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Abstract

Recent works leveraging learning to enhance sampling have shown promising
results, in particular by designing effective non-local moves and global propos-
als. However, learning accuracy is inevitably limited in regions where little data
is available such as in the tails of distributions as well as in high-dimensional
problems. In the present paper we study an Explore-Exploit Markov chain Monte
Carlo strategy (Ex2MCMC) that combines local and global samplers showing
that it enjoys the advantages of both approaches. We prove V -uniform geometric
ergodicity of Ex2MCMC without requiring a uniform adaptation of the global
sampler to the target distribution. We also compute explicit bounds on the mixing
rate of the Explore-Exploit strategy under realistic conditions. Moreover, we also
analyze an adaptive version of the strategy (FlEx2MCMC) where a normalizing
flow is trained while sampling to serve as a proposal for global moves. We illustrate
the efficiency of Ex2MCMC and its adaptive version on classical sampling bench-
marks as well as in sampling high-dimensional distributions defined by Generative
Adversarial Networks seen as Energy Based Models.

1 Introduction

We consider the setting where a target distribution ⇡ on a measurable space ( ,X ) is known up
to a normalizing constant and one tries to estimate the expectations of some function f : ! R
with respect to ⇡. Examples include the extraction of Bayesian statistics from posterior distributions
derived from observations as well as the computation of observables of a physical system x 2 under
the Boltzmann distribution with non-normalized density ⇡(x) = e��U(x) for the energy function U
at the inverse temperature �.

A common strategy to tackle this estimation is to resort to Markov chain Monte Carlo algorithms
(MCMCs). The MCMC approach aims to simulate a realization of a time-homogeneous Markov
chain {Yn, n 2 N}, such that the distribution of the n-th iterate Yn with n ! 1 is arbitrarily close
to ⇡, regardless of the initial distribution of Y0. In particular, the Metropolis-Hastings kernel (MH) is
the cornerstone of MCMC simulations, with a number of successful variants following the process
of a proposal step followed by an accept/reject step (see e.g. [62]). In large dimensions, proposal
distributions are typically chosen to generate local moves that depend on the last state of the chain in
order to guarantee an admissible acceptance rate. However, local samplers suffer from long mixing
times as exploration is inherently slow, and mode switching, when there is more than one, can be
extremely infrequent.

On the other hand, independent proposals are able to generate more global updates, but they are
difficult to design. Developments in deep generative modelling, in particular versatile autoregressive
and normalising flows [39, 37, 20, 55], spurred efforts to use learned probabilistic models to improve
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the exploration ability of MCMC kernels. Among a rapidly growing body of work, references include
[36, 2, 53, 25, 33]. While these works show that global moves in a number of practical problems can
be successfully informed by machine learning models, it remains the case that the acceptance rate of
independent proposals decreases dramatically with dimensions – except in the unrealistic case that
they perfectly reproduce the target. This is a well-known problem in the MCMC literature [12, 71, 1],
and it was recently noted that deep learning-based suggestions are no exception in works focusing on
physical systems [19, 46].

In this paper we focus on the benefits of combining local and global samplers. Intuitively, local
steps interleaved between global updates from an independent proposal (learned or not) increase
accuracy by allowing accurate sampling in tails that are not usually well handled by the independent
proposal. Also, mixing time is usually improved by the local-global combination, which prevents
long chains of consecutive rejections. Here we focus on a global kernel of type iterative-sampling
importance resampling (i-SIR) [73, 4, 5]. This kernel uses multiple proposals in each iteration to take
full advantage of modern parallel computing architectures. For local samplers, we consider common
techniques such as Metropolis Adjusted Langevin (MALA) and Hamiltonian Monte Carlo (HMC).
We call this combination strategy Explore-Exploit MCMC (Ex2MCMC) in the following.

Contributions The main contributions of the paper are as follows:
• We provide theoretical bounds on the accuracy and convergence speed of Ex2MCMC strategies.

In particular, we prove V -uniform geometric convergence of Ex2MCMC under assumptions much
milder than those required to prove uniform geometric ergodicity of the global sampler i-SIR alone.

• We provide convergence guarantees for an adaptive version of the strategy, called FlEx2MCMC,
which involves learning an efficient proposal while sampling, as in adaptive MCMC.

• We perform a numerical evaluation of Ex2MCMC and FlEx2MCMC for various sampling prob-
lems, including sampling GANs as energy-based models. The results clearly show the advantages
of the combined approaches compared to purely local or purely global MCMC methods.

Notations Denote N⇤ = N \ {0}. For a measurable function f : 7! R, we define |f |1 =
sup

x2 |f(x)| and ⇡(f) :=
R

f(x)⇡(dx). For a function V : 7! [1,1) we introduce the
V -norm of two probability measures ⇠ and ⇠0 on ( ,X ), k⇠� ⇠0kV := sup|f(x)|V (x) |⇠(f)� ⇠0(f)|.
If V ⌘ 1, k · k1 is equal to the total variation distance (denoted k · kTV).

2 Explore-Exploit Samplers
Suppose we are given a target distribution ⇡ on a measurable space ( ,X ) that is known only up to
a normalizing constant. We will often assume that = Rd or a subset thereof. Two related problems
are sampling from ⇡ and estimating integrals of a function f : 7! R w.r.t. ⇡, i.e., ⇡(f). Among
the many methods devoted to solving these problems, there is a popular family of techniques based
on Importance Sampling (IS) and relying on independent proposals, see e.g. [1, 74]. We first give a
brief overview of IS, to describe the global sampler i-SIR. We recall ergodicity results for the latter
before investigating the Explore-Exploit sampling strategy which couples the global sampler with a
local kernel. Then we present the main theoretical result of the paper on the ergodicity of the coupled
strategy.

2.1 From Importance Sampling to i-SIR

The primary purpose of IS is to approximate integrals of the form ⇡(f). Its main instrument is a
(known) proposal distribution, which we denote by �(dx). To describe the algorithm, we assume
that ⇡(dx) = w(x)�(dx)/�(w). In this formula, w(x) is the importance weight function assumed
to be known and positive, i.e., w(x) > 0 for all x 2 , and �(w) is the normalizing constant of
the distribution ⇡. Typically �(w) is unknown. If we assume that ⇡ and � have positive densities
w.r.t. a common dominant measure, denoted also by ⇡ and � respectively, then the self-normalized
importance sampling (SNIS, see [61]) estimator of ⇡(f) is given by

b⇡N (f) =
P

N

i=1 !
i

N
f(Xi) , (1)

where X1:N i.i.d.⇠ �, and !i

N
= w(Xi)/

P
N

j=1 w(X
j) are the self-normalized importance weights.

Note that computing !i

N
does not require the knowledge of �(w). The main problem in the

practical applications of IS is the choice of the proposal distribution �. The representation
⇡(dx) = w(x)�(dx)/�(w) implies that the support of � covers the support of ⇡. At the same
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Algorithm 1: Single stage of i-SIR algorithm with independent proposals
1 Procedure i-SIR (Yk,�):

Input :Previous state Yk; proposal distribution �;
Output :New state Yk+1; pool of proposals X2:N

k+1 ⇠ �;
2 Set X1

k+1 = Yk, draw X2:N
k+1 ⇠ �; for i 2 [N ] do

3 compute the normalized weights !i,k+1 = w(Xi

k+1)/
P

N

`=1 w(X
`

k+1);
4 Draw the proposal index Ik+1 ⇠ Cat(!1,k+1, . . . ,!N ,k+1);
5 Set Yk+1 := X

Ik+1

k+1 .

time, too large variance of � is obviously detrimental to the quality of (1). This suggests adaptive im-
portance sampling techniques (discussed in [16]), which involve learning the proposal � to improve
the quality of (1). We return to this idea in section 3.

IS -based techniques can also be used to draw an (approximate) sample from ⇡. For instance,
Sampling Importance Resampling (SIR, [68]) follows the steps:
1. Draw X1:N i.i.d.⇠ �;
2. Compute the self-normalized importance weights !i

N
= w(Xi)/

P
N

`=1 w(X
`), i 2 {1, . . . ,N};

3. Select M samples Y 1:M from the set X1:N choosing Xi with probability !i

N
with replacement.

The drawback of the procedure is that it is only asymptotically valid with N ! 1. Alternatively,
SIR can be repeated to define a Markov Chain as in iterated SIR (i-SIR), proposed in [73] and
also studied in [4, 43, 42, 5]. At each iteration of i-SIR described in Algorithm 1, a candidate pool
X2:N

k+1 is sampled from the proposal and the next state Yk+1 is choosen among the candidates and the
previous state X1

k+1 = Yk according to the importance weights. i-SIR shares similarities with the
Multiple-try Metropolis (MTM) algorithm [44], but is computationally simpler and exhibits more
favorable mixing properties; see Appendix A.1. The Markov chain {Yk, k 2 N} generated by i-SIR
has the following Markov kernel

PN (x,A) =

Z
�x(dx

1)
NX

i=1

w(xi)
P

N

j=1 w(x
j)
1A(x

i)
NY

j=2

�(dxj).

Interpreting i-SIR as a systematic-scan two-stage Gibbs sampler (see Appendix A.2 for more details),
it follows easily that the Markov kernel PN is reversible w.r.t. the target ⇡, Harris recurrent and
ergodic (see Theorem 5). Provided also that |w|1 < 1, it was shown in [5] that the Markov kernel
PN is uniformly geometrically ergodic. Namely, for any initial distribution ⇠ on ( ,X ) and k 2 N,

k⇠Pk

N
� ⇡kTV  k

N
with ✏N =

N � 1

2L +N � 2
, L = |w|1/�(w) , and N = 1� ✏N . (2)

We provide a simple direct proof of (2) in Appendix B.1. Yet, note that the bound (2) relies
significantly on the restrictive condition that weights are uniformly bounded |w|1 < 1. Moreover,
even when this condition is satisfied, the rate N can be close to 1 when the dimension d is large.1
We illustrate this phenomenon on a Gaussian target in Appendix E.2 Figure 7 with an experiment that
also contrasts the degradation as dimension grows of the purely global sampler with the robustness of
the local-global kernels analyzed in the next section.

2.2 Coupling with local kernels: Ex2MCMC
After each i-SIR step, we apply a local MCMC kernel R (rejuvenation kernel), with an invariant
distribution ⇡. We call this startegy Ex2MCMC because it combines steps of exploration by i-SIR
and steps of exploitation by the local MCMC moves. The resulting algorithm, formulated in
Algorithm 2, defines a Markov chain {Yj , j 2 N} with Markov kernel KN (x, ·) = PNR(x, ·) =R
PN (x, dy)R(y, ·).

We now present the main theoretical result of this paper on the properties of Ex2MCMC. Under
rather weak conditions, provided that R is geometrically regular (see [21, Chapter 14]), it is possible

1Indeed, consider a simple scenario ⇡(x) =
Qd

i=1 p(xi) and �(x) =
Qd

i=1 q(xi) for some densities p(·)
and q(·) on R. Then it is easy to see that L = (supy2R p(y)/q(y))

d grows exponentially with d.
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Algorithm 2: Single stage of Ex2MCMC algorithm with independent proposals
1 Procedure Ex2MCMC (Yk,�,R):

Input :Previous state Yk; proposal distribution �; rejuvenation kernel R;
Output :New sample Yk+1; pool of proposals X2:N

k+1 ⇠ �;
2 Zk+1 ,X2:N

k+1 = i-SIR(Yk,�);
3 Draw Yk+1 ⇠ R(Zk+1, ·).

to establish that Ex2MCMC remains V -uniformly geometrically ergodic even if the weight function
w(x) is unbounded.
Definition 1 (V -Geometric Ergodicity). A Markov kernel Q with invariant probability measure ⇡ is
V -geometrically ergodic if there exist constants ⇢ 2 (0, 1) and M < 1 such that, for all x 2 and
k 2 N, kQk(x, ·)� ⇡kV  M {V (x) + ⇡(V )}⇢k.
In particular, V -geometric ergodicity ensures that the distribution of the k-th iterate of a Markov chain
converges geometrically fast to the invariant probability in V -norm, for all starting points x 2 .
Here the dependence on the initial state x appears on the right-hand side only in V (x). Denote
by Var�[w] =

R
{w(x)� �(w)}2�(dx) the variance of the importance weight functions under the

proposal distribution and consider the following assumptions:
A1. (i) R has ⇡ as its unique invariant distribution; (ii) There exists a function V : ! [1,1), such
that for all r � rR > 1 there exist �R,r 2 [0, 1), bR,r < 1, such that RV (x)  �R,rV (x) + bR,r1Vr

,
where Vr = {x : V (x)  r};
A2. (i) For all r � rR, w1,r := sup

x2Vr
{w(x)/�(w)} < 1 and (ii) Var�[w]/{�(w)}2 < 1.

A1-(ii) states that R satisfies a Foster-Lyapunov drift condition for V . This condition is fulfilled by
most classical MCMC kernels - like Metropolis-Adjusted Langevin (MALA) algorithm or Hamil-
tonian Monte Carlo (HMC), typically under tail conditions for the target distribution; see [63, 22],
and [21, Chapter 2] with the references therein. A2-(i) states that the (normalized) importance weights
w(·)/�(w) are upper bounded on level sets of Vr. This is a mild condition: if = Rd, and V is
norm-like, then the level sets Vr are compact and w(·) is bounded on Vr as soon as ⇡ and � are
positive and continuous. A2-(ii) states that the variance of the importance weights is bounded; note
that this variance is also equal to the �2-distance between the proposal and the target distributions
which plays a key role in the non-asymptotic analysis of the performance of IS methods [1, 70].
Theorem 2. Assume A1 and A2. Then, for all x 2 and k 2 N,

kKk

N
(x, ·)� ⇡kV  cKN

{⇡(V ) + V (x)}̃k

KN
, (3)

where the constant cKN
, ̃KN

2 [0, 1) are given in the proof. In addition, cKN
= cK1 + O(N�1)

and ̃K1 = ̃KN
+O(N�1) with explicit expressions provided in (13).

The proof of Theorem 2 is provided in Appendix B.2. We stress that in many situations, the mixing
rate ̃KN

of the Ex2MCMC Markov Kernel KN is significantly better than the corresponding mixing
rate of the local kernel R, provided N is large enough. This is due to the fact that assumptions A1 and
A2 do not require to identify the small sets of the rejuvenation kernel R (see [21, Definition 9.3.5]).
At the same time, the quantitative bounds on the mixing rates relies on the constants appearing in the
small set condition, see [21, Theorem 19.4.1]. Focusing on MALA (see, e.g. [66]) as the rejuvenation
kernel R we detail bounds in Appendix C and prove in Theorem 20 that the ratio of mixing times of
KN is typically very favorable compared to MALA provided that N is large enough.

3 Adaptive version: FlEx2MCMC

The performance of proposal-based samplers depends on the distribution of importance weights
which is related to the similarity of the proposal and target distributions2. Therefore, yet another
strategy to improve sampling performance is to select the proposal distribution � from a family of
parameterized distributions {�✓} and fit the parameter ✓ 2 ⇥ = Rq to the target ⇡, for example, by
minimizing a Kullback-Leibler divergence (KL) [57, 2, 50] or matching moments [59]. In adaptive

2more specifically, it depends on the the quantities appearing in A2, namely, the maximum of the importance
weight on a level set of the drift function for the local kernel R and the variance of the importance weights under
the proposal
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MCMCs, parameter adaptation is performed along the MCMC run [6, 9, 64]. In this section we
propose an adaptive version of Ex2MCMC, which we call FlEx2MCMC.

Normalizing flow proposal. A flexible way to parameterize proposal distributions is to combine
a tractable distribution ' with an invertible parameterized transformation. Let T : 7! be a
C1 diffeomorphism. We denote by T#' the push-forward of ' under T , that is, the distribution
of X = T (Z) with Z ⇠ '. Assuming that ' has a p.d.f. (also denoted '), the corresponding
push-forward density (w.r.t. the Lebesgue measure) is given by �T (y) = '

�
T�1(y)

�
JT�1(y), where

JT denotes the Jacobian determinant of T . The parameterized family of diffeomorphisms {T✓}✓2⇥

defines a family of distributions {�T✓
}✓2⇥, denoted for simplicity as {�✓}✓2⇥. This construction is

called a normalizing flow (NF) and a great deal of work has been devoted to ways of parameterizing
invertible flows T✓ with neural networks; see [40, 55] for reviews.

Simultaneous learning and sampling. As with adaptive MCMC methods, the parameters of
a NF proposal are learned for the global proposal during sampling, see also [25]. We work
with M copies of the Markov chains {(Yk[j],X1:N

k
[j])}k2N⇤ indexed by j 2 {1, . . . ,M}. At

each step k 2 N⇤, each copy is sampled as in Ex2MCMC using the NF proposal, inde-
pendently from the other copies, but conditionally to the the current value of the parameters
✓k�1. We then adapt the parameters by taking steps of gradient descent on a convex com-
bination of the forward KL, KL(⇡||�✓) =

R
⇡(x) log(⇡(x)/�✓(x))dx and the backward KL

KL(�✓||⇡) =
R
�✓(x) log(⇡(x)/�✓(x))dx =

R
'(z) logw✓ � T✓(z)dz. Let {�k, k 2 N} be a

sequence of nonnegative stepsizes and {↵k, k 2 N} be a nondecreasing sequence in [0, 1] with
↵1 = limk!1 ↵k. The update rule is ✓k = ✓k�1 + �kM�1

P
M

j=1 H(✓k�1,X1:N
k

[j],Z2:N
k

[j])

where H(✓,x1:N , z2:N ) = ↵kHf (✓,x1:N ) + (1� ↵k)Hb(✓, z2:N ) with

Hf (✓,x1:N ) =
XN

`=1

w✓(x`)
P

N

i=1 w✓(xi)
r✓ log �✓(x

`) , w✓(x) = ⇡(x)/�✓(x) , (4)

Hb(✓, z2:N ) = � 1

N � 1

XN

`=2
{r✓ log ⇡ � T✓(z

`) +r✓ log JT✓
(z`)} . (5)

Note that we use a Rao-Blackwellized estimator of the gradient of the forward KL (4) where we
fully recycle all the N candidates sampled at each iteration of i-SIR. The quality of this estimator is
expected to improve along the iterations k of the algorithm as the variance of importance weights
decreases as the proposal improves. Note also that using only gradients from the backward KL (5) is
prone to mode-collapse [57, 54, 50, 25], hence the need for also using gradients from the forward KL
Hf (✓,x1:N ), which requires the simultaneous sampling from ⇡. See also Appendix E.5 for further
discussions. The FlEx2MCMC algorithm is summarized in Algorithm 3.

Since the parameters of the Markov kernel ✓k are updated using samples X1:N
k

from the chain,
((Yk,X1:N

k
))k2N is no longer Markovian. This type of problems has been considered in [48, 13, 30, 7]

and to prove convergence of the strategy we need to strengthen assumptions compared to the previous
section.
A3. There exists a function W : ! R+ such that '(W 2) =

R
W 2(z)'(dz) < 1, and a

constant L < 1 such that, for all ✓, ✓0 2 ⇥ and z 2 , kr✓ log ⇡ � T✓(z)�r✓ log ⇡ � T✓0(z)k 
Lk✓ � ✓0kW (z) and kr✓ log JT✓

(z)�r✓ log JT
✓0 (z)k  Lk✓ � ✓0kW (z).

A4. (i) For all d � dR, w1,d = sup
✓2⇥ sup

x2Vd
w✓(x)/�✓(w✓) < 1 and (ii) sup

✓2⇥ Var'(w✓ �
T✓)/{�✓(w✓)}2 < 1.

A3 is a continuity condition on the NF push-forward density w.r.t. its parameters ✓. A4 implies that
the Markov kernel KN ,✓ = PN ,✓R satisfies a drift and minorization condition uniform in ✓.

Theorem 3 (simplified). Assume A 1-A 3-A 4 and that
P1

k=0 �k = 1,
P1

k=0 �
2
k

< 1 and
limk!1 ↵k = ↵1. Then, w.p. 1, the sequence {✓k, k 2 N} converges to the set {✓ 2 ⇥, 0 =
↵1rKL(⇡||�✓) + (1� ↵1)rKL(�✓||⇡)}.

Theorem 3 proves the convergence of the learning of parameters ✓ to a stationary point of the
loss. The proof is postponed to Appendix D. Note that once the proposal learning has converged,
FlEx2MCMC boils back to Ex2MCMC with a fixed learned proposal. Our experiments show that
adaptivity can significantly speed up mixing for i-SIR, especially for distributions with complex
geometries and that the addition of a rejuvenation kernel further improves samples quality.
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Algorithm 3: Single stage of FlEx2MCMC. Steps of Ex2MCMC use the NF proposal with
parameters ✓k. Step 4 updates the parameters using the gradient estimate obtained from all the
chains.
Input :weights ✓k, batch Yk[1 : M ]
Output :new weights ✓k+1, batch Yk+1[1 : M ]

1 for j 2 [M ] do
2 Yk+1[j] = Ex2MCMC (Yk,T✓k

#',R)

3 Draw Z[1 : M ] ⇠ '.
4 Update ✓k = ✓k�1 + �kM�1

P
M

j=1 H(✓k�1,X1:N
k

[j],Z2:N
k

[j])

4 Related Work
The possibility to parametrize very flexible probabilistic models with neural networks thanks to
deep learning has rekindled interest in adapting MCMC kernels; see e.g. [72, 36, 2, 53, 33]. While
significant performance gain were found in problems of moderate dimensions, these learning-based
methods were found to suffer from increasing dimensions as fitting models accurately becomes more
difficult [19, 46]. Similarly to FlEx2MCMC, a few work proposed adaptive algorithms that alternates
between global and local MCMC moves to ensure ergodicity without requiring a perfect learning
of the proposal[59, 25]. More precisely, [59] focused on multimodal distributions and analysed a
mode jumping algorithm using proposals parametrized as mixture of simple distributions. While [25],
closer to this work, introduced a combination of a local and a global sampler leveraging normalizing
flows with a more classical choice for the global sampler: independent Metropolis-Hasting (IMH)
instead of i-SIR. The present work builds on these previous propositions of combinations of local
and global sampler by clarifying the reasons of their effectiveness through entirely novel detailed
mathematical and empirical analyses. We chose to focus on i-SIR with an adaptive proposal as
the global sampler since (i) the learning component allows to tackle high-dimensional targets, (ii)
theoretical guarantees can be obtained for i-SIR whereas IMH is more difficult to analyze, (iii) IMH
and i-SIR (as a multiple-try MCMC) are expected to have similar performances for comparable
computational budget [11] but IMH is sequential where i-SIR can be parallelized by increasing the
number N of proposals per iteration.

Another line of work exploits both normalizing flows and common local MCMC kernels for sampling
[57, 36, 54, 77], yet following the different paradigm of using the flow as a reparametrization map,
a method sometimes referred to as neural transport: the flow T is trained to transport a simple
distribution ' near ⇡, which is equivalent to bringing T�1#⇡ (the pushforward of the original target
distribution ⇡ by the inverse flow T�1) close to '. If ' is simple enough to be efficiently sampled
by local samplers, the hope is that local samplers can also obtain high-quality samples of T�1#⇡ –
samples which can be transported back through T to obtain samples of ⇡. This method attempts to
reparametrize the space to disentangle problematic geometries for local kernels. Yet, it is unclear what
will happen in the tails of the distribution for which the flow is likely poorly learned. Furthermore,
in order to derive an ergodicity theory for these transported samplers, [57] necessitated substantial
constraints on maps (see section 2.2.2.).

5 Numerical experiments
We provide the code to reproduce the experiments below at https://github.com/svsamsonov/
ex2mcmc_new.

5.1 Synthetic examples
Multimodal distributions. Let us start with a toy example highlighting differences between purely
global i-SIR, purely local MALA and Ex2MCMC combining both. We consider sampling from
a mixture of 3 equally weighted Gaussians in dimension d = 2. In Figure 1a, we compare single
chains produced by each algorithms. The global proposal is a wide Gaussian, with pools of N = 3
candidate. The MALA stepsize is chosen to reach a target acceptance rate of ⇠ 0.67. This simple
experiment illustrates the drawbacks of both approaches: i-SIR samples reach all the modes of the
target, but the chains often get stuck for several steps hindering variability. MALA allows for better
local exploration of each particular mode, yet it fails to cover all the target support. Meanwhile,
Ex2MCMC retains the benefits of both methods, combining the i-SIR-based global exploration with
MALA-based local exploration.

6

https://github.com/svsamsonov/ex2mcmc_new
https://github.com/svsamsonov/ex2mcmc_new


(a)

(b)

(c)

Figure 1: (a) – Single chain mixing visualization. – Blue color levels represent the target 2d density.
Random chain initialization is noted in black, 100 steps are plotted per sampler: the size of each red
dot corresponds to the number of consecutive steps the walkers remains at a given location. Note
that the variance of the global proposal (dotted countour lines) should be relatively large to cover
well all the modes. (b - c) – Inhomogeneous 2d Gaussian mixture. – Quantitative analysis during
burn-in of parallel chains (b, M = 500 chains KDE) and for after burn-in for single chains statistics
(c, M = 100 average).

In larger dimensions, an adaptive proposal is necessary. In Appendix E.5 we show that
FlEx2MCMC can mix between modes of a 50d Gaussian mixture, provided that the rough lo-
cation of all the modes is known and used to initialize walkers. We also stress the robustness of the
on-the-fly training exploiting running MCMC chains to evaluate the forward KL term of the loss.

To illustrate further the performance of the combined kernel, we keep the 2d target mixture model
yet assigning the uneven weights (2/3, 1/6, 1/6) to the 3 modes. We start M chains drawing from
the initial distribution ⇠ ⇠ N (0, 4 Id) and use the same hyper-parameters as above. In Figure 1b
we provide a simple illustration to the statement (2) and Theorem 2, namely we compare the target
density to the instantaneous distributions for each sampler propagating ⇠ during burn-in steps. As
MALA does not mix easily between modes, the different statistical weights of the different modes
can hardly be rendered in few iterations and KL and TV distances stalls after a few iterations. i-SIR
can visit the different modes, yet it does not necessarily move at each step which slows down its
covering of the modes full support, which again shows in the speed of decrease of the TV and KL.
Overcoming both of these shortcomings, Ex2MCMC instantaneous density comes much closer to
the target. Finally, Figure 1c evaluates the same metrics yet for the density estimate obtained with
single chain samples after burn-in. Results demonstrate once again the superiority of Ex2MCMC.
Further details on these experiments can be found in Appendix E.3.

Distributions with complex geometry. Next, we turn to highly anisotropic distributions in high
dimensions. Following [52] and [32], we consider the funnel and the banana-shape distributions.
We remind densities in Appendix E.6 along with providing experiments details. For d 2 [10; 200],
we run i-SIR, MALA, Ex2MCMC, FlEx2MCMC, adaptive i-SIR (using the same proposal as
FlEx2MCMC, but without interleaved local steps) and the versatile sampler NUTS [35] as a baseline.
Here the parameter adaptation for FlEx2MCMC is performed in a pre-run and parameters are frozen
before sampling. For the adaptive samplers, a simple RealNVP-based normalizing flow [20] is used
such that total running times, including training, are comparable with NUTS. For Ex2MCMC and
i-SIR the global proposal is a wide Gaussian with a pool of N = 2000 candidates drawn at each
iteration. For MALA we tune the step size in order to keep acceptance rate approximately at
0.5. We report the average sliced TV distance and ESS in Figure 2 (see Appendix E.1 for metrics
definition). In most cases, FlEx2MCMC is the most reliable algorithm. The only exception is at
very high dimension for the banana where NUTS performs the best: in this case, tuning the flow to
learn tails in high-dimension faithfully was costly such that we proceeded to an early stopping to
maintain comparability with the baseline. Remarkably, FlEx2MCMC compensates significantly for
the imperfect flow training, improving over adaptive-i-SIR, but NUTS eventually performs better.
Conversely, for the funnel, most of the improvement comes from well-trained proposal flow, leading
to similar behaviors of adaptive i-SIR and FlEx2MCMC, while both algorithms clearly outperforms
NUTS in terms of metrics.
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(a) d = 100, 2000 samples projection (b) Banana-shape distribution

(c) d = 100, 1000 samples projection (d) Neal’s funnel

Figure 2: Anisotropic Funnel and Banana-shape distributions – (a) and (b) visualize samples projected
onto the first 2 coordinates of tested algorithms (blue) versus true samples obtained by reparametriza-
tion (orange). (c) and (d) compare Sliced Total Variation and Effective Sample Size as a function of
dimension. i-SIR is removed from (b) as corresponding metrics for d > 20 are significantly worse.

5.2 Sampling from GANs as Energy-based models (EBMs)

Generative adversarial networks (GANs [27]) are a class of generative models defined by a pair of a
generator network G and a discriminator network D. The generator G takes a latent variable z from a
prior density p0(z), z 2 Rd, and generates an observation G(z) 2 RD in the observation space. The
discriminator takes a sample in the observation space and aims to discriminate between true examples
and false examples produced by the generator. Recently, it has been advocated to consider GANs as
Energy-Based Models (EBMs) [75, 17]. Following [17], we consider the EBM model induced by the
GAN in latent space. Recall that an EBM is defined by a Boltzmann distribution p(z) = e�E(z)/Z,
z 2 Rd, where E(z) is the energy function and Z is the normalizing constant. Note that Wasserstein
GANs also allow for an energy-based interpretation (see [17]), although the interpretation of the
discriminator in this case is different. The energy function is given by

EJS(z) = � log p0(z)� logit
�
D(G(z))

�
, EW (z) = � log p0(z)�D(G(z)

�
, z 2 Rd , (6)

for the vanilla Jensen-Shannon and Wasserstein GANs, respectively. Here logit(y), y 2 (0, 1) is the
inverse of the sigmoid function and p0(z) = N (0, Id).
MNIST results. We consider a simple Jensen-Shannon GAN model trained on the MNIST dataset
with latent space dimension d = 2. We compare samples obtained by i-SIR, MALA, and Ex2MCMC
from the energy-based model associated with EJS(z), see (6). We use a wide normal distribution
as the global proposal for i-SIR and Ex2MCMC, and pools of candidates at each iteration N = 10.
The step-size of MALA is tuned to keep an acceptance rate ⇠ 0.5. We visualize chains of 100 steps
in the latent space obtained with each method in Figure 3. Note that the poor agreement between the
proposal and the landscape makes it difficult for i-SIR to accept from the proposal and for MALA
to explore many modes of the latent distribution, as shown in Figure 3. Ex2MCMC combines
effectively global and local moves, encouraging better diversity associated with a better mixing
time. The images corresponding to the sampled latent space locations are displayed in Figure 4
and reflect the diversity issue of MALA and i-SIR. Further details and experiments are provided in
Appendix E.7.1, including similar results for WGAN-GP [31] and the associated EBM EW (z).
Cifar-10 results. We consider two popular architectures trained on Cifar-10, DC-GAN [60] and
SN-GAN [49]. In both cases the dimension of the latent space equals d = 128. Together with the
non-trivial geometry of the corresponding energy landscapes, the large dimension makes sampling
with NUTS unfeasible in terms of computational time. We perform sampling from mentioned
GANs as energy-based models using i-SIR, MALA, Ex2MCMC, and FlEx2MCMC. In i-SIR
and Ex2MCMC we use the prior p0(z) as a global proposal with a pool of N = 10 candidates.
For FlEx2MCMC we perform training and sampling simultaneously. Implementation details are
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Figure 3: MNIST energy landscape and single chain latent samples visualizations.

(a) i-SIR samples (b) MALA samples (c) Ex2MCMC samples

Figure 4: MNIST samples visualization. – Single chains run, sequential steps.

provided in Appendix E.7.2. To evaluate sampling quality, we report the values of the energy function
E(z), averaged over 500 independent runs of each sampler. We also visualize the inception score (IS)
dynamics calculated over 10000 independent trajectories. We present the results in Figure 5 together
with the images produced by each sampler. Note that Ex2MCMC and FlEx2MCMC reach low level
of energies faster than other methods, and reach high IS samples in a limited number of iterations.
Visualizations indicate that MALA is unlikely to escape the mode of the distribution p(z) it started
from, while i-SIR and Ex2MCMC/FlEx2MCMC better explores the target support. However, global
move appear to become more rare after some number of iterations for Ex2MCMC/FlEx2MCMC,
which then exploit a particular mode with MALA steps. We here hit the following limitation:
i-SIR remains at relatively high-energies, failing to explore well modes basins but still accepting
global moves, while Ex2MCMC/FlEx2MCMC explores well modes basins but eventually remains
trapped. We predict that improving further the quality of the FlEx2MCMC proposal by scaling the
normalizing flow architecture would allow for more global moves.See Appendix E.7.2 for additional
experiments (including ones with SN-GAN), FID dynamics, and visualizations.

6 Conclusions and further research directions

(a) Energy decay for 100
iterations

(b) IS dynamics, 1000
iterations

(c) Ex2MCMC samples

(d) MALA samples (e) i-SIR samples

Figure 5: Cifar-10 energy and sampling results with DC-GAN architecture. Along the horizonthal
lines we visualize each 10th sample from a single trajectory.
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The present paper examines the benefits of combining local and global samplers. From a theoretical
point of view, we show that global samplers are more robust when coupled with local samplers.
Namely, a V -geometric ergodicity is obtained for the Ex2MCMC kernel under minimal assumptions.
Meanwhile, the global samplers drives exploration when properly adjusted. Therefore, we also
describe the adaptive version FlEx2MCMC of the strategy involving the learning of a global proposal
parametrized by a normalizing flow. We also check for the learning convergence along the adaptive
MCMC run. Finally, a series of numerical experiments confirms the superiority of the strategy,
including the high-dimensional examples. While the startegy was described and analyzed for the
i-SIR global kernel, we note that it would be possible to extend the theory to other independent
global samplers. We expect that the benefit of the combination would remain. Further studies of
FlEx2MCMC, in particular the derivation of its mixing rate, is an interesting direction for future
work.
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[8] C. Andrieu, V. B. Tadić, and M. Vihola. On the stability of some controlled markov chains and
its applications to stochastic approximation with markovian dynamic. The Annals of Applied
Probability, 25(1):1–45, 2015.

[9] C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and computing, 18(4):343–
373, 2008.

[10] C. Andrieu and M. Vihola. Markovian stochastic approximation with expanding projections.
Bernoulli, 20(2):545–585, 2014.

[11] M. Bédard, R. Douc, and E. Moulines. Scaling analysis of multiple-try MCMC methods.
Stochastic Processes and their Applications, 122(3):758–786, 2012.

[12] T. Bengtsson, P. J. Bickel, and B. Li. Curse-of-dimensionality revisited: Collapse of the particle
filter in very large scale systems. arXiv: Statistics Theory, pages 316–334, 2008.

[13] A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic approximations,
volume 22 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1990. Translated
from the French by Stephen S. Wilson.

[14] N. Bonneel, M. Van De Panne, S. Paris, and W. Heidrich. Displacement interpolation using
lagrangian mass transport. In Proceedings of the 2011 SIGGRAPH Asia Conference, pages
1–12, 2011.

[15] V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer,
2009.

[16] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, and P. M. Djuric. Adaptive
importance sampling: The past, the present, and the future. IEEE Signal Processing Magazine,
34(4):60–79, 2017.

[17] T. Che, R. Zhang, J. Sohl-Dickstein, H. Larochelle, L. Paull, Y. Cao, and Y. Bengio. Your GAN
is Secretly an Energy-based Model and You Should Use Discriminator Driven Latent Sampling.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 12275–12287. Curran Associates,
Inc., 2020.

[18] M.-F. Chen and F.-Y. Wang. Estimation of spectral gap for elliptic operators. Trans. Amer. Math.
Soc., 349(3):1239–1267, 1997.

[19] L. Del Debbio, J. Marsh Rossney, and M. Wilson. Efficient modeling of trivializing maps for
lattice �4 theory using normalizing flows: A first look at scalability. Physical Review D, 104(9),
2021.

11



[20] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real NVP. In 5th Interna-
tional Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings, 2017.

[21] R. Douc, E. Moulines, P. Priouret, and P. Soulier. Markov chains. Springer Series in Operations
Research and Financial Engineering. Springer, Cham, 2018.

[22] A. Durmus and E. Moulines. On the geometric convergence for MALA under verifiable
conditions. 2022.

[23] A. Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Related
Fields, pages 1–36, 2015.

[24] D. L. Ermak. A computer simulation of charged particles in solution. i. technique and equilib-
rium properties. The Journal of Chemical Physics, 62(10):4189–4196, 1975.

[25] M. Gabrié, G. M. Rotskoff, and E. Vanden-Eijnden. Adaptive Monte Carlo augmented with
normalizing flows. Proceedings of the National Academy of Sciences, 119(10), mar 2022.

[26] M. Girolami and B. Calderhead. Riemann manifold langevin and hamiltonian monte carlo
methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–
214, 2011.

[27] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. In Proceedings of the 27th International Conference
on Neural Information Processing Systems - Volume 2, NIPS’14, page 2672–2680, Cambridge,
MA, USA, 2014. MIT Press.

[28] U. Grenander. Tutorial in pattern theory. Division of Applied Mathematics, Brown University,
Providence, 1983.

[29] U. Grenander and M. I. Miller. Representations of knowledge in complex systems. J. Roy.
Statist. Soc. Ser. B, 56(4):549–603, 1994. With discussion and a reply by the authors.

[30] M. G. Gu and F. H. Kong. A stochastic approximation algorithm with markov chain monte-carlo
method for incomplete data estimation problems. Proceedings of the National Academy of
Sciences, 95(13):7270–7274, 1998.

[31] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved train-
ing of wasserstein gans. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017.

[32] H. Haario, E. Saksman, and J. Tamminen. Adaptive proposal distribution for random walk
metropolis algorithm. Computational Statistics, 14(3):375–395, 1999.

[33] D. C. Hackett, C.-C. Hsieh, M. S. Albergo, D. Boyda, J.-W. Chen, K.-F. Chen, K. Cranmer,
G. Kanwar, and P. E. Shanahan. Flow-based sampling for multimodal distributions in lattice
field theory. arXiv preprint, 2107.00734, 2021.

[34] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[35] M. D. Hoffman, A. Gelman, et al. The no-U-turn sampler: adaptively setting path lengths in
Hamiltonian Monte Carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[36] M. D. Hoffman, P. Sountsov, J. V. Dillon, I. Langmore, D. Tran, and S. Vasudevan. NeuTra-
lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport. In 1st Symposium
on Advances in Approximate Bayesian Inference, 2018 1–5, 2019.

12



[37] C.-W. Huang, D. Krueger, A. Lacoste, and A. Courville. Neural autoregressive flows. In J. Dy
and A. Krause, editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 2078–2087. PMLR, 10–15 Jul
2018.

[38] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR 2015, 2015.

[39] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improving
variational inference with inverse autoregressive flow, 2016.

[40] I. Kobyzev, S. Prince, and M. Brubaker. Normalizing flows: An introduction and review of
current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[41] H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and appli-
cations, volume 35 of Applications of Mathematics (New York). Springer-Verlag, New York,
second edition, 2003. Stochastic Modelling and Applied Probability.

[42] A. Lee. On auxiliary variables and many-core architectures in computational statistics. PhD
thesis, University of Oxford, 2011.

[43] A. Lee, C. Yau, M. B. Giles, A. Doucet, and C. C. Holmes. On the utility of graphics
cards to perform massively parallel simulation of advanced Monte Carlo methods. Journal of
computational and graphical statistics, 19(4):769–789, 2010.

[44] J. S. Liu, F. Liang, and W. H. Wong. The multiple-try method and local optimization in
Metropolis sampling. Journal of the American Statistical Association, 95(449):121–134, 2000.

[45] J. S. Liu, W. H. Wong, and A. Kong. Covariance structure of the gibbs sampler with applications
to the comparisons of estimators and augmentation schemes. Biometrika, 81(1):27–40, 1994.

[46] A. H. Mahmoud, M. Masters, S. J. Lee, and M. A. Lill. Accurate Sampling of Macromolecular
Conformations Using Adaptive Deep Learning and Coarse-Grained Representation. Journal of
Chemical Information and Modeling, 62(7):1602–1617, apr 2022.

[47] J. Mattingly, A. Stuart, and D. Higham. Ergodicity for {SDEs} and approximations: locally
lipschitz vector fields and degenerate noise. Stochastic Processes and their Applications,
101(2):185 – 232, 2002.

[48] M. Métivier and P. Priouret. Théorèmes de convergence presque sure pour une classe
d’algorithmes stochastiques à pas décroissant. Probability Theory and related fields, 74(3):403–
428, 1987.

[49] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral normalization for generative
adversarial networks. arXiv:1802.05957, 2018.

[50] C. A. Naesseth, F. Lindsten, and D. Blei. Markovian score climbing: Variational inference with
KL(p||q). Advances in Neural Information Processing Systems, 2020-Decem(MCMC), 2020.

[51] R. M. Neal. Bayesian learning via stochastic dynamics. In Advances in Neural Information
Processing Systems 5, [NIPS Conference], pages 475–482, San Francisco, CA, USA, 1993.
Morgan Kaufmann Publishers Inc.

[52] R. M. Neal. Slice sampling. The Annals of Statistics, 31(3):705 – 767, 2003.

[53] K. A. Nicoli, S. Nakajima, N. Strodthoff, W. Samek, K. R. Müller, and P. Kessel. Asymptotically
unbiased estimation of physical observables with neural samplers. Physical Review E, 101(2),
2020.

[54] F. Noé, S. Olsson, J. Köhler, and H. Wu. Boltzmann generators: Sampling equilibrium states of
many-body systems with deep learning. Science, 365(6457), 2019.

[55] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Nor-
malizing flows for probabilistic modeling and inference. Journal of Machine Learning Research,
22(57):1–64, 2021.

13



[56] G. Parisi. Correlation functions and computer simulations. Nuclear Physics B, 180:378–384,
1981.

[57] M. D. Parno and Y. M. Marzouk. Transport map accelerated markov chain monte carlo.
SIAM-ASA Journal on Uncertainty Quantification, 6(2):645–682, 2018.

[58] D. Paulin. Concentration inequalities for Markov chains by Marton couplings and spectral
methods. Electronic Journal of Probability, 20(none):1 – 32, 2015.
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