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ABSTRACT

Existing diffusion-based methods have recently made significant progress in im-
age dehazing. However, they typically neglect the physics of haze formation and
reconstruct clean images from pure Gaussian noise, thereby limiting their restora-
tion potential. To address this issue, we propose Haze-Noise Diffusion (HNDiff),
a novel diffusion framework that embeds the atmospheric scattering model as an
inductive bias. By grounding diffusion in physical principles, HNDiff ensures that
the restoration aligns more closely with underlying mechanisms of haze forma-
tion. In its forward process, we introduce joint haze-noise diffusion with a haze-
aware noise scheduler, which progressively adds both haze and noise to an image.
Essentially, the scheduler adapts noise levels according to haze density, mean-
ing that regions with heavier haze receive stronger noise injection to encourage
content generation, while clearer regions receive lighter noise to better preserve
details, which directly links the forward degradation process with the physics of
haze. In the reverse process, we then derive a physically consistent dehazing-
denoising process that simultaneously removes haze and noise to restore a clean
image in a manner aligned with the forward degradation process. To further en-
hance practicality, we propose Latent HNDiff, which compiles clean latent priors
that can be seamlessly integrated into existing dehazing networks to boost perfor-
mance. Extensive experiments show that our work significantly improves leading
dehazing backbones and achieves state-of-the-art results on benchmark datasets.

1 INTRODUCTION

Hazy weather conditions caused by atmospheric scattering frequently degrade image visibility by
reducing contrast and obscuring scene details. Such degradation not only impairs human perception
but also severely hinders the performance of many vision applications, such as object detection (Kim
et al., 2024a; Wang et al., 2024a), semantic segmentation (Benigmim et al., 2024; Weber et al.,
2024), and face recognition (Kim et al., 2024b; Mi et al., 2024). To address the challenges, single
image dehazing has emerged as a feasible solution to restore a clear image from a single hazy input.
However, such a task remains highly ill-posed due to the complex interplay of scattering coefficients,
atmospheric light, and scene depth.

Driven by advances in deep learning, CNN-based methods (Dong et al., 2020; Wu et al., 2021; Bai
et al., 2022; Cui et al., 2023) have achieved impressive results in image dehazing. Transformer-based
approaches (Qin et al., 2020; Guo et al., 2022; Qiu et al., 2023; Cui et al., 2024; Fang et al., 2025)
further improved performance by exploring long-range dependencies and global context. Recently,
Mamba-based methods (Zheng & Wu, 2024; Li et al., 2025) have emerged as an efficient alternative
with linear computational complexity. Despite the advancements, these methods still struggle in
heavy haze scenarios, where most information is lost, leading to limited restoration quality.

In parallel, diffusion models (Ho et al., 2020; Rombach et al., 2022) have shown strong genera-
tive ability in image synthesis, producing results with rich details and sharp textures. Motivated
by this progress, several studies (Yang et al., 2024; Wang et al., 2025) have applied diffusion algo-
rithms to image dehazing. Yet, conventional diffusion models are fundamentally misaligned with
the nature of haze. That is, they reconstruct clean images from pure Gaussian noise, and their
stochastic nature (Ye et al., 2024) often causes deviations from the original image, thereby reducing
restoration fidelity. More importantly, they usually neglect the physical properties of haze forma-
tion, resulting in suboptimal restoration performance. According to the Atmospheric Scattering
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Haze-Noise Diffusion

Dehazing-Denoising Process
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Residual 𝐼𝑇𝐼𝑡𝐼𝑡−1𝐼0

Hazy Image

Figure 1: HNDiff leverages the ASM inductive bias, progressively adding haze and noise in the
forward process and removing them in the reverse process for image dehazing.

Model (ASM) (Narasimhan & Nayar, 2003), a hazy image results from attenuated scene radiance
and global atmospheric light. Haze density may vary spatially across the image, as it depends on
both the light scattering effect and scene depth, and intensifies with the increasing scattering coef-
ficient. Thus, haze exhibits structured, spatially varying degradations, unlike the random Gaussian
noise typically assumed in conventional diffusion models.

Based on this observation, we present Haze-Noise Diffusion (HNDiff), a new framework that re-
defines the forward process through a haze-noise diffusion mechanism. Instead of injecting only
Gaussian noise, we integrate the ASM into the diffusion process, mimicking the physical formation
of haze by highlighting its spatially varying characteristics.

In the forward process, HNDiff carries out the haze-noise diffusion mechanism, which gradually
adds both Gaussian noise and haze to a clean image, as illustrated in Figure 1. To better control this
process, we introduce the haze-aware noise scheduler, which dynamically adjusts the noise level
according to haze density: hazier regions are assigned higher noise to boost generative capacity,
while clearer regions receive less noise to preserve detail fidelity. Progressive haze diffusion and
adaptive noise scheduling require transmission maps from ASM, which are generally unavailable.
To overcome this limitation, we consider the haze residual, defined as the incremental haze accu-
mulated as the scattering coefficient increases. We develop a continuous accumulation formulation
to represent this residual implicitly in HNDiff and thus eliminate the need for explicit transmission
maps. Through this design, the forward process remains ingeniously consistent with ASM, enabling
progressive haze addition in tandem with adaptive noise injection.

In the reverse process, we derive the dehazing-denoising process, which is grounded by the physi-
cal principles of ASM and can implicitly approximate noise and haze residuals through dedicated
estimators, thereby removing haze and noise to restore clean images. However, directly applying
diffusion in the image space incurs substantial computational overhead and may suffer from fidelity
issues in severely degraded regions due to the stochastic nature of the diffusion process. To address
these problems, we propose latent HNDiff, a prior generation network that integrates flexibly with
dehazing backbones, allowing for more accurate and visually consistent restoration. This latent ap-
proach not only reduces computational cost but also enhances the applicability of the framework
across diverse dehazing models.

The key contributions of our work are summarized as follows: First, we propose HNDiff, a novel
diffusion-based framework that incorporates ASM as an inductive bias, specifically designed for
image dehazing. Second, HNDiff implements a haze-noise diffusion process that adds both haze
and noise in the forward pass, and a corresponding dehazing-denoising process with two dedicated
estimators to respectively remove haze and noise in the backward pass. Third, we design the haze-
aware noise scheduler to adaptively adjust noise levels based on hazy densities. Fourth, extensive
experiments demonstrate that HNDiff consistently improves three representative dehazing models
and achieves state-of-the-art performance on seven benchmark datasets.

2 RELATED WORK

2.1 IMAGE DEHAZING

CNN-based Dehazing. Deep learning has revolutionized image dehazing with CNN-based meth-
ods (Dong et al., 2020; Wu et al., 2021; Bai et al., 2022; Yang et al., 2022; Cui et al., 2023) achieving
impressive breakthroughs. For instance, Dong et al. (2020) propose a boosted decoder combined
with a dense feature fusion module to progressively restore haze-free images. Wu et al. (2021) in-
troduce contrastive regularization within an autoencoder to learn from hazy and clear images for
efficient dehazing. More recently, Cui et al. (2023) present a dual-domain selection mechanism and
an efficient multi-scale network to further enhance restoration quality.
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Transformer-based Dehazing. In addition to CNNs, Transformer-based methods have shown
great promise in image dehazing by leveraging attention mechanisms to model long-range depen-
dencies and global context (Qin et al., 2020; Guo et al., 2022; Song et al., 2023; Qiu et al., 2023;
Valanarasu et al., 2022; Cui et al., 2024; Fang et al., 2025). For example, Qiu et al. (2023) approx-
imate softmax-attention with a Taylor expansion to achieve linear complexity to reduce the com-
putational overhead, complemented by multi-scale attention refinement for effective dehazing. Cui
et al. (2024) design a multi-shape attention module with rectangle and dilated operations to enlarge
receptive fields and boost performance. Fang et al. (2025) integrate phase and attention modules to
leverage YCbCr textures for recovering clearer features in both frequency and spatial domains.
Mamba-based Dehazing. Mamba-based methods have recently emerged as efficient alternatives
for image dehazing, capturing global context with linear computational complexity. Zheng & Wu
(2024) combine convolution for local feature extraction with state space models to capture long-
range dependencies in dehazing. Li et al. (2025) design an S-shaped stripe-based scanning strategy
to better preserve locality and continuity, and use a channel-wise attention mechanism to aggregate
sequences for more effective restoration.
ASM-based Dehazing. Beyond architectural advances, several studies (Shao et al., 2020; Chen
et al., 2021; Yang et al., 2022; Wu et al., 2023; Fang et al., 2024; Shin et al., 2025) explicitly exploit
the Atmospheric Scattering Model (ASM) to improve dehazing. Wu et al. (2023) design an ASM-
based data generation pipeline to synthesize hazy images for training a VQGAN-based network.
Fang et al. (2024) derive a cooperative unfolding network directly from ASM, jointly optimizing the
transmission map and clean image. Shin et al. (2025) reformulate dehazing as an ASM-governed
ODE flow, ensuring that the learned velocity field and transmission refinement remain consistent
with the scattering physics.

Despite these advancements, most dehazing methods are still trained in an end-to-end regression
manner that directly maps hazy inputs to clean outputs. Although some ASM-based approaches
incorporate the Atmospheric Scattering Model as physical guidance to constrain this mapping, both
regression-based and ASM-based methods still struggle under extremely dense haze, where severe
information loss makes it difficult to recover realistic high-frequency details. In contrast, our method
couples ASM with a diffusion process and leverages the generative capability of noise diffusion to
compensate for missing content and restore plausible fine structures in heavily degraded regions.

2.2 DIFFUSION MODELS

Diffusion for Low-level Vision. Diffusion models (Ho et al., 2020; Rombach et al., 2022; Meng
et al., 2022; Zhang et al., 2023; Wu et al., 2024) have shown strong generative capability in image
synthesis and can produce results with rich details and sharp textures through forward noise diffusion
and reverse denoising. This success has inspired much research exploring their potential in diffusion
algorithms for various low-level vision tasks (Zhang et al., 2024; Garber & Tirer, 2024; Li et al.,
2024; Liu et al., 2024a;b; Xia et al., 2023; Zheng et al., 2024; Rajagopalan et al., 2025; Luo et al.,
2025; He et al., 2025). For example, Xia et al. (2023) employ diffusion models to extract compact
priors used to guide a dynamic transformer for image recovery. Liu et al. (2024b) utilize a pre-
trained diffusion model with task-specific priors for diverse image restoration tasks. Luo et al.
(2025) present visual instruction-guided diffusion that models degradation patterns for all-in-one
image restoration.
Diffusion for Image Dehazing. Within low-level vision, a number of studies have focused specif-
ically on image dehazing using diffusion models (Yang et al., 2024; Wang et al., 2024b; Liu et al.,
2024b; Rao et al., 2024; Wang et al., 2025; Liu et al., 2025; Zhou et al., 2025). For instance, Yang
et al. (2024) exploit the semantic latent space of a pre-trained diffusion model to guide dehazing
without retraining and iterative sampling. Wang et al. (2025) combine diffusion-based hazy image
generation with accelerated fidelity-preserving sampling for efficient, high-quality dehazing. Liu
et al. (2025) leverages diffusion models in the frequency domain with an amplitude residual encoder
and a phase correction module to enhance unpaired image dehazing. Despite these advances, these
methods rely on conventional noise diffusion initialized with pure Gaussian noise, which disregards
the physical properties of haze formation. As a result, the stochastic nature (Ye et al., 2024) of
the process often leads to deviations from the target restoration fidelity, often resulting in degraded
performance and less consistent visual quality.
Degradation-aware Diffusion. Recently, a few studies have explored degradation-aware diffu-
sion for image restoration. For example, Liu et al. (2024a) propose residual diffusion and operate
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Figure 2: Overview of Latent HNDiff. The framework starts by using an image encoder to extract
latent priors from a hazy input. These priors undergo a haze-noise diffusion process to produce the
diffused hazy and noisy representation ZT . During the reverse process, dehazing and denoising are
performed jointly by iteratively estimating both noise and haze residuals to recover clean priors Z0.
Lastly, they are then integrated into a dehazing backbone through the Feature Gating Module (FGM)
to improve the overall restoration quality.

on the difference between hazy and clean images, while Zhou et al. (2025) introduce a physics-
guided dehazing diffusion by reformulating haze accumulation as a time-indexed process. However,
these approaches either neglect the role of physical scene transmission in modeling haze degrada-
tion within the diffusion process or overlook haze density in the noise scheduling. To address these
issues, our approach embeds ASM into the diffusion process as an inductive bias and adaptively
adjusts noise addition according to haze density, achieving significantly improved dehazing perfor-
mance.

3 METHOD

This section presents the proposed Haze-Noise Diffusion (HNDiff), a novel framework that inte-
grates the Atmospheric Scattering Model (ASM)(Narasimhan & Nayar, 2003) into the diffusion
process for image dehazing. As depicted in Figure 1, HNDiff defines a physics-guided forward
Haze-Noise Diffusion process equipped with a Haze-Aware Noise Scheduler (HANS) and a reverse
Dehazing–Denoising Process. In the forward direction, an input image is progressively degraded
by jointly introducing haze and Gaussian noise through an increasing scattering coefficient, while
HANS adaptively controls the noise level according to the local haze density so that the corruption
follows ASM-guided haze formation. In the reverse direction, HNDiff starts from a hazy input per-
turbed by Gaussian noise and iteratively removes both haze and noise in a manner consistent with
the ASM. For high-fidelity restoration and better efficiency, as illustrated in Figure 2, we further
propose Latent HNDiff, where HNDiff serves as a prior generation network in the latent space and
the learned prior is injected into a dehazing backbone via a Feature Gating Module (FGM), enabling
plug-and-play enhancement of existing dehazing architectures. In the following, Section 3.1 de-
tails the Haze-Noise Diffusion process and HANS, Section 3.2 presents the Dehazing–Denoising
Process, and Section 3.3 describes Latent HNDiff together with the FGM integration.

3.1 HAZE-NOISE DIFFUSION

Haze in image formation arises from atmospheric scattering, where scene radiance is attenuated
during transmission and blended with global atmospheric light, leading to reduced visibility and a
loss of detail. This process can be mathematically modeled by the ASM:

IH(x) = I0(x) τ(x) +A (1− τ(x)), where τ(x) = e−σ(x)d(x) (1)

with x denoting the pixel index. In (1), IH ∈ RH×W×3, I0 ∈ RH×W×3, τ ∈ RH×W×1, A ∈ R3,
σ ∈ RH×W×1, and d ∈ RH×W×1 denote the hazy image, the clean scene radiance, the transmis-
sion map, the global atmospheric light, the scattering coefficient, and the scene depth, respectively.
This formulation explicitly models haze formation, where larger scattering coefficients σ or greater
depths d yield smaller transmission τ , increasing haze density and reducing scene visibility. How-
ever, existing diffusion-based dehazing methods typically adopt conventional diffusion models that
add zero-mean Gaussian noise and drive the image toward pure noise, which does not reflect the
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structured, spatially varying haze described in (1). To bridge this gap, we introduce a haze–noise
diffusion process in which ASM-based haze formation acts as a mean shift of the Gaussian cor-
ruption, so that the forward process follows a physically meaningful clean-to-hazy evolution while
stochastic noise is injected around this trajectory.
Forward Haze-Noise Diffusion. In the forward process of HNDiff, we propose a haze-noise dif-
fusion that embeds the physical haze formation process into noise diffusion. Specifically, a clean
image is progressively degraded by both haze and Gaussian noise. The forward transition at time
step t is defined as

It(x) = It−1(x)e
−αtσ(x)d(x) +A

(
1− e−αtσ(x)d(x)

)
+ βt(x)ϵt(x), (2)

where It denotes the intermediate hazy and noisy image at step t, αt is the scaling factor, ϵt ∼
N (0, I) represents Gaussian noise, and βt(x) is the noise scaling coefficient at pixel x. As seen
in (2), It−1 is further degraded according to (1), with scene radiance attenuated by the αt-scaled
scattering coefficient, while noise is injected with another scaling coefficient βt(x).
Haze-Aware Noise Scheduler. Since haze density varies spatially, the generative capacity con-
trolled by noise diffusion should also adapt across pixels. We therefore introduce a haze-aware
noise scheduler, which defines the pixel-wise noise scaling coefficient as βt(x) = 1− e−αtσ(x)d(x).
This design makes the injected noise explicitly dependent on haze density: pixels with heavier haze
receive larger βt(x), thus introducing stronger noise that triggers diffusion to reconstruct severely
degraded details; conversely, pixels with lighter haze yield smaller βt(x), injecting less noise to
preserve content fidelity through regression. This adaptive scheduling enables the forward process
to jointly model haze degradation and stochastic corruption.
Sampling Probability and Reparameterization. Inspired by Liu et al. (2024a), we regard degra-
dation in the forward process as a deterministic mean shift. From (2), each step from It−1 to It
can thus be expressed as a Gaussian transition, where the mean is shifted by haze and stochastic
perturbations are introduced by Gaussian noise:

q(It(x) | It−1(x), ϕ) := N
(
It(x)

∣∣∣ It−1(x)e
−αtσ(x)d(x) +A

(
1− e−αtσ(x)d(x)

)
, β2

t (x)
)
, (3)

where ϕ = {d(x), σ(x), A}. By iterating (3), we obtain a sequence of progressively hazy and
noisy images {I1, I2, . . . , IT } through a T -step diffusion process, with the complete forward sam-
pling probability q(I1:T (x) | I0(x), ϕ) =

∏T
t=1 q(It(x) | It−1(x), ϕ). However, existing dehazing

datasets provide only hazy-clean image pairs and do not include ϕ (i.e., atmospheric light, scattering
coefficients, and scene depth necessary to compute transmission).

To address this limitation, we apply the reparameterization trick (Ho et al., 2020) to (3) and obtain
the conditional distribution after T steps as

q(IT (x) | I0(x), ϕ) = N
(
IT (x)

∣∣∣ I0(x)e−∑T
t=1 αtσ(x)d(x) +A

(
1− e−

∑T
t=1 αtσ(x)d(x)

)
, β̄2

T (x)
)
,

(4)

where αt = 1
T , ∀t ∈ {1, 2, . . . , T}, and β̄T (x) =

√
(1−e−(1/T )σ(x)d(x))(1−e−2σ(x)d(x))

1+e−(1/T )σ(x)d(x) . The com-
plete derivation of (4) is provided in Appendix A.1. It follows that the hazy and noisy image IT can
be sampled from q(IT | I0) via

IT (x) = I0(x)e
−σ(x)d(x) +A

(
1− e−σ(x)d(x)

)
+ β̄T (x)ϵ(x) = IH(x) + β̄T (x)ϵ(x), (5)

where IT is generated in a single step by injecting noise into the hazy image IH via the haze-aware
noise scheduler. This formulation preserves the Gaussian nature of the diffusion process while
embedding ASM directly into the mean of the distribution through a physically grounded shift. As
β̄T (x) still relies on the transmission map, we introduce a learnable haze estimator to implicitly
approximate it. The optimization details for the haze estimator are provided in Section 3.3.

3.2 DEHAZING-DENOISING PROCESS

In the reverse generation procedure, we aim to progressively remove both haze and noise from the
degraded observation IT to recover the clean image I0. Unlike conventional diffusion models that
start from pure Gaussian noise, our method initializes from the hazy-noisy sample IT drawn from
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the Gaussian distribution (4). Inspired by the deterministic sampling formulation in Song et al.
(2021), we define the reverse transition distribution as

pθ(It−1(x) | It(x)) = qδ(It−1(x) | It(x), I0(x), ϕ). (6)

The transition probability qδ in (6) is defined as

qδ(It−1(x) | It(x), I0(x), ϕ) = N
(
It−1(x) | µt(x), δ

2
t (x)

)
, where (7)

µt(x) = I0(x)e
−

∑t−1
s=1 αsσ(x)d(x)+A

(
1− e−

∑t−1
s=1 αsσ(x)d(x)

)
+
√
β̄2
t−1(x)− δ2t (x)ϵt−1(x), (8)

and δ2t = η · β2
t β̄

2
t−1

β̄2
t

is a variance term that controls sampling stochasticity. When η = 0, this yields
a deterministic sampling. From 4, we can derive

I0(x) = (It − (1− e−
∑t−1

s=1 αsσ(x)d(x))A− β̄tϵt)e
∑t−1

s=1 αsσ(x)d(x). (9)

By substituting (9) into (7) and simplifying, we obtain the sampling equation for It−1(x) as

It−1(x) =
(
It(x)−Nt(x)

(
1− e−αtσ(x)d(x)

))
eαtσ(x)d(x), (10)

where Nt(x) = A + ϵt(x) denotes the atmospheric noise, which is composed of the atmospheric
light term and a Gaussian noise term. To reconstruct I0, we iterate (10) with two learnable esti-
mators. One is the noise estimator Nθ

t (It, IH , t), which approximates Nt. The other is the haze
estimator 1 − e−αto

θ(It,IH ,t), which approximates the residual transmission term 1 − e−αtσd (the
complement of the transmission), where oθ(It, IH , t) is a learnable network estimating the scatter-
ing–depth product σd. Here, we omit A for simplicity, as it can be incorporated separately into the
haze reconstruction. Complete derivations of the variational lower bound and sampling formulation
are provided in Appendix A.2, A.3. In the following, we detail the optimization of the haze estimator
and noise estimators in the latent space.

3.3 LATENT HNDIFF

Performing diffusion-based restoration directly in image space, as noted in Rombach et al. (2022);
Chen et al. (2023), incurs substantial computational overhead, fidelity degradation, and slower, less
stable convergence. To address these challenges, and inspired by prior works (Rombach et al., 2022;
Chen et al., 2023; Xia et al., 2023), we present Latent HNDiff. As illustrated in Figure 2, La-
tent HNDiff applies HNDiff in the latent space and serves as a prior generator to enhance dehazing
through a three-stage training strategy. By embedding physically grounded haze formation into the
latent diffusion process, Latent HNDiff encourages latent features to encode haze-aware informa-
tion, thereby capturing meaningful physical representations.
Stage 1: Ground-truth Prior Pretraining. We first pretrain a dehazing network equipped with
an Image Encoder (IE) and a Feature Gating Module (FGM). Given a hazy image IH and its clean
counterpart I0, we concatenate them and feed the result into the IE to extract the ground-truth prior
Zgt = IE(Concat(IH , I0)) ∈ RH

4 ×W
4 ×4. The prior Zgt is fused with encoder and decoder features

F in
i ∈ Rhi×wi×ci at each scale i of the dehazing network through the FGM, producing the fused

features F out
i . Within FGM, Zgt is first passed through a shared-weight Prior Encoder (PE) to obtain

a compact representation, which is then linearly projected to generate modulation parameters that
adaptively modulate the input features:

zgt = PE(Zgt) = MLP(AvgPool2D(Unshuffle(Zgt))) ∈ R1×C and (11)

F out
i = F in

i × zαi + zβi , where (zαi ∈ R1×ci , zβi ∈ R1×ci) = Linear(zgt). (12)

C in (11) denotes the channel dimension of the projected prior vector, while ci in (12) represents the
number of feature channels at the i-th scale of the dehazing network. The fused features across all
scales are subsequently decoded to yield the dehazed image Idehz , which is supervised by the clean
reference I0, ensuring that the network effectively learns to exploit the ground-truth prior Zgt.
Stage 2: Latent HNDiff Optimization. We estimate the ground-truth prior Zgt from IH us-
ing HNDiff in the absence of the clean counterpart I0. Specifically, a second IE extracts ZH ∈
RH

4 ×W
4 ×4 from IH . We then apply haze-noise diffusion (5) to ZH using the haze estimator and

haze-aware noise scheduler, obtaining a degraded latent ZT . Next, the dehazing-denoising process
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Table 1: Quantitative results on six benchmark datasets. Values in parentheses represent the im-
provements of HNDiff over the corresponding baselines.

Model NH-HAZE O-HAZE Dense-HAZE RW2AH SOTS-Indoor SOTS-Outdoor

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

MSBDN 17.97 0.659 24.36 0.749 15.13 0.555 21.51 0.595 33.67 0.985 33.48 0.982
FFA-Net 18.13 0.647 22.12 0.770 15.70 0.549 18.73 0.556 36.39 0.989 33.57 0.984
Dehamer 20.66 0.684 25.11 0.777 16.62 0.560 20.84 0.581 36.63 0.988 35.18 0.986
MB-TaylorFormer 20.43 0.688 25.05 0.788 16.66 0.560 21.37 0.608 40.71 0.992 37.42 0.989
FocalNet 20.36 0.696 25.46 0.791 16.95 0.597 21.93 0.635 40.82 0.992 37.71 0.995
ConvIR 20.65 0.692 25.25 0.784 16.86 0.600 21.99 0.640 41.53 0.994 37.95 0.994
SGDN 20.13 0.680 24.59 0.778 16.60 0.571 22.24 0.631 41.01 0.992 36.22 0.986

HNDiff (FocalNet) 20.89
(+0.53)

0.697
(+0.001)

26.32
(+0.86)

0.801
(+0.010)

17.29
(+0.34)

0.599
(+0.002)

22.29
(+0.36)

0.647
(+0.012)

41.19
(+0.37)

0.994
(+0.002)

38.10
(+0.39)

0.996
(+0.001)

HNDiff (ConvIR) 21.23
(+0.58)

0.701
(+0.009)

26.20
(+0.95)

0.799
(+0.015)

17.18
(+0.32)

0.623
(+0.023)

22.25
(+0.26)

0.646
(+0.006)

42.10
(+0.57)

0.995
(+0.001)

38.83
(+0.88)

0.995
(+0.001)

HNDiff (SGDN) 20.64
(+0.51)

0.686
(+0.006)

25.40
(+0.81)

0.782
(+0.004)

17.17
(+0.57)

0.611
(+0.040)

22.81
(+0.57)

0.653
(+0.022)

41.47
(+0.46)

0.995
(+0.003)

37.10
(+0.88)

0.991
(+0.005)

Avg Gains +0.54 +0.005 +0.87 +0.010 +0.41 +0.022 +0.40 +0.013 +0.47 +0.002 +0.72 +0.002

(10) iteratively removes haze and noise, producing the refined prior Z0 as an estimate of Zgt. Pre-
vious diffusion-based approaches (Chen et al., 2023; Xia et al., 2023; Salimans & Ho, 2022; Rao
et al., 2024) typically impose supervision only on the final reconstructed output, allowing gradients
to propagate backward through the entire diffusion trajectory and thereby amortizing step-wise su-
pervision. Inspired by this idea, we design a trajectory-level supervision scheme in the latent space.
Specifically, we define a latent-prior loss as Lprior = ∥Z0 − Zgt∥1 , where Z0 is reconstructed from
ZT by recursively applying the shared haze and noise estimators. This design enforces consistency
between the reconstructed latent representation and the ground-truth prior across the entire diffusion
process. Further details are provided in Appendix A.2.
Stage 3: Joint Fine-tuning. At last, we jointly optimize the pretrained IE, HNDiff, the FGM, and
the dehazing backbone. The dehazed image Idehz is reconstructed by integrating the learned prior
Z0 and is supervised with I0 using the standard loss function of the dehazing backbone. This stage
ensures that the learned diffusion prior Z0 consistently enhances dehazing performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation Details. HNDiff is composed of four key components: the Image Encoder (IE),
the Feature Gating Module (FGM), the Haze Estimator, and the Noise Estimator. The IE consists
of six residual blocks and four CNN layers, while the FGM is implemented with a pooling opera-
tion and a lightweight MLP. Both the Haze Estimator and Noise Estimator share the same network
architecture, which is a simplified U-Net (Liu et al., 2024a). In practice, we set the diffusion step
to T = 4. The overall framework (Stage 3) is optimized with the default hyperparameters of each
dehazing backbone (e.g., learning rate, number of epochs, batch size, and optimizer) to ensure fair
comparisons.
Dehazing Models and Datasets. We adopt three state-of-the-art image dehazing models, includ-
ing FocalNet (Cui et al., 2023), ConvIR (Cui et al., 2024), SGDN (Fang et al., 2025) to validate the
effectiveness of HNDiff. Following prior studies, we conduct experiments on one widely used syn-
thetic dataset, SOTS-Indoor and SOTS-Outdoor (Li et al., 2018), and four real-world benchmarks:
NH-HAZE (Ancuti et al., 2021), O-HAZE (Ancuti et al., 2018), Dense-HAZE (Ancuti et al., 2019),
and RW2AH (Fang et al., 2025). The SOTS-Indoor dataset consists of 13,990 training pairs and 500
testing pairs. The SOTS-Outdoor dataset consists of 313,950 training pairs and 500 testing pairs.
Both NH-HAZE and Dense-HAZE provide 50 training pairs and 5 testing pairs. O-HAZE offers 40
training pairs and 5 testing pairs. RW2AH is a real-world hazy dataset that includes 1,406 training
pairs and 352 testing pairs.

4.2 EXPERIMENTAL RESULTS

Quantitative Results. As shown in Table 1, we compare the dehazing performance of state-of-
the-art methods and their HNDiff-enhanced versions, where the values in parentheses indicate the
improvements made by HNDiff over the corresponding dehazing baselines. The results clearly
demonstrate that HNDiff consistently enhances the performance of each baseline and outperforms
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Figure 3: Qualitative results on the RW2AH dataset.

F
o
ca

lN
et

C
o

n
v
IR

S
G

D
N

Hazy Patch Clean Patch Baseline HNDiff HNDiff’s ResBaseline’s ResHazy Patch Clean Patch Baseline HNDiff HNDiff’s ResBaseline’s Res

Figure 4: Qualitative results on the O-HAZE (left) and NH-HAZE (right) datasets. “Res” denotes
residual maps between outputs and ground truth, where darker intensities indicate smaller errors.

previous state-of-the-art methods. Specifically, HNDiff yields average PSNR/SSIM improvements
of +0.54/+0.005, +0.87/+0.010, +0.41/+0.022, +0.40/+0.013, +0.47/+0.002, and +0.72/0.002 on
the NH-HAZE, O-HAZE, Dense-HAZE, RW2AH, SOTS-Indoor, and SOTS-Outdoor test sets, re-
spectively. Additionally, HNDiff achieves average PSNR/SSIM improvements of +0.48/+0.005,
+0.59/+0.009, and +0.63/+0.013 on baselines FocalNet, ConvIR, and SGDN, respectively. Overall,
HNDiff delivers an average gain of +0.57 PSNR and +0.009 SSIM across all datasets and base-
lines, highlighting its strong generalization ability and effectiveness as a prior generation network
for image dehazing.
Qualitative Results. We present qualitative comparisons between three baseline models and their
HNDiff-enhanced counterparts. Figure 3 presents the results on the RW2AH test set, while Figure 4
shows the results on the NH-HAZE and O-HAZE test sets, including an additional “Res” column
for better comparison. The residual maps are obtained by subtracting the ground truth from the
model outputs, where lower intensities indicate smaller errors and thus higher reconstruction quality.
As shown, HNDiff consistently produces cleaner and more visually compelling dehazed images
compared to the baselines. By integrating HNDiff into the latent space of the dehazing networks, we
exploit its capacity to model rich and realistic image priors while preserving fidelity to the underlying
clean image structures. More qualitative results are provided in Appendix A.6.

4.3 ABLATION STUDIES

To assess the contributions of the proposed components in HNDiff, we conduct a series of ablation
studies using FocalNet as the baseline dehazing model. Specifically, we evaluate the effectiveness of
each component, compare the prior generator with different diffusion mechanisms, examine HNDiff
against the baseline under equivalent parameter counts, investigate the impact of the three-stage
training strategy, analyze the effect of varying the number of diffusion steps, inspect the haze residual
modeling in latent space, and compare the dehazing results of applying HNDiff in image space and
latent space. All experiments are conducted using the default training configuration of FocalNet and
evaluated on the NH-HAZE test set.
Effectiveness of Each Component. Our ablation study, detailed in Table 2, evaluates the contri-
bution of each component in HNDiff. Net1 denotes the baseline dehazing model. Net2 represents a
conventional DDPM-based variant that employs only noise diffusion, while Net3 is a variant that in-
corporates only haze diffusion and omits noise diffusion. Net4 adopts both noise and haze diffusion
but excludes the haze-aware noise scheduler (HANS). Finally, Net5 is the complete HNDiff design.
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Table 2: Ablation study on the effectiveness of
noise diffusion, haze diffusion, and HANS.

Model Noise Diffusion Haze Diffusion HANS PSNR (dB)
Net1 20.36 (baseline)
Net2 ✓ 20.46
Net3 ✓ 20.61
Net4 ✓ ✓ 20.68
Net5 ✓ ✓ ✓ 20.89

Table 3: Ablation study on the effectiveness of
the three-stage training strategy.

Model Stage 1 Stage 2 Stage 3 PSNR (dB)
Net1 20.36 (baseline)
Net2 ✓ 21.36 (upper bound)
Net3 ✓ 20.51
Net4 ✓ ✓ 20.58
Net5 ✓ ✓ ✓ 20.89

Table 4: Comparison of different prior genera-
tors, including U-Net and three diffusion mech-
anisms.

Model Prior Generator PSNR (dB) SSIM
Net1 N/A 20.36 0.696
Net2 U-Net 20.41 0.696
Net3 DDPM 20.46 0.695
Net4 RDDM 20.43 0.690
Net5 HNDiff 20.89 0.697

Table 5: Comparison between HNDiff and base-
line variants with comparable parameter counts.

FocalNet FocalNet+ FocalNet* HNDiff
Params (M) 3.74 8.40 8.28 7.82
FLOPs (G) 30.53 68.54 64.05 36.38
PSNR (dB) 20.36 20.37 20.51 20.89

Table 6: Analysis of diffusion step setting.

Time step 0 2 4 6 8
PSNR (dB) 20.36 20.69 20.89 20.84 20.81

The results show that both Net2 and Net3 surpass the baseline, demonstrating the individual benefits
of noise and haze diffusion. Moreover, Net5 achieves the best performance, indicating that the joint
integration of both diffusion processes together with HANS provides complementary gains. These
findings highlight the importance of incorporating haze-aware design in order to enhance dehazing
effectiveness.
Effectiveness of Three-stage Training Strategy. We evaluate the effectiveness of the three-stage
training strategy, as shown in Table 3. Net1 represents the baseline dehazing model. Net2 serves
as the upper bound using ground-truth prior Zgt. Net3 corresponds to optimizing HNDiff jointly
with the dehazing model without Stage 1 and Stage 2 pre-training, thus serving as a purely data-
driven baseline. Net4 is the model obtained with Stage 1 and Stage 2 pre-training but without Stage
3 joint fine-tuning. Finally, Net5 adopts the complete three-stage training and achieves the best
performance. These results clearly demonstrate the effectiveness of the three-stage training strategy
in exploiting the complementary benefits of pre-training and joint optimization.
Comparison of Prior Generators with Different Diffusion Mechanisms. Table 4 evaluates
the baseline dehazing model augmented with different prior generation methods, including U-Net,
DDPM (Ho et al., 2020), RDDM (Liu et al., 2024a), and our proposed HNDiff. Net1 denotes the
baseline model without a prior generator. Net2 employs a U-Net to generate priors directly, without
any diffusion process. Net3, Net4, and Net5 are the dehazing models enhanced with priors generated
by DDPM, RDDM, and HNDiff, respectively. Although integrating the standard diffusion process
(Net3) or the residual diffusion process (Net4) improves performance over the baseline, the gain
is just comparable to that of Net2, which uses a U-Net without diffusion. In contrast, HNDiff ex-
plicitly embeds the atmospheric scattering model into the diffusion process, yielding consistent and
superior improvements compared to both standard and residual diffusion mechanisms.We present
the dehazed results of different diffusion mechanisms in Appendix A.5.
Comparison of HNDiff and Baselines with Equivalent Parameter Counts. To ensure a fair
comparison under similar parameter budgets, we evaluate HNDiff against enlarged baseline vari-
ants, as reported in Table 5. The FocalNet+ variant increases the base channel size from 32 to 48,
while another variant FocalNet* expands the number of residual blocks from 4 to 10. Although
both variants substantially increase model complexity in terms of parameters and FLOPs, they yield
only marginal PSNR gains over the baseline FocalNet. In contrast, HNDiff achieves the best perfor-
mance of 20.89dB in PSNR with a lower parameter count (7.82M) and significantly reduced FLOPs
(36.38G). These results demonstrate that integrating the proposed diffusion prior is more effective
than simply scaling the network capacity.
Analysis of Diffusion Step Setting. Table 6 analyzes the impact of varying diffusion steps T
(0–8). Without diffusion guidance (T = 0), performance is limited to 20.36dB PSNR. Increasing
T improves results, peaking at 20.89dB with T = 4, while larger T brings no further gains. These
results indicate that our model converges effectively with only four diffusion steps, demonstrating
that large numbers of diffusion iterations are unnecessary for achieving strong performance.
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Figure 5: Visualization of latent representations across reverse diffusion steps.

Figure 6: Qualitative results of applying HNDiff in
image space and latent space.

Table 7: Comparison of applying HNDiff in
image space and latent space on the RW2AH
dataset.

Metric FocalNet HNDiff (Image) HNDiff (Latent)

PSNR (dB) 21.18 21.37 21.52
SSIM 0.5970 0.6166 0.6254
FLOPs (G) 30.53 65.59 36.38

Analysis of Haze Residual Modeling in Latent Space. To verify that HNDiff models haze
formation in latent space, we analyze diffusion prior outputs across reverse steps. Although the
model is trained with T = 4 steps, we examine intermediate latent representations by perform-
ing t ∈ [0, 1, 2, 3, 4] reverse steps starting from the fully hazy latent Z4, resulting in the sequence
[Z4, Z3, . . . , Z0]. For visualization, we compute the channel-wise mean of each latent and down-
sample IH to the same spatial resolution only for visualization. As shown in Figure 5, the repre-
sentations progressively transition from hazy (Z4) to clean (Z0), confirming that HNDiff captures a
progressive hazy-to-clean structure in the latent space and enables interpretable modeling.
Comparison of Applying HNDiff in Image Space and Latent Space. Table 7 compares an
image-space variant, HNDiff (Image), which applies our haze-noise diffusion directly to RGB im-
ages, and a latent-space variant, HNDiff (Latent), which operates in the latent space of a FocalNet
on the real-world RW2AH dataset. The two variants use the same U-Net as the haze/noise estimator
and both improve over the baseline, while HNDiff (Latent) achieves the best performance (21.52 dB
PSNR, 0.6254 SSIM) with only minimal additional FLOPs overhead (36.38G), confirming its ad-
vantage in content fidelity. Figure 6 further shows that HNDiff (Latent) produces results closer to
the ground truth, supporting our choice of the latent formulation in the main experiments.

5 LIMITATIONS

HNDiff is tailored to the Atmospheric Scattering Model and thus cannot be directly applied to other
degradations such as motion blur, raindrops, or low-light conditions. Extending it to these scenarios
requires integrating degradation-specific priors (e.g., object motion, rain masks, exposure time),
which we leave as future work.

6 CONCLUSION

We propose Haze-Noise Diffusion (HNDiff), a novel diffusion-based framework for image dehaz-
ing. HNDiff integrates the atmospheric scattering model into the diffusion framework, jointly per-
forming haze diffusion and noise diffusion to account for the physical properties of haze formation.
In the forward process, HNDiff progressively degrades a clean image by introducing both haze
and noise through a haze-noise diffusion, with a haze-aware noise scheduler that adaptively adjusts
noise levels according to haze density. In the reverse process, HNDiff restores the image by remov-
ing both haze and noise through its dehazing-denoising process. To enhance the existing dehazing
methods, we incorporate HNDiff into their latent spaces as a prior generator, seamlessly integrat-
ing the learned prior into each encoder/decoder block via our proposed Feature Gating Module to
generate higher-quality dehazed results. Extensive experimental results have demonstrated that our
method effectively improves the performance of three state-of-the-art dehazing models across seven
dehazing datasets.

ETHICS STATEMENT

This work focuses on designing a diffusion-based model for single-image dehazing. It does not
involve human subjects, personal data, or sensitive content, and it follows the ICLR Code of Ethics.
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All experiments are conducted on publicly available dehazing datasets with appropriate licenses.
We do not anticipate any privacy, safety, or fairness concerns, and our method is intended solely to
improve image quality in adverse weather conditions without harmful applications.

REPRODUCIBILITY STATEMENT

Detailed model architecture (Section 3.3), training settings and dataset preparation (Section 4.1),
and complete proofs (Appendix A) are provided to ensure reproducibility. The full codebase and
pretrained weights will be released publicly upon acceptance.
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A APPENDIX

A.1 ONE-STEP DIFFUSION DERIVATION FOR HNDIFF

Real-world dehazing datasets provide only hazy–clean image pairs, without the transmission maps
and atmospheric light required in (1). To address this limitation, we adopt the reparameterization
trick (Ho et al., 2020) to derive a one-step diffusion formulation suitable for real-world scenarios.

For clarity of notation, we omit the spatial dependency (x) in the following derivation, since all
operations are defined point-wise in the image domain.

In the haze–noise diffusion process of HNDiff, the forward process is defined as

q(It | It−1, ϕ) := N
(
It
∣∣ It−1e

−αtσd +A
(
1− e−αtσd

)
, β2

t

)
, (13)

q(I1:T | I0, ϕ) =
T∏

t=1

q(It | It−1, ϕ), where ϕ = {d, σ,A}. (14)

Let τt = e−αtσd denote the per-step transmission rate. Then (13) can be rewritten as

It = τtIt−1 + (1− τt)A+ βtϵt, ϵt ∼ N (0, 1). (15)

By recursively expanding from the last step, we obtain

IT = τT IT−1 + (1− τT )A+ βT ϵT

= τT [τT−1IT−2 + (1− τT−1)A+ βT−1ϵT−1] + (1− τT )A+ βT ϵT

= (τT τT−1)IT−2 + (1− τT τT−1)A+ τTβT−1ϵT−1 + βT ϵT

...

=
( T∏

s=1

τs

)
I0 +

(
1−

T∏
s=1

τs

)
A+

T∑
t=1

( T∏
s=t+1

τs

)
βt ϵt. (16)

Define the cumulative transmission as

τ̄T =

T∏
s=1

τs = exp
(
− σd

T∑
s=1

αs

)
, (17)

and the aggregated noise variance as

β̄2
T =

T∑
t=1

(
T∏

s=t+1

τ2s

)
β2
t . (18)

Since {ϵt} are i.i.d. standard Gaussian variables, their weighted sum remains Gaussian. Thus,

T∑
t=1

( T∏
s=t+1

τs

)
βt ϵt = β̄T ϵ, ϵ ∼ N (0, 1). (19)

Consequently, the full forward process simplifies to a one-step form:

IT = τ̄T I0 + (1− τ̄T )A+ β̄T ϵ, (20)

with the corresponding marginal distribution

q(IT | I0, ϕ) = N
(
IT

∣∣∣ τ̄T I0 + (1− τ̄T )A, β̄2
T

)
. (21)

Finally, by setting αt =
1
T for all t, the cumulative transmission reduces to

τ̄T = e−σd,
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and the aggregated noise variance becomes

β̄T =

√
(1− e−(1/T )σd)(1− e−2σd)

1 + e−(1/T )σd
.

Thus, IT can be expressed as

IT = e−σdI0 + (1− e−σd)A+ β̄T ϵ = IH + β̄T ϵ,

where IH = e−σdI0 + (1 − e−σd)A corresponds to the hazy image defined by the Atmospheric
Scattering Model (1). This shows that the final forward step IT can be obtained by directly adding
Gaussian noise to the hazy image. The one-step formulation is mathematically equivalent to the
full forward process, while providing a more computationally efficient approximation that jointly
captures haze formation and noise accumulation in a single Gaussian transition.

A.2 ELBO AND OPTIMIZATION FOR HNDIFF

For clarity of notation, we omit the spatial dependency (x) in the following derivation, since all
operations are defined point-wise in the image domain.

To reconstruct the clean image I0 from the degraded observation IT , we adopt the variational in-
ference framework of DDPM (Ho et al., 2020) and derive an evidence lower bound (ELBO) that
explicitly incorporates the physical parameters ϕ = {d, σ,A}. The joint ELBO is given by

log pθ(I0) ≥ Eq(I1:T |I0,ϕ)

[
log

pθ(I0:T )

q(I1:T | I0, ϕ)

]
=: LELBO. (22)

Following the DDPM formulation, the forward transitions can be rewritten as q(It | It−1, ϕ) =
q(It | It−1, I0, ϕ). By Bayes’ rule, each transition admits the decomposition

q(It | It−1, I0, ϕ) =
q(It−1 | It, I0, ϕ) q(It | I0, ϕ)

q(It−1 | I0, ϕ)
. (23)

Substituting into the ELBO, the objective expands as

−LELBO = Eq

[
− log

pθ(I0:T )

q(I1:T | I0, ϕ)

]
(24)

= Eq

− log pθ(IT )−
∑
t≥1

log
pθ(It−1 | It)
q(It | It−1, ϕ)

 (25)

= Eq

[
− log pθ(IT )−

∑
t>1

log
pθ(It−1 | It)
q(It | It−1, ϕ)

− log
pθ(I0 | I1)
q(I1 | I0, ϕ)

]
(26)

= Eq

[
− log pθ(IT )−

∑
t>1

log
pθ(It−1 | It)

q(It−1 | It, I0, ϕ)
q(It−1 | I0, ϕ)
q(It | I0, ϕ)

− log
pθ(I0 | I1)
q(I1 | I0, ϕ)

]
(27)

= Eq

[
− log

pθ(IT )

q(IT | I0, ϕ)
−
∑
t>1

log
pθ(It−1 | It)

q(It−1 | It, I0, ϕ)
− log pθ(I0 | I1)

]
. (28)

Rewriting (28) in terms of KL divergence yields
−LELBO (29)

= Eq

DKL(q(IT | I0, ϕ) ∥ pθ(IT )) +
∑
t≥1

DKL(q(It−1 | It, I0, ϕ) ∥ pθ(It−1 | It)) − log pθ(I0 | I1)

 . (30)

Unlike standard diffusion models that assume a standard Gaussian prior at the terminal state, our
model defines the prior distribution as

pθ(IT ) = N (IT ; IH , β̄2
T I), (31)
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where IH is the hazy image modeled by the Atmospheric Scattering Model. In contrast to an arbi-
trary isotropic Gaussian prior, our prior represents a noise-perturbed hazy observation that is fully
consistent with the physical forward process. Specifically, both the forward marginal distribution
q(IT | I0, ϕ) and the prior pθ(IT ) are Gaussian with identical mean IH and variance β̄2

T . As a
result, their KL divergence is equal to zero under this design as

DKL(q(IT | I0, ϕ) ∥ pθ(IT )) = 0 (32)

Following the standard approach in DDPM and DDIM, the training objective reduces to the sum
of stepwise KL divergence terms, which quantify the discrepancy between forward and reverse
transitions as ∑

t≥1

DKL(q(It−1 | It, I0, ϕ) ∥ pθ(It−1 | It)) . (33)

To compute these terms, we derive q(It−1 | It, I0, ϕ) using Bayes’ rule as

q(It−1 | It, I0, et) =
q(It | It−1, I0, ϕ) q(It−1 | I0, ϕ)

q(It | I0, ϕ)
. (34)

From (13), we have

q(It | It−1, I0, ϕ) = N
(
It
∣∣ It−1τt +A (1− τt) , β

2
t

)
, where τt = e−αtσd (35)

From (21), we have
q(It | I0, ϕ) = N

(
It
∣∣ I0τ̄t +A (1− τ̄t) , β̄

2
t

)
. (36)

Combining the above, we obtain

q(It−1 | It, I0, et) =
N(It | It−1τt+A(1−τt), β

2
t )N(It−1 | I0τ̄t−1+A(1−τ̄t−1), β̄

2
t−1)

N(It | I0τ̄t+A(1−τ̄t), β̄2
t )

(37)

∝ exp

{
−

[
(It−(τtIt−1+(1−τt)A))2

2β2
t

+ (It−1−(τ̄t−1I0+(1−τ̄t−1)A))2

2β̄2
t−1

− (It−(τ̄tI0+(1−τ̄t)A))2

2β̄2
t

]}
(38)

= exp

{
− 1

2

[
(It−(τtIt−1+(1−τt)A))2

β2
t

+ (It−1−(τ̄t−1I0+(1−τ̄t−1)A))2

β̄2
t−1

− (It−(τ̄tI0+(1−τ̄t)A))2

β̄2
t

]}
(39)

= exp

{
− 1

2

[
(

β̄2
t

β2
t β̄

2
t−1

)I2t−1 − 2( τtIt
β2
t

− τt(1−τt)A
β2
t

+ τ̄t−1I0
β̄2
t−1

+ (1−τ̄t−1)A

β̄2
t−1

)It−1 + C(II , I0, ϕ)

]}
,

(40)

where C(II , I0, ϕ) ) denotes the terms not involving It−1. From (40), the mean and the variance of
q(It−1 | It, I0, et) are given by

µt(It, I0, ϕ) =

τtIt
β2
t

−
τt(1−τt)A

β2
t

+
τ̄t−1I0
β̄2
t−1

+
(1−τ̄t−1)A

β̄2
t−1

β̄2
t

β2
t β̄

2
t−1

(41)

= It
τt

− 1−τt
τt

A − β2
t

τtβ̄t
ϵ ; (42)

δt(It, I0, ϕ) =
β2
t β̄

2
t−1

β̄2
t

. (43)

We model the reverse process beginning at

pθ(IT ) = N (IT ; IH , β̄2
T I), (44)

and define
pθ(It−1 | It) = q(It−1 | It, I0, et). (45)
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In our setting, since the variances of the two Gaussian distributions are matched exactly, the KL di-
vergence reduces to a squared difference between their means, as is standard in DDPM. Accordingly,
the KL divergence term in (33) reduces to

DKL(q(It−1 | It, I0, ϕ) ∥ pθ(It−1 | It)) = E
[∥∥µt − µθ

t

∥∥2] , (46)

where the mean of the true posterior is given by

µt =
It
τt

− 1−τt
τt

A − β2
t

τtβ̄t
ϵ, (47)

and the model-predicted mean is

µθ
t = It

τθ
t

− 1−τθ
t

τθ
t

Aθ − β2
t

τθ
t β̄t

ϵθ, (48)

with learnable estimators τθt , A
θ, and ϵθ.

Previous diffusion-based approaches (Chen et al., 2023; Xia et al., 2023; Salimans & Ho, 2022;
Rao et al., 2024) typically supervise only the terminal reconstruction and backpropagate through the
entire reverse chain, thereby amortizing step-wise supervision. Following this paradigm and leverag-
ing (46), we parameterize the reverse transition mean with three estimators τθt , Aθ, and ϵθ. During
training, we sample IT ∼ pθ(IT ) and iteratively apply the learned reverse transitions pθ(It−1 |
It)—whose mean is µθ

t (It; τ
θ
t , A

θ, ϵθ)—to denoise step by step from IT → IT−1 → · · · → Iθ0 . We
then supervise only the final output, explicitly minimizing the reconstruction discrepancy

Lfinal = ∥ I0 − Iθ0 ∥, (49)

so that gradients propagate through the full reverse trajectory and drive {τθt , Aθ, ϵθ} to produce
consistent denoising updates toward the clean image.

However, this formulation does not explicitly incorporate haze characteristics into the noise schedul-
ing, and the reliance on three separate estimators introduces additional training overhead. To address
these limitations, we introduce a haze-aware noise scheduler that dynamically adjusts βt according
to haze density, thereby achieving more effective and physically grounded noise scheduling, as
described in Section 3.1. Furthermore, when combined with our derived deterministic implicit sam-
pling formulation, this approach enables us to remove the dependency on Aθ and reduce the reverse
parameterization to only two estimators, τθt and ϵθ, significantly simplifying the learning process.
The detailed description is provided in Appendix A.3.

A.3 DETERMINISTIC IMPLICIT SAMPLING FOR HNDIFF

In this section, following the induction-based argument of DDIM (Song et al., 2021), we derive a de-
terministic reverse process for HNDiff and prove that it preserves the forward marginal distribution
defined in (21). Specifically, recall that the forward marginal is given by

q(It | I0, ϕ) = N
(
It; τ̄tI0 + (1− τ̄t)A, β̄2

t I
)
, (50)

where τ̄t =
∏t

s=1 τs and β̄2
t =

∑t
s=1

(∏t
j=s+1 τ

2
j

)
β2
s .

Following the deterministic implicit sampling formulation of DDIM, we define the reverse transition
distribution as

qδ(It−1 | It, I0, ϕ) = N
(
It−1; µt−1, δ

2
t I
)
, (51)

with mean

µt−1 = τ̄t−1I0 + (1− τ̄t−1)A+
√

β̄2
t−1 − δ2t

It − (τ̄tI0 + (1− τ̄t)A)

β̄t
, (52)

and variance

δ2t = η ·
β2
t β̄

2
t−1

β̄2
t

, (53)

where η ∈ [0, 1] controls the sampling stochasticity. Setting η = 0 yields a purely deterministic
sampler.
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Induction proof of consistency. We now prove by induction, as in DDIM, that the above reverse
process preserves the forward marginal distribution. For the base case t = T , the marginal q(IT |
I0, ϕ) is valid by definition. Assume that q(It | I0, ϕ) holds at step t. Then, sampling It−1 from
qδ(It−1 | It, I0, ϕ) yields mean

E[It−1 | I0, ϕ] = τ̄t−1I0 + (1− τ̄t−1)A, (54)

and variance

δ2t−1I = δ2t I+

(√
β̄2
t−1−δ2t
β̄t

)2

β̄2
t I (55)

= β̄2
t−1I. (56)

Thus,
q(It−1 | I0, ϕ) = N

(
It−1; τ̄t−1I0 + (1− τ̄t−1)A, β̄2

t−1I
)
, (57)

which confirms that the forward distribution holds at step t−1. By induction, the deterministic
sampler remains consistent with the forward process across all time steps.

Deterministic Implicit Sampling. For deriving the deterministic implicit sampling formulation
from It to It−1, we first define It−1 from (51) as

It−1 = τ̄t−1I0 + (1− τ̄t−1)A+
√
β̄2
t−1 − δ2t ·

It − (τ̄tI0 + (1− τ̄t)A)

β̄t
+ δt, (58)

where δt is a variance parameter controlling sampling stochasticity, and δt = 0 corresponds to
deterministic sampling. Next, by expressing I0 as

I0 =
It − (1− τ̄t)A− β̄tϵt

τ̄t
, (59)

based on (21) and substituting it into (58), we obtain the simplified deterministic update rule:

It−1 =
It −A(1− τt)− βtϵt

τt
. (60)

Reduction of Reverse Parameterization. As discussed in Section 3.1, we adopt a haze-aware
noise scheduler by setting βt = 1 − τt, such that the injected noise is explicitly modulated by the
haze density. Substituting this into (60), the reverse update becomes

It−1 =
It −A(1− τt)− ϵt(1− τt)

τt
=

It − (A+ ϵt)(1− τt)

τt
=

It −Nt(1− τt)

τt
, (61)

where Nt = A+ ϵt denotes the atmospheric noise, which combines the atmospheric light term and
a Gaussian perturbation.

Under this formulation, the reverse dynamics require only two learnable estimators: (1) a noise
estimator Nθ

t (It, IH , t) that approximates the atmospheric noise Nt, and (2) a haze estimator 1 −
τθt (It, IH , t) that directly models the haze residual 1− τt.

This reduction naturally emerges from combining the deterministic implicit sampling rule with the
haze-aware noise scheduler, thereby simplifying the parameterization of the reverse process while
preserving consistency with the forward distribution and avoiding the need for an explicit Aθ esti-
mator.

A.4 DEHAZING RESULTS ON RTTS DATASET

We have conducted additional experiments on the RTTS dataset. Our models are pretrained on
the NH-HAZE dataset and directly evaluated on RTTS to assess out-of-domain generalization. As
shown in Table 8, the HNDiff-enhanced models consistently achieve lower BRISQUE and NIQE
scores than their corresponding baselines, indicating better perceptual quality on this real-world
benchmark. Moreover, we further apply HNDiff to the ASM-based dehazing method RIDCP (Wu
et al., 2023) to verify its compatibility with existing physical-model approaches. The dehazing
results are reported in Table 9, the corresponding object-detection mAP on RTTS is summarized in
Table 10, and qualitative comparisons are shown in Figure 22, all of which demonstrate that HNDiff
can consistently enhance RIDCP in both restoration quality and downstream perception.
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Table 8: Results on RTTS, where the proposed HNDiff is applied to three baselines: FocalNet,
ConvIR, and SGDN.

Metric FocalNet HNDiff (FocalNet) ConvIR HNDiff (ConvIR) SGDN HNDiff (SGDN)

BRISQUE ↓ 35.9789 29.8278 36.5144 34.9876 34.6808 32.5563
NIQE ↓ 4.3392 4.2867 4.3992 4.2665 4.8426 4.6343

Table 9: Quantitative comparison of RIDCP and HNDiff (RIDCP) on RTTS.

Method FADE↓ NIMA↑ BRISQUE↓
RIDCP 0.944 4.97 17.29
HNDiff (RIDCP) 0.417 5.08 16.09

A.5 DEHAZING RESULTS OF DIFFERENT DIFFUSION MECHANISMS.

We present additional dehazed results of different diffusion mechanisms, including DDPM (Ho
et al., 2020), RDDM (Liu et al., 2024a), and our proposed HNDiff, on the NH-HAZE test set.
As shown in Figures 7 and 8, we further facilitate visual comparison by computing residual maps
between the outputs and the ground truth, where each residual map is normalized by the global
maximum residual value across all methods to ensure consistent scaling. Brighter regions indicate
larger discrepancies from the ground truth. Compared to DDPM and RDDM, HNDiff produces
cleaner reconstructions with notably lower residual intensities, demonstrating its superior dehazing
capability.

A.6 DEHAZING RESULTS ON REAL-WORLD DATASETS

We present additional dehazed results on four real-world datasets to compare models integrated with
HNDiff against their original counterparts. Qualitative evaluations are conducted on three represen-
tative image dehazing networks, namely FocalNet, ConvIR, and SGDN. For the NH-HAZE dataset,
the comparisons are shown in Figures 9, 10, 11, and 12. For the RW2AH dataset, the comparisons
are shown in Figures 13, 14, and 15. For the Dense-HAZE dataset, the comparisons are shown in
Figure 16 and Figure 17. For the O-HAZE dataset, we further enhance the visual comparison by
computing residual maps between the baseline outputs and the ground truth, as well as between the
HNDiff outputs and the ground truth. Both residual maps are normalized using the global maxi-
mum residual value across the two maps to ensure consistent scaling. In this visualization, brighter
regions indicate larger discrepancies from the ground truth, as illustrated in Figures 18, 19, and 20.

A.7 COMPARISON OF DEHAZING RESULTS WITH PRIOR METHODS.

We further provide qualitative comparisons on the real-world hazy dataset RW2AH. Figure 21 shows
visual results of previous dehazing methods and our HNDiff. Compared to prior approaches, our
method produces clearer structures, more natural colors, and fewer artifacts on challenging real-
world hazy images, demonstrating a noticeable qualitative improvement and validating the effec-
tiveness of HNDiff in practical scenarios.

A.8 ARCHITECTURE OF THE HAZE ESTIMATOR U-NET

Our haze estimator adopts a time-conditional U-Net with four resolution scales. The network takes
two 4-channel latent features as input, concatenates them into an 8-channel tensor, and feeds them
to a 7 × 7 convolution (padding 3) to obtain a 32-channel feature map. We use a base width of
32 and a channel progression of (32, 64, 128, 128) across scales. At each encoder stage, we apply
two time-conditioned residual blocks (ResNet blocks with group normalization and nonlinearity)
followed by a linear-attention block in a residual form, and then downsample the feature map (strided
convolution, except at the last stage where a 3× 3 convolution keeps the resolution). The diffusion
timestep is embedded by a sinusoidal positional embedding followed by a two-layer MLP of width
4 dim, and this time embedding is injected into all residual blocks in both the encoder and decoder.
At the bottleneck, we use a ResNet block, a full self-attention block, and another ResNet block at 128
channels. The decoder mirrors the encoder: at each scale, we concatenate the current feature with the
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Table 10: Object detection performance (mAP@50) on RTTS using a pretrained YOLOv3.

Method person bicycle car motorcycle bus mean

Hazy Image 0.662 0.425 0.581 0.376 0.299 0.469
RIDCP 0.669 0.444 0.611 0.448 0.341 0.503
HNDiff (RIDCP) 0.677 0.454 0.629 0.452 0.361 0.515

corresponding encoder feature (standard U-shaped skip connections), apply two time-conditioned
residual blocks and a linear-attention block, and then upsample (except at the final stage, which uses
a 3 × 3 convolution). Finally, the decoded feature is concatenated with the early feature from the
initial 7× 7 convolution, passed through one last time-conditioned residual block, and projected by
a 1× 1 convolution to produce the output haze/noise estimation map.

A.9 LLM USAGE

We used a large language model (LLM) only to polish grammar and improve readability. All re-
search ideas, methods, and results are solely from the authors.
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Figure 7: Dehazed results of each diffusion mechanism on NH-HAZE datasets. “Res” denotes
residual maps between outputs and ground truth, where darker intensities indicate smaller errors.
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Figure 8: Dehazed results of each diffusion mechanism on NH-HAZE datasets. “Res” denotes
residual maps between outputs and ground truth, where darker intensities indicate smaller errors.
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Figure 9: Qualitative results on the NH-HAZE test set.
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Figure 10: Qualitative results on the NH-HAZE test set.
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Figure 11: Qualitative results on the NH-HAZE test set.
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Figure 12: Qualitative results on the NH-HAZE test set.
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Figure 13: Qualitative results on the RW2AH test set.
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Figure 14: Qualitative results on the RW2AH test set.
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Figure 15: Qualitative results on the RW2AH test set.
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Figure 16: Qualitative results on the Dense-HAZE test set.
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Figure 17: Qualitative results on the Dense-HAZE test set.
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Figure 18: Qualitative results on the O-HAZE test set.
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Figure 19: Qualitative results on the O-HAZE test set.
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Figure 20: Qualitative results on the O-HAZE test set.
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Figure 21: Comparison of Dehazing Results with prior methods.
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Figure 22: Comparison of Dehazing Results with RIDCP on RTTS dataset.
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