
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GRAPHFM: A GENERALIST GRAPH TRANSFORMER
THAT LEARNS TRANSFERABLE REPRESENTATIONS
ACROSS DIVERSE DOMAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph neural networks (GNNs) are often trained on individual datasets, requir-
ing specialized models and significant hyperparameter tuning due to the unique
structures and features of each dataset. This approach limits the scalability and gen-
eralizability of GNNs, as models must be tailored for each specific graph type. To
address these challenges, we introduce GRAPHFM, a scalable multi-graph pretrain-
ing approach designed for learning across diverse graph datasets. GRAPHFM uses
a Perceiver-based encoder with learned latent tokens to compress domain-specific
features into a shared latent space, enabling generalization across graph domains.
We propose new techniques for scaling up graph training on datasets of different
sizes, allowing us to train GRAPHFM on 152 distinct graph datasets, spanning 7.4
million nodes and 189 million edges. This allows us to study the effect of scale
on pretraining across domains such as molecules, citation networks, and product
graphs, and show that training on diverse datasets improves performance over
single-source pretraining. Our results demonstrate that pretraining on diverse real
and synthetic graphs enhances adaptability and stability, leading to competitive
performance with state-of-the-art models across various node classification tasks.
This approach reduces the burden of dataset-specific training and provides a single
generalist model capable of performing across multiple diverse graph structures
and tasks.

1 INTRODUCTION

Graphs are a fundamental data structure used across diverse fields such as biology, social networks,
and recommendation systems (Hamilton et al., 2017). However, most graph neural network (GNN)
architectures are designed in a highly specialized way, optimized for specific types of graphs. For
example, architectures that work well on homophilic graphs, such as citation networks, often fail to
generalize to heterophilic graphs, like certain social or biological networks, due to the differences
in their topologies (Abu-El-Haija et al., 2019; Yan et al., 2022). This specialization leads to a
fragmentation in model development, where the optimal architecture for one type of graph must be
significantly altered or redesigned for another. As the use of GNNs grows across diverse applications,
this piecemeal approach limits scalability and generalization, highlighting the need for a generalist
model that can handle a wide variety of graph structures without manual tuning.

A core challenge in building a generalist graph model lies in integrating diverse graphs, each with
unique topologies, node features, and sizes, while enabling knowledge transfer across them. Without a
shared “vocabulary” for graph structures, models struggle to generalize effectively, as the differences
between graph types hinder the transfer of learned patterns (Galkin et al., 2023). At the same time,
recent advances in large-scale language models have shown that scaling up both model size and
data diversity is essential for unlocking emergent capabilities and improving generalization across
tasks (Wei et al., 2022). This makes scaling an equally critical factor in graph models. Pretraining
on diverse graphs requires algorithms that can efficiently handle large, heterogeneous inputs, while
ensuring the model can still capture robust, transferable patterns. Therefore, building a generalist
graph model necessitates solutions that not only integrate diverse graph structures but also scale
effectively, allowing the model to learn from vast, varied datasets without sacrificing performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In this work, we introduce GRAPHFM , a multi-graph pretraining framework aimed at addressing
this gap. Instead of building specialized models for each graph type, GRAPHFM uses a Perceiver-
based transformer encoder (Jaegle et al., 2021b) to create a shared latent space that abstracts away
graph-specific details while preserving core structural properties. This enables the model to process a
wide range of graph types within a unified framework, moving beyond the specialist architectures
that dominate current GNN design. Our approach seeks to answer a key question: can pretraining on
diverse, multi-graph datasets lead to effective generalization and transfer across unseen graphs?

When tested on a variety of homophilic and heterophilic datasets, we demonstrate that our model
achieves performance comparable to all of the best baseline models, each of which is individually
tuned for its respective dataset. Overall, we achieve the best rank when compared with these models,
demonstrating that our approach has strong generalist performance. By combining datasets from
biology, social networks, and recommendation systems, we show that our model can generalize
across graphs with varying topologies and features, providing the flexibility that specialized models
often lack. Moreover, our framework efficiently handles large mixtures of diverse graph datasets,
leveraging distributed training techniques to manage graphs of different sizes and complexities.

Our results show that increasing both the scale of the model and the diversity of the training data leads
to significant improvements in downstream performance on new, unseen graphs and node-level tasks.
This demonstrates that it is indeed possible to train a generalist model on diverse graphs, which can
effectively learn from and adapt to a wide range of graph types. In total, we pretrain on 152 distinct
graph datasets, comprising over 7.4 million nodes and 189 million edges across a wide variety of
graph types—an unprecedented number of different graph datasets in the literature. This extensive
pretraining allows our model to capture and transfer knowledge across a broad spectrum of graph
structures, showcasing the feasibility and advantages of building a unified model that generalizes
well to unseen tasks.

The main contributions of this work are as follows:

• Scalable Pre-training Approach: We introduce a scalable framework for pretraining on
diverse graphs using a Perceiver-based encoder with latent tokens, which efficiently handles
graphs with varying sizes and topologies. Our approach includes advanced multi-graph
sampling techniques that optimize GPU utilization, enabling large-scale pretraining across a
wide range of graph datasets.

• Demonstration of Benefits from Across-Graph Pretraining: We show that pretraining
on diverse graphs significantly improves the model’s ability to generalize and transfer
knowledge to unseen graphs. This demonstrates that a generalist model can leverage
common structural features across different datasets to outperform specialized models.

• Scaling Analysis and Impact of Multi-Graph Pretraining: We provide the first scaling
analysis for multi-graph pretraining on different domains, showing that larger models
pretrained on more diverse graph datasets result in better generalization. Our results highlight
that increasing both the scale of the model and the diversity of the training data improves
performance on downstream tasks.

2 METHODS

In this section, we describe our method, including the model architecture and tokenization (Sec-
tion 2.1.1), our proposed multi-task node decoder for jointly solving node classification and regression
tasks by querying from the latent space (Section 2.1.2), and efficient tools for scaling (Section 2.2)
that allowed us to build a large pretrained model that could integrate the extreme diversity in our
pretraining set.

2.1 MODEL

2.1.1 TOKENIZING DIVERSE GRAPHS

Each graph is represented as a sequence of node-level tokens, where each token embedding encodes
both the node features and a positional embedding of the node. Let D = {Gg}Gg=1 denote a
dataset containing G graphs, where each graph can be expressed in terms of its node and edges as

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Overview of GRAPHFM architecture and multi-graph training approach: The input node-level
tokens are passed through a cross-attention layer, followed by multiple self-attention layers to generate a
compressed graph-level representation (latents). We decode node-level properties by creating a spatial sequence
with features from a query node, a subset of its neighbors and the latents, which is then processed by a node
decoder that uses self attention across the sequence.

Gg = (Vg, Eg), with node features {ui}
Ng

i=1. To process a graph with a transformer, we start by
building a sequence of tokens as Xg = [x1, . . . ,xNg

], where xi concatenates a projection of the
node features using a Multi Layer Perceptron (MLP), ũi = MLPg(ui), and the positional encoding
(PE), pi, of the ith node. We use SignNet (Lim et al., 2022) which computes sign-invariant features
from the eigenvectors of the graph Laplacian and uses this as a basis for alignment of PE tokens
across all the graphs.

To build a model that can be trained across diverse graphs, we propose to tokenize each graph into a
fixed and common latent space using a Perceiver encoder (Jaegle et al., 2021a). This encoder learns a
set of latent query tokens which, using a cross-attention operation, query the nodes in the input graph
and produce a compressed representation of it in the latent space. In the context of graphs, we can
think about this as a way of routing communication between distant nodes by first going through a
small number of learnable “virtual nodes” (Figure 1) that are compressed from the input graph.

For all graphs, we maintain a shared sequence of K learned latent tokens Z0 = [z0,1, . . . , z0,K], with
z0,i ∈ RD and K considerably smaller than the size of most graphs, in this work K = 512. Node
embeddings in the input graph are then compressed via a cross-attention operation:

Z(1)
g ← Cross-Attn(Qg,Kg,Vg) = Z(0) + softmax

(
QKT

g√
dk

)
Vg, (1)

where the queries, Q = WqZ0, are projections of the learnable virtual node tokens, while the keys
and values are projections of the graph’s token embeddings: Kg = WkXg and Vg = WvXg , where
the key and value weight matrices are shared by all the graphs. This operation is followed by a series
of L self-attention blocks in the latent space to obtain a sequence of K latent tokens, Zout

g . We use
the standard transformer block with pre-normalization layers and feed-forward nets (Vaswani, 2017).
Note that the complexity here is KNg + LK2 ≪ N2

g ; When the number of latent tokens K ≪ Ng,
this results in a significant reduction in compute and memory.

Remark. Compressing every graph into a fixed set of virtual node embeddings, allows us to build a
learnable “shared vocabulary” across graphs, and leverage common semantic and topological patterns
across datasets and domains. Additionally, this approach also allows us to better integrate graphs of
variable sizes, since most of the computation happens in the self-attention blocks, where all graphs
are represented by an equally sized sequence of latent tokens.

2.1.2 NODE DECODER

Our encoder model is designed to do the bulk of the computation when processing the graph. To be
able to readout node-level features, we developed a multi-task node decoder that combines the virtual
node embeddings learned by our encoder Zout

g with local information from a node and its neighbors
to create a sequence Si

g that can be processed by a transformer to produce a final node-level estimate
of it’s class information.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
homophily ratio

0

5

10

15

20

fre
qu

en
cy

Synthetic
Real

100 102

average degree

0

10

20

30

103 105

total number
of nodes

0

5

10

15

104 107

total number
of edges

0

5

10

15

Figure 2: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the
histograms of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used
during training. The homophily ratio provides a measure of how frequently a node is directly connected to other
nodes from the same class.

The sequence Si
g for the ith node can be represented as:

Si
g =

[
(xi; τself), (xN 1

i
; τneighbor) . . . (xNT

i
; τneighbor), (Z

out
1 ; τlatent) . . . (Z

out
K ; τlatent)

]
, (2)

node neighbors virtual latent nodes

where x and τtype denote the features and their token type (latent, self, or neighbor), respectively, and
N j

i denotes the jth neighbor selected in the neighborhood of node i. We use a small encoder-only
transformer with a depth of M to obtain a final set of embeddings Souti

g for node i. Note that the
complexity is NgM(K + T + 1)2 ≪ N2

g .

2.1.3 MULTI-TASK PRETRAINING ON A VARIETY OF NODE CLASSIFICATION AND REGRESSION
TASKS

In the end, a per-dataset linear classifier (or regressor) Wg is tasked with producing the final
predictions ŷi for node i, mapping the final embedding of node i, the first token in the Si

g sequence,
to the output space as: ŷi = WT

g S
i,out
g . The linear projection effectively translates the node-level

embeddings into task-specific outputs, such as class labels for classification or continuous values
for regression. The model handles a wide variety of tasks across different datasets, such as citation
graphs are trained to predict academic fields and co-purchasing graphs are used to predict product
categories. Each dataset has an arbitrary label space, varying not only in the number of labels but
also in the nature and semantics of the output classes.

Remark. Since this model is trained end-to-end, the model learns how to optimally route and query
information on graphs to maximize the performance on the various pre-training tasks. The virtual
nodes allow for longer-range and global interactions to be encoded in the virtual node embeddings,
and uses this information along with the local information provided by the node’s neighbors.

2.2 IMPORTANT INGREDIENTS FOR TRAINING ON DIVERSE GRAPHS

2.2.1 MULTI-GRAPH PACKING

Typically when creating batches for training graph transformers, padding is used to extend the smaller
graphs to have the same size as the largest graph in the batch (Rampášek et al., 2022; Ying et al.,
2021). This approach is likely inherited from the transformer architectures found in other domains
where the context window (or sequence length) is usually fixed. But for graphs, the problem with
padding is particularly pronounced when there is a significant size disparity among different graphs
in the same batch. Alternative solutions exist, and in particular, the graph community have been
pioneers in batching variable-sized graphs. Message-passing frameworks combine multiple graphs
into a single large graph over which message passing is conducted (Fey & Lenssen, 2019b; Krell
et al., 2022). However, these out-of-the-box implementations are not suited for transformers which
use fully-connected attention.

We implement a custom data collator, which merges all graphs in the batch into a single large
sequence of tokens, and adapts the attention mask to restrict each graph to itself. In particular, we

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

leverage Flash Attention (Dao, 2023) which makes computing attention over very large sequences
extremely efficient. By doing so, we avoid any superfluous padding, and this in turn improves the
computational efficiency during training.

2.2.2 BALANCED GPU UTILIZATION WITH THE DISTRIBUTEDSSSAMPLER

During multi-GPU distributed training, a global batch is formed by randomly sampling graphs from
different datasets, which is then equally split among the GPUs. Naively splitting the batch can lead
to unbalanced GPU utilization. On one hand, we can have a large batch of relatively small graphs,
and another where we can only have a batch with one or two very large graphs. This means that we
would be forced to lower the batch size, to avoid going out of memory when multiple large graphs
are batched together. Our Distributed Snake Strategy Sampler (DistributedSSSampler) employs a
bidirectional filling strategy, where graphs, sorted by their size, are distributed in a snake-like pattern,
initially assigned to GPUs from right to left, then left to right and so on. This method effectively pairs
large graphs with small ones in subsequent passes, preventing the concentration of multiple large
graphs on the same GPU, thus achieving efficient load balancing and uniform GPU utilization. A
detailed algorithm and more details are provided in Appendix C.1.

Figure 3: The computational benefits of
using our multi-graph sampling approach:
GPU memory utilization during distributed
training when using the default batch sampler
with 8 GPUs (left) vs. our DistributedSS-
Sampler for N=4 (middle) and N=64 (right)
GPUs. The total batch size is N × b.

We show the effectiveness of this approach in Figure 3,
where we demonstrate significantly lower variance in GPU
load compared to the default PyTorch batch sampler and
near 100% utilization. The effectiveness is more pro-
nounced the more GPUs are used1. This subsequently
allows us to use substantially larger batch sizes, resulting
in further improvement in stability and a significant 2 to
4x speed-up in training time.

2.2.3 OVERALL TIME AND MEMORY SAVINGS

In total, our largest model, trained on all the pretrain-
ing data, takes ~6 days to train on 8 A40 GPUs for 300
epochs. With our distributed sampler, each epoch takes ap-
proximately 56 minutes (0.93 hours), compared to 299.04
minutes (~5 hours) without it. By using the distributed
sampler, we observe a speedup of approximately 5.53x,
reducing the total training time from 33 days to 6 days.
Please refer to Appendix C for an ablation study on the proposed sampler and multi-graph packing
methods.

3 DATASETS

In standard practice, one would train on individual datasets, one at a time. However, to build our
large multigraph model, we needed to curate a large dataset of graphs that have varied structures,
features, and tasks.

Datasets used for pretraining. For pre-training, we curated a large set of 80 real-world graph
datasets from the PyTorch Geometric library (Fey & Lenssen, 2019a) and Network Repository (Rossi
& Ahmed) (Figure 2). These datasets span a wide range of domains, including: citation networks,
product recommendation graphs, webpage traffic graphs, biological protein-protein interactions, and
molecular graphs, and vary in their degree of heterophily (extent to which neighbors share the same
class or node-level labels). Each dataset contributes unique structural patterns and tasks, providing
a rich source for our model to learn diverse graph representations. In addition to these realworld
datasets, we generated 72 synthetic graphs (Tsitsulin et al., 2022) that vary in their hetero- and
homophily ratios and overall size and density (see Appendix B.1). We note that most datasets used in
popular benchmarks were left out of pretraining in order to test the pretrained model on these datasets
in out-of-distribution (OOD) finetuning.

In Figure 2, we show a summary of various graph statistics, including the number of nodes and edges,
the average degree of each node, and the homophily ratio of the graph. The homophily ratio ranges

1The same effect can be obtained using gradient accumulation when resource bound. See Appendix C.1

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

from 0 to 1 and encodes the average amount of nodes with nearest neighbors from the same class.
When comparing our realworld datasets with the synthetic graphs added to the mix (Figure 2), we
see a good amount of overlap between most features except for the average degree. The average
degree of realworld graphs spans a larger range, and the synthetic graphs have a more limited range.
We also find an enrichment of heterophilic graphs with low homophily ratio in the added synthetic
data. In total, we counted more than 7.4M nodes and 163.9M edges across all 152 datasets used for
pretraining We point the reader to Appendix B.1 for a detailed description of all datasets.

Datasets for testing out-of-distribution transfer To demonstrate the adaptability of our pretrained
model through fine-tuning on unseen data (out-of-distribution datasets), we leverage a smaller, but
equally diverse set of graph datasets that are commonly used as benchmarks (see Appendix B.4). We
use 10 different datasets that range from academic collaboration networks like ”Coauthor-CS” and
”Coauthor-Physics” (Sinha et al., 2015) to webpage link datasets such as ”Chameleon” and ”Squirrel”
(Rozemberczki et al., 2021), which are particularly challenging due to their low homophily ratios,
indicating less connectivity within the same class. These datasets not only test the transferability of
the learned representations but also highlight the model’s capability in handling graphs with varied
node degrees and class distributions.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Training: To train all of our models, we employed the LAMB optimizer (You et al., 2019) with
a learning rate of 10−4. The learning rate is scheduled based on a linear warmup of 2 epochs,
followed by cosine decay until the end of training. We use bfloat16 mixed-precision and flash
attention (Dao, 2023) for higher compute efficiency while training. We trained our largest model
(75M parameters) for 6.4 days on 8 NVIDIA A40 GPUs. We point the reader to further details on the
architecture and model training in Appendix A.1.

Baselines: We compared GRAPHFM against six baseline models that were consistently reported in
both heterophilic and homophilic benchmarks. This included two GNN-based models: GCN(Kipf
& Welling, 2016) and GAT(Velickovic et al., 2017), two transformer-based models: SAN (Kreuzer
et al., 2021) and NAGphormer (Chen et al., 2022b), and two heterophily-based models: MLP and
H2GCN (Zhu et al., 2020). For all of the baseline models, we include the best reported accuracy,
and when there are no reported results for a dataset, we extensively tuned each model as in standard
practice (see Appendix B.4). We also provide additional baselines in Appendix D.4 reported for
subsets of the datasets tested.

Evaluation: To evaluate the generalization of our pretrained model on new datasets that it hasn’t
encountered during pretraining, we employed two fine-tuning strategies: (i) Low-resource MLP
fine-tuning (MFT), where we freeze the encoder and node decoder weights and only update the
feature MLP weights, and (ii) combined MLP and node decoder fine-tuning (NFT), where we also
adapt the node decoder weights. MFT is aimed at evaluating near out-of-the-box performance by
leveraging the model’s pretrained knowledge, with minimal additional training, whereas NFT allows
for more flexibility by adjusting weights of the pretrained node decoder to better align with the OOD
data. For all the fine-tuning experiments, we used a learning rate of 10−3 and a weight decay of 10−5,
optimized using the AdamW optimizer (Loshchilov & Hutter, 2017), and use a gradual unfreezing
strategy to update the node decoder weights in our NFT experiments. Further details are provided in
the Appendix A.3.

4.2 EXPERIMENTS

Q1: IS IT POSSIBLE TO BUILD A LARGE MODEL SPANNING MANY DOMAINS?

Recent efforts in graph neural networks (GNNs) have shown success in training models on many
graphs (Beaini et al., 2023; Mao et al., 2024). However, these approaches primarily focus on graphs
with homogeneous structures, limiting their ability to generalize across different types of graphs. In
this experiment, we aim to address a more ambitious question: can we effectively train a large model
on diverse, multi-graph datasets that vary significantly in their topologies, features, and downstream

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

classification tasks? Our goal is to determine whether a generalist model can span multiple graph
domains and improve out-of-distribution (OOD) performance through diverse pretraining.

A

B

Figure 4: Scaling Analysis: (A) Aver-
age accuracy across OOD datasets (MFT)
for model sizes (389K, 18M, 75M) and to-
ken counts (200K, 2M, 7.3M) seen during
pre-training, using random splits of the pre-
training data. (B) Accuracy on Coauthor-
CS (citation domain) and Amazon-Photo
(co-purchasing network) for the 75M model
across different domain-wise pre-training
splits.

We trained three different model sizes: a small model with
389K parameters, a medium model with 18M parameters,
and a large model with 75M parameters. Each model
was pretrained on progressively larger datasets containing
different amounts of graph data, ranging from 200K to-
kens (small), to 2M tokens (medium), and finally to 7.3M
tokens (large) , created by taking random subsets of the
largest dataset (refer to Appendix B.2 for more details).
The datasets span a variety of real-world graph types and
structures, as described in Section 3. For the largest scale
of data, we also introduced synthetic graphs into the mix to
further test the model’s ability to generalize across highly
diverse graph structures. The synthetic graphs provided
additional variability in both topologies and node features,
allowing us to assess how well the model can handle graph
data that extends beyond typical real-world scenarios.

To evaluate how well the pretrained models generalize to
new, unseen data, we applied our lightweight MLP fine-
tuning approach (MFT) on a set of nine held-out datasets.
These include four homophilic datasets (Coauthor-cs,
Coauthor-physics, Amazon-photos, and Amazon-comp)
and five heterophilic datasets (Texas, Wisconsin, Actor,
Squirrel, and Chameleon). As illustrated in Figure 4A, we
observe that performance on these OOD datasets improves
consistently as the data size increases. Notably, the largest
model, trained on the full 7.3M tokens, achieves a 2.1%
improvement in accuracy compared to the smaller models.

We further stratified our pretraining dataset to investigate
the effects of cross-domain training by creating three mod-
els: (i) “Soc” with social domain graphs (1.3M tokens),
(ii) “Soc + Bio” with social and biological graphs (2M
tokens), and (iii) “All” with all data, including synthetic
graphs (7.3M tokens). As shown in Figure 4B, adding biological datasets improved performance on
both Coauthor-CS (citation domain) and Amazon-Photo (co-purchasing network). This suggests that
performance continues to scale even if the additional data is from seemingly unrelated domains (refer
to Appendix D.1 for additional results).

These results underscore the importance of both model scale and data diversity. With more data
diversity and larger models, the pretrained model demonstrates stronger generalization capabilities.
This scaling analysis provides strong evidence that cross-domain pretraining enables better OOD
performance, further validating the benefits of training on diverse datasets. Detailed configurations
for each model size are provided in Appendix A.1.

Q2: HOW DOES OUR GENERALIST APPROACH COMPARE WITH OTHERS?

Next, we compared the performance of our largest model (75M) trained on all of the data, alongside
a number of message passing architectures and state-of-the-art transformer-based models. To adapt
our approach to new datasets, we freeze our pretrained encoder and then finetune either the feature
MLPs (MFT) or the feature MLPs and node decoder parameters (NFT). In both of these cases, we use
the same hyperparameters (learning rate = 10−3) to finetune the model. In the case of NFT, we also
incorporate a simple unfreezing schedule for updates which adds an additional two hyperparameters
that we need to tune (refer to Appendix A.3.2).

On both homophilic and heterophilic benchmarks (Table 1), GRAPHFM performs on par with state-
of-the-art specialist methods that are trained from scratch on each dataset. While the best-performing
model among the baseline methods varies across datasets, GRAPHFM consistently ranks among

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Results on a variety of homophilic and heterophilic node classification benchmarks. From left to
right, we show different message passing and graph transformer architectures, and then GRAPHFM in both the
lightweight MLP-only finetuning (MFT) and node decoder finetuning (NFT). The top three numbers are bold,
with the highest in bright red fading to black. Models are ranked on all 10 datasets and the average and standard
deviation ranking is at the bottom.

GCN MLP GAT H2GCN SAN NAG GraphFM-MFT GraphFM-NFT

H
om

op
hi

lic Physics 95.38±0.20 95.12±0.26 95.14±0.28 96.28±0.13 96.83±0.18 96.66±0.16 96.64±0.17 96.77±0.12
CS 94.06±0.16 92.99±0.51 93.61±0.14 94.02±0.31 94.16±0.36 95.00±0.14 95.19±0.21 95.24±0.18

Photo 85.94±1.18 88.66±0.85 87.13±1.00 91.56±0.80 94.17±0.65 94.64±0.60 93.01±1.82 94.37±0.35
Computer 89.47±0.46 84.63 90.78±0.13 89.33±0.27* 89.83±0.16 91.22±0.14 89.95±0.83 90.07±0.21

Ogbn arxiv 70.40±0.10 52.63±0.12 67.56±0.12 68.29±0.67 69.17±0.15 68.21±0.02* 69.96±0.21 70.01 ± 0.18

H
et

er
op

hi
lic Texas 55.14±5.16 80.81±3.31 52.16±6.63 84.86±7.23 60.17±6.66 68.37±5.27* 80.81±2.76 82.16±3.24

Wisconsin 51.76±3.06 85.29±3.31 49.41±4.09 87.65±4.98 51.37±2.08 68.23±5.99* 83.13±2.35 83.62±3.21
Actor 27.32±1.10 36.63±0.70 27.44±0.89 35.70±1.00 27.32±1.10 34.33±0.94* 36.29±0.63 38.01±1.07

Chameleon 38.44±1.92 46.21±2.99 38.44±1.92 60.11±2.15 44.32±1.73* 57.39±0.02* 58.64±1.24 59.12±1.64
Squirrel 31.52±0.71 28.77±1.56 36.77±1.68 36.48±1.86 30.92±2.14* 49.93±0.07* 42.80±1.54 42.98±1.62

Avg Rank 5.8 ± 1.9 6.3 ± 2.5 6.2 ± 1.8 4.0 ± 2.5 4.7 ± 2.2 3.3 ± 1.8 3.3 ± 0.6 2.1 ± 0.7
* This result was missing from existing literature and was obtained through extensive hyperparameter tuning.

0 10 20
0.1

0.2

0.3

ac
cu

ra
cy

Actor

graphFM (MFT)
Best GCN model

0 10 20

0.2

0.4

0.6

0.8

Wisconsin

0 10 20

0.2

0.3

0.4

0.5

Chameleon

0 10 20

0.2

0.4

0.6

0.8

Coauthor-CS

0 10 20
training steps

0.1

0.2

0.3

ac
cu

ra
cy

graphFM (MFT)
Best NAG model

0 10 20
training steps

0.2

0.4

0.6

0.8

0 10 20
training steps

0.1

0.2

0.3

0.4

0.5

0 10 20
training steps

0.2

0.4

0.6

0.8

Figure 5: Analysis of the learning dynamics. Learning dynamics for 100 (A) random GCN and (B) NAG
(NAGphormer) models compared against our lightweight finetuned model GraphFM (MFT) for four datasets.
GRAPHFM works out of the box and achieves rapid learning on new datasets with few training steps, while the
other approaches are less stable and often require early stopping with decreased performance over training.

the top three: GRAPHFM (NFT) achieves the highest average rank overall and GRAPHFM (MFT)
is tied for the second position with NAG. Note that GRAPHFM (MFT) demonstrates significantly
lower variance in rank, indicating more stable performance compared to NAG, which exhibits a more
bimodal distribution in its ranking.

In contrast, baseline models may excel on a few datasets but perform poorly on others. For example,
H2GCN is a top performer on heterophilic datasets but struggles with homophilic ones, whereas
NAG shows the opposite behavior. These baseline models are highly specialized and designed for
specific types of datasets, limiting their generalization across diverse graph types. Additionally,
it’s important to note that all baseline models underwent extensive hyperparameter tuning, whereas
GRAPHFM performs consistently well without any further tuning. Furthermore, NFT provides
significant benefit for datasets like photos and actor. By making part of the pre-trained model
learnable, we are able to better adapt to the OOD datasets.

Q3: HOW DOES OUR MODEL GENERALIZE OUT-OF-THE-BOX?

A major challenge in applying graph-based models is the extensive tuning often required to achieve
competitive performance. Most models are highly sensitive to hyperparameters like learning rate,
depth, and weight decay. Tuning these hyperparameters, especially across datasets with different
graph topologies and sizes, requires significant time and computational resources, and even then,
finding a good configuration can be difficult (Guo et al., 2022; Tsitsulin et al., 2022).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

In contrast, GRAPHFM offers strong out-of-the-box performance without requiring any significant
tuning. To demonstrate this, we evaluated GRAPHFM using the same fixed learning rate and weight
decay across multiple datasets (learning rate = 10−3, weight decay = 10−5) and observed stable
and high performance across all datasets (Figure 5). Fine-tuning GRAPHFM with our simple MFT
strategy resulted in low variance and rapid convergence, without the need for extensive hyperparameter
exploration. This makes GRAPHFM highly efficient and cost-effective compared to models that
require substantial tuning.

To highlight this contrast, we compared the performance of GRAPHFM with 100 randomly configured
versions of GCN and the best performing transformer-based NAGformer (Chen et al., 2022b). Both
baseline models exhibit a wide range of performance depending on the hyperparameter choices,
with some configurations leading to significant instability or poor results. For instance, in the Texas
dataset, GCN required exhaustive exploration of hyperparameter settings to find a stable and effective
configuration. Similarly, NAGformer’s performance fluctuated greatly depending on the dataset and
the selected parameters, further emphasizing the cost of tuning.

Figure 6: Comparison of model sen-
sitivity. The performance of GCN and
GRAPHFM for 100 different random
hyperparameters on Chameleon and
Coauthor-CS. Star denotes the model
with the optimal hyperparameters, and
the color indicates the ℓ2-distance be-
tween the optimal solution and each
model’s hyperparameters.

Additionally, GRAPHFM demonstrates quick convergence,
reaching near-optimal performance within 10-20 training steps,
in stark contrast to GCN, which required considerably more iter-
ations to converge. This efficiency is a direct result of leveraging
a pretrained model, which allows GRAPHFM to start from a
robust initialization and quickly adapt to the target task. The
reduced need for hyperparameter tuning and faster convergence
further solidify the advantages of pretraining in minimizing com-
putational overhead and time-to-solution. Ultimately, our results
position GRAPHFM as a cost-effective and reliable choice for
a wide range of node classification tasks.

Q4: HOW STABLE ARE THE SOLUTIONS?

Graph-based models are highly sensitive to hyperparameter con-
figurations, where even small deviations from optimal settings
can lead to substantial performance degradation. This sensitivity
poses significant challenges for ensuring stable and robust de-
ployment. Thus, we wanted to examine the stability of model
performance by exploring the performance landscape around the
optimal hyperparameter configuration. We analyze the perfor-
mance of both a GCN and GRAPHFM (MFT) on Coauthor-CS
(homophilic) and Chameleon (heterophilic) datasets for different
hyperparameters around the optimal solution (Figure 6). The
set of hyperparameters is marked with a star, and other mod-
els are colored based on the normalized ℓ2-distance of their
hyperparameter vectors to the optimal hyperparameter vector.
For GRAPHFM, we observe that the distribution is concentrated
around the optimal point, suggesting low sensitivity to the choice
of the hyperparameters used for finetuning. We also observe that the relationship between hyperpa-
rameter deviation and performance is linear. On the other hand, for the GCN model, small deviations
in hyperparameters can lead to large changes in performance, suggesting instability of the model with
respect to the hyperparameters and a much noisier landscape around the optimal model.

5 RELATED WORK

Graph foundation modeling approaches. Foundation models have achieved significant success
for language, vision and timeseries data (Radford et al., 2018; Dehghani et al., 2023; Das et al.,
2023). These models are pre-trained on large datasets and can be adapted to a wide range of
downstream tasks, effectively utilizing both prior knowledge from the pre-training stage and data
from the downstream tasks to enhance performance (Brown et al., 2020). The concept of foundation
models has recently extended into graph learning, leading to the development of Graph Foundation
Models (GFMs) (Ibarz et al., 2022; Beaini et al., 2023; Galkin et al., 2023; Mao et al., 2024). These

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

models aim to generalize across diverse graph-structured data by leveraging large-scale pretraining,
similar to foundation models in vision and language domains. Recent efforts have primarily focused
on domain-specific GFMs, such as Mole-BERT for molecular graphs, which utilizes pretraining to
improve property prediction for molecules and materials (Xia et al., 2023). Additionally, large-scale
models like MatterSim (Yang et al., 2024), designed to predict molecular behaviors across different
elements and conditions.

Beyond domain-specific applications, GFMs are increasingly being developed for more general
tasks. Similarly, recent advancements have explored scaling laws in graph models, showing that
larger models can lead to improved transfer learning and generalization (Liu et al., 2024). Similar to
theirs, our work shows that scale improves performance. However, unique from all of these works is
our result for cross-domain pretraining to enhance generalization across diverse graph topologies.
Triplet-GMPNN (Ibarz et al., 2022) which is a foundational GNN for algorithmic reasoning tasks that
is trained to perform various tasks from the CLRS benchmark (Veličković et al., 2022), or ULTRA
(Galkin et al., 2023), a foundation model for knowledge graphs trained on graphs with arbitrary entity
and relation vocabularies. Recent work has also shown how to use language modeling to help unify
many graphs (Liu et al., 2023b).

Scaling up graph transformers. Graph transformers bypass standard local learning rules in GNNs
by allowing all nodes on the graph to interact through self-attention (Dwivedi & Bresson, 2020).
However, due to the high computational cost and benefits of the inductive bias in message passing, a
number of methods have been proposed to move beyond full self-attention or combine transformers
with GNNs. One class of methods combine transformer blocks with GNNs, including GraphTrans
(Wu et al., 2021), GraphGPS (Rampášek et al., 2022), and SAT (Chen et al., 2022a). Another
strategy is to reduce the computational complexity by using the transformer module on a coarsened
or compressed graph. For instance, ANS-GT (Zhang et al., 2022) introduced a node-sampling-based
graph transformers, incorporating hierarchical attention and graph coarsening, and Gapformer (Liu
et al., 2023a) uses k-hops local pooling and global pooling to coarsen the large graph into a smaller
set of nodes. Exphormer (Shirzad et al., 2023) coarsens the graph by doing computation through
expander graphs (Deac et al., 2022). This idea of compression has also been studied through the lens
of “skeletonization” (Cao et al., 2024) where they learn to identify uninformative background nodes
(Cao et al., 2024) and use this information to compress them to achieve competitive performance
with as little as 1% of the nodes in the graph. Many of these approaches leverage virtual nodes to
facilitate message passing across large graphs, however, the compression techniques used in these
works are often based on heuristics like pooling layers or expander graphs, in contrast to our work
where the compression is fully learned.

6 CONCLUSION

In this paper, we introduced GRAPHFM, a novel approach for multi-graph pretraining that effectively
handles diverse graph datasets across various domains. A key finding of our work is the positive
effect of scaling both model size and data diversity. We show that cross-domain pretraining leads to
better out-of-distribution performance, proving that the inclusion of diverse graph types significantly
enhances the model’s ability to adapt to new, unseen data. This reveals the potential for graph
foundation models to benefit from combining datasets across domains, facilitating more efficient and
robust training processes.

While our results are promising, there are several areas for future exploration. Our current work
primarily focuses on node-level classification tasks; extending GRAPHFM to support tasks like
graph-level classification, link prediction, and self-supervised learning could broaden its applicability.
Moreover, expanding the diversity of pretraining datasets, such as including point clouds, mesh
graphs, or knowledge graphs, may further enhance the model’s generalization capabilities and impact
across domains.

Looking ahead, we believe that generalist graph models like GRAPHFM have the potential to
transform a variety of fields, particularly in scenarios where data is scarce or incomplete. Our work
represents an important step toward more universal and adaptable graph models, and we anticipate
further research into cross-domain pretraining as a promising direction for the future of graph
learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019. 1

Mehdi Azabou, Venkataramana Ganesh, Shantanu Thakoor, Chi-Heng Lin, Lakshmi Sathidevi, Ran
Liu, Michal Valko, Petar Veličković, and Eva L Dyer. Half-hop: A graph upsampling approach for
slowing down message passing. In International Conference on Machine Learning, pp. 1341–1360.
PMLR, 2023. 19

Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Gabriela Moisescu-Pareja, Oleksandr Dy-
mov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller, Jama Hussein
Mohamud, et al. Towards foundational models for molecular learning on large-scale multi-task
datasets. arXiv preprint arXiv:2310.04292, 2023. 6, 9

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 9

Linfeng Cao, Haoran Deng, Yang Yang, Chunping Wang, and Lei Chen. Graph-skeleton: 1% nodes
are sufficient to represent billion-scale graph. In Proceedings of the ACM on Web Conference
2024, WWW ’24, pp. 570–581, New York, NY, USA, 2024. Association for Computing Machinery.
ISBN 9798400701719. doi: 10.1145/3589334.3645452. URL https://doi.org/10.1145/
3589334.3645452. 10

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469–3489. PMLR,
2022a. 10

Jinsong Chen, Kaiyuan Gao, Gaichao Li, and Kun He. Nagphormer: A tokenized graph transformer
for node classification in large graphs. arXiv preprint arXiv:2206.04910, 2022b. 6, 9

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023. 5, 6

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv preprint arXiv:2310.10688, 2023. 9

Andreea Deac, Marc Lackenby, and Petar Veličković. Expander graph propagation. In NeurIPS
2022 Workshop on Symmetry and Geometry in Neural Representations, 2022. URL https:
//openreview.net/forum?id=6cthqh2qhCT. 10

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenat-
ton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme Ruiz, Matthias
Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd Van Steenkiste, Gamaleldin Fathy
Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark
Collier, Alexey A. Gritsenko, Vighnesh Birodkar, Cristina Nader Vasconcelos, Yi Tay, Thomas
Mensink, Alexander Kolesnikov, Filip Pavetic, Dustin Tran, Thomas Kipf, Mario Lucic, Xiaohua
Zhai, Daniel Keysers, Jeremiah J. Harmsen, and Neil Houlsby. Scaling vision transformers to 22 bil-
lion parameters. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 7480–7512. PMLR, 23–
29 Jul 2023. URL https://proceedings.mlr.press/v202/dehghani23a.html.
9

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699, 2020. 10

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019a. 5

11

https://doi.org/10.1145/3589334.3645452
https://doi.org/10.1145/3589334.3645452
https://openreview.net/forum?id=6cthqh2qhCT
https://openreview.net/forum?id=6cthqh2qhCT
https://proceedings.mlr.press/v202/dehghani23a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019b. 4

Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards foundation
models for knowledge graph reasoning. arXiv preprint arXiv:2310.04562, 2023. 1, 9, 10

Lingbing Guo, Qiang Zhang, and Huajun Chen. Unleashing the power of transformer for graphs.
arXiv preprint arXiv:2202.10581, 2022. 8

William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584, 2017. 1

Van Thuy Hoang, O Lee, et al. Mitigating degree biases in message passing mechanism by utilizing
community structures. arXiv preprint arXiv:2312.16788, 2023. 17

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983. 16

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020. 17

Borja Ibarz, Vitaly Kurin, George Papamakarios, Kyriacos Nikiforou, Mehdi Bennani, Róbert
Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac,
Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist neural
algorithmic learner. In Bastian Rieck and Razvan Pascanu (eds.), Proceedings of the First Learning
on Graphs Conference, volume 198 of Proceedings of Machine Learning Research, pp. 2:1–2:23.
PMLR, 09–12 Dec 2022. URL https://proceedings.mlr.press/v198/ibarz22a.
html. 9, 10

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David
Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A
general architecture for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021a. 3

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021b. 2

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016. 6

Mario Michael Krell, Manuel Lopez, Sreenidhi Anand, Hatem Helal, and Andrew William Fitzgibbon.
Tuple packing: Efficient batching of small graphs in graph neural networks. arXiv preprint
arXiv:2209.06354, 2022. 4

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618–21629, 2021. 6

Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio Caggiano, Sean
Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick Labatut, Daniel Haziza, Luca
Wehrstedt, Jeremy Reizenstein, and Grigory Sizov. xformers: A modular and hackable transformer
modelling library. https://github.com/facebookresearch/xformers, 2022. 15

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. arXiv
preprint arXiv:2202.13013, 2022. 3

Chuang Liu, Yibing Zhan, Xueqi Ma, Liang Ding, Dapeng Tao, Jia Wu, and Wenbin Hu. Gapformer:
Graph transformer with graph pooling for node classification. In Proceedings of the 32nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI-23), pp. 2196–2205, 2023a. 10, 17,
19

12

https://proceedings.mlr.press/v198/ibarz22a.html
https://proceedings.mlr.press/v198/ibarz22a.html
https://github.com/facebookresearch/xformers

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. arXiv preprint
arXiv:2310.00149, 2023b. 10

Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, and Jiliang Tang. Neural scaling laws
on graphs. arXiv preprint arXiv:2402.02054, 2024. 10

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017. 6, 16

Yi Luo, Guangchun Luo, Ke Yan, and Aiguo Chen. Inferring from references with differences for
semi-supervised node classification on graphs. Mathematics, 10(8):1262, 2022. 17

Haitao Mao, Zhikai Chen, Wenzhuo Tang, Jianan Zhao, Yao Ma, Tong Zhao, Neil Shah, Michael
Galkin, and Jiliang Tang. Graph foundation models. arXiv preprint arXiv:2402.02216, 2024. 6, 9

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based
recommendations on styles and substitutes. In Proceedings of the 38th international ACM SIGIR
conference on research and development in information retrieval, pp. 43–52, 2015. 17

John Palowitch, Anton Tsitsulin, Brandon Mayer, and Bryan Perozzi. Graphworld: Fake graphs
bring real insights for gnns. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 3691–3701, 2022. 16

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020. 19

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018. 9

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022. 4, 10

RA Rossi and NK Ahmed. Networkrepository: An interactive data repository with multi-scale visual
analytics, 2014, eprint arxiv, 2014. 5

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021. 6, 19

Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
Exphormer: Sparse transformers for graphs. In International Conference on Machine Learning,
pp. 31613–31632. PMLR, 2023. 10

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan Wang.
An overview of microsoft academic service (mas) and applications. In Proceedings of the 24th
international conference on world wide web, pp. 243–246, 2015. 6, 17

Anton Tsitsulin, Benedek Rozemberczki, John Palowitch, and Bryan Perozzi. Synthetic graph
generation to benchmark graph learning. arXiv preprint arXiv:2204.01376, 2022. 5, 8

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017. 3

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. stat, 1050(20):10–48550, 2017. 6

Petar Veličković, Adrià Puigdomènech Badia, David Budden, Razvan Pascanu, Andrea Banino,
Misha Dashevskiy, Raia Hadsell, and Charles Blundell. The clrs algorithmic reasoning benchmark.
arXiv preprint arXiv:2205.15659, 2022. 10

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022. 1

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zhanghao Wu, Paras Jain, Matthew Wright, Azalia Mirhoseini, Joseph E Gonzalez, and Ion Stoica.
Representing long-range context for graph neural networks with global attention. Advances in
Neural Information Processing Systems, 34:13266–13279, 2021. 10

Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and Stan Z
Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. 2023. 10

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the
same coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022. 1

Han Yang, Chenxi Hu, Yichi Zhou, Xixian Liu, Yu Shi, Jielan Li, Guanzhi Li, Zekun Chen, Shuizhou
Chen, Claudio Zeni, et al. Mattersim: A deep learning atomistic model across elements, tempera-
tures and pressures. arXiv preprint arXiv:2405.04967, 2024. 10

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in Neural
Information Processing Systems, 34:28877–28888, 2021. 4

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019. 6

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graph-
saint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.
20

Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 35:21171–21183,
2022. 10

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020. 6

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A ADDITIONAL MODEL DETAILS

A.1 MODEL CONFIGURATION DETAILS

We used pretrained 3 configuration of models—small (398K), medium (18M) and large (75M)—for
our analysis. Details of the configuration for each model are given in Table A1. In the first cross-
attention layer, we used flash attention, whereas for all subsequent attention layers, we used memory-
efficient attention. Both implementations were sourced from the xFormers library (Lefaudeux et al.,
2022).

Table A1: Architectural details of GraphFM for different parameter sizes used in Section 2.2

Parameter Count 75M 18M 389K

Num Latents (K) 512 256 32

Latent Dimension 512 256 32

Cross-Attention

Heads 4 4 4

FFN hidden dim 2048 1024 128

Self-Attention

Depth (L) 12 10 4

Heads 8 4 4

FFN hidden dim 2048 1024 128

Node Decoder

Depth (M) 4 4 2

Heads 8 4 4

FFN hidden dim 2048 1024 128

A.2 RESCALING THE LEARNING RATES FOR DIFFERENT GRAPH SIZES

When training on variable sized graphs, the MLP and linear decoder for each dataset receive updates
based on the number of nodes from their respective datasets present in the batch and thus smaller
graphs get updated less frequently when compared to large graphs. To mitigate this imbalance, we
implemented dataset-specific learning rates for the feature MLP and linear decoders. Since they
receive updates less frequently, when they do, we use a larger learning rate to update them. Without
this adjustment, the weights of the common Perceiver encoder and node decoder would advance more
quickly than those of the dataset-specific components, potentially leading to suboptimal learning for
smaller datasets.

A.3 FINE-TUNING STRATEGIES

In our evaluation of GraphFM’s generalization capability, we employed two fine-tuning strategies
aimed at adapting the model to out-of-distribution (OOD) datasets.

A.3.1 LOW-RESOURCE MLP FINE-TUNING (MFT)

This approach is designed to assess how well the pretrained model performs out-of-the-box on
different OOD graphs without extensive training. In MFT, we freeze the pretrained model and only
fine-tune a lightweight multi-layer perceptron (MLP) on top of the learned representations. This

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

strategy allows us to quickly adapt the model to new tasks while retaining the majority of the original
learned parameters. MFT is particularly useful in low-resource settings, where computational power
or time is limited, as it requires minimal additional training while still providing insight into how
well the pretrained model generalizes. For all MFT experiments, we used a learning rate of 10−3 and
a weight decay of 10−5, optimized using the AdamW optimizer (Loshchilov & Hutter, 2017).

A.3.2 MLP AND NODE DECODER FINE-TUNING (NFT)

In contrast to MFT, the NFT strategy involves fine-tuning part of the and is recommended when
sufficient computational resources are available and the goal is to extract the maximum performance
from the model. In NFT, we gradually unfreeze the node decoder, enabling the model to more
effectively adapt to the new dataset. Specifically, we set a predefined epoch U at which unfreezing
begins, starting from the bottom layers of the node decoder. After every S epochs, additional layers
are unfrozen in a bottom-up manner, facilitating gradual transition to full finetuning of the model.
Concurrently, the learning rate is decayed by a factor of 1.5 each time a new layer is unfrozen,
ensuring controlled parameter updates. For all datasets, we tune the hyperparameters U and S, with
U set to 10, 20, or 30 epochs and S set to 5 or 10 epochs. This gradual unfreezing mitigates training
instability, as smaller perturbations are made to higher-level feature representations. As a result, NFT
allows for better adaptation, particularly for out-of-distribution (OOD) datasets, and is well suited for
case when exploiting the capacity of pretrained models is critical.

B ADDITIONAL DETAILS ON DATASETS

B.1 PRETRAINING DATASETS

The largest model (75M parameters) was trained on 80 real world and 72 synthetic datasets. The real
world datasets and their characteristics are given in Table A3.

The synthetic datasets were created using the GraphWorld (Palowitch et al., 2022) using the Stochastic
Block Model (Holland et al., 1983). The generator parameters are listed in Table A2. In the graph
generation process, the node homophily ratio is varied. The homophily is given by the following
formula:

1

|V|
∑
v∈V

|{(v, w) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

,

where V denotes the set of all nodes in the graph,N (v) denotes all the neighbors of an arbitrary node
v, and yv denotes the class membership of the node v ∈ V . We classify datasets into homophilic
datasets and heterophilic datasets based on the homophily score: datasets with homophily ≥ 0.5 are
classified as homophilic datasets and heterophilic datasets otherwise.

B.2 DETAILS ON SMALL AND MEDIUM SCALE DATASET

The small and medium scale datasets, as discussed in Section 4.2, were created by taking a random
subset of the large dataset(80 real and 72 synthetic).

Dataset subset for small scale data: The following datasets were used to train models with small
scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions, Twitch-EN,
Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA, Airports-
Europe, PolBlogs and EmailEUCore

Dataset subset for medium scale data: The following datasets were used to train models
with medium scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions,
Twitch-EN, Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA,
Airports-Europe, PolBlogs and EmailEUCore, Reddit, Reddit2, Flickr, Yelp, PPI, Facebook, Amazon-
ratings, Minesweeper, Twitch-DE, Twitch-ES, FacebookPagePage, Airports-Brazil, penn94, reed98,
amherst41, johnshopkins55, genius, CitationFull-CiteSeer, CitationFull-Cora-ML and CitationFull-
PubMed

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table A2: Graphworld generator parameters for synthetic graphs
Parameter Name Description Values
nvertex Number of vertices in the graph. [32, 500000]
p/q ratio The ratio of in-cluster edge probabil-

ity to out-cluster edge probability.
[0.1, 10.0]

avg. degree The average expected degrees of the
nodes.

[1.0, 20.0]

feature center distance The variance of feature cluster cen-
ters, generated from a multivariate
Normal.

[0.0, 5.0]

num clusters The number of unique node labels. [2, 6]
cluster size slope The slope of cluster sizes when

index-ordered by size.
[0.0, 0.5]

power exponent The value of the power law expo-
nent used to generate expected node
degrees.

[0.5, 1.0]

B.3 DETAILS ON SOCIAL AND BIOLOGY DOMAIN DATASETS

The social and biology datasets, as discussed in Section D.1 and Section 4.2, included the following
subsets:

Dataset subset for social domain: The following datasets were used to train the social-specific
model: fb-CMU-Carnegie49, Yelp,Wiki, BlogCatalog, Facebook, Twitch-DE, Twitch-EN, Twitch-
ES, Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, FacebookPagePage, LastFMAsia,
penn94, reed98, amherst41, johnshopkins55, genius and soc-pokec.

Dataset subset for biology domain: The following datasets were added as part of the biology
domain to train the combined social and biology model: BZR, DD, DD199, DD21, DD242, DD244,
DD349, DD497, DD6, DD68, DD687, DHFR, ENZYMES, ENZYMES118, ENZYMES123, EN-
ZYMES295, ENZYMES296, ENZYMES297, ENZYMES8, KKI, OHSU, PROTEINS-full, Peking-1,
Tox21 p53, gene, proteins-all and PPI.

B.4 FINETUNING DATASETS

For our evaluations, we held out a number of datasets that are used for standard benchmarks in both
larger scale node classification and heterophilic graphs.

B.4.1 HOMOPHILIC DATASETS

We use five real-world datasets, Amazon Computers and Amazon Photos (McAuley et al., 2015),
Coauthor CS and Coauthor Physics (Sinha et al., 2015) and Obgn-Arxiv (Hu et al., 2020). Key
statistics for the different datasets are listed in Table A3 in the finetuning-section. The experimental
setup follows that of (Luo et al., 2022), where we split the dataset into development and test sets. All
the hyperparameter tuning is done on the development set and the best models are evaluated on the
test set. The runs are averaged over 20 random splits to minimize noise. We follow a 60:20:20%
train/val/test split for the Amazon and Coauthor datasets. For Obgn-Arxiv we follow the experimental
setup used in (Hu et al., 2020). The results for the Coauthor-Physics, Coauthor-CS, and Amazon-
Photos obtained from in Table A6 have been sourced from (Liu et al., 2023a). The results for the
Amazon-Comp dataset are taken from (Hoang et al., 2023) except for MLP which was obtained from
(Luo et al., 2022).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table A3: Pre-Training Datasets and their characteristics
Dataset Number of Graphs Nodes Edges Homophily Ratio Average Degree Node Features Node Classes Learning Rate

Pr
e-

Tr
ai

ni
ng

BA-1 10 60-L5 1 804 46410 0.2 115.45 1 5 0.0014
BA-2 24 60-L2 1 10693 639750 0.5 119.66 1 2 0.0087
BZR 405 35.75 76.71 0.42 0.07 1 53 0.0082
CL-100K-1d8-L9 1 92482 373989 0.11 8.09 1 9 0.00064
CL-10K-1d8-L5 1 10000 44896 0.2 8.98 1 5 0.00096
DD 1178 284.32 1431.32 0.07 0.058 1 89 0.00085
DD199 1 841 1902 0.067 4.52 1 20 0.00085
DD21 1 5748 14267 0.07 4.96 1 40 0.00085
DD242 1 1284 3303 0.08 5.14 1 20 0.00042
DD244 1 291 822 0.074 5.65 1 20 0.00085
DD349 1 897 2087 0.05 4.65 1 20 0.00085
DD497 1 903 2453 0.06 5.43 1 20 0.0028
DD6 1 4152 10320 0.07 4.97 1 20 0.00085
DD68 1 775 2093 0.072 5.4 1 20 0.0028
DD687 1 725 2600 0.06 7.17 1 20 0.0028
DHFR 756 42.43 89.09 0.32 0.04 3 53 0.0018
ENZYMES 600 32.63 124.27 0.67 0.09 18 3 0.0020
ENZYMES118 1 96 121 0.58 2.52 1 2 0.00087
ENZYMES123 1 90 127 0.52 2.82 1 2 0.0076
ENZYMES295 1 124 139 0.71 2.24 1 2 0.0076
ENZYMES296 1 126 141 0.72 2.24 1 2 0.00087
ENZYMES297 1 122 149 0.65 2.44 1 2 0.0020
ENZYMES8 1 88 133 0.77 3.02 1 2 0.0076
ER-AvgDeg10-100K-L2 1 99997 499332 0.50 9.99 2 2 0.0049
ER-AvgDeg10-100K-L5 1 99997 499332 0.20 9.99 1 5 0.0013
KKI 83 26.96 96.84 0 0.39 1 189 0.0012
MSRC-21 563 77.52 396.65 0.74 0.13 1 24 0.0063
MSRC-21C 209 40.28 193.20 0.61 0.27 1 22 0.0017
MSRC-9 221 40.58 193.21 0.69 0.26 1 10 0.009
OHSU 79 82.01 399.32 0 0.56 1 189 0.0095
PLC-40-30-L5 1 11025 437979 0.2 79.45 1 5 0.0086
PLC-60-30-L2 1 117572 7045181 0.5 119.84 1 2 0.0013
PROTEINS-full 1113 39.06 145.63 0.97 0.05 2 8 0.0063
Peking-1 85 39.31 154.71 0 0.44 1 189 0.0027
SW-10000-6-0d3-L2 1 10000 30000 0.5 6 1 2 0.00096
SW-10000-6-0d3-L5 1 10000 30000 0.2 6 1 5 0.0088
SYNTHETIC 300 100 392 0.18 0.16 1 8 0.0018
TerroristRel 1 881 8592 0.92 19.51 1 2 0.0033
Tox21 p53 1 153563 314046 0.62 4.09 1 46 0.00054
fb-CMU-Carnegie49 1 6637 249967 0.5 75.33 1 3 0.0010
gene 1 1103 1672 0.4 3.03 1 2 0.012
proteins-all 1 43471 162088 0.66 7.46 1 3 0.00075
reality-call 1 27058 51200 0.9 15 1 2 0.0071
Reddit 1 232965 114615892 0.76 983.98 602 41 0.0035
Reddit2 1 232965 23213838 0.78 199.29 602 41 0.0035
Flickr 1 89250 899756 0.31 20.16 500 7 0.0051
Yelp 1 716847 13954819 - 38.93 300 1001 0.00031
Wiki 1 2405 17981 0.71 14.95 4973 17 0.0012
BlogCatalog 1 5196 17981 0.40 132.21 8189 6 0.0099
PPI 1 56944 1612348 0.63 56.63 50 121 0.0016
Facebook 1 4039 88234 0.99 43.69 1283 193 0.0011
Roman-empire 1 22662 65854 0.05 5.81 300 18 0.0074
Amazon-ratings 1 24492 186100 0.38 15.2 300 5 0.00082
Minesweeper 1 10000 78804 0.68 15.76 7 2 0.0088
Tolokers 1 11758 1038000 0.59 176.56 10 2 0.0022
Questions 1 48921 307080 0.84 12.55 301 2 0.0061
Twitch-DE 1 9498 315774 0.64 66.49 128 2 0.0023
Twitch-EN 1 7126 77774 0.59 21.82 128 2 0.0010
Twitch-ES 1 4648 123412 0.59 53.10 128 2 0.0011
Twitch-FR 1 6551 231883 0.54 70.79 128 2 0.0010
Twitch-PT 1 1912 64510 0.58 67.47 128 2 0.0012
Twitch-RU 1 4385 78993 0.63 36.02 128 2 0.0011
DeezerEurope 1 28281 185504 0.52 13.11 128 2 0.0070
GitHub 1 37700 578006 0.84 30.66 128 2 0.0065
FacebookPagePage 1 22470 342004 0.88 30.44 128 2 0.00085
LastFMAsia 1 7624 55612 0.87 14.59 128 18 0.0092
Airports-Brazil 1 131 1074 0.46 16.39 131 4 0.0013
Airports-Europe 1 399 5995 0.40 30.05 399 4 0.0015
Airports-USA 1 1190 13599 0.69 22.85 1190 4 0.0092
PolBlogs 1 1490 19025 0.91 25.54 1 2 0.0013
EmailEUCore 1 1005 25571 0.36 50.89 1 42 0.0032
penn94 1 41554 2724458 0.51 131.11 4814 2 0.0064
reed98 1 962 37624 0.52 78.22 745 2 0.0032
amherst41 1 2235 181908 0.53 162.78 1193 2 0.011
johnshopkins55 1 5180 373172 0.55 144.08 2406 2 0.0025
genius 1 421961 984979 0.62 4.67 12 2 0.00040
CitationFull-CiteSeer 1 4230 10674 0.95 5.04 602 6 0.0011
CitationFull-Cora-ML 1 2995 16316 0.78 10.89 2879 7 0.0028
CitationFull-PubMed 1 19717 88648 0.80 8.99 500 3 0.00087
soc-pokec 1 1632803 30622564 0.44 37.51 500 3 0.00019

1 Multi label binary classification.

Table A4: Fine-Tuning Datasets and Their Characteristics
Dataset Number of Graphs Nodes Edges Homophily Ratio Average Degree Node Features Node Classes
Actor 1 7600 30019 0.21 7.89 932 5
Amazon-Computers 1 13752 4491722 0.77 71.51 767 10
Amazon-Photo 1 7650 238162 0.82 62.26 745 8
Coauthor-CS 1 18333 163788 0.80 17.86 6805 15
Coauthor-Physics 1 34493 495924 0.93 28.75 8415 5
Chameleon 1 2277 36101 0.23 31.70 2325 5

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.4.2 HETEROPHILIC DATASETS

We use five real-world datasets with graphs that have a homophily level ≤ 0.30, Texas, Wisconsin
and Actor (Pei et al., 2020) and Chameleon and Squirrel (Rozemberczki et al., 2021). Key statistics
for the different datasets are listed in Table A3 in the finetuning-section. We follow the experimental
setup in (Pei et al., 2020), and use the same 10 train/val/test splits that are provided. The results for
GCN based methods and heterophily based methods in Table A7 have been taken from (Azabou et al.,
2023), and the results for transformer based methods have been taken from (Liu et al., 2023a)

B.5 STANDARD HYPERPARAMETER SEARCH GRID FOR BASELINES

The hyperparameter search space grid used for tuning baselines for Table 1 is detailed in Table A5.

Table A5: Hyperparameter Search Space

Hyperparameter Type Range

Hidden Dim Categorical {16, 32, 64, 128}
Depth Categorical {1, 2}
Dropout Uniform [0.0, 0.9]

Learning Rate Log uniform [5e-5, 5e-1]

Weight Decay Log uniform [1e-5, 1e-2]

C ADDITIONAL DETAILS ON MULTI-GRAPH TRAINING

One key aspect of our work is testing scale. Thus, to build a model across large amounts of diverse
graph data, we developed a number of approaches for efficient training and multi-GPU usage.

Figure A1 shows an ablation study the epoch time for various GPU optimizations we have proposed
in Section 2.2. The epoch time was calculated using the medium-sized model with 18M parameters,
as detailed in Appendix A.1.

Note: Removing chaining made it impossible to run the largest model (75M parameters) with our
available computational resources (8 A40 GPUs). Therefore, we performed the ablation using the
medium-sized model. This highlights the significance of our optimization techniques, which enabled
us to scale up and run such large models efficiently.

C.1 DISTRIBUTEDSSSAMPLER

graphFM graphFM
-sampler

graphFM
-sampler
-packing

100

101

102

103

ep
oc

h
tim

e
(m

inu
te

s)

Figure A1: Ablation for GPU optimizations:
Epoch time in minutes on removing various gpu
optimizations proposed for GRAPHFM

In designing this sampler, we prioritized ensuring that
it neither introduces bias into the data sampling pro-
cess nor alters the distribution of the graphs from the
datasets. Its primary function is to enhance batch con-
struction and distribution across GPUs.

First, the sampler defines a set of N buckets with a
fixed node budget B, where N can be the number of
GPUs and B is the node-level batch size. The graphs
(across all GPUs) are sorted in descending order based
upon their size. The sampler then employs a bidirec-
tional filling strategy within the buckets. The distri-
bution process, as described in Algorithm 1 involves
distributing graphs in a snake-like pattern, initially fill-
ing from right to left, then switching to left to right
and so on. When a graph is added to a bucket, it uses
up part of the budget, equal to its size. This method
effectively pairs larger graphs with smaller ones in

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

subsequent passes, preventing the concentration of multiple large graphs on the same GPU, thus
achieving efficient load balancing and uniform GPU utilization. Figure A2A shows an overview of
how the sampler distributes the graphs into buckets. We find that stability is improved with a larger
number of buckets N (Figure A2B). When the number of GPUs is fixed, we can achieve a larger N
by using gradient accumulation, which artificially increases the number of buckets by a factor equal
to the number of accumulation steps, without biasing the sampling process.

Algorithm 1 Distribute graph nodes into virtual GPU buckets
1: input: Batch size B, Bucket count N , Graphs in the dataset G = {G0,G1, . . .}, Subgraphs

sampled for this minibatch Gm = {Gm0 ,Gm1 , . . .}
2: precondition:

∑
i |Gmi | == N ×B

3: initialize:
4: buckets← array of N empty arrays # will store subgraphs in each bucket
5: counts← array of N zeroes # will store number of nodes in each bucket
6: b← 0 # bucket index
7: d← 1 # direction
8: Sort Gm according to node-counts in G, largest graph goes first
9: for all Gmi in Gm do

10: while |Gmi | > 0 do
11: if counts[b] < B then
12: # insert a part of Gmi into bucket b
13: n← min(|Gmi |, B − counts[b])
14: counts[b]← counts[b] + n
15: append first n nodes of Gmi to buckets[b]
16: remove first n nodes from Gmi
17: end if
18: # go to the next bucket, switching direction at the boundaries
19: b← b+ d
20: if b ≥ N or b < 0 then
21: d← −d
22: b← b+ d
23: end if
24: end while
25: end for
26: return buckets

Figure A2: Multi-GPU utilization: A: A diagram visualizing our sample distribution strategy. B: GPU memory
utilization during distributed training when using the default batch sampler vs. our DistributedSSSampler for
N=4 and N=64 buckets.

C.2 GRAPHSAINT RANDOM WALK SAMPLER

Efficient neighborhood sampling for large graphs is crucial for our node decoder, as traditional
methods for k-hop neighborhood sampler often become computationally prohibitive with the in-
creasing size and complexity of the graph data. To overcome these limitations, we have adopted the
GraphSAINT Random Walk Sampler (Zeng et al., 2019), specifically designed for efficient sampling
in large-scale graphs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

C.3 RAM OPTIMIZATION IN MULTI-GPU ENVIRONMENTS

In multi-GPU training environments, efficient use of system memory is crucial, especially when
handling large graph datasets. Traditional approaches lead to substantial memory redundancy, as
each GPU process typically loads a complete dataset into system RAM. This results in each process
duplicating the dataset in system memory, leading to inefficient memory usage and potential system
overload.

To address this, we utilize a shared memory management approach using Python’s
multiprocessing.Manager() to coordinate dataset access across multiple GPU processes.
This method ensures that each dataset is loaded into RAM only once, regardless of the number of
GPUs, thereby avoiding duplication and conserving memory resources.

D ADDITIONAL EXPERIMENTS

D.1 SEPARATING PRETRAINING DATASETS INTO DIFFERENT DOMAINS

We further stratified our pretraining dataset to invetigate the effects of cross-domain training, and
created three models that contained: (i) graph datasets from “social domains” including product
graphs and citation networks (1.3M tokens), (ii) both the social datasets and all biological graphs in
the dataset (Bio+Soc, 2M tokens), and (iii) compare with our model trained on all data including
sytnthetic graphs (7.3M tokens).

When comparing graph features across social and biological domains, we found distinct structural
differences: biological datasets generally exhibited higher levels of heterophily, lower average
degree, and fewer edges, whereas social graphs showed more homophily, higher degrees, and denser
connections (Figure A4B). Synthetic graphs added a wide range of characteristics, particularly
increasing the number of heterophilic graphs used in pretraining, which contributed to a broader
diversity of features (Figure A4A).

soc soc + bio all

0.68

0.70

0.72

0.74

0.76

m
ea

n
ac

cu
ra

cy

 a
cr

os
s O

OD
 d

at
as

et
s

0.714
0.722

0.750

Figure A3: Domain Scaling: Average accuracy
across OOD datasets (using MFT) for models
trained on different subsets of data

All three models were then fine-tuned on four ho-
mophilic datasets (coauthor-CS, coauthor-physics,
amazon-photos, and amazon-computers) and five het-
erophilic datasets (Texas, Wisconsin, Actor, Squirrel,
and Chameleon) held out for fine-tuning.

As shown in Figure A3 we find that incorporating biol-
ogy datasets despite being seemingly unrelated to the
target domain—improved performance on the OOD
datasets. This suggests that knowledge learned from
the biology domain positively impacts performance in
seemingly unrelated domains. Furthermore, adding all
available datasets, including synthetic graphs, boosted
performance even more, indicating that diversity (not
just domain specific data), is the key to improving
generalization.

D.2 SCALING ANALYSIS BREAKDOWN FOR DIFFERENT TEST DATASETS

The main text shows the average scaling. We break down the scaling performance for different
datasets (Figure A5). All of the datasets benefit from scale, with more difficult datasets benefiting
more from scaling the model size and dataset.

D.3 RANKING OF DIFFERENT MODELS

We visualize the ranking of the different models (Figure A6).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0
homophily ratio

0

5

10

15

20

fre
qu

en
cy

Synthetic
Real

100 102

average degree

0

10

20

30

103 105

total number
of nodes

0

5

10

15

104 107

total number
of edges

0

5

10

15

0.0 0.5 1.0
homophily ratio

0.0

2.5

5.0

7.5

10.0

fre
qu

en
cy

Social
Biology

100 102

average degree

0

2

4

6

103 105

total number
of nodes

0

2

4

6

104 107

total number
of edges

0

2

4

6

Figure A4: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the
histograms of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used
during training. The homophily ratio provides a measure of how frequently a node is directly connected to other
nodes from the same class.

105 106 107

0.45

0.50

0.55

0.60

ac
cu

ra
cy

Chameleon

389K
18M
75M

105 106 107

0.750

0.775

0.800

Wisconsin

105 106 107

number of tokens
 seen during pre-training

0.95

0.96

0.97

ac
cu

ra
cy

Coauthor Physics

105 106 107

number of tokens
 seen during pre-training

0.75

0.80

0.85

0.90
Amazon Photo

Figure A5: Accuracy as the model and dataset size are increased. Results are shown for four datasets,
Chameleon and Wisconsin (heterophilic), and Coauthor Physics and Amazon Photo (homophilic).

D.4 ADDITIONAL BASELINES

The main text presents a comparison of GRAPHFM with baselines that are more consistently reported
across the literature. Table A6 and Table A7 provides additional baselines for all the OOD datasets.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

MLP GAT GCN SAN H2GCN NAG GraphFM
MFT

GraphFM
NFT

Model

1

2

3

4

5

6

7

8

9

M
ea

n
Ra

nk

 (a
cr

os
s 1

0
OO

D
da

ta
se

ts
)

6.30
6.20

5.80

4.70
4.00

3.30

3.30

2.10

Average Rank of Models

Figure A6: Mean rank of various models accross 10 OOD datasets (lower is better).

Table A6: Results on node classification tasks for large graph datasets. We report the accuracy (%) with
standard deviation over 10 splits (OOM indicates Out of Memory).

Method Photo Physics CS ogbn-arxiv Comp
GCN-based methods

GCN 85.94±1.18 95.38±0.20 94.06±0.16 70.40±0.10 89.47 ± 0.46
GatedGCN 57.84±14.6 95.89±0.21 89.94±2.24 62.71±1.76 -
APPNP 84.71±1.25 95.04±0.31 87.49±0.48 70.20±0.16 90.18 ± 0.17
GCNII 67.06±1.74 94.88±0.32 84.23±0.78 69.78±0.16 -
GAT 87.13±1.00 95.14±0.28 93.61±0.14 67.56±0.12 90.78 ± 0.13
GATv2 81.52±3.23 95.02±0.32 88.46±0.61 68.84±0.13 -
SuperGAT 85.83±1.29 95.11±0.26 88.11±0.43 66.99±0.07 -

Heterophily-based methods
MLP 88.66±0.85 95.12±0.26 92.99±0.51 52.63±0.12 84.63
MixHop 93.24±0.59 96.34±0.22 93.88±0.63 70.83±0.30 -
H2GCN 91.56±0.70 96.28±0.13 94.02±0.31 68.29±0.67 89.33 ± 0.27
FAGCN 87.53±0.75 95.86±0.12 91.82±0.54 66.12±0.02 -
GPRGNN 92.27±0.44 96.06±0.21 93.60±0.36 68.28±0.21 89.32 ± 0.29

Graph Transformer-based methods
SAN 94.17±0.65 96.83±0.18 94.16±0.36 69.17±0.15 89.83 ± 0.16
Graphormer 85.20±4.12 OOM OOM OOM OOM
LiteGT - OOM 92.16±0.44 OOM -
UniMP 92.49±0.47 96.82±0.13 94.20±0.34 73.19±0.18 -
DET 91.44±0.49 96.30±0.18 93.34±0.31 55.70±0.30 -
NAGphormer 94.64±0.60 96.66±0.16 95.00±0.14 68.21 ± 0.021 91.22 ± 0.14
GRAPHFM -MFT 93.01±1.82 96.64±0.17 95.19±0.21 65.29±0.16 89.95 ± 0.83
GRAPHFM -NFT 94.37±0.35 96.77±0.12 95.24±0.18 70.01±0.18 90.07 ± 0.21

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table A7: Results on node classification tasks for heterophilic graphs. We report the test accuracy across many
heterophilic graph benchmark datasets. The standard deviation is reported across 10 train/test splits.

Method Texas Wisconsin Actor Squirrel Chameleon
GCN-based methods

GCN 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 31.52 ± 0.71 38.44 ± 1.92
GAT 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 36.77 ± 1.68 48.36 ± 1.58
GraphSAGE 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68

Heterophily-based methods
MLP 80.81 ± 4.75 85.29 ± 3.31 36.63 ± 0.70 28.77 ± 1.56 46.21 ± 2.99
HH-GCN 71.89 ± 3.46 79.80 ± 4.30 35.12 ± 1.06 47.19 ± 1.21 60.24 ± 1.93
HH-GAT 80.54 ± 4.80 83.53 ± 3.84 36.70 ± 0.92 46.35 ± 1.86 61.12 ± 1.83
HH-GraphSAGE 85.95 ± 6.42 85.88 ± 3.99 36.82 ± 0.77 45.25 ± 1.52 62.98 ± 3.35
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53
GGCN 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84
H2GCN 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15

Graph Transformer-based methods
SAN 60.17 ± 6.66 51.37 ± 3.08 27.12 ± 2.59 39.92 ± 2.14 44.32 ± 1.73
UniMP 73.51 ± 8.44 79.60 ± 5.41 35.15 ± 0.84 - -
ET 56.76 ± 4.98 54.90 ± 6.56 28.94 ± 0.64 - -
NAGphormer 63.51 ± 5.85 62.55 ± 6.22 34.33 ± 0.94 49.93 ± 0.07 57.39 ± 0.02
Gapformer 80.27 ± 4.01 83.53 ± 3.42 36.90 ± 0.82 - -
GRAPHFM -MFT 80.81 ± 2.76 83.13 ± 2.35 36.29 ± 0.63 42.80 ± 1.54 58.64 ± 1.24
GRAPHFM -NFT 82.16 ± 3.24 83.62 ± 3.21 38.01 ± 1.07 42.98 ± 1.62 59.12 ± 1.64

24

	Introduction
	Methods
	Model
	Tokenizing diverse graphs
	Node decoder
	Multi-task pretraining on a variety of node classification and regression tasks

	Important ingredients for training on diverse graphs
	Multi-graph packing
	Balanced GPU utilization with the DistributedSSSampler
	Overall time and memory savings

	Datasets
	Results
	Experimental Setup
	Experiments

	Related Work
	Conclusion
	Additional Model Details
	Model Configuration Details
	Rescaling the learning rates for different graph sizes
	Fine-Tuning Strategies
	Low-resource MLP Fine-tuning (MFT)
	MLP and Node Decoder Fine-tuning (NFT)

	Additional Details on Datasets
	Pretraining datasets
	Details on small and medium scale dataset
	Details on social and biology domain datasets
	Finetuning Datasets
	Homophilic Datasets
	Heterophilic Datasets

	Standard hyperparameter search grid for baselines

	Additional Details on Multi-Graph Training
	DistributedSSSampler
	GraphSAINT Random Walk Sampler
	RAM Optimization in Multi-GPU Environments

	Additional Experiments
	Separating pretraining datasets into different domains
	Scaling analysis breakdown for different test datasets
	Ranking of different models
	Additional Baselines

