xiaojie Guo, and Dacheng Tao. Self-augmented unpaired image dehazing via density and depth decomposition. In *CVPR*, 2022.

Zizheng Yang, Hu Yu, Bing Li, Jinghao Zhang, Jie Huang, and Feng Zhao. Unleashing the potential of the semantic latent space in diffusion models for image dehazing. In *ECCV*, 2024.

Tian Ye, Sixiang Chen, Wenhao Chai, Zhaochu Xing, Jing Qin, Ge Lin, and Lei Zhu. Learning diffusion texture priors for image restoration. In *CVPR*, 2024.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *ICCV*, 2023.

Yuzhe Zhang, Jiawei Zhang, Hao Li, Zhouxia Wang, Luwei Hou, Dongqing Zou, and Liheng Bian. Diffusion-based blind text image super-resolution. In *CVPR*, 2024.

Dian Zheng, Xiao-Ming Wu, Shuzhou Yang, Jian Zhang, Jian-Fang Hu, and Wei-Shi Zheng. Selective hourglass mapping for universal image restoration based on diffusion model. In *CVPR*, 2024.

Zhuoran Zheng and Chen Wu. U-shaped vision mamba for single image dehazing. *arXiv preprint arXiv:2402.04139*, 2024.

Shijun Zhou, Yajing Liu, Chunhui Hao, Zhiyuan Liu, and Jiandong Tian. Iddm: Bridging synthetic-to-real domain gap from physics-guided diffusion for real-world image dehazing. *arXiv preprint arXiv:2504.21385*, 2025.

702 **A APPENDIX**
 703

704 **A.1 ONE-STEP DIFFUSION DERIVATION FOR HNDIFF**
 705

706 Real-world dehazing datasets provide only hazy–clean image pairs, without the transmission maps
 707 and atmospheric light required in (1). To address this limitation, we adopt the reparameterization
 708 trick (Ho et al., 2020) to derive a one-step diffusion formulation suitable for real-world scenarios.

709 For clarity of notation, we omit the spatial dependency (x) in the following derivation, since all
 710 operations are defined point-wise in the image domain.

711 In the haze–noise diffusion process of HNDiff, the forward process is defined as

712
$$q(I_t | I_{t-1}, \phi) := \mathcal{N}(I_t | I_{t-1}e^{-\alpha_t \sigma d} + A(1 - e^{-\alpha_t \sigma d}), \beta_t^2), \quad (13)$$

713
$$q(I_{1:T} | I_0, \phi) = \prod_{t=1}^T q(I_t | I_{t-1}, \phi), \quad \text{where } \phi = \{d, \sigma, A\}. \quad (14)$$

714 Let $\tau_t = e^{-\alpha_t \sigma d}$ denote the per-step transmission rate. Then (13) can be rewritten as

715
$$I_t = \tau_t I_{t-1} + (1 - \tau_t)A + \beta_t \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, 1). \quad (15)$$

716 By recursively expanding from the last step, we obtain

717
$$\begin{aligned} I_T &= \tau_T I_{T-1} + (1 - \tau_T)A + \beta_T \epsilon_T \\ &= \tau_T [\tau_{T-1} I_{T-2} + (1 - \tau_{T-1})A + \beta_{T-1} \epsilon_{T-1}] + (1 - \tau_T)A + \beta_T \epsilon_T \\ &= (\tau_T \tau_{T-1}) I_{T-2} + (1 - \tau_T \tau_{T-1})A + \tau_T \beta_{T-1} \epsilon_{T-1} + \beta_T \epsilon_T \\ &\vdots \\ &= \left(\prod_{s=1}^T \tau_s \right) I_0 + \left(1 - \prod_{s=1}^T \tau_s \right) A + \sum_{t=1}^T \left(\prod_{s=t+1}^T \tau_s \right) \beta_t \epsilon_t. \end{aligned} \quad (16)$$

718 Define the cumulative transmission as

719
$$\bar{\tau}_T = \prod_{s=1}^T \tau_s = \exp \left(-\sigma d \sum_{s=1}^T \alpha_s \right), \quad (17)$$

720 and the aggregated noise variance as

721
$$\bar{\beta}_T^2 = \sum_{t=1}^T \left(\prod_{s=t+1}^T \tau_s^2 \right) \beta_t^2. \quad (18)$$

722 Since $\{\epsilon_t\}$ are i.i.d. standard Gaussian variables, their weighted sum remains Gaussian. Thus,

723
$$\sum_{t=1}^T \left(\prod_{s=t+1}^T \tau_s \right) \beta_t \epsilon_t = \bar{\beta}_T \epsilon, \quad \epsilon \sim \mathcal{N}(0, 1). \quad (19)$$

724 Consequently, the full forward process simplifies to a *one-step* form:

725
$$I_T = \bar{\tau}_T I_0 + (1 - \bar{\tau}_T)A + \bar{\beta}_T \epsilon, \quad (20)$$

726 with the corresponding marginal distribution

727
$$q(I_T | I_0, \phi) = \mathcal{N}(I_T | \bar{\tau}_T I_0 + (1 - \bar{\tau}_T)A, \bar{\beta}_T^2). \quad (21)$$

728 Finally, by setting $\alpha_t = \frac{1}{T}$ for all t , the cumulative transmission reduces to

729
$$\bar{\tau}_T = e^{-\sigma d},$$

756 and the aggregated noise variance becomes
 757

$$758 \quad 759 \quad 760 \quad \bar{\beta}_T = \sqrt{\frac{(1 - e^{-(1/T)\sigma d})(1 - e^{-2\sigma d})}{1 + e^{-(1/T)\sigma d}}}.$$

761 Thus, I_T can be expressed as

$$762 \quad 763 \quad I_T = e^{-\sigma d} I_0 + (1 - e^{-\sigma d}) A + \bar{\beta}_T \epsilon = I_H + \bar{\beta}_T \epsilon,$$

764 where $I_H = e^{-\sigma d} I_0 + (1 - e^{-\sigma d}) A$ corresponds to the hazy image defined by the Atmospheric
 765 Scattering Model (1). This shows that the final forward step I_T can be obtained by directly adding
 766 Gaussian noise to the hazy image. The one-step formulation is mathematically equivalent to the
 767 full forward process, while providing a more computationally efficient approximation that jointly
 768 captures haze formation and noise accumulation in a single Gaussian transition.

769 A.2 ELBO AND OPTIMIZATION FOR HNDIFF

770 For clarity of notation, we omit the spatial dependency (x) in the following derivation, since all
 771 operations are defined point-wise in the image domain.

772 To reconstruct the clean image I_0 from the degraded observation I_T , we adopt the variational
 773 inference framework of DDPM (Ho et al., 2020) and derive an evidence lower bound (ELBO) that
 774 explicitly incorporates the physical parameters $\phi = \{d, \sigma, A\}$. The joint ELBO is given by

$$775 \quad 776 \quad \log p_\theta(I_0) \geq \mathbb{E}_{q(I_{1:T} | I_0, \phi)} \left[\log \frac{p_\theta(I_{0:T})}{q(I_{1:T} | I_0, \phi)} \right] =: \mathcal{L}_{\text{ELBO}}. \quad (22)$$

777 Following the DDPM formulation, the forward transitions can be rewritten as $q(I_t | I_{t-1}, \phi) =$
 778 $q(I_t | I_{t-1}, I_0, \phi)$. By Bayes' rule, each transition admits the decomposition

$$779 \quad 780 \quad q(I_t | I_{t-1}, I_0, \phi) = \frac{q(I_{t-1} | I_t, I_0, \phi) q(I_t | I_0, \phi)}{q(I_{t-1} | I_0, \phi)}. \quad (23)$$

781 Substituting into the ELBO, the objective expands as

$$782 \quad 783 \quad -\mathcal{L}_{\text{ELBO}} = \mathbb{E}_q \left[-\log \frac{p_\theta(I_{0:T})}{q(I_{1:T} | I_0, \phi)} \right] \quad (24)$$

$$784 \quad 785 \quad = \mathbb{E}_q \left[-\log p_\theta(I_T) - \sum_{t \geq 1} \log \frac{p_\theta(I_{t-1} | I_t)}{q(I_t | I_{t-1}, \phi)} \right] \quad (25)$$

$$786 \quad 787 \quad = \mathbb{E}_q \left[-\log p_\theta(I_T) - \sum_{t > 1} \log \frac{p_\theta(I_{t-1} | I_t)}{q(I_t | I_{t-1}, \phi)} - \log \frac{p_\theta(I_0 | I_1)}{q(I_1 | I_0, \phi)} \right] \quad (26)$$

$$788 \quad 789 \quad = \mathbb{E}_q \left[-\log p_\theta(I_T) - \sum_{t > 1} \log \frac{p_\theta(I_{t-1} | I_t)}{q(I_{t-1} | I_t, I_0, \phi)} \frac{q(I_{t-1} | I_0, \phi)}{q(I_t | I_0, \phi)} - \log \frac{p_\theta(I_0 | I_1)}{q(I_1 | I_0, \phi)} \right] \quad (27)$$

$$790 \quad 791 \quad = \mathbb{E}_q \left[-\log \frac{p_\theta(I_T)}{q(I_T | I_0, \phi)} - \sum_{t > 1} \log \frac{p_\theta(I_{t-1} | I_t)}{q(I_{t-1} | I_t, I_0, \phi)} - \log p_\theta(I_0 | I_1) \right]. \quad (28)$$

802 Rewriting (28) in terms of KL divergence yields

$$803 \quad -\mathcal{L}_{\text{ELBO}} \quad (29)$$

$$804 \quad 805 \quad = \mathbb{E}_q \left[D_{\text{KL}}(q(I_T | I_0, \phi) \| p_\theta(I_T)) + \sum_{t \geq 1} D_{\text{KL}}(q(I_{t-1} | I_t, I_0, \phi) \| p_\theta(I_{t-1} | I_t)) - \log p_\theta(I_0 | I_1) \right]. \quad (30)$$

806 Unlike standard diffusion models that assume a standard Gaussian prior at the terminal state, our
 807 model defines the prior distribution as

$$808 \quad p_\theta(I_T) = \mathcal{N}(I_T; I_H, \bar{\beta}_T^2 \mathbf{I}), \quad (31)$$

810 where I_H is the hazy image modeled by the Atmospheric Scattering Model. In contrast to an arbitrary isotropic Gaussian prior, our prior represents a noise-perturbed hazy observation that is fully consistent with the physical forward process. Specifically, both the forward marginal distribution $q(I_T | I_0, \phi)$ and the prior $p_\theta(I_T)$ are Gaussian with identical mean I_H and variance $\bar{\beta}_T^2$. As a result, their KL divergence is equal to zero under this design as

$$D_{\text{KL}}(q(I_T | I_0, \phi) \| p_\theta(I_T)) = 0 \quad (32)$$

817 Following the standard approach in DDPM and DDIM, the training objective reduces to the sum of stepwise KL divergence terms, which quantify the discrepancy between forward and reverse 818 transitions as

$$\sum_{t \geq 1} D_{\text{KL}}(q(I_{t-1} | I_t, I_0, \phi) \| p_\theta(I_{t-1} | I_t)). \quad (33)$$

823 To compute these terms, we derive $q(I_{t-1} | I_t, I_0, \phi)$ using Bayes' rule as

$$q(I_{t-1} | I_t, I_0, e_t) = \frac{q(I_t | I_{t-1}, I_0, \phi) q(I_{t-1} | I_0, \phi)}{q(I_t | I_0, \phi)}. \quad (34)$$

828 From (13), we have

$$q(I_t | I_{t-1}, I_0, \phi) = \mathcal{N}(I_t | I_{t-1}\tau_t + A(1-\tau_t), \beta_t^2), \quad \text{where } \tau_t = e^{-\alpha_t \sigma d} \quad (35)$$

832 From (21), we have

$$q(I_t | I_0, \phi) = \mathcal{N}(I_t | I_0\bar{\tau}_t + A(1-\bar{\tau}_t), \bar{\beta}_t^2). \quad (36)$$

834 Combining the above, we obtain

$$q(I_{t-1} | I_t, I_0, e_t) = \frac{\mathcal{N}(I_t | I_{t-1}\tau_t + A(1-\tau_t), \beta_t^2) \mathcal{N}(I_{t-1} | I_0\bar{\tau}_{t-1} + A(1-\bar{\tau}_{t-1}), \bar{\beta}_{t-1}^2)}{\mathcal{N}(I_t | I_0\bar{\tau}_t + A(1-\bar{\tau}_t), \bar{\beta}_t^2)} \quad (37)$$

$$\propto \exp \left\{ - \left[\frac{(I_t - (\tau_t I_{t-1} + (1-\tau_t)A))^2}{2\beta_t^2} + \frac{(I_{t-1} - (\bar{\tau}_{t-1} I_0 + (1-\bar{\tau}_{t-1})A))^2}{2\bar{\beta}_{t-1}^2} - \frac{(I_t - (\bar{\tau}_t I_0 + (1-\bar{\tau}_t)A))^2}{2\bar{\beta}_t^2} \right] \right\} \quad (38)$$

$$= \exp \left\{ - \frac{1}{2} \left[\frac{(I_t - (\tau_t I_{t-1} + (1-\tau_t)A))^2}{\beta_t^2} + \frac{(I_{t-1} - (\bar{\tau}_{t-1} I_0 + (1-\bar{\tau}_{t-1})A))^2}{\bar{\beta}_{t-1}^2} - \frac{(I_t - (\bar{\tau}_t I_0 + (1-\bar{\tau}_t)A))^2}{\bar{\beta}_t^2} \right] \right\} \quad (39)$$

$$= \exp \left\{ - \frac{1}{2} \left[\left(\frac{\bar{\beta}_t^2}{\beta_t^2 \bar{\beta}_{t-1}^2} \right) I_{t-1}^2 - 2 \left(\frac{\tau_t I_t}{\beta_t^2} - \frac{\tau_t(1-\tau_t)A}{\beta_t^2} + \frac{\bar{\tau}_{t-1} I_0}{\bar{\beta}_{t-1}^2} + \frac{(1-\bar{\tau}_{t-1})A}{\bar{\beta}_{t-1}^2} \right) I_{t-1} + C(I_t, I_0, \phi) \right] \right\}, \quad (40)$$

849 where $C(I_t, I_0, \phi)$ denotes the terms not involving I_{t-1} . From (40), the mean and the variance of 850 $q(I_{t-1} | I_t, I_0, e_t)$ are given by

$$\mu_t(I_t, I_0, \phi) = \frac{\frac{\tau_t I_t}{\beta_t^2} - \frac{\tau_t(1-\tau_t)A}{\beta_t^2} + \frac{\bar{\tau}_{t-1} I_0}{\bar{\beta}_{t-1}^2} + \frac{(1-\bar{\tau}_{t-1})A}{\bar{\beta}_{t-1}^2}}{\frac{\bar{\beta}_t^2}{\beta_t^2 \bar{\beta}_{t-1}^2}} \quad (41)$$

$$= \frac{I_t}{\tau_t} - \frac{1-\tau_t}{\tau_t} A - \frac{\beta_t^2}{\tau_t \bar{\beta}_t} \epsilon; \quad (42)$$

$$\delta_t(I_t, I_0, \phi) = \frac{\beta_t^2 \bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}. \quad (43)$$

859 We model the reverse process beginning at

$$p_\theta(I_T) = \mathcal{N}(I_T; I_H, \bar{\beta}_T^2 \mathbf{I}), \quad (44)$$

862 and define

$$p_\theta(I_{t-1} | I_t) = q(I_{t-1} | I_t, I_0, e_t). \quad (45)$$

In our setting, since the variances of the two Gaussian distributions are matched exactly, the KL divergence reduces to a squared difference between their means, as is standard in DDPM. Accordingly, the KL divergence term in (33) reduces to

$$D_{\text{KL}}(q(I_{t-1} | I_t, I_0, \phi) \| p_\theta(I_{t-1} | I_t)) = \mathbb{E} \left[\|\mu_t - \mu_t^\theta\|^2 \right], \quad (46)$$

where the mean of the true posterior is given by

$$\mu_t = \frac{I_t}{\tau_t} - \frac{1-\tau_t}{\tau_t} A - \frac{\beta_t^2}{\tau_t \beta_t} \epsilon, \quad (47)$$

and the model-predicted mean is

$$\mu_t^\theta = \frac{I_t}{\tau_t^\theta} - \frac{1-\tau_t^\theta}{\tau_t^\theta} A^\theta - \frac{\beta_t^2}{\tau_t^\theta \beta_t} \epsilon^\theta, \quad (48)$$

with learnable estimators τ_t^θ , A^θ , and ϵ^θ .

Previous diffusion-based approaches (Chen et al., 2023; Xia et al., 2023; Salimans & Ho, 2022; Rao et al., 2024) typically supervise only the terminal reconstruction and backpropagate through the entire reverse chain, thereby amortizing step-wise supervision. Following this paradigm and leveraging (46), we parameterize the reverse transition mean with three estimators τ_t^θ , A^θ , and ϵ^θ . During training, we sample $I_T \sim p_\theta(I_T)$ and iteratively apply the learned reverse transitions $p_\theta(I_{t-1} | I_t)$ —whose mean is $\mu_t^\theta(I_t; \tau_t^\theta, A^\theta, \epsilon^\theta)$ —to denoise step by step from $I_T \rightarrow I_{T-1} \rightarrow \dots \rightarrow I_0$. We then supervise only the final output, explicitly minimizing the reconstruction discrepancy

$$\mathcal{L}_{\text{final}} = \|I_0 - I_0^\theta\|, \quad (49)$$

so that gradients propagate through the full reverse trajectory and drive $\{\tau_t^\theta, A^\theta, \epsilon^\theta\}$ to produce consistent denoising updates toward the clean image.

However, this formulation does not explicitly incorporate haze characteristics into the noise scheduling, and the reliance on three separate estimators introduces additional training overhead. To address these limitations, we introduce a *haze-aware noise scheduler* that dynamically adjusts β_t according to haze density, thereby achieving more effective and physically grounded noise scheduling, as described in Section 3.1. Furthermore, when combined with our derived deterministic implicit sampling formulation, this approach enables us to remove the dependency on A^θ and reduce the reverse parameterization to only two estimators, τ_t^θ and ϵ^θ , significantly simplifying the learning process. The detailed description is provided in Appendix A.3.

A.3 DETERMINISTIC IMPLICIT SAMPLING FOR HNDIFF

In this section, following the induction-based argument of DDIM (Song et al., 2021), we derive a deterministic reverse process for HNDiff and prove that it preserves the forward marginal distribution defined in (21). Specifically, recall that the forward marginal is given by

$$q(I_t | I_0, \phi) = \mathcal{N}(I_t; \bar{\tau}_t I_0 + (1 - \bar{\tau}_t) A, \bar{\beta}_t^2 \mathbf{I}), \quad (50)$$

where $\bar{\tau}_t = \prod_{s=1}^t \tau_s$ and $\bar{\beta}_t^2 = \sum_{s=1}^t \left(\prod_{j=s+1}^t \tau_j^2 \right) \beta_s^2$.

Following the deterministic implicit sampling formulation of DDIM, we define the reverse transition distribution as

$$q_\delta(I_{t-1} | I_t, I_0, \phi) = \mathcal{N}(I_{t-1}; \mu_{t-1}, \delta_t^2 \mathbf{I}), \quad (51)$$

with mean

$$\mu_{t-1} = \bar{\tau}_{t-1} I_0 + (1 - \bar{\tau}_{t-1}) A + \sqrt{\bar{\beta}_{t-1}^2 - \delta_t^2} \frac{I_t - (\bar{\tau}_t I_0 + (1 - \bar{\tau}_t) A)}{\bar{\beta}_t}, \quad (52)$$

and variance

$$\delta_t^2 = \eta \cdot \frac{\beta_t^2 \bar{\beta}_{t-1}^2}{\bar{\beta}_t^2}, \quad (53)$$

where $\eta \in [0, 1]$ controls the sampling stochasticity. Setting $\eta = 0$ yields a purely deterministic sampler.

918 **Induction proof of consistency.** We now prove by induction, as in DDIM, that the above reverse
 919 process preserves the forward marginal distribution. For the base case $t = T$, the marginal $q(I_T |$
 920 $I_0, \phi)$ is valid by definition. Assume that $q(I_t | I_0, \phi)$ holds at step t . Then, sampling I_{t-1} from
 921 $q_\delta(I_{t-1} | I_t, I_0, \phi)$ yields mean

$$\mathbb{E}[I_{t-1} | I_0, \phi] = \bar{\tau}_{t-1} I_0 + (1 - \bar{\tau}_{t-1}) A, \quad (54)$$

922 and variance

$$\delta_{t-1}^2 \mathbf{I} = \delta_t^2 \mathbf{I} + \left(\frac{\sqrt{\bar{\beta}_{t-1}^2 - \delta_t^2}}{\bar{\beta}_t} \right)^2 \bar{\beta}_t^2 \mathbf{I} \quad (55)$$

$$= \bar{\beta}_{t-1}^2 \mathbf{I}. \quad (56)$$

923 Thus,

$$q(I_{t-1} | I_0, \phi) = \mathcal{N}(I_{t-1}; \bar{\tau}_{t-1} I_0 + (1 - \bar{\tau}_{t-1}) A, \bar{\beta}_{t-1}^2 \mathbf{I}), \quad (57)$$

924 which confirms that the forward distribution holds at step $t-1$. By induction, the deterministic
 925 sampler remains consistent with the forward process across all time steps.

926 **Deterministic Implicit Sampling.** For deriving the deterministic implicit sampling formulation
 927 from I_t to I_{t-1} , we first define I_{t-1} from (51) as

$$I_{t-1} = \bar{\tau}_{t-1} I_0 + (1 - \bar{\tau}_{t-1}) A + \sqrt{\bar{\beta}_{t-1}^2 - \delta_t^2} \cdot \frac{I_t - (\bar{\tau}_t I_0 + (1 - \bar{\tau}_t) A)}{\bar{\beta}_t} + \delta_t, \quad (58)$$

928 where δ_t is a variance parameter controlling sampling stochasticity, and $\delta_t = 0$ corresponds to
 929 deterministic sampling. Next, by expressing I_0 as

$$I_0 = \frac{I_t - (1 - \bar{\tau}_t) A - \bar{\beta}_t \epsilon_t}{\bar{\tau}_t}, \quad (59)$$

930 based on (21) and substituting it into (58), we obtain the simplified deterministic update rule:

$$I_{t-1} = \frac{I_t - A(1 - \tau_t) - \beta_t \epsilon_t}{\tau_t}. \quad (60)$$

931 **Reduction of Reverse Parameterization.** As discussed in Section 3.1, we adopt a haze-aware
 932 noise scheduler by setting $\beta_t = 1 - \tau_t$, such that the injected noise is explicitly modulated by the
 933 haze density. Substituting this into (60), the reverse update becomes

$$I_{t-1} = \frac{I_t - A(1 - \tau_t) - \epsilon_t(1 - \tau_t)}{\tau_t} = \frac{I_t - (A + \epsilon_t)(1 - \tau_t)}{\tau_t} = \frac{I_t - N_t(1 - \tau_t)}{\tau_t}, \quad (61)$$

934 where $N_t = A + \epsilon_t$ denotes the *atmospheric noise*, which combines the atmospheric light term and
 935 a Gaussian perturbation.

936 Under this formulation, the reverse dynamics require only *two learnable estimators*: (1) a noise
 937 estimator $N_t^\theta(I_t, I_H, t)$ that approximates the atmospheric noise N_t , and (2) a haze estimator $1 -$
 938 $\tau_t^\theta(I_t, I_H, t)$ that directly models the haze residual $1 - \tau_t$.

939 This reduction naturally emerges from combining the deterministic implicit sampling rule with the
 940 haze-aware noise scheduler, thereby simplifying the parameterization of the reverse process while
 941 preserving consistency with the forward distribution and avoiding the need for an explicit A^θ esti-
 942 mator.

A.4 DEHAZING RESULTS ON RTTS DATASET

943 We have conducted additional experiments on the RTTS dataset. Our models are pretrained on
 944 the NH-HAZE dataset and directly evaluated on RTTS to assess out-of-domain generalization. As
 945 shown in Table 8, the HNDiff-enhanced models consistently achieve lower BRISQUE and NIQE
 946 scores than their corresponding baselines, indicating better perceptual quality on this real-world
 947 benchmark. Moreover, we further apply HNDiff to the ASM-based dehazing method RIDCP (Wu
 948 et al., 2023) to verify its compatibility with existing physical-model approaches. The dehazing
 949 results are reported in Table 9, the corresponding object-detection mAP on RTTS is summarized in
 950 Table 10, and qualitative comparisons are shown in Figure 22, all of which demonstrate that HNDiff
 951 can consistently enhance RIDCP in both restoration quality and downstream perception.

972 Table 8: Results on RTTS, where the proposed HNDiff is applied to three baselines: FocalNet,
 973 ConvIR, and SGDN.
 974

Metric	FocalNet	HNDiff (FocalNet)	ConvIR	HNDiff (ConvIR)	SGDN	HNDiff (SGDN)
BRISQUE \downarrow	35.9789	29.8278	36.5144	34.9876	34.6808	32.5563
NIQE \downarrow	4.3392	4.2867	4.3992	4.2665	4.8426	4.6343

975
 976 Table 9: Quantitative comparison of RIDCP and HNDiff (RIDCP) on RTTS.
 977
 978

Method	FADE \downarrow	NIMA \uparrow	BRISQUE \downarrow
RIDCP	0.944	4.97	17.29
HNDiff (RIDCP)	0.417	5.08	16.09

981 A.5 DEHAZING RESULTS OF DIFFERENT DIFFUSION MECHANISMS. 982

983 We present additional dehazed results of different diffusion mechanisms, including DDPM (Ho
 984 et al., 2020), RDDM (Liu et al., 2024a), and our proposed HNDiff, on the NH-HAZE test set.
 985 As shown in Figures 7 and 8, we further facilitate visual comparison by computing residual maps
 986 between the outputs and the ground truth, where each residual map is normalized by the global
 987 maximum residual value across all methods to ensure consistent scaling. Brighter regions indicate
 988 larger discrepancies from the ground truth. Compared to DDPM and RDDM, HNDiff produces
 989 cleaner reconstructions with notably lower residual intensities, demonstrating its superior dehazing
 990 capability.
 991

992 A.6 DEHAZING RESULTS ON REAL-WORLD DATASETS

993 We present additional dehazed results on four real-world datasets to compare models integrated with
 994 HNDiff against their original counterparts. Qualitative evaluations are conducted on three represen-
 995 tative image dehazing networks, namely FocalNet, ConvIR, and SGDN. For the NH-HAZE dataset,
 996 the comparisons are shown in Figures 9, 10, 11, and 12. For the RW²AH dataset, the comparisons
 997 are shown in Figures 13, 14, and 15. For the Dense-HAZE dataset, the comparisons are shown in
 998 Figure 16 and Figure 17. For the O-HAZE dataset, we further enhance the visual comparison by
 999 computing residual maps between the baseline outputs and the ground truth, as well as between the
 1000 HNDiff outputs and the ground truth. Both residual maps are normalized using the global maxi-
 1001 mum residual value across the two maps to ensure consistent scaling. In this visualization, brighter
 1002 regions indicate larger discrepancies from the ground truth, as illustrated in Figures 18, 19, and 20.
 1003

1004 A.7 COMPARISON OF DEHAZING RESULTS WITH PRIOR METHODS.

1005 We further provide qualitative comparisons on the real-world hazy dataset RW²AH. Figure 21 shows
 1006 visual results of previous dehazing methods and our HNDiff. Compared to prior approaches, our
 1007 method produces clearer structures, more natural colors, and fewer artifacts on challenging real-
 1008 world hazy images, demonstrating a noticeable qualitative improvement and validating the effec-
 1009 tiveness of HNDiff in practical scenarios.
 1010

1011 A.8 ARCHITECTURE OF THE HAZE ESTIMATOR U-NET

1012 Our haze estimator adopts a time-conditional U-Net with four resolution scales. The network takes
 1013 two 4-channel latent features as input, concatenates them into an 8-channel tensor, and feeds them
 1014 to a 7×7 convolution (padding 3) to obtain a 32-channel feature map. We use a base width of
 1015 32 and a channel progression of (32, 64, 128, 128) across scales. At each encoder stage, we apply
 1016 two time-conditioned residual blocks (ResNet blocks with group normalization and nonlinearity)
 1017 followed by a linear-attention block in a residual form, and then downsample the feature map (strided
 1018 convolution, except at the last stage where a 3×3 convolution keeps the resolution). The diffusion
 1019 timestep is embedded by a sinusoidal positional embedding followed by a two-layer MLP of width
 1020 4 dim, and this time embedding is injected into all residual blocks in both the encoder and decoder.
 1021 At the bottleneck, we use a ResNet block, a full self-attention block, and another ResNet block at 128
 1022 channels. The decoder mirrors the encoder: at each scale, we concatenate the current feature with the
 1023 channels.
 1024

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Table 10: Object detection performance (mAP@50) on RTTS using a pretrained YOLOv3.

Method	person	bicycle	car	motorcycle	bus	mean
Hazy Image	0.662	0.425	0.581	0.376	0.299	0.469
RIDCP	0.669	0.444	0.611	0.448	0.341	0.503
HNDiff (RIDCP)	0.677	0.454	0.629	0.452	0.361	0.515

corresponding encoder feature (standard U-shaped skip connections), apply two time-conditioned residual blocks and a linear-attention block, and then upsample (except at the final stage, which uses a 3×3 convolution). Finally, the decoded feature is concatenated with the early feature from the initial 7×7 convolution, passed through one last time-conditioned residual block, and projected by a 1×1 convolution to produce the output haze/noise estimation map.

A.9 LLM USAGE

We used a large language model (LLM) only to polish grammar and improve readability. All research ideas, methods, and results are solely from the authors.

Figure 7: Dehazed results of each diffusion mechanism on NH-HAZE datasets. “Res” denotes residual maps between outputs and ground truth, where darker intensities indicate smaller errors.

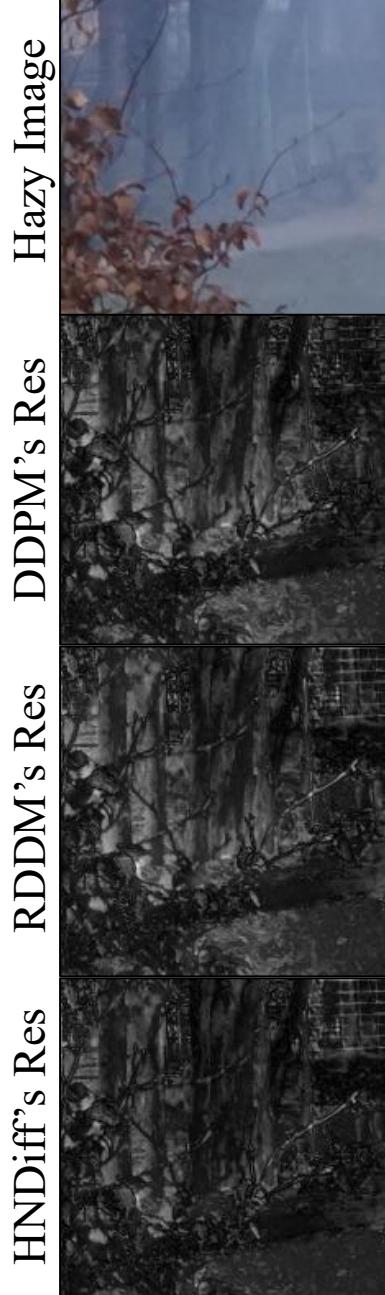


Figure 8: Dehazed results of each diffusion mechanism on NH-HAZE datasets. “Res” denotes residual maps between outputs and ground truth, where darker intensities indicate smaller errors.

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

HNDiff FocalNet Clean Image Hazy Image

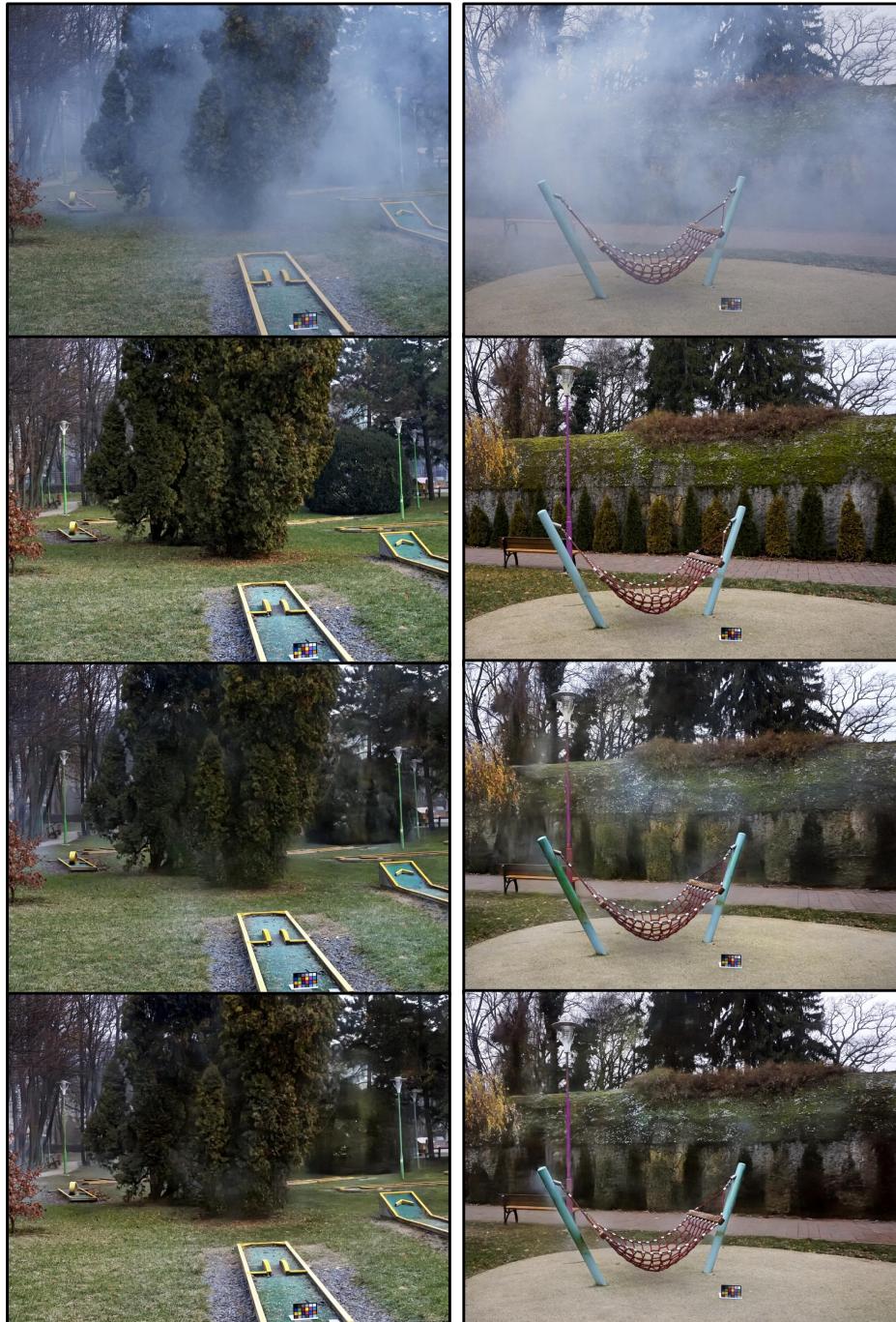


Figure 9: Qualitative results on the NH-HAZE test set.

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

HNDiff FocalNet Clean Image Hazy Image

Figure 10: Qualitative results on the NH-HAZE test set.

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Hazy Image
Clean Image
ConvIR
HNDiff

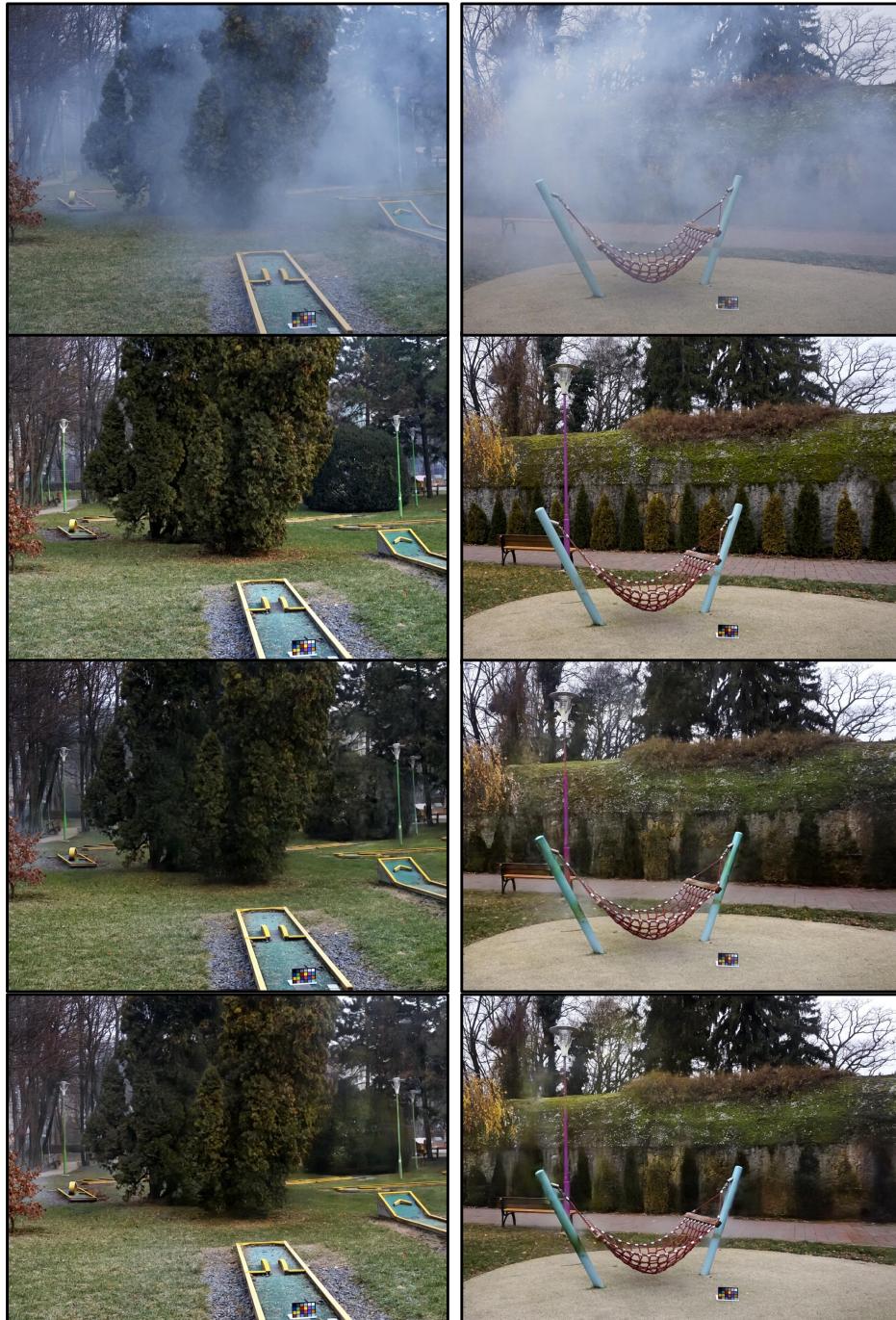


Figure 11: Qualitative results on the NH-HAZE test set.

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Hazy Image
Clean Image
SGDN
HNDiff

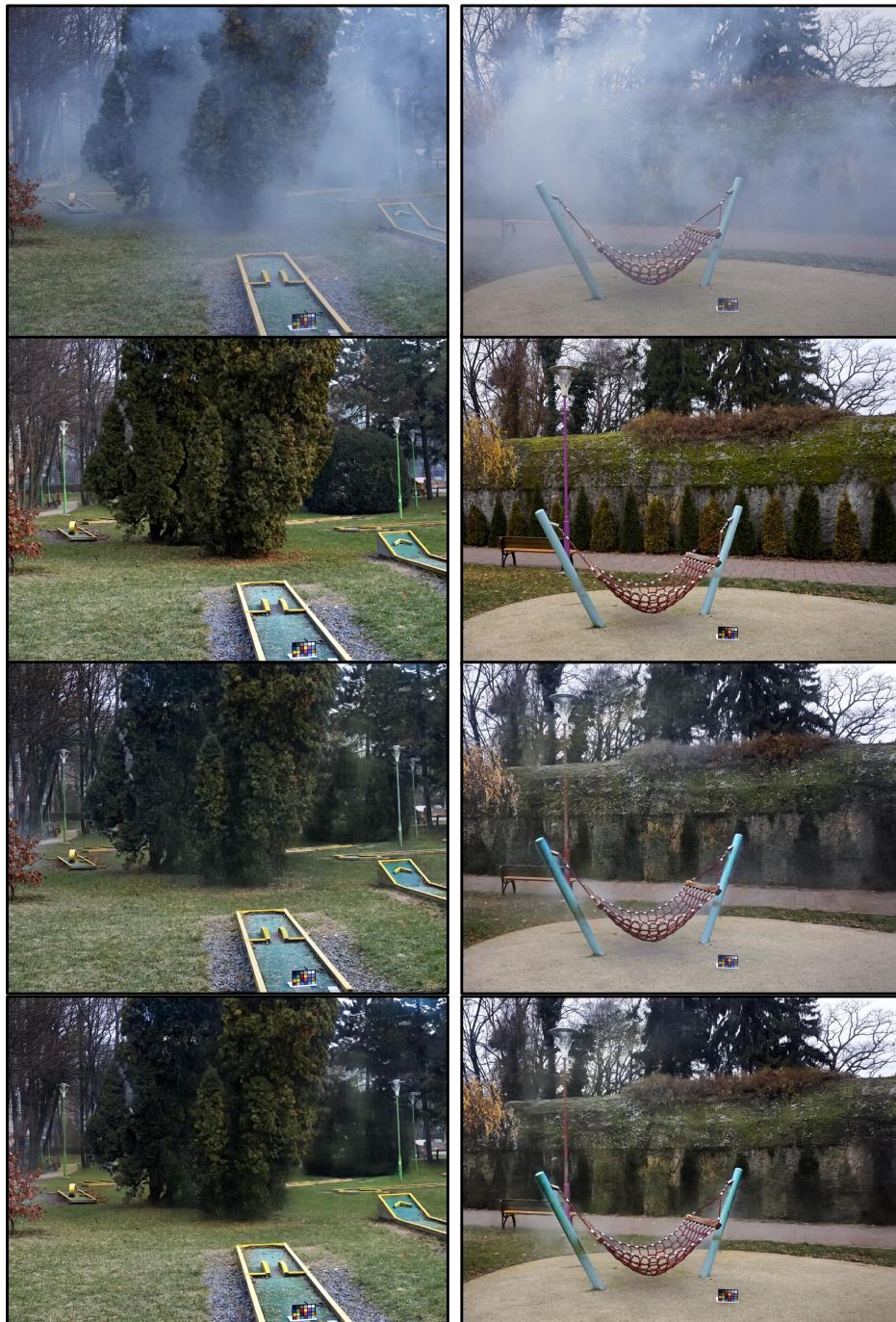


Figure 12: Qualitative results on the NH-HAZE test set.

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

Hazy Image

Clean Image

1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443

HNDiff

FocalNet

1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 13: Qualitative results on the RW²AH test set.

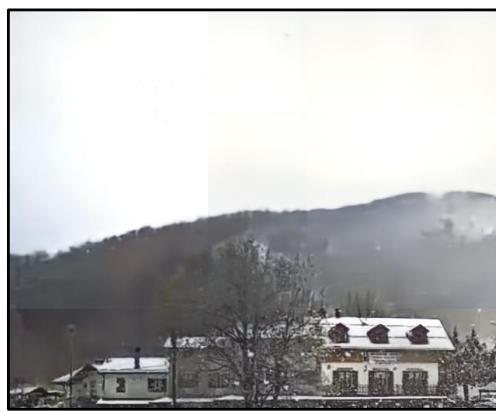
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469

Hazy Image

Clean Image

1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482

HNDiff



ConvIR

1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497

Figure 14: Qualitative results on the RW²AH test set.

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

Hazy Image

Clean Image

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

HNDiff

SGDN

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Figure 15: Qualitative results on the RW²AH test set.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

Hazy Image

Clean Image

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

HNDiff

FocalNet

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

Figure 16: Qualitative results on the Dense-HAZE test set.

1616

1617

1618

1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

Hazy Image

Clean Image

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

HNDiff

ConvIR

Figure 17: Qualitative results on the Dense-HAZE test set.

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683

Hazy Image

Clean Image

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694

HNDiff & Residual

FocalNet & Residual

1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718

1719
1720
1721
1722

Figure 18: Qualitative results on the O-HAZE test set.

1723
1724
1725
1726
1727

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748

Hazy Image

Clean Image

1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776

HNDiff & Residual

ConvIR & Residual

1777
1778
1779
1780
1781

Figure 19: Qualitative results on the O-HAZE test set.

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Figure 20: Qualitative results on the O-HAZE test set.

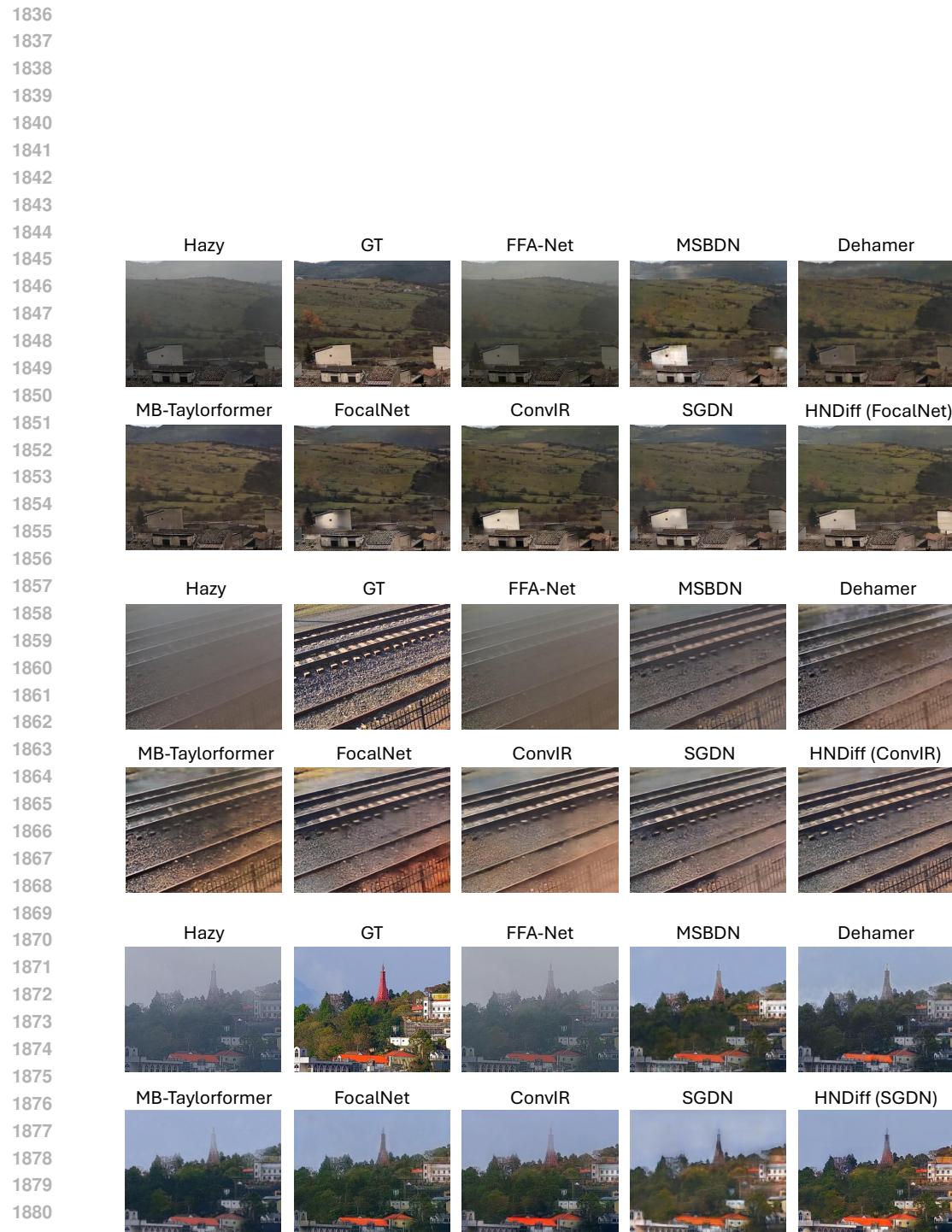


Figure 21: Comparison of Dehazing Results with prior methods.

