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Abstract—RGB-IR image pairs are frequently applied simul-
taneously in various applications like intelligent surveillance.
However, as the number of modalities increases, the required data
storage and transmission costs also doubles. Therefore, efficient
RGB-IR data compression is essential. This work proposes a joint
compression framework for RGB-IR image pair. Specifically,
to fully utilize cross-modality prior information for accurate
context probability modeling within and between modalities, we
propose a Channel-wise Cross-modality Entropy Model (CCEM).
Among CCEM, a Low-frequency Context Extraction Block
(LCEB) and a Low-frequency Context Fusion Block (LCFB) are
designed for extracting and aggregating the global low-frequency
information from both modalities, which assist the model in
predicting entropy parameters more accurately. Experimental
results demonstrate that our approach outperforms existing
single-modality image compression methods on LLVIP dataset.
Compared to MLIC++, the best-performing image codec on the
Kodak dataset, our proposed framework achieves a bit rate
saving of 14.6% for RGB-IR pair.

Index Terms—Image compression, multi-modality image com-
pression, cross-modality entropy model, RGB-IR joint image
compression.

I. INTRODUCTION

Recently, RGB-IR images pairs captured within the same
scene have been jointly applied to various practical scenarios
[1]–[3]. This is largely due to the fact that the advantages
of RGB and IR modalities are complementary. RGB images,
known for their high resolution and ability to capture fine
details such as textures, are limited by the reliance on ambient
lighting. [4] However, this limitation can be mitigated by
incorporating IR images because of the low sensitivity to
illumination changes. Nevertheless, the use of RGB-IR image
pairs significantly increases the amount of data that needs to be
transmitted and stored. Consequently, developing an efficient
joint compression method for RGB-IR image pairs has become
a crucial and challenging task.

Over the past decades, deep learning-based image compres-
sion methods [5]–[10] have been extensively developed, push-
ing the boundaries of rate-distortion performance. It is intuitive
to compress RGB and IR modalities independently using these
neural codecs. However, the redundancy between RGB and
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IR modalities is not fully exploited during the compression,
thereby limiting the overall rate-distortion performance.

In recent years, several multi-modality data compression
methods [11], [12] have been proposed. However, most of
these methods are specifically designed for visible images
paired with depth or hyperspectral images, which are not
suitable for compressing RGB-IR image pairs due to the
different distributions between modalities. For example, Un-
like depth image which uses depth for spatial geometry, ir
image integrates infrared data to capture thermal properties
and reduce sensitivity to lighting. For RGB-IR image pairs,
a learning-based multimodal image compression framework
[13] leverages one modality as an anchor to assist in the
encoding and decoding process of the other modality. While
this approach enhances the compression performance of one
modality, it does not leverage the cross-modality correlation
in the context-based entropy model, thereby limiting the rate-
distortion performance of both modalities, which is often
necessary in practical applications where RGB-IR image pairs
are used together [14], [15]. Besides, the compression cannot
be performed simultaneously, as one modality has to be
decoded at first to serve as an anchor for compressing another,
which lowers the computation efficiency. Therefore, designing
a framework capable of jointly compressing RGB-IR image
pairs by fully exploiting cross-modality correlations as prior
information to enhance performance remains a challenge.

In this paper, our main contribution is to propose a
dual-branch learning-based RGB-IR joint image compression
framework. We design a Channel-wise Cross-modality En-
tropy Model (CCEM) to fully utilize cross-modality prior in-
formation for accurate context probability modeling within and
between modalities. Specifically, we propose Low-frequency
Context Extraction Block(LCEB) and Low-frequency Context
Fusion Block(LCFB) to extract and aggregate low-frequency
prior information to further reveal the dependency between the
modalities. Besides, unlike previous learning-based method for
RGB-IR image pair compression, our approach does not re-
quire decoding one modality’s image to be an anchor for com-
pressing another. According to the experimental results, our
proposed framework attains state-of-the-art performance com-
pared to existing single-modality image compression methods



Fig. 1. The overall framework of the proposed method. The network consists of an encoder, a Channel-wise Cross-Modality Entropy Model and a decoder.
AE, AD denote arithmetic encoding and decoding, respectively. Q denotes the quantizer, C and S denote concat and split operation, ”↑ 2” and ”↓ 2” denote
upsampling and downsampling by a factor of two, respectively.

on LLVIP dataset [16].

II. PROPOSED METHOD
A. Overall Architecture

The overall architecture of our RGB-IR joint compression
framework is illustrated in Fig. 1. We use a transformer-based
encoder-decoder architecture. Before compression, the RGB
and IR image are converted to the YUV420 format, and the
Y, U, V, and IR channels are used as inputs of the model.
First, the input channels are individually fed into the Encoder
for feature extraction. We use a residual network [6] combined
with a self-attention-based module [17] to obtain feature maps
yy , yu, yv , and yir for each input channel. The feature maps
from the Y, U, and V channels are then concatenated to form
a unified YUV feature yyuv . We use cross-attention to embed
cross-modality information within the latent representations
yyuv and yir. Subsequently, yyuv and yir are quantized to
ŷyuv and ŷir, and fed into the proposed Channel-wise Context-
based Cross-modality Entropy Model for accurate symbol
probability prediction. Finally, ŷyuv and ŷir are input into
the decoder for upsampling and image reconstruction. We
denote the encoder, quantizer, decoder as ga(·), Q(·), and
sa(·), respectively. The overall process can be formulated as:

yi = ga(x
i; θ), ŷi = Q(yi), x̂i = gs(ŷi;ϕ) (1)

where xi and x̂i represents one of the input and output
channels and θ, ϕ are learnable parameters.

B. Channel-Wise Cross-modality Entropy Model

The entropy model, plays a key role in boosting compres-
sion performance by estimating the distribution of the latent

representation. Minnen et al. [17] introduced an entropy model
based on spatial autoregressive prediction, surpassing the com-
pression performance of H.265. To accelerate decoding, an-
other work [18] have proposed to split the latent representation
into multiple slices and leveraging inter-channel correlations
to autoregressively predict the entropy model parameters for
each slice. Based on this, MLIC++ [10] incorporates multiple
perspectives of context information as multi-references to

Fig. 2. The architecture of Low-frequency Context Fusion Block(LCFB). PE,
PR, LN represent Patch Embedding, Patch Recovery, LayerNorm, respectively.



predict entropy model parameter more accurately. For RGB-
IR image pairs, utilizing cross-modality information as a prior
context to enhance the accuracy of entropy model parameter
prediction is a natural and worthwhile problem to explore.

The global low-frequency information of RGB images and
IR images from the same scene is highly similar [20]. There-
fore, it is reasonable to infer that, in the compression of
RGB-IR image pairs, extracting and aggregating the global
low-frequency information from both modalities as a condi-
tional prior will enable the context-based entropy model to
predict the parameters of the entropy model more accurately,
thereby effectively reducing the bit rate. We designed the
Low-frequency Context Extraction Block (LCEB) and Low-
frequency Context Fusion Block (LCFB). The LCEB adopts
the same structure as the Lite Transformer [20] and loads its
pre-trained model at the start of training. As shown in Fig. 2,
Instead of using a concatenation operation, we designed the
LCFB based on agent-attention [21] to better aggregate global
low-frequency information from two modalities. The pipeline
for processing the latent representations of the two modalities
through the LCFB is as follows:
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K , FirW

V
}
,
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(
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)
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F = softmax
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)
V ′,

Ffusion = F +DWC(V ).

(2)

where Frgb and Fir represent feature of input slices. WQ,
WK , WV are linear projection matrices to map the input
features into query Q, key K, and value V spaces, respectively.
d, B represent the dimension and relative position bias ,
respectively. DWC is a depth-wise convolution module [22].
We see the output Ffusion as the aggregated global low-
frequency information from two modalities and use this con-
text in entropy model to get more accurate entropy parameters.

In our proposed method, we design a Channel-wise Cross-
modality Entropy Model (CCEM) for more accurate probabil-
ity estimation. The architecture of CCEM is shown on the left
side of Fig. 3. The latent representation generated from the
encoder is fed into a hyperprior model to obtain spatial prior
information. Additionally, the latent representation is divided
into slices {ŷm

0, ŷm
1, · · · ŷm

N}, where m represents one of
input modalities. For the IR latent representation, the first slice
uses only the hyperprior as context to predict entropy model
parameters. For the ith slice, we use the previous slices to
exact context and predict entropy parameters. In particular, the
slices from 1 to i− 1 are concatenated and processed through
a Low-frequency Context Extraction Block (LCEB) to extract
global low-frequency information. The global low-frequency
context and hyperprior context are then used to predict entropy
parameters. For the RGB latent representation, in addition to
the above, the jth slice is processed by concatenating the pre-
ceding j− 1 slices with the global low-frequency information

from the previously obtained IR latent representation and input
into a Low-frequency Context Fusion Block (LCFB) to derive
cross-modality information. This additional cross-modality
information is used to further improve the accuracy of the
entropy model parameter prediction. Specifically, we denote
ŷir and ŷr as the latent representation of two modalities. ẑ
represents the side information extracted from hyperprior. The
probability distribution of the latent variables pŷir and pŷr can
be formulated as:

pŷir|ẑir (ŷir|ẑir) =
N∏
i=1

pŷi
ir|ŷ

<i
ir ,ẑir

(ŷiir|ŷ<i
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pŷi
r|ŷ
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r ,ŷir,ẑr
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r , ŷir, ẑr).

(3)

C. Loss Function

The loss function L of our framework is described as:

L = Rir +Rrgb + λ(Dir +Drgb). (4)

where Rir and Rrgb are the bit rate cost of two modalities,
they can be calculated by the probability distribution of latent
representations. Drgb and Dir are calculated as the pixel-wise
mean square error (MSE) between compressed and original
image.

III. EXPERIMENTS

A. Experiment Details

Baseline and Metric We compare our model with the
best-performing single-modality codec on the Kodak dataset,
MLIC++ [10], and the classic end-to-end codec, Cheng2020
[6]. Additionally, we introduce traditional single-modality
image compression method BPG [23], for comparison with
our model. We use PSNR to assess the quality of compressed
images and Bjontegaard delta rate (BD-Rate) [24] to evaluate
the rate-distortion performance. Considering our ultimate goal
is the joint compression of RGB-IR image pairs, we compare
the average PSNR of both modalities and the corresponding
BD-rate with the baseline models. Note that our evaluation
metrics are computed in the YUV420 domain.

Training strategy and details Considering that joint
training of both modalities from the beginning would require
the model to simultaneously process multiple channels from
two modalities, it’s difficult to learn the features of each
modality and their cross-modality correlations. During model
training, we propose a two-stage training method. In the first
stage, we focus on training for compressing the RGB data.
Specifically, after converting the RGB modality to YUV, we
input the Y channel data into the proposed model for training.
This approach ensures that the model can effectively extract
features from the RGB modality in the early stages. After
completing the first stage, we proceed to jointly optimize both
the RGB and IR modalities. Experimental results show that



Fig. 3. The architecture of the proposed Channel-wise Cross-Modality Entropy Model. The latent representations are split into slices and sent to hyperprior
model. The encoded slices are fed into Low-frequency Context Extraction Block (LCEB) and Low-frequency Context Fusion Block (LCFB) to extract global
low-frequency prior, then in slice entropy model ei, hyperprior context and global low-frequency context are used to predict entropy parameter. LRP represents
latent residual prediction module. C denotes concatenate operation.

adopting this training method improves the model’s perfor-
mance by approximately 4% BD-rate. Additionally, we set
different hyperparameters λ, to control the bit rate, following
the settings in CompressAI [25]. During training, we use the
Adam optimizer, and the learning rate gradually decreases
from 1e-4 to 1e-5 throughout each stage. We conduct training
and testing on LLVIP [16], a widely used RGB-IR dataset.
Training is performed on the dataset’s 12,000+ training images
for 150 epochs in each stage, and testing is carried out on its
3,400+ pairs of test images.

Fig. 4. Experimental results from different image compression approaches
on the LLVIP dataset.

B. Experiment Results

Quantitative Results We make a comparison of com-
pression performance among various learning-based codec
and BPG on the LLVIP dataset. Note that, to ensure a fair
comparison, we re-deployed and retrained the other end-to-
end compression frameworks on the LLVIP dataset. Compared
to other single-modality compression frameworks, our pro-
posed framework shows a significant improvement in BD-rate

performance. Specifically, our method outperforms MLIC++
and BPG by 14.6% and 26.8%, respectively. We plot the
corresponding RD curves in Fig. 4 to more intuitively illustrate
the performance gap between different codecs. The results
clearly demonstrates that our proposed method significantly
outperforms the other methods in terms of compression per-
formance.

TABLE I
ABLATION STUDY OF EACH COMPONENT IN CHANNEL-WISE

CROSS-MODALITY ENTROPY MODEL

Model BD-Rate(%)
baseline -

Channel-wise Cross-modality Entropy Model -19.34
baseline + LCEB -6.92
baseline + LCFB -9.17

Ablation Study: To demonstrate the effectiveness of the
proposed LCEB and LCFB modules, we conducted experi-
ments by removing each module individually and compar-
ing the results. Table I shows that both proposed modules
contribute to BD-rate performance, and our proposed CCEM
significantly enhances compression efficiency.

IV. CONCLUSION

In this paper, we propose a joint compression framework
for RGB-IR image pair. Specifically, to remove cross-modality
redundancy and save bit-rate, we introduce the Channel-wise
Cross-modality Entropy Model (CCEM). Within CCEM, we
design the Low-frequency Context Extraction Block (LCEB)
and the Low-frequency Context Fusion Block (LCFB) based
on the similarity of low-frequency information between RGB
and IR images. These blocks effectively capture both intra-
modality and cross-modality priors, thus assisting the entropy
model in predicting symbol probability estimates more accu-
rately. Comparative experiments and ablation studies confirm
the effectiveness of the proposed method.
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