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ABSTRACT

Graph neural networks (GNNs) are often trained on individual datasets, requir-
ing specialized models and significant hyperparameter tuning due to the unique
structures and features of each dataset. This approach limits the scalability and gen-
eralizability of GNNs, as models must be tailored for each specific graph type. To
address these challenges, we introduce GRAPHFM, a scalable multi-graph pretrain-
ing approach designed for learning across diverse graph datasets. GRAPHFM uses
a Perceiver-based encoder with learned latent tokens to compress domain-specific
features into a shared latent space, enabling generalization across graph domains.
We propose new techniques for scaling up graph training on datasets of different
sizes, allowing us to train GRAPHFM on 152 distinct graph datasets, spanning 7.4
million nodes and 189 million edges. This allows us to study the effect of scale
on pretraining across domains such as molecules, citation networks, and product
graphs, and show that training on diverse datasets improves performance over
single-source pretraining. Our results demonstrate that pretraining on diverse real
and synthetic graphs enhances adaptability and stability, leading to competitive
performance with state-of-the-art models across various node classification tasks.
This approach reduces the burden of dataset-specific training and provides a single
generalist model capable of performing across multiple diverse graph structures
and tasks.

1 INTRODUCTION

Graphs are a fundamental data structure used across diverse fields such as biology, social networks,
and recommendation systems (Hamilton et al., 2017). However, most graph neural network (GNN)
architectures are designed in a highly specialized way, optimized for specific types of graphs. For
example, architectures that work well on homophilic graphs, such as citation networks, often fail to
generalize to heterophilic graphs, like certain social or biological networks, due to the differences
in their topologies (Abu-El-Haija et al., 2019; Yan et al., 2022). This specialization leads to a
fragmentation in model development, where the optimal architecture for one type of graph must be
significantly altered or redesigned for another. As the use of GNNs grows across diverse applications,
this piecemeal approach limits scalability and generalization, highlighting the need for a generalist
model that can handle a wide variety of graph structures without manual tuning.

A core challenge in building a generalist graph model lies in integrating diverse graphs, each with
unique topologies, node features, and sizes, while enabling knowledge transfer across them. Without a
shared “vocabulary” for graph structures, models struggle to generalize effectively, as the differences
between graph types hinder the transfer of learned patterns (Galkin et al., 2023). At the same time,
recent advances in large-scale language models have shown that scaling up both model size and
data diversity is essential for unlocking emergent capabilities and improving generalization across
tasks (Wei et al., 2022). This makes scaling an equally critical factor in graph models. Pretraining
on diverse graphs requires algorithms that can efficiently handle large, heterogeneous inputs, while
ensuring the model can still capture robust, transferable patterns. Therefore, building a generalist
graph model necessitates solutions that not only integrate diverse graph structures but also scale
effectively, allowing the model to learn from vast, varied datasets without sacrificing performance.
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In this work, we introduce GRAPHFM , a multi-graph pretraining framework aimed at addressing
this gap. Instead of building specialized models for each graph type, GRAPHFM uses a Perceiver-
based transformer encoder (Jaegle et al., 2021b) to create a shared latent space that abstracts away
graph-specific details while preserving core structural properties. This enables the model to process a
wide range of graph types within a unified framework, moving beyond the specialist architectures
that dominate current GNN design. Our approach seeks to answer a key question: can pretraining on
diverse, multi-graph datasets lead to effective generalization and transfer across unseen graphs?

When tested on a variety of homophilic and heterophilic datasets, we demonstrate that our model
achieves performance comparable to all of the best baseline models, each of which is individually
tuned for its respective dataset. Overall, we achieve the best rank when compared with these models,
demonstrating that our approach has strong generalist performance. By combining datasets from
biology, social networks, and recommendation systems, we show that our model can generalize
across graphs with varying topologies and features, providing the flexibility that specialized models
often lack. Moreover, our framework efficiently handles large mixtures of diverse graph datasets,
leveraging distributed training techniques to manage graphs of different sizes and complexities.

Our results show that increasing both the scale of the model and the diversity of the training data leads
to significant improvements in downstream performance on new, unseen graphs and node-level tasks.
This demonstrates that it is indeed possible to train a generalist model on diverse graphs, which can
effectively learn from and adapt to a wide range of graph types. In total, we pretrain on 152 distinct
graph datasets, comprising over 7.4 million nodes and 189 million edges across a wide variety of
graph types—an unprecedented number of different graph datasets in the literature. This extensive
pretraining allows our model to capture and transfer knowledge across a broad spectrum of graph
structures, showcasing the feasibility and advantages of building a unified model that generalizes
well to unseen tasks.

The main contributions of this work are as follows:

• Scalable Pre-training Approach: We introduce a scalable framework for pretraining on
diverse graphs using a Perceiver-based encoder with latent tokens, which efficiently handles
graphs with varying sizes and topologies. Our approach includes advanced multi-graph
sampling techniques that optimize GPU utilization, enabling large-scale pretraining across a
wide range of graph datasets.

• Demonstration of Benefits from Across-Graph Pretraining: We show that pretraining
on diverse graphs significantly improves the model’s ability to generalize and transfer
knowledge to unseen graphs. This demonstrates that a generalist model can leverage
common structural features across different datasets to outperform specialized models.

• Scaling Analysis and Impact of Multi-Graph Pretraining: We provide the first scaling
analysis for multi-graph pretraining on different domains, showing that larger models
pretrained on more diverse graph datasets result in better generalization. Our results highlight
that increasing both the scale of the model and the diversity of the training data improves
performance on downstream tasks.

2 METHODS

In this section, we describe our method, including the model architecture and tokenization (Sec-
tion 2.1.1 ), our proposed multi-task node decoder for jointly solving node classification and regression
tasks by querying from the latent space (Section 2.1.2 ), and efficient tools for scaling (Section 2.2)
that allowed us to build a large pretrained model that could integrate the extreme diversity in our
pretraining set.

2.1 MODEL

2.1.1 TOKENIZING DIVERSE GRAPHS

Each graph is represented as a sequence of node-level tokens, where each token embedding encodes
both the node features and a positional embedding of the node. Let D = {Gg}Gg=1 denote a
dataset containing G graphs, where each graph can be expressed in terms of its node and edges as
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Figure 1: Overview of GRAPHFM architecture and multi-graph training approach: The input node-level
tokens are passed through a cross-attention layer, followed by multiple self-attention layers to generate a
compressed graph-level representation (latents). We decode node-level properties by creating a spatial sequence
with features from a query node, a subset of its neighbors and the latents, which is then processed by a node
decoder that uses self attention across the sequence.

Gg = (Vg, Eg), with node features {ui}
Ng

i=1. To process a graph with a transformer, we start by
building a sequence of tokens as Xg = [x1, . . . ,xNg

], where xi concatenates a projection of the
node features using a Multi Layer Perceptron (MLP), ũi = MLPg(ui), and the positional encoding
(PE), pi, of the ith node. We use SignNet (Lim et al., 2022) which computes sign-invariant features
from the eigenvectors of the graph Laplacian and uses this as a basis for alignment of PE tokens
across all the graphs.

To build a model that can be trained across diverse graphs, we propose to tokenize each graph into a
fixed and common latent space using a Perceiver encoder (Jaegle et al., 2021a). This encoder learns a
set of latent query tokens which, using a cross-attention operation, query the nodes in the input graph
and produce a compressed representation of it in the latent space. In the context of graphs, we can
think about this as a way of routing communication between distant nodes by first going through a
small number of learnable “virtual nodes” (Figure 1) that are compressed from the input graph.

For all graphs, we maintain a shared sequence of K learned latent tokens Z0 = [z0,1, . . . , z0,K ], with
z0,i ∈ RD and K considerably smaller than the size of most graphs, in this work K = 512. Node
embeddings in the input graph are then compressed via a cross-attention operation:

Z(1)
g ← Cross-Attn(Qg,Kg,Vg) = Z(0) + softmax

(
QKT

g√
dk

)
Vg, (1)

where the queries, Q = WqZ0, are projections of the learnable virtual node tokens, while the keys
and values are projections of the graph’s token embeddings: Kg = WkXg and Vg = WvXg , where
the key and value weight matrices are shared by all the graphs. This operation is followed by a series
of L self-attention blocks in the latent space to obtain a sequence of K latent tokens, Zout

g . We use
the standard transformer block with pre-normalization layers and feed-forward nets (Vaswani, 2017).
Note that the complexity here is KNg + LK2 ≪ N2

g ; When the number of latent tokens K ≪ Ng,
this results in a significant reduction in compute and memory.

Remark. Compressing every graph into a fixed set of virtual node embeddings, allows us to build a
learnable “shared vocabulary” across graphs, and leverage common semantic and topological patterns
across datasets and domains. Additionally, this approach also allows us to better integrate graphs of
variable sizes, since most of the computation happens in the self-attention blocks, where all graphs
are represented by an equally sized sequence of latent tokens.

2.1.2 NODE DECODER

Our encoder model is designed to do the bulk of the computation when processing the graph. To be
able to readout node-level features, we developed a multi-task node decoder that combines the virtual
node embeddings learned by our encoder Zout

g with local information from a node and its neighbors
to create a sequence Si

g that can be processed by a transformer to produce a final node-level estimate
of it’s class information.

3
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Figure 2: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the
histograms of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used
during training. The homophily ratio provides a measure of how frequently a node is directly connected to other
nodes from the same class.

The sequence Si
g for the ith node can be represented as:

Si
g =

[
(xi; τself), (xN 1

i
; τneighbor) . . . (xNT

i
; τneighbor), (Z

out
1 ; τlatent) . . . (Z

out
K ; τlatent)

]
, (2)

node neighbors virtual latent nodes

where x and τtype denote the features and their token type (latent, self, or neighbor), respectively, and
N j

i denotes the jth neighbor selected in the neighborhood of node i. We use a small encoder-only
transformer with a depth of M to obtain a final set of embeddings Souti

g for node i. Note that the
complexity is NgM(K + T + 1)2 ≪ N2

g .

2.1.3 MULTI-TASK PRETRAINING ON A VARIETY OF NODE CLASSIFICATION AND REGRESSION
TASKS

In the end, a per-dataset linear classifier (or regressor) Wg is tasked with producing the final
predictions ŷi for node i, mapping the final embedding of node i, the first token in the Si

g sequence,
to the output space as: ŷi = WT

g S
i,out
g . The linear projection effectively translates the node-level

embeddings into task-specific outputs, such as class labels for classification or continuous values
for regression. The model handles a wide variety of tasks across different datasets, such as citation
graphs are trained to predict academic fields and co-purchasing graphs are used to predict product
categories. Each dataset has an arbitrary label space, varying not only in the number of labels but
also in the nature and semantics of the output classes.

Remark. Since this model is trained end-to-end, the model learns how to optimally route and query
information on graphs to maximize the performance on the various pre-training tasks. The virtual
nodes allow for longer-range and global interactions to be encoded in the virtual node embeddings,
and uses this information along with the local information provided by the node’s neighbors.

2.2 IMPORTANT INGREDIENTS FOR TRAINING ON DIVERSE GRAPHS

2.2.1 MULTI-GRAPH PACKING

Typically when creating batches for training graph transformers, padding is used to extend the smaller
graphs to have the same size as the largest graph in the batch (Rampášek et al., 2022; Ying et al.,
2021). This approach is likely inherited from the transformer architectures found in other domains
where the context window (or sequence length) is usually fixed. But for graphs, the problem with
padding is particularly pronounced when there is a significant size disparity among different graphs
in the same batch. Alternative solutions exist, and in particular, the graph community have been
pioneers in batching variable-sized graphs. Message-passing frameworks combine multiple graphs
into a single large graph over which message passing is conducted (Fey & Lenssen, 2019b; Krell
et al., 2022). However, these out-of-the-box implementations are not suited for transformers which
use fully-connected attention.

We implement a custom data collator, which merges all graphs in the batch into a single large
sequence of tokens, and adapts the attention mask to restrict each graph to itself. In particular, we
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leverage Flash Attention (Dao, 2023) which makes computing attention over very large sequences
extremely efficient. By doing so, we avoid any superfluous padding, and this in turn improves the
computational efficiency during training.

2.2.2 BALANCED GPU UTILIZATION WITH THE DISTRIBUTEDSSSAMPLER

During multi-GPU distributed training, a global batch is formed by randomly sampling graphs from
different datasets, which is then equally split among the GPUs. Naively splitting the batch can lead
to unbalanced GPU utilization. On one hand, we can have a large batch of relatively small graphs,
and another where we can only have a batch with one or two very large graphs. This means that we
would be forced to lower the batch size, to avoid going out of memory when multiple large graphs
are batched together. Our Distributed Snake Strategy Sampler (DistributedSSSampler) employs a
bidirectional filling strategy, where graphs, sorted by their size, are distributed in a snake-like pattern,
initially assigned to GPUs from right to left, then left to right and so on. This method effectively pairs
large graphs with small ones in subsequent passes, preventing the concentration of multiple large
graphs on the same GPU, thus achieving efficient load balancing and uniform GPU utilization. A
detailed algorithm and more details are provided in Appendix C.1.

Figure 3: The computational benefits of
using our multi-graph sampling approach:
GPU memory utilization during distributed
training when using the default batch sampler
with 8 GPUs (left) vs. our DistributedSS-
Sampler for N=4 (middle) and N=64 (right)
GPUs. The total batch size is N × b.

We show the effectiveness of this approach in Figure 3,
where we demonstrate significantly lower variance in GPU
load compared to the default PyTorch batch sampler and
near 100% utilization. The effectiveness is more pro-
nounced the more GPUs are used1. This subsequently
allows us to use substantially larger batch sizes, resulting
in further improvement in stability and a significant 2 to
4x speed-up in training time.

2.2.3 OVERALL TIME AND MEMORY SAVINGS

In total, our largest model, trained on all the pretrain-
ing data, takes ~6 days to train on 8 A40 GPUs for 300
epochs. With our distributed sampler, each epoch takes ap-
proximately 56 minutes (0.93 hours), compared to 299.04
minutes (~5 hours) without it. By using the distributed
sampler, we observe a speedup of approximately 5.53x,
reducing the total training time from 33 days to 6 days.
Please refer to Appendix C for an ablation study on the proposed sampler and multi-graph packing
methods.

3 DATASETS

In standard practice, one would train on individual datasets, one at a time. However, to build our
large multigraph model, we needed to curate a large dataset of graphs that have varied structures,
features, and tasks.

Datasets used for pretraining. For pre-training, we curated a large set of 80 real-world graph
datasets from the PyTorch Geometric library (Fey & Lenssen, 2019a) and Network Repository (Rossi
& Ahmed) (Figure 2). These datasets span a wide range of domains, including: citation networks,
product recommendation graphs, webpage traffic graphs, biological protein-protein interactions, and
molecular graphs, and vary in their degree of heterophily (extent to which neighbors share the same
class or node-level labels). Each dataset contributes unique structural patterns and tasks, providing
a rich source for our model to learn diverse graph representations. In addition to these realworld
datasets, we generated 72 synthetic graphs (Tsitsulin et al., 2022) that vary in their hetero- and
homophily ratios and overall size and density (see Appendix B.1). We note that most datasets used in
popular benchmarks were left out of pretraining in order to test the pretrained model on these datasets
in out-of-distribution (OOD) finetuning.

In Figure 2, we show a summary of various graph statistics, including the number of nodes and edges,
the average degree of each node, and the homophily ratio of the graph. The homophily ratio ranges

1The same effect can be obtained using gradient accumulation when resource bound. See Appendix C.1
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from 0 to 1 and encodes the average amount of nodes with nearest neighbors from the same class.
When comparing our realworld datasets with the synthetic graphs added to the mix (Figure 2), we
see a good amount of overlap between most features except for the average degree. The average
degree of realworld graphs spans a larger range, and the synthetic graphs have a more limited range.
We also find an enrichment of heterophilic graphs with low homophily ratio in the added synthetic
data. In total, we counted more than 7.4M nodes and 163.9M edges across all 152 datasets used for
pretraining We point the reader to Appendix B.1 for a detailed description of all datasets.

Datasets for testing out-of-distribution transfer To demonstrate the adaptability of our pretrained
model through fine-tuning on unseen data (out-of-distribution datasets), we leverage a smaller, but
equally diverse set of graph datasets that are commonly used as benchmarks (see Appendix B.4). We
use 10 different datasets that range from academic collaboration networks like ”Coauthor-CS” and
”Coauthor-Physics” (Sinha et al., 2015) to webpage link datasets such as ”Chameleon” and ”Squirrel”
(Rozemberczki et al., 2021), which are particularly challenging due to their low homophily ratios,
indicating less connectivity within the same class. These datasets not only test the transferability of
the learned representations but also highlight the model’s capability in handling graphs with varied
node degrees and class distributions.

4 RESULTS

4.1 EXPERIMENTAL SETUP

Training: To train all of our models, we employed the LAMB optimizer (You et al., 2019) with
a learning rate of 10−4. The learning rate is scheduled based on a linear warmup of 2 epochs,
followed by cosine decay until the end of training. We use bfloat16 mixed-precision and flash
attention (Dao, 2023) for higher compute efficiency while training. We trained our largest model
(75M parameters) for 6.4 days on 8 NVIDIA A40 GPUs. We point the reader to further details on the
architecture and model training in Appendix A.1.

Baselines: We compared GRAPHFM against six baseline models that were consistently reported in
both heterophilic and homophilic benchmarks. This included two GNN-based models: GCN(Kipf
& Welling, 2016) and GAT(Velickovic et al., 2017), two transformer-based models: SAN (Kreuzer
et al., 2021) and NAGphormer (Chen et al., 2022b), and two heterophily-based models: MLP and
H2GCN (Zhu et al., 2020). For all of the baseline models, we include the best reported accuracy,
and when there are no reported results for a dataset, we extensively tuned each model as in standard
practice (see Appendix B.4). We also provide additional baselines in Appendix D.4 reported for
subsets of the datasets tested.

Evaluation: To evaluate the generalization of our pretrained model on new datasets that it hasn’t
encountered during pretraining, we employed two fine-tuning strategies: (i) Low-resource MLP
fine-tuning (MFT), where we freeze the encoder and node decoder weights and only update the
feature MLP weights, and (ii) combined MLP and node decoder fine-tuning (NFT), where we also
adapt the node decoder weights. MFT is aimed at evaluating near out-of-the-box performance by
leveraging the model’s pretrained knowledge, with minimal additional training, whereas NFT allows
for more flexibility by adjusting weights of the pretrained node decoder to better align with the OOD
data. For all the fine-tuning experiments, we used a learning rate of 10−3 and a weight decay of 10−5,
optimized using the AdamW optimizer (Loshchilov & Hutter, 2017), and use a gradual unfreezing
strategy to update the node decoder weights in our NFT experiments. Further details are provided in
the Appendix A.3.

4.2 EXPERIMENTS

Q1: IS IT POSSIBLE TO BUILD A LARGE MODEL SPANNING MANY DOMAINS?

Recent efforts in graph neural networks (GNNs) have shown success in training models on many
graphs (Beaini et al., 2023; Mao et al., 2024). However, these approaches primarily focus on graphs
with homogeneous structures, limiting their ability to generalize across different types of graphs. In
this experiment, we aim to address a more ambitious question: can we effectively train a large model
on diverse, multi-graph datasets that vary significantly in their topologies, features, and downstream
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classification tasks? Our goal is to determine whether a generalist model can span multiple graph
domains and improve out-of-distribution (OOD) performance through diverse pretraining.

A

B

Figure 4: Scaling Analysis: (A) Aver-
age accuracy across OOD datasets (MFT)
for model sizes (389K, 18M, 75M) and to-
ken counts (200K, 2M, 7.3M) seen during
pre-training, using random splits of the pre-
training data. (B) Accuracy on Coauthor-
CS (citation domain) and Amazon-Photo
(co-purchasing network) for the 75M model
across different domain-wise pre-training
splits.

We trained three different model sizes: a small model with
389K parameters, a medium model with 18M parameters,
and a large model with 75M parameters. Each model
was pretrained on progressively larger datasets containing
different amounts of graph data, ranging from 200K to-
kens (small), to 2M tokens (medium), and finally to 7.3M
tokens (large) , created by taking random subsets of the
largest dataset (refer to Appendix B.2 for more details).
The datasets span a variety of real-world graph types and
structures, as described in Section 3. For the largest scale
of data, we also introduced synthetic graphs into the mix to
further test the model’s ability to generalize across highly
diverse graph structures. The synthetic graphs provided
additional variability in both topologies and node features,
allowing us to assess how well the model can handle graph
data that extends beyond typical real-world scenarios.

To evaluate how well the pretrained models generalize to
new, unseen data, we applied our lightweight MLP fine-
tuning approach (MFT) on a set of nine held-out datasets.
These include four homophilic datasets (Coauthor-cs,
Coauthor-physics, Amazon-photos, and Amazon-comp)
and five heterophilic datasets (Texas, Wisconsin, Actor,
Squirrel, and Chameleon). As illustrated in Figure 4A, we
observe that performance on these OOD datasets improves
consistently as the data size increases. Notably, the largest
model, trained on the full 7.3M tokens, achieves a 2.1%
improvement in accuracy compared to the smaller models.

We further stratified our pretraining dataset to investigate
the effects of cross-domain training by creating three mod-
els: (i) “Soc” with social domain graphs (1.3M tokens),
(ii) “Soc + Bio” with social and biological graphs (2M
tokens), and (iii) “All” with all data, including synthetic
graphs (7.3M tokens). As shown in Figure 4B, adding biological datasets improved performance on
both Coauthor-CS (citation domain) and Amazon-Photo (co-purchasing network). This suggests that
performance continues to scale even if the additional data is from seemingly unrelated domains (refer
to Appendix D.1 for additional results).

These results underscore the importance of both model scale and data diversity. With more data
diversity and larger models, the pretrained model demonstrates stronger generalization capabilities.
This scaling analysis provides strong evidence that cross-domain pretraining enables better OOD
performance, further validating the benefits of training on diverse datasets. Detailed configurations
for each model size are provided in Appendix A.1.

Q2: HOW DOES OUR GENERALIST APPROACH COMPARE WITH OTHERS?

Next, we compared the performance of our largest model (75M) trained on all of the data, alongside
a number of message passing architectures and state-of-the-art transformer-based models. To adapt
our approach to new datasets, we freeze our pretrained encoder and then finetune either the feature
MLPs (MFT) or the feature MLPs and node decoder parameters (NFT). In both of these cases, we use
the same hyperparameters (learning rate = 10−3) to finetune the model. In the case of NFT, we also
incorporate a simple unfreezing schedule for updates which adds an additional two hyperparameters
that we need to tune (refer to Appendix A.3.2).

On both homophilic and heterophilic benchmarks (Table 1), GRAPHFM performs on par with state-
of-the-art specialist methods that are trained from scratch on each dataset. While the best-performing
model among the baseline methods varies across datasets, GRAPHFM consistently ranks among
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Table 1: Results on a variety of homophilic and heterophilic node classification benchmarks. From left to
right, we show different message passing and graph transformer architectures, and then GRAPHFM in both the
lightweight MLP-only finetuning (MFT) and node decoder finetuning (NFT). The top three numbers are bold,
with the highest in bright red fading to black. Models are ranked on all 10 datasets and the average and standard
deviation ranking is at the bottom.

GCN MLP GAT H2GCN SAN NAG GraphFM-MFT GraphFM-NFT

H
om

op
hi

lic Physics 95.38±0.20 95.12±0.26 95.14±0.28 96.28±0.13 96.83±0.18 96.66±0.16 96.64±0.17 96.77±0.12
CS 94.06±0.16 92.99±0.51 93.61±0.14 94.02±0.31 94.16±0.36 95.00±0.14 95.19±0.21 95.24±0.18

Photo 85.94±1.18 88.66±0.85 87.13±1.00 91.56±0.80 94.17±0.65 94.64±0.60 93.01±1.82 94.37±0.35
Computer 89.47±0.46 84.63 90.78±0.13 89.33±0.27* 89.83±0.16 91.22±0.14 89.95±0.83 90.07±0.21

Ogbn arxiv 70.40±0.10 52.63±0.12 67.56±0.12 68.29±0.67 69.17±0.15 68.21±0.02* 69.96±0.21 70.01 ± 0.18

H
et

er
op

hi
lic Texas 55.14±5.16 80.81±3.31 52.16±6.63 84.86±7.23 60.17±6.66 68.37±5.27* 80.81±2.76 82.16±3.24

Wisconsin 51.76±3.06 85.29±3.31 49.41±4.09 87.65±4.98 51.37±2.08 68.23±5.99* 83.13±2.35 83.62±3.21
Actor 27.32±1.10 36.63±0.70 27.44±0.89 35.70±1.00 27.32±1.10 34.33±0.94* 36.29±0.63 38.01±1.07

Chameleon 38.44±1.92 46.21±2.99 38.44±1.92 60.11±2.15 44.32±1.73* 57.39±0.02* 58.64±1.24 59.12±1.64
Squirrel 31.52±0.71 28.77±1.56 36.77±1.68 36.48±1.86 30.92±2.14* 49.93±0.07* 42.80±1.54 42.98±1.62

Avg Rank 5.8 ± 1.9 6.3 ± 2.5 6.2 ± 1.8 4.0 ± 2.5 4.7 ± 2.2 3.3 ± 1.8 3.3 ± 0.6 2.1 ± 0.7
* This result was missing from existing literature and was obtained through extensive hyperparameter tuning.
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Figure 5: Analysis of the learning dynamics. Learning dynamics for 100 (A) random GCN and (B) NAG
(NAGphormer) models compared against our lightweight finetuned model GraphFM (MFT) for four datasets.
GRAPHFM works out of the box and achieves rapid learning on new datasets with few training steps, while the
other approaches are less stable and often require early stopping with decreased performance over training.

the top three: GRAPHFM (NFT) achieves the highest average rank overall and GRAPHFM (MFT)
is tied for the second position with NAG. Note that GRAPHFM (MFT) demonstrates significantly
lower variance in rank, indicating more stable performance compared to NAG, which exhibits a more
bimodal distribution in its ranking.

In contrast, baseline models may excel on a few datasets but perform poorly on others. For example,
H2GCN is a top performer on heterophilic datasets but struggles with homophilic ones, whereas
NAG shows the opposite behavior. These baseline models are highly specialized and designed for
specific types of datasets, limiting their generalization across diverse graph types. Additionally,
it’s important to note that all baseline models underwent extensive hyperparameter tuning, whereas
GRAPHFM performs consistently well without any further tuning. Furthermore, NFT provides
significant benefit for datasets like photos and actor. By making part of the pre-trained model
learnable, we are able to better adapt to the OOD datasets.

Q3: HOW DOES OUR MODEL GENERALIZE OUT-OF-THE-BOX?

A major challenge in applying graph-based models is the extensive tuning often required to achieve
competitive performance. Most models are highly sensitive to hyperparameters like learning rate,
depth, and weight decay. Tuning these hyperparameters, especially across datasets with different
graph topologies and sizes, requires significant time and computational resources, and even then,
finding a good configuration can be difficult (Guo et al., 2022; Tsitsulin et al., 2022).
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In contrast, GRAPHFM offers strong out-of-the-box performance without requiring any significant
tuning. To demonstrate this, we evaluated GRAPHFM using the same fixed learning rate and weight
decay across multiple datasets (learning rate = 10−3, weight decay = 10−5) and observed stable
and high performance across all datasets (Figure 5). Fine-tuning GRAPHFM with our simple MFT
strategy resulted in low variance and rapid convergence, without the need for extensive hyperparameter
exploration. This makes GRAPHFM highly efficient and cost-effective compared to models that
require substantial tuning.

To highlight this contrast, we compared the performance of GRAPHFM with 100 randomly configured
versions of GCN and the best performing transformer-based NAGformer (Chen et al., 2022b). Both
baseline models exhibit a wide range of performance depending on the hyperparameter choices,
with some configurations leading to significant instability or poor results. For instance, in the Texas
dataset, GCN required exhaustive exploration of hyperparameter settings to find a stable and effective
configuration. Similarly, NAGformer’s performance fluctuated greatly depending on the dataset and
the selected parameters, further emphasizing the cost of tuning.

Figure 6: Comparison of model sen-
sitivity. The performance of GCN and
GRAPHFM for 100 different random
hyperparameters on Chameleon and
Coauthor-CS. Star denotes the model
with the optimal hyperparameters, and
the color indicates the ℓ2-distance be-
tween the optimal solution and each
model’s hyperparameters.

Additionally, GRAPHFM demonstrates quick convergence,
reaching near-optimal performance within 10-20 training steps,
in stark contrast to GCN, which required considerably more iter-
ations to converge. This efficiency is a direct result of leveraging
a pretrained model, which allows GRAPHFM to start from a
robust initialization and quickly adapt to the target task. The
reduced need for hyperparameter tuning and faster convergence
further solidify the advantages of pretraining in minimizing com-
putational overhead and time-to-solution. Ultimately, our results
position GRAPHFM as a cost-effective and reliable choice for
a wide range of node classification tasks.

Q4: HOW STABLE ARE THE SOLUTIONS?

Graph-based models are highly sensitive to hyperparameter con-
figurations, where even small deviations from optimal settings
can lead to substantial performance degradation. This sensitivity
poses significant challenges for ensuring stable and robust de-
ployment. Thus, we wanted to examine the stability of model
performance by exploring the performance landscape around the
optimal hyperparameter configuration. We analyze the perfor-
mance of both a GCN and GRAPHFM (MFT) on Coauthor-CS
(homophilic) and Chameleon (heterophilic) datasets for different
hyperparameters around the optimal solution (Figure 6). The
set of hyperparameters is marked with a star, and other mod-
els are colored based on the normalized ℓ2-distance of their
hyperparameter vectors to the optimal hyperparameter vector.
For GRAPHFM, we observe that the distribution is concentrated
around the optimal point, suggesting low sensitivity to the choice
of the hyperparameters used for finetuning. We also observe that the relationship between hyperpa-
rameter deviation and performance is linear. On the other hand, for the GCN model, small deviations
in hyperparameters can lead to large changes in performance, suggesting instability of the model with
respect to the hyperparameters and a much noisier landscape around the optimal model.

5 RELATED WORK

Graph foundation modeling approaches. Foundation models have achieved significant success
for language, vision and timeseries data (Radford et al., 2018; Dehghani et al., 2023; Das et al.,
2023). These models are pre-trained on large datasets and can be adapted to a wide range of
downstream tasks, effectively utilizing both prior knowledge from the pre-training stage and data
from the downstream tasks to enhance performance (Brown et al., 2020). The concept of foundation
models has recently extended into graph learning, leading to the development of Graph Foundation
Models (GFMs) (Ibarz et al., 2022; Beaini et al., 2023; Galkin et al., 2023; Mao et al., 2024). These
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models aim to generalize across diverse graph-structured data by leveraging large-scale pretraining,
similar to foundation models in vision and language domains. Recent efforts have primarily focused
on domain-specific GFMs, such as Mole-BERT for molecular graphs, which utilizes pretraining to
improve property prediction for molecules and materials (Xia et al., 2023). Additionally, large-scale
models like MatterSim (Yang et al., 2024), designed to predict molecular behaviors across different
elements and conditions.

Beyond domain-specific applications, GFMs are increasingly being developed for more general
tasks. Similarly, recent advancements have explored scaling laws in graph models, showing that
larger models can lead to improved transfer learning and generalization (Liu et al., 2024). Similar to
theirs, our work shows that scale improves performance. However, unique from all of these works is
our result for cross-domain pretraining to enhance generalization across diverse graph topologies.
Triplet-GMPNN (Ibarz et al., 2022) which is a foundational GNN for algorithmic reasoning tasks that
is trained to perform various tasks from the CLRS benchmark (Veličković et al., 2022), or ULTRA
(Galkin et al., 2023), a foundation model for knowledge graphs trained on graphs with arbitrary entity
and relation vocabularies. Recent work has also shown how to use language modeling to help unify
many graphs (Liu et al., 2023b).

Scaling up graph transformers. Graph transformers bypass standard local learning rules in GNNs
by allowing all nodes on the graph to interact through self-attention (Dwivedi & Bresson, 2020).
However, due to the high computational cost and benefits of the inductive bias in message passing, a
number of methods have been proposed to move beyond full self-attention or combine transformers
with GNNs. One class of methods combine transformer blocks with GNNs, including GraphTrans
(Wu et al., 2021), GraphGPS (Rampášek et al., 2022), and SAT (Chen et al., 2022a). Another
strategy is to reduce the computational complexity by using the transformer module on a coarsened
or compressed graph. For instance, ANS-GT (Zhang et al., 2022) introduced a node-sampling-based
graph transformers, incorporating hierarchical attention and graph coarsening, and Gapformer (Liu
et al., 2023a) uses k-hops local pooling and global pooling to coarsen the large graph into a smaller
set of nodes. Exphormer (Shirzad et al., 2023) coarsens the graph by doing computation through
expander graphs (Deac et al., 2022). This idea of compression has also been studied through the lens
of “skeletonization” (Cao et al., 2024) where they learn to identify uninformative background nodes
(Cao et al., 2024) and use this information to compress them to achieve competitive performance
with as little as 1% of the nodes in the graph. Many of these approaches leverage virtual nodes to
facilitate message passing across large graphs, however, the compression techniques used in these
works are often based on heuristics like pooling layers or expander graphs, in contrast to our work
where the compression is fully learned.

6 CONCLUSION

In this paper, we introduced GRAPHFM, a novel approach for multi-graph pretraining that effectively
handles diverse graph datasets across various domains. A key finding of our work is the positive
effect of scaling both model size and data diversity. We show that cross-domain pretraining leads to
better out-of-distribution performance, proving that the inclusion of diverse graph types significantly
enhances the model’s ability to adapt to new, unseen data. This reveals the potential for graph
foundation models to benefit from combining datasets across domains, facilitating more efficient and
robust training processes.

While our results are promising, there are several areas for future exploration. Our current work
primarily focuses on node-level classification tasks; extending GRAPHFM to support tasks like
graph-level classification, link prediction, and self-supervised learning could broaden its applicability.
Moreover, expanding the diversity of pretraining datasets, such as including point clouds, mesh
graphs, or knowledge graphs, may further enhance the model’s generalization capabilities and impact
across domains.

Looking ahead, we believe that generalist graph models like GRAPHFM have the potential to
transform a variety of fields, particularly in scenarios where data is scarce or incomplete. Our work
represents an important step toward more universal and adaptable graph models, and we anticipate
further research into cross-domain pretraining as a promising direction for the future of graph
learning.
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Csordás, Andrew Joseph Dudzik, Matko Bošnjak, Alex Vitvitskyi, Yulia Rubanova, Andreea Deac,
Beatrice Bevilacqua, Yaroslav Ganin, Charles Blundell, and Petar Veličković. A generalist neural
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APPENDIX

A ADDITIONAL MODEL DETAILS

A.1 MODEL CONFIGURATION DETAILS

We used pretrained 3 configuration of models—small (398K), medium (18M) and large (75M)—for
our analysis. Details of the configuration for each model are given in Table A1. In the first cross-
attention layer, we used flash attention, whereas for all subsequent attention layers, we used memory-
efficient attention. Both implementations were sourced from the xFormers library (Lefaudeux et al.,
2022).

Table A1: Architectural details of GraphFM for different parameter sizes used in Section 2.2

Parameter Count 75M 18M 389K

Num Latents (K) 512 256 32

Latent Dimension 512 256 32

Cross-Attention

Heads 4 4 4

FFN hidden dim 2048 1024 128

Self-Attention

Depth (L) 12 10 4

Heads 8 4 4

FFN hidden dim 2048 1024 128

Node Decoder

Depth (M ) 4 4 2

Heads 8 4 4

FFN hidden dim 2048 1024 128

A.2 RESCALING THE LEARNING RATES FOR DIFFERENT GRAPH SIZES

When training on variable sized graphs, the MLP and linear decoder for each dataset receive updates
based on the number of nodes from their respective datasets present in the batch and thus smaller
graphs get updated less frequently when compared to large graphs. To mitigate this imbalance, we
implemented dataset-specific learning rates for the feature MLP and linear decoders. Since they
receive updates less frequently, when they do, we use a larger learning rate to update them. Without
this adjustment, the weights of the common Perceiver encoder and node decoder would advance more
quickly than those of the dataset-specific components, potentially leading to suboptimal learning for
smaller datasets.

A.3 FINE-TUNING STRATEGIES

In our evaluation of GraphFM’s generalization capability, we employed two fine-tuning strategies
aimed at adapting the model to out-of-distribution (OOD) datasets.

A.3.1 LOW-RESOURCE MLP FINE-TUNING (MFT)

This approach is designed to assess how well the pretrained model performs out-of-the-box on
different OOD graphs without extensive training. In MFT, we freeze the pretrained model and only
fine-tune a lightweight multi-layer perceptron (MLP) on top of the learned representations. This
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strategy allows us to quickly adapt the model to new tasks while retaining the majority of the original
learned parameters. MFT is particularly useful in low-resource settings, where computational power
or time is limited, as it requires minimal additional training while still providing insight into how
well the pretrained model generalizes. For all MFT experiments, we used a learning rate of 10−3 and
a weight decay of 10−5, optimized using the AdamW optimizer (Loshchilov & Hutter, 2017).

A.3.2 MLP AND NODE DECODER FINE-TUNING (NFT)

In contrast to MFT, the NFT strategy involves fine-tuning part of the and is recommended when
sufficient computational resources are available and the goal is to extract the maximum performance
from the model. In NFT, we gradually unfreeze the node decoder, enabling the model to more
effectively adapt to the new dataset. Specifically, we set a predefined epoch U at which unfreezing
begins, starting from the bottom layers of the node decoder. After every S epochs, additional layers
are unfrozen in a bottom-up manner, facilitating gradual transition to full finetuning of the model.
Concurrently, the learning rate is decayed by a factor of 1.5 each time a new layer is unfrozen,
ensuring controlled parameter updates. For all datasets, we tune the hyperparameters U and S, with
U set to 10, 20, or 30 epochs and S set to 5 or 10 epochs. This gradual unfreezing mitigates training
instability, as smaller perturbations are made to higher-level feature representations. As a result, NFT
allows for better adaptation, particularly for out-of-distribution (OOD) datasets, and is well suited for
case when exploiting the capacity of pretrained models is critical.

B ADDITIONAL DETAILS ON DATASETS

B.1 PRETRAINING DATASETS

The largest model (75M parameters) was trained on 80 real world and 72 synthetic datasets. The real
world datasets and their characteristics are given in Table A3.

The synthetic datasets were created using the GraphWorld (Palowitch et al., 2022) using the Stochastic
Block Model (Holland et al., 1983). The generator parameters are listed in Table A2. In the graph
generation process, the node homophily ratio is varied. The homophily is given by the following
formula:

1

|V|
∑
v∈V

|{(v, w) : w ∈ N (v) ∧ yv = yw}|
|N (v)|

,

where V denotes the set of all nodes in the graph,N (v) denotes all the neighbors of an arbitrary node
v, and yv denotes the class membership of the node v ∈ V . We classify datasets into homophilic
datasets and heterophilic datasets based on the homophily score: datasets with homophily ≥ 0.5 are
classified as homophilic datasets and heterophilic datasets otherwise.

B.2 DETAILS ON SMALL AND MEDIUM SCALE DATASET

The small and medium scale datasets, as discussed in Section 4.2, were created by taking a random
subset of the large dataset(80 real and 72 synthetic).

Dataset subset for small scale data: The following datasets were used to train models with small
scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions, Twitch-EN,
Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA, Airports-
Europe, PolBlogs and EmailEUCore

Dataset subset for medium scale data: The following datasets were used to train models
with medium scale data: Wiki, BlogCatalog, Roman-empire, Minesweeper, Tolokers, Questions,
Twitch-EN, Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, LastFMAsia, Airports-USA,
Airports-Europe, PolBlogs and EmailEUCore, Reddit, Reddit2, Flickr, Yelp, PPI, Facebook, Amazon-
ratings, Minesweeper, Twitch-DE, Twitch-ES, FacebookPagePage, Airports-Brazil, penn94, reed98,
amherst41, johnshopkins55, genius, CitationFull-CiteSeer, CitationFull-Cora-ML and CitationFull-
PubMed
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Table A2: Graphworld generator parameters for synthetic graphs
Parameter Name Description Values
nvertex Number of vertices in the graph. [32, 500000]
p/q ratio The ratio of in-cluster edge probabil-

ity to out-cluster edge probability.
[0.1, 10.0]

avg. degree The average expected degrees of the
nodes.

[1.0, 20.0]

feature center distance The variance of feature cluster cen-
ters, generated from a multivariate
Normal.

[0.0, 5.0]

num clusters The number of unique node labels. [2, 6]
cluster size slope The slope of cluster sizes when

index-ordered by size.
[0.0, 0.5]

power exponent The value of the power law expo-
nent used to generate expected node
degrees.

[0.5, 1.0]

B.3 DETAILS ON SOCIAL AND BIOLOGY DOMAIN DATASETS

The social and biology datasets, as discussed in Section D.1 and Section 4.2, included the following
subsets:

Dataset subset for social domain: The following datasets were used to train the social-specific
model: fb-CMU-Carnegie49, Yelp,Wiki, BlogCatalog, Facebook, Twitch-DE, Twitch-EN, Twitch-
ES, Twitch-FR, Twitch-PT, Twitch-RU, DeezerEurope, GitHub, FacebookPagePage, LastFMAsia,
penn94, reed98, amherst41, johnshopkins55, genius and soc-pokec.

Dataset subset for biology domain: The following datasets were added as part of the biology
domain to train the combined social and biology model: BZR, DD, DD199, DD21, DD242, DD244,
DD349, DD497, DD6, DD68, DD687, DHFR, ENZYMES, ENZYMES118, ENZYMES123, EN-
ZYMES295, ENZYMES296, ENZYMES297, ENZYMES8, KKI, OHSU, PROTEINS-full, Peking-1,
Tox21 p53, gene, proteins-all and PPI.

B.4 FINETUNING DATASETS

For our evaluations, we held out a number of datasets that are used for standard benchmarks in both
larger scale node classification and heterophilic graphs.

B.4.1 HOMOPHILIC DATASETS

We use five real-world datasets, Amazon Computers and Amazon Photos (McAuley et al., 2015),
Coauthor CS and Coauthor Physics (Sinha et al., 2015) and Obgn-Arxiv (Hu et al., 2020). Key
statistics for the different datasets are listed in Table A3 in the finetuning-section. The experimental
setup follows that of (Luo et al., 2022), where we split the dataset into development and test sets. All
the hyperparameter tuning is done on the development set and the best models are evaluated on the
test set. The runs are averaged over 20 random splits to minimize noise. We follow a 60:20:20%
train/val/test split for the Amazon and Coauthor datasets. For Obgn-Arxiv we follow the experimental
setup used in (Hu et al., 2020). The results for the Coauthor-Physics, Coauthor-CS, and Amazon-
Photos obtained from in Table A6 have been sourced from (Liu et al., 2023a). The results for the
Amazon-Comp dataset are taken from (Hoang et al., 2023) except for MLP which was obtained from
(Luo et al., 2022).
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Table A3: Pre-Training Datasets and their characteristics
Dataset Number of Graphs Nodes Edges Homophily Ratio Average Degree Node Features Node Classes Learning Rate

Pr
e-

Tr
ai

ni
ng

BA-1 10 60-L5 1 804 46410 0.2 115.45 1 5 0.0014
BA-2 24 60-L2 1 10693 639750 0.5 119.66 1 2 0.0087
BZR 405 35.75 76.71 0.42 0.07 1 53 0.0082
CL-100K-1d8-L9 1 92482 373989 0.11 8.09 1 9 0.00064
CL-10K-1d8-L5 1 10000 44896 0.2 8.98 1 5 0.00096
DD 1178 284.32 1431.32 0.07 0.058 1 89 0.00085
DD199 1 841 1902 0.067 4.52 1 20 0.00085
DD21 1 5748 14267 0.07 4.96 1 40 0.00085
DD242 1 1284 3303 0.08 5.14 1 20 0.00042
DD244 1 291 822 0.074 5.65 1 20 0.00085
DD349 1 897 2087 0.05 4.65 1 20 0.00085
DD497 1 903 2453 0.06 5.43 1 20 0.0028
DD6 1 4152 10320 0.07 4.97 1 20 0.00085
DD68 1 775 2093 0.072 5.4 1 20 0.0028
DD687 1 725 2600 0.06 7.17 1 20 0.0028
DHFR 756 42.43 89.09 0.32 0.04 3 53 0.0018
ENZYMES 600 32.63 124.27 0.67 0.09 18 3 0.0020
ENZYMES118 1 96 121 0.58 2.52 1 2 0.00087
ENZYMES123 1 90 127 0.52 2.82 1 2 0.0076
ENZYMES295 1 124 139 0.71 2.24 1 2 0.0076
ENZYMES296 1 126 141 0.72 2.24 1 2 0.00087
ENZYMES297 1 122 149 0.65 2.44 1 2 0.0020
ENZYMES8 1 88 133 0.77 3.02 1 2 0.0076
ER-AvgDeg10-100K-L2 1 99997 499332 0.50 9.99 2 2 0.0049
ER-AvgDeg10-100K-L5 1 99997 499332 0.20 9.99 1 5 0.0013
KKI 83 26.96 96.84 0 0.39 1 189 0.0012
MSRC-21 563 77.52 396.65 0.74 0.13 1 24 0.0063
MSRC-21C 209 40.28 193.20 0.61 0.27 1 22 0.0017
MSRC-9 221 40.58 193.21 0.69 0.26 1 10 0.009
OHSU 79 82.01 399.32 0 0.56 1 189 0.0095
PLC-40-30-L5 1 11025 437979 0.2 79.45 1 5 0.0086
PLC-60-30-L2 1 117572 7045181 0.5 119.84 1 2 0.0013
PROTEINS-full 1113 39.06 145.63 0.97 0.05 2 8 0.0063
Peking-1 85 39.31 154.71 0 0.44 1 189 0.0027
SW-10000-6-0d3-L2 1 10000 30000 0.5 6 1 2 0.00096
SW-10000-6-0d3-L5 1 10000 30000 0.2 6 1 5 0.0088
SYNTHETIC 300 100 392 0.18 0.16 1 8 0.0018
TerroristRel 1 881 8592 0.92 19.51 1 2 0.0033
Tox21 p53 1 153563 314046 0.62 4.09 1 46 0.00054
fb-CMU-Carnegie49 1 6637 249967 0.5 75.33 1 3 0.0010
gene 1 1103 1672 0.4 3.03 1 2 0.012
proteins-all 1 43471 162088 0.66 7.46 1 3 0.00075
reality-call 1 27058 51200 0.9 15 1 2 0.0071
Reddit 1 232965 114615892 0.76 983.98 602 41 0.0035
Reddit2 1 232965 23213838 0.78 199.29 602 41 0.0035
Flickr 1 89250 899756 0.31 20.16 500 7 0.0051
Yelp 1 716847 13954819 - 38.93 300 1001 0.00031
Wiki 1 2405 17981 0.71 14.95 4973 17 0.0012
BlogCatalog 1 5196 17981 0.40 132.21 8189 6 0.0099
PPI 1 56944 1612348 0.63 56.63 50 121 0.0016
Facebook 1 4039 88234 0.99 43.69 1283 193 0.0011
Roman-empire 1 22662 65854 0.05 5.81 300 18 0.0074
Amazon-ratings 1 24492 186100 0.38 15.2 300 5 0.00082
Minesweeper 1 10000 78804 0.68 15.76 7 2 0.0088
Tolokers 1 11758 1038000 0.59 176.56 10 2 0.0022
Questions 1 48921 307080 0.84 12.55 301 2 0.0061
Twitch-DE 1 9498 315774 0.64 66.49 128 2 0.0023
Twitch-EN 1 7126 77774 0.59 21.82 128 2 0.0010
Twitch-ES 1 4648 123412 0.59 53.10 128 2 0.0011
Twitch-FR 1 6551 231883 0.54 70.79 128 2 0.0010
Twitch-PT 1 1912 64510 0.58 67.47 128 2 0.0012
Twitch-RU 1 4385 78993 0.63 36.02 128 2 0.0011
DeezerEurope 1 28281 185504 0.52 13.11 128 2 0.0070
GitHub 1 37700 578006 0.84 30.66 128 2 0.0065
FacebookPagePage 1 22470 342004 0.88 30.44 128 2 0.00085
LastFMAsia 1 7624 55612 0.87 14.59 128 18 0.0092
Airports-Brazil 1 131 1074 0.46 16.39 131 4 0.0013
Airports-Europe 1 399 5995 0.40 30.05 399 4 0.0015
Airports-USA 1 1190 13599 0.69 22.85 1190 4 0.0092
PolBlogs 1 1490 19025 0.91 25.54 1 2 0.0013
EmailEUCore 1 1005 25571 0.36 50.89 1 42 0.0032
penn94 1 41554 2724458 0.51 131.11 4814 2 0.0064
reed98 1 962 37624 0.52 78.22 745 2 0.0032
amherst41 1 2235 181908 0.53 162.78 1193 2 0.011
johnshopkins55 1 5180 373172 0.55 144.08 2406 2 0.0025
genius 1 421961 984979 0.62 4.67 12 2 0.00040
CitationFull-CiteSeer 1 4230 10674 0.95 5.04 602 6 0.0011
CitationFull-Cora-ML 1 2995 16316 0.78 10.89 2879 7 0.0028
CitationFull-PubMed 1 19717 88648 0.80 8.99 500 3 0.00087
soc-pokec 1 1632803 30622564 0.44 37.51 500 3 0.00019

1 Multi label binary classification.

Table A4: Fine-Tuning Datasets and Their Characteristics
Dataset Number of Graphs Nodes Edges Homophily Ratio Average Degree Node Features Node Classes
Actor 1 7600 30019 0.21 7.89 932 5
Amazon-Computers 1 13752 4491722 0.77 71.51 767 10
Amazon-Photo 1 7650 238162 0.82 62.26 745 8
Coauthor-CS 1 18333 163788 0.80 17.86 6805 15
Coauthor-Physics 1 34493 495924 0.93 28.75 8415 5
Chameleon 1 2277 36101 0.23 31.70 2325 5
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B.4.2 HETEROPHILIC DATASETS

We use five real-world datasets with graphs that have a homophily level ≤ 0.30, Texas, Wisconsin
and Actor (Pei et al., 2020) and Chameleon and Squirrel (Rozemberczki et al., 2021). Key statistics
for the different datasets are listed in Table A3 in the finetuning-section. We follow the experimental
setup in (Pei et al., 2020), and use the same 10 train/val/test splits that are provided. The results for
GCN based methods and heterophily based methods in Table A7 have been taken from (Azabou et al.,
2023), and the results for transformer based methods have been taken from (Liu et al., 2023a)

B.5 STANDARD HYPERPARAMETER SEARCH GRID FOR BASELINES

The hyperparameter search space grid used for tuning baselines for Table 1 is detailed in Table A5.

Table A5: Hyperparameter Search Space

Hyperparameter Type Range

Hidden Dim Categorical {16, 32, 64, 128}
Depth Categorical {1, 2}
Dropout Uniform [0.0, 0.9]

Learning Rate Log uniform [5e-5, 5e-1]

Weight Decay Log uniform [1e-5, 1e-2]

C ADDITIONAL DETAILS ON MULTI-GRAPH TRAINING

One key aspect of our work is testing scale. Thus, to build a model across large amounts of diverse
graph data, we developed a number of approaches for efficient training and multi-GPU usage.

Figure A1 shows an ablation study the epoch time for various GPU optimizations we have proposed
in Section 2.2. The epoch time was calculated using the medium-sized model with 18M parameters,
as detailed in Appendix A.1.

Note: Removing chaining made it impossible to run the largest model (75M parameters) with our
available computational resources (8 A40 GPUs). Therefore, we performed the ablation using the
medium-sized model. This highlights the significance of our optimization techniques, which enabled
us to scale up and run such large models efficiently.

C.1 DISTRIBUTEDSSSAMPLER

graphFM graphFM
-sampler

graphFM
-sampler
-packing

100
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Figure A1: Ablation for GPU optimizations:
Epoch time in minutes on removing various gpu
optimizations proposed for GRAPHFM

In designing this sampler, we prioritized ensuring that
it neither introduces bias into the data sampling pro-
cess nor alters the distribution of the graphs from the
datasets. Its primary function is to enhance batch con-
struction and distribution across GPUs.

First, the sampler defines a set of N buckets with a
fixed node budget B, where N can be the number of
GPUs and B is the node-level batch size. The graphs
(across all GPUs) are sorted in descending order based
upon their size. The sampler then employs a bidirec-
tional filling strategy within the buckets. The distri-
bution process, as described in Algorithm 1 involves
distributing graphs in a snake-like pattern, initially fill-
ing from right to left, then switching to left to right
and so on. When a graph is added to a bucket, it uses
up part of the budget, equal to its size. This method
effectively pairs larger graphs with smaller ones in
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subsequent passes, preventing the concentration of multiple large graphs on the same GPU, thus
achieving efficient load balancing and uniform GPU utilization. Figure A2A shows an overview of
how the sampler distributes the graphs into buckets. We find that stability is improved with a larger
number of buckets N (Figure A2B). When the number of GPUs is fixed, we can achieve a larger N
by using gradient accumulation, which artificially increases the number of buckets by a factor equal
to the number of accumulation steps, without biasing the sampling process.

Algorithm 1 Distribute graph nodes into virtual GPU buckets
1: input: Batch size B, Bucket count N , Graphs in the dataset G = {G0,G1, . . .}, Subgraphs

sampled for this minibatch Gm = {Gm0 ,Gm1 , . . .}
2: precondition:

∑
i |Gmi | == N ×B

3: initialize:
4: buckets← array of N empty arrays # will store subgraphs in each bucket
5: counts← array of N zeroes # will store number of nodes in each bucket
6: b← 0 # bucket index
7: d← 1 # direction
8: Sort Gm according to node-counts in G, largest graph goes first
9: for all Gmi in Gm do

10: while |Gmi | > 0 do
11: if counts[b] < B then
12: # insert a part of Gmi into bucket b
13: n← min(|Gmi |, B − counts[b])
14: counts[b]← counts[b] + n
15: append first n nodes of Gmi to buckets[b]
16: remove first n nodes from Gmi
17: end if
18: # go to the next bucket, switching direction at the boundaries
19: b← b+ d
20: if b ≥ N or b < 0 then
21: d← −d
22: b← b+ d
23: end if
24: end while
25: end for
26: return buckets

Figure A2: Multi-GPU utilization: A: A diagram visualizing our sample distribution strategy. B: GPU memory
utilization during distributed training when using the default batch sampler vs. our DistributedSSSampler for
N=4 and N=64 buckets.

C.2 GRAPHSAINT RANDOM WALK SAMPLER

Efficient neighborhood sampling for large graphs is crucial for our node decoder, as traditional
methods for k-hop neighborhood sampler often become computationally prohibitive with the in-
creasing size and complexity of the graph data. To overcome these limitations, we have adopted the
GraphSAINT Random Walk Sampler (Zeng et al., 2019), specifically designed for efficient sampling
in large-scale graphs.
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C.3 RAM OPTIMIZATION IN MULTI-GPU ENVIRONMENTS

In multi-GPU training environments, efficient use of system memory is crucial, especially when
handling large graph datasets. Traditional approaches lead to substantial memory redundancy, as
each GPU process typically loads a complete dataset into system RAM. This results in each process
duplicating the dataset in system memory, leading to inefficient memory usage and potential system
overload.

To address this, we utilize a shared memory management approach using Python’s
multiprocessing.Manager() to coordinate dataset access across multiple GPU processes.
This method ensures that each dataset is loaded into RAM only once, regardless of the number of
GPUs, thereby avoiding duplication and conserving memory resources.

D ADDITIONAL EXPERIMENTS

D.1 SEPARATING PRETRAINING DATASETS INTO DIFFERENT DOMAINS

We further stratified our pretraining dataset to invetigate the effects of cross-domain training, and
created three models that contained: (i) graph datasets from “social domains” including product
graphs and citation networks (1.3M tokens), (ii) both the social datasets and all biological graphs in
the dataset (Bio+Soc, 2M tokens), and (iii) compare with our model trained on all data including
sytnthetic graphs (7.3M tokens).

When comparing graph features across social and biological domains, we found distinct structural
differences: biological datasets generally exhibited higher levels of heterophily, lower average
degree, and fewer edges, whereas social graphs showed more homophily, higher degrees, and denser
connections (Figure A4B). Synthetic graphs added a wide range of characteristics, particularly
increasing the number of heterophilic graphs used in pretraining, which contributed to a broader
diversity of features (Figure A4A).
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Figure A3: Domain Scaling: Average accuracy
across OOD datasets (using MFT) for models
trained on different subsets of data

All three models were then fine-tuned on four ho-
mophilic datasets (coauthor-CS, coauthor-physics,
amazon-photos, and amazon-computers) and five het-
erophilic datasets (Texas, Wisconsin, Actor, Squirrel,
and Chameleon) held out for fine-tuning.

As shown in Figure A3 we find that incorporating biol-
ogy datasets despite being seemingly unrelated to the
target domain—improved performance on the OOD
datasets. This suggests that knowledge learned from
the biology domain positively impacts performance in
seemingly unrelated domains. Furthermore, adding all
available datasets, including synthetic graphs, boosted
performance even more, indicating that diversity (not
just domain specific data), is the key to improving
generalization.

D.2 SCALING ANALYSIS BREAKDOWN FOR DIFFERENT TEST DATASETS

The main text shows the average scaling. We break down the scaling performance for different
datasets (Figure A5). All of the datasets benefit from scale, with more difficult datasets benefiting
more from scaling the model size and dataset.

D.3 RANKING OF DIFFERENT MODELS

We visualize the ranking of the different models (Figure A6).
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Figure A4: Characteristics of graph datasets used to train GraphFM: From left to right, we compute the
histograms of the homophily ratio, average degree, number of nodes and number of edges of all 152 graphs used
during training. The homophily ratio provides a measure of how frequently a node is directly connected to other
nodes from the same class.
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Figure A5: Accuracy as the model and dataset size are increased. Results are shown for four datasets,
Chameleon and Wisconsin (heterophilic), and Coauthor Physics and Amazon Photo (homophilic).

D.4 ADDITIONAL BASELINES

The main text presents a comparison of GRAPHFM with baselines that are more consistently reported
across the literature. Table A6 and Table A7 provides additional baselines for all the OOD datasets.
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Figure A6: Mean rank of various models accross 10 OOD datasets (lower is better).

Table A6: Results on node classification tasks for large graph datasets. We report the accuracy (%) with
standard deviation over 10 splits (OOM indicates Out of Memory).

Method Photo Physics CS ogbn-arxiv Comp
GCN-based methods

GCN 85.94±1.18 95.38±0.20 94.06±0.16 70.40±0.10 89.47 ± 0.46
GatedGCN 57.84±14.6 95.89±0.21 89.94±2.24 62.71±1.76 -
APPNP 84.71±1.25 95.04±0.31 87.49±0.48 70.20±0.16 90.18 ± 0.17
GCNII 67.06±1.74 94.88±0.32 84.23±0.78 69.78±0.16 -
GAT 87.13±1.00 95.14±0.28 93.61±0.14 67.56±0.12 90.78 ± 0.13
GATv2 81.52±3.23 95.02±0.32 88.46±0.61 68.84±0.13 -
SuperGAT 85.83±1.29 95.11±0.26 88.11±0.43 66.99±0.07 -

Heterophily-based methods
MLP 88.66±0.85 95.12±0.26 92.99±0.51 52.63±0.12 84.63
MixHop 93.24±0.59 96.34±0.22 93.88±0.63 70.83±0.30 -
H2GCN 91.56±0.70 96.28±0.13 94.02±0.31 68.29±0.67 89.33 ± 0.27
FAGCN 87.53±0.75 95.86±0.12 91.82±0.54 66.12±0.02 -
GPRGNN 92.27±0.44 96.06±0.21 93.60±0.36 68.28±0.21 89.32 ± 0.29

Graph Transformer-based methods
SAN 94.17±0.65 96.83±0.18 94.16±0.36 69.17±0.15 89.83 ± 0.16
Graphormer 85.20±4.12 OOM OOM OOM OOM
LiteGT - OOM 92.16±0.44 OOM -
UniMP 92.49±0.47 96.82±0.13 94.20±0.34 73.19±0.18 -
DET 91.44±0.49 96.30±0.18 93.34±0.31 55.70±0.30 -
NAGphormer 94.64±0.60 96.66±0.16 95.00±0.14 68.21 ± 0.021 91.22 ± 0.14
GRAPHFM -MFT 93.01±1.82 96.64±0.17 95.19±0.21 65.29±0.16 89.95 ± 0.83
GRAPHFM -NFT 94.37±0.35 96.77±0.12 95.24±0.18 70.01±0.18 90.07 ± 0.21
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Table A7: Results on node classification tasks for heterophilic graphs. We report the test accuracy across many
heterophilic graph benchmark datasets. The standard deviation is reported across 10 train/test splits.

Method Texas Wisconsin Actor Squirrel Chameleon
GCN-based methods

GCN 55.14 ± 5.16 51.76 ± 3.06 27.32 ± 1.10 31.52 ± 0.71 38.44 ± 1.92
GAT 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 36.77 ± 1.68 48.36 ± 1.58
GraphSAGE 82.43 ± 6.14 81.18 ± 5.56 34.23 ± 0.99 41.61 ± 0.74 58.73 ± 1.68

Heterophily-based methods
MLP 80.81 ± 4.75 85.29 ± 3.31 36.63 ± 0.70 28.77 ± 1.56 46.21 ± 2.99
HH-GCN 71.89 ± 3.46 79.80 ± 4.30 35.12 ± 1.06 47.19 ± 1.21 60.24 ± 1.93
HH-GAT 80.54 ± 4.80 83.53 ± 3.84 36.70 ± 0.92 46.35 ± 1.86 61.12 ± 1.83
HH-GraphSAGE 85.95 ± 6.42 85.88 ± 3.99 36.82 ± 0.77 45.25 ± 1.52 62.98 ± 3.35
MixHop 77.84 ± 7.73 75.88 ± 4.90 32.22 ± 2.34 43.80 ± 1.48 60.50 ± 2.53
GGCN 84.86 ± 4.55 86.86 ± 3.29 37.54 ± 1.56 55.17 ± 1.58 71.14 ± 1.84
H2GCN 84.86 ± 7.23 87.65 ± 4.98 35.70 ± 1.00 36.48 ± 1.86 60.11 ± 2.15

Graph Transformer-based methods
SAN 60.17 ± 6.66 51.37 ± 3.08 27.12 ± 2.59 39.92 ± 2.14 44.32 ± 1.73
UniMP 73.51 ± 8.44 79.60 ± 5.41 35.15 ± 0.84 - -
ET 56.76 ± 4.98 54.90 ± 6.56 28.94 ± 0.64 - -
NAGphormer 63.51 ± 5.85 62.55 ± 6.22 34.33 ± 0.94 49.93 ± 0.07 57.39 ± 0.02
Gapformer 80.27 ± 4.01 83.53 ± 3.42 36.90 ± 0.82 - -
GRAPHFM -MFT 80.81 ± 2.76 83.13 ± 2.35 36.29 ± 0.63 42.80 ± 1.54 58.64 ± 1.24
GRAPHFM -NFT 82.16 ± 3.24 83.62 ± 3.21 38.01 ± 1.07 42.98 ± 1.62 59.12 ± 1.64
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