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Abstract

Fluorescence microscopy, while being a key driver for progress in the life sciences,
is also subject to technical limitations. To overcome them, computational mul-
tiplexing techniques have recently been proposed, which allow multiple cellular
structures to be captured in a single image and later be unmixed. Existing image
decomposition methods are trained on a set of superimposed input images and the
respective unmixed target images. It is critical to note that the relative strength
(mixing ratio) of the superimposed images for a given input is a priori unknown.
However, existing methods are trained on a fixed intensity ratio of superimposed
inputs, making them not cognizant of the range of relative intensities that can
occur in fluorescence microscopy. In this work, we propose a novel method called
scSplit that is cognizant of the severity of the above-mentioned mixing ratio. Our
idea is based on InDI, a popular iterative method for image restoration, and an
ideal starting point to embrace the unknown mixing ratio in any given input. We
introduce (i) a suitably trained regressor network that predicts the degradation
level (mixing ratio) of a given input image and (ii) a degradation-specific nor-
malization module, enabling degradation-aware inference across all mixing ratios.
We show that this method solves two relevant tasks in fluorescence microscopy,
namely image splitting and bleedthrough removal, and empirically demonstrate
the applicability of scSplit on 5 public datasets. The source code with pre-trained
models is hosted at https://github.com/juglab/scSplit/.

1 Introduction

Fluorescence microscopy is a widely utilized imaging technique in the life sciences, enabling
researchers to visualize specific cellular and subcellular structures with high specificity. It employs
distinct fluorescent markers to target different components, which are subsequently captured in
separate image channels. The global fluorescence microscopy market, valued at 9.83$ billion in
2023, is projected to expand significantly in the coming years, reflecting its critical role in advancing
biological research [1].

Still, there are practical limitations on the maximum number of structures that can be imaged in one
sample. To mitigate this, the idea of imaging multiple structures into a single image channel has
recently been gaining popularity [2, 3]. In such approaches, the image produced by the microscope is
a superposition of multiple structures, and a deep-learning-based setup is then used to perform the
image decomposition task, thereby yielding the constituent structures present in the superimposed
input as separate images.

While these approaches have been beneficial, they have not explicitly addressed a particular aspect of
this problem. The relative intensity of the superimposed structures in the input can vary significantly
depending on sample properties, labeling densities, and microscope configuration. For instance,
in a superimposed image of nuclei and mitochondria, nuclei may be dominant in their intensities,
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Figure 1: Schematic overview of the scSplit framework for handling image superposition at varying
severity levels. (Left) Training pipeline: The input to the system is a superimposed image, generated as a
weighted average of two images using a mixing ratio t ∈ [0, 1]. The superimposed image is passed through
a normalization module, which performs ratio-specific normalization to ensure zero mean and unit standard
deviation. The normalized image is then processed by two generative networks, Gen0 and Gen1, to estimate
the individual structures. A regressor network, Reg, is trained to predict the mixing ratio t from a normalized
superimposed image. (Right) Inference pipeline: During inference, the mixing ratio t is estimated for a set
of superimposed input images using Reg, and the estimates are aggregated to obtain tagg. The normalized
superimposed images, along with tagg, are fed into the generative networks Geni to recover the individual
structures. Thanks to the mixing-ratio specific normalization during training, the normalization during inference
is simple and is performed using the mean and standard deviation computed from the set of test input patches.

with the mitochondria showing as relatively faint structures. Existing methods, which are not
cognizant of such variations in superposition severity, exhibit performance degradation when applied
to images with superposition characteristics different from those encountered during training. We
highlight the significance of this issue of severity cognizance by noting that a related problem, known
as Bleedthrough, exists in fluorescence microscopy. When imaging a biological structure into a
dedicated channel, other structures can become visible due to insufficiently precise optical filtering.
In such cases, we say that this other structure “bleeds through” into the currently imaged channel.
See Sup. Fig. 1 for a pictorial description of the task at hand. Note, only if the challenge of relative
intensity variation is effectively addressed will a single network ever be able to effectively solve both
the image unmixing task and the bleedthrough removal task.

To address this, we propose scSplit, a method that incorporates the desired cognizance about the
superposition severity directly into the inductive bias of the method itself. We leverage the inductive
bias embedded in the training methodology of InDI [4], a popular image restoration method. For
a given superimposed input containing structures A and B, scSplit first explicitly predicts a mixing
ratio t ∈ [0, 1], which quantifies the severity of the superposition, with t = 0 meaning that only A
is visible in the input, while t = 1 conversely meaning that only structure B can be seen. scSplit
then uses the estimated mixing ratio along with the superimposed input to predict estimates of A
and B. To ensure that the network remains in-distribution for superimposed images with varying
superposition severities, we introduce a Severity Cognizant Input Normalization (SCIN) module. This
module not only addresses the normalization requirements but also simplifies the inference process,
as we show in Section 3. Additionally, leveraging domain-specific knowledge from fluorescence
microscopy, we incorporate an aggregation module that enhances the accuracy of the mixing ratio
estimation during inference. By integrating these advancements into scSplit, we introduce a method
designed to simultaneously address two critical tasks in fluorescence microscopy—image unmixing
and bleedthrough removal—by being cognizant of the severity of the superposition.

2 Related Work

In the field of fluorescence microscopy, image decomposition techniques have recently gained signifi-
cant attention for addressing the image unmixing problem. Seo et al. [5] introduced a linear unmixing
approach to separate k structures, which, however, necessitates k input channels, each representing
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a distinct superposition of the k structures. More recently, deep learning-based frameworks have
emerged [3, 2, 6], capable of predicting individual structures from a single image channel. Ashesh et
al. [3] proposed a GPU-efficient meta-architecture, µSplit, which leverages contextual information
from surrounding regions of the input patch. HVAE [7–9] and U-Net [10] were used as the underlying
architecture for µSplit. Three variants of µSplit were developed, each optimizing a trade-off between
GPU utilization and performance. Further advancements were made with denoiSplit [11], which
combines unsupervised denoising with supervised image unmixing. More recently MicroSplit [6]
combined the GPU efficiency of µSplit with unsupervised denoising, sampling, and calibration of
denoiSplit. It also provided several image unmixing datasets containing real microscopy images of
different structure types. However, existing single-channel input methods [3, 11] typically assume the
input to be an average of the two structures, thereby overlooking the variability in superposition inten-
sity present in real-world microscopy images. While the MicroSplit analysis successfully quantified
the effects of superposition variability, it did not extend to proposing a resolution. This highlights the
need for more robust approaches to handle the complexities of real imaging data.

Next, we situate the image unmixing task within the broader context of Computer Vision. Image
unmixing can be viewed as a specialized form of image translation, where the objective is to map
an image from a source data distribution to multiple images, each belonging to a specific target
data distribution. Over the past decade, the field of image translation has witnessed significant
advancements, with a wide array of methodologies being proposed. These include architectures such
as U-Net [10], generative adversarial networks (GANs) [12–14], and iterative inference models like
diffusion models [15, 16] and flow matching techniques [17–19], among others. These approaches
have demonstrated remarkable capabilities in addressing various challenges in image-to-image
transformation tasks, providing a rich foundation for advancing image unmixing techniques.

Iterative models offer the advantage of providing access to intermediate predictions during the
inference process. In many such methods, these intermediate predictions—after accounting for
noise—closely resemble a superposition of the source and target data distributions. Consequently,
when the degradation process itself involves superposition, as is the case in our task, iterative models
emerge as a natural choice for modeling the degradation. Literature suggests that the superposition
of structures in fluorescence microscopy can be approximated as a linear superposition [20–22].
This insight led us to adopt InDI [4], a well-established iterative image restoration method that
explicitly models degradation as a linear mixing process. In InDI, the idea is to take the weighted
average between the clean target and the degraded input using a scalar mixing ratio to generate a
‘less’ degraded input. The generated input and the mixing ratio are then fed to a network as inputs,
and the network is trained to predict the clean target. The inductive bias of this training framework
aligns precisely with the linear superposition observed in fluorescence microscopy, making InDI a
suitable foundation for our proposed approach.

Finally, we observe that within the broader domain of image translation, the task of image unmixing
shares similarities with tasks such as reflection removal, dehazing, and deraining [23–26]. However,
these tasks differ fundamentally from fluorescence microscopy unmixing in aspects like superposition
linearity and ground truth availability. See Sup. Sec. J for more details.

3 Our Method

Here, we begin by establishing the necessary formal notation. Then, we address the limitations of
existing normalization schemes when performing inference from intermediate timesteps, and present
our improved normalization approach. Finally, we outline the training process, including the loss
formulations for the generative networks (Gen0 and Gen1) and the regressor network (Reg ), as
illustrated in Figure 1.

3.1 Problem Definition

Let us denote a set of k image pairs by C = {(c10, c11), (c20, c21), ..., (ck0 , ck1)}. We denote by C0 =
{c10, c20, ...} and C1 = {c11, c21, ...} the two sets of images from the two distributions of images we
intend to learn to unmix. For brevity and readability, we will omit the superscript unless needed. For
a pair of images (c0 ∈ C0, c1 ∈ C1) and a mixing ratio t ∈ [0, 1], an input to be unmixed is defined
by the pixel-wise linear combination

ct = (1− t)c0 + tc1. (1)
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With this notation at hand, we define the task of Image Decomposition as the computational unmixing
of a given superimposed image ct into estimates ĉ0 and ĉ1. In this context, we introduced the term
superposition severity to describe the dominance of one channel in the superimposed input, which is
precisely quantified by the mixing ratio t.

The assessment of the quality of any solution for the image decomposition task is evaluated by
computing the similarity between ĉ0 and ĉ1 to the true images c0 and c1, respectively.

3.2 Severity Cognizant Input Normalization (SCIN)

We begin by observing that the normalization procedure for the input patch has not received any
special attention in the existing image unmixing works [3, 2, 6], and the standard practice of mean
and standard deviation based normalization is performed, where the mean and standard deviation
computation is done over the entire training data. With natural images, a common normalization
strategy is to divide by 255. Such a data-independent normalization is not suitable for Fluorescence
microscopy data, which is typically stored in the uint16 data type, since intensity distributions
vary significantly depending upon the imaging conditions. For instance, it is common to have the
maximum pixel intensity for a noisy acquisition to be less than 200, whereas the pixel intensities can
easily be larger than 20000 for less noisy acquisitions.

In InDI [4], where the input also has the same formulation as Eq. 1, c0 and c1 are separately
normalized according to statistics derived from C0 and C1, respectively. It is worth noting that similar
normalization schemes are commonly employed in iterative models in general that operate with two
data distributions and have the objective of translating from one distribution to another.

To understand why a more involved normalization module is required, we next provide the expression
for the expected mean E[µ(t)] and the variance E[σ2(t)] of a random superimposed patch ct given a
mixing ratio t, with expectation computed over the set of patches ct for a given t. Please refer to the
Sup. Sec. A for the derivation. Using Eq. 1, one can write E[µ(t)] = (1− t)E[p0] + tE[p1] and

E[σ2(t)] = (1− t)2E[σ2(0)] + t2E[σ2(1)] + 2t(1− t)Cov(p0, p1), (2)

where p0 and p1 denotes a random pixel from c0 and c1 respectively and Cov[·, ·] denotes the
covariance. One of the default ways to do data normalization is to standardize the sets of images C0

and C1 to have zero mean (E[p0] = E[p1] = 0) and unit variance (E[σ2(0)] = E[σ2(1)] = 1). In this
case, one obtains E[µ(t)] = 0 and E[σ2(t)] = t2 + (1− t)2 + 2t(1− t)Cov[p0, p1]. Note that while
E[µ(t)] is 0 for all t, the expected variance is a function of t. We support this claim with empirical
evidence in the Sup. Fig. S.19. What this means is that during training, for a given mixing ratio t, the
network sees the superimposed patches drawn from a distribution of images having zero mean and
a standard deviation dependent on t. To get optimal performance on a superimposed input during
inference, we would want the input image to be suitably normalized so as to have similar statistics.
This leads to a critical complication when we want to do inference on ct with an unknown t ∈ [0, 1]
using a trained scSplit network. Without knowing t for an input, we cannot normalize correctly.

The solution we propose is to avoid the problem altogether by introducing Severity Cognizant Input
Normalization Module (SCIN), ensuring that for every t, E[µ(t)] = 0 and E[σ2(t)] = 1.0. To enable
this, we must first empirically evaluate what E[µ(t)] and E[σ2(t)] are for a partition of the interval
[0, 1]. We split the interval [0, 1] into n = 100 equally sized disjoint partitions. We generate n sets of
mixed image patches Ci = {ct : t ∈ ( i

n ,
i+1
n ]}, i ∈ [0, . . . , n − 1] by extracting image patches of

fixed size from image sets C0 and C1 and performing pixelwise weighted average as in Equation 1.
For each input patch in each set, we compute the mean and standard deviation. For each set, we
aggregate these values to get the expected mean and standard deviation and store them in a list of
tuples D, such that D[i] = (µi, σi). After creating a superimposed image patch ct as described in
Eq. 1 during training, we standardize ct for all t < 1 using the mean and variance saved in D[⌊tn⌋].
The normalization module we propose simplifies inference by decoupling input normalization from
the mixing ratio. During training, we enforce E[µ(t)] = 0 and E[σ2(t)] = 1 across all mixing ratios.
During inference, test inputs from a single acquisition can therefore be normalized using the mean
and variance computed directly from the images in that acquisition.
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3.3 Network Setup

Similar to InDI [4], we use a Gaussian noise perturbation on the input. Let cnorm
t denote the normalized

ct, with normalization done as described above. Input to the network becomes xt = cnorm
t + tϵn, with

n ∼ N (0, I) and ϵ = 0.01.

Generative Network Geni. We use two generative networks, Gen0 and Gen1, to give us estimates
of cnorm

0 and cnorm
1 respectively. As shown in Figure 1, they take as input the normalized superimposed

image along with an estimate of the mixing ratio, which represents the severity of the unmixing to
be done. Unmixed prediction for the channel i ∈ {0, 1} can be expressed as ĉnorm

i = Geni(xt, tδi +
(1− t)δ1−i), where δk denotes Dirac delta. Note that the severity of the unmixing for estimating c0
and c1 is t and 1− t, respectively.

Regressor Network Reg to Estimate the Right Mixing Ratio. Our regression network Reg predicts
an estimate of the mixing ratio t given an input xt, which is then used by Geni networks during
inference. Crucially, Reg incorporates the same normalization module proposed for the Geni networks
(Section 3.2) and the reasons are identical. As seen before, the normalization statistics for xt are
inherently dependent on t. During inference, inputs must be normalized using statistics consistent with
their true t to avoid distributional mismatch. This creates a cyclic dependency: accurate regression
of t requires proper normalization, but normalization requires the knowledge of t. Resolving this
interdependence is central to our framework’s design.

Next, we utilize domain knowledge to further improve our estimations of t. We know that for all
images acquired during a single session at a microscope, the same laser power settings and the same
fluorophore types will be used. This means that the mixing ratio of all these images can be assumed
to be the same. Hence, we aggregate the t values estimated from the set of images belonging to a
single session and use that during inference. The aggregation is implemented as a simple arithmetic
mean of the t values obtained for individual images in the session. In the Sup. Sec. H, we experiment
with different aggregation methods.

Distribution for p(t). During training, we sample the mixing ratio t from a distribution p(t). To
model p(t), we modify the distribution denoted as ‘lineara’ in InDI, adapting it to

p(t) =
1

1 + a
U [0, 1] +

a

1 + a
δ0.5, (3)

with a = 1 in all our experiments. Unlike InDI, where more weight was given via the Dirac delta
distribution to t = 1, we need more weight on t = 0.5. This is because the image unmixing task
involves inputs containing both structures, making it more appropriate to assign a higher weight to
t = 0.5 rather than t = 1.

4 Results

In all qualitative figures and tables, we define the input as xw = w ∗ C‘wanted’ + (1 − w) ∗ C‘other’.
This notation allows us to relate w directly to the strength of the channel we are evaluating. The value
of w determines the nature of the prediction task. When w = 0.1, the objective is to predict the dim
structure within the superimposed input. Conversely, when w = 0.9, the task shifts to identifying
and removing the dim structure, effectively isolating the dominant structure. This latter scenario is
commonly referred to as the bleed-through removal task in the field.

Datasets and Unmixing Tasks. We tackle five tasks coming from five real microscopy datasets,
namely Hagen et al. [29], BioSR [30], HTT24 [6], HTLIF24 [6], and PaviaATN [3]. From the BioSR
dataset, we tackle the ER vs. Microtubules task. From the Hagen et al., we tackle the Actin vs.
Mitochondria task. Following µSplit [3], we clip pixel values at 1993.0 for this dataset to have a
fair comparison. From HTT24, we tackle the SOX2 vs. Golgi task. From HTLIF24, we choose
the Microtubules vs. Centromere task and from PaviaATN the Actin vs. Tubulin task. The HTT24
and HTLIF24 datasets also include microscope-imaged superimposed inputs, which we additionally
evaluate. Using the laser power ratios employed for the two structures in these datasets as a proxy for
mixing ratio, we obtain w = 0.5 and w = 0.41 for HTT24 and HTLIF24, respectively.
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Dataset Dominant Balanced Weak
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Hagen et.
al

Inp vs Tar 34.1 0.973 0.047 25.1 0.889 0.148 21.2 0.784 0.243
U-Net 31.8 0.965 0.063 28.2 0.921 0.122 22.0 0.833 0.222

µSplitL 33.7 0.965 0.048 31.9 0.961 0.067 23.2 0.857 0.167
µSplitR 33.9 0.962 0.046 32.4 0.960 0.062 23.6 0.858 0.165
µSplitD 33.1 0.967 0.045 32.4 0.964 0.058 23.4 0.863 0.158

denoiSplit 32.4 0.958 0.166 31.9 0.954 0.169 23.1 0.851 0.246
MicroSplit 34.7 0.957 0.167 31.7 0.956 0.168 25.0 0.862 0.240

InDI 33.1 0.963 0.043 32.1 0.965 0.052 24.2 0.879 0.138
scSplit0.5 34.1 0.979 0.032 33.7 0.975 0.045 25.0 0.881 0.141

scSplit−agg 40.6 0.994 0.011 33.3 0.976 0.046 28.0 0.929 0.123
scSplit 40.9 0.994 0.011 33.9 0.977 0.046 29.3 0.934 0.123

HTLIF24

Inp vs Tar 42.3 0.989 0.018 33.3 0.946 0.075 29.5 0.881 0.139
U-Net 45.9 0.980 0.023 44.6 0.986 0.016 36.0 0.939 0.066

µSplitL 46.7 0.978 0.024 45.1 0.986 0.016 36.6 0.940 0.068
µSplitR 46.4 0.978 0.024 45.1 0.986 0.016 36.5 0.940 0.068
µSplitD 45.9 0.979 0.024 44.9 0.986 0.016 36.4 0.942 0.066

denoiSplit 44.8 0.981 0.029 42.9 0.985 0.025 35.8 0.938 0.075
MicroSplit 45.0 0.982 0.029 43.7 0.986 0.025 36.5 0.939 0.073

InDI 45.2 0.976 0.031 43.9 0.991 0.012 37.6 0.963 0.055
scSplit0.5 45.9 0.987 0.015 45.1 0.991 0.013 37.4 0.951 0.065

scSplit−agg 50.1 0.997 0.003 44.0 0.993 0.010 38.8 0.975 0.035
scSplit 51.8 0.998 0.002 45.5 0.994 0.009 39.9 0.976 0.034

BioSR

Inp vs Tar 33.9 0.937 0.119 24.1 0.746 0.311 21.1 0.504 0.498
U-Net 37.2 0.924 0.066 33.7 0.958 0.059 25.6 0.740 0.292

µSplitL 37.8 0.918 0.066 33.5 0.959 0.051 25.7 0.738 0.291
µSplitR 37.8 0.921 0.060 33.0 0.960 0.049 25.7 0.748 0.276
µSplitD 37.5 0.915 0.070 32.6 0.956 0.059 25.2 0.744 0.278

denoiSplit 36.4 0.929 0.083 33.1 0.957 0.086 25.3 0.733 0.322
MicroSplit 38.5 0.932 0.068 34.3 0.966 0.065 26.6 0.759 0.274

InDI 35.9 0.917 0.054 33.4 0.953 0.050 26.3 0.802 0.211
scSplit0.5 37.3 0.957 0.033 35.0 0.967 0.037 26.4 0.770 0.236

scSplit−agg 39.3 0.986 0.012 33.7 0.965 0.039 27.2 0.868 0.153
scSplit 40.1 0.987 0.011 35.3 0.973 0.033 28.7 0.889 0.130

HTT24

Inp vs Tar 38.7 0.978 0.015 29.6 0.900 0.075 25.8 0.783 0.149
U-Net 37.9 0.963 0.042 37.5 0.965 0.020 30.1 0.883 0.059

µSplitL 37.3 0.953 0.046 36.6 0.959 0.021 29.7 0.880 0.059
µSplitR 37.6 0.954 0.046 36.9 0.959 0.021 29.9 0.880 0.059
µSplitD 37.5 0.954 0.045 36.8 0.960 0.021 29.8 0.880 0.059

denoiSplit 37.3 0.954 0.055 37.5 0.964 0.028 31.0 0.896 0.062
MicroSplit 36.9 0.950 0.061 36.6 0.959 0.032 30.3 0.891 0.063

InDI 37.6 0.962 0.034 36.5 0.966 0.017 30.5 0.909 0.057
scSplit0.5 38.1 0.984 0.018 38.6 0.979 0.008 31.4 0.902 0.063

scSplit−agg 43.4 0.993 0.002 38.2 0.979 0.007 33.7 0.939 0.030
scSplit 44.5 0.995 0.001 39.1 0.981 0.005 34.7 0.943 0.028

PaviaATN

Inp vs Tar 31.0 0.932 0.104 22.3 0.754 0.294 18.2 0.548 0.480
U-Net 29.3 0.870 0.210 25.4 0.743 0.346 21.2 0.568 0.500

µSplitL 27.0 0.889 0.133 24.3 0.780 0.241 21.1 0.622 0.396
µSplitR 27.4 0.905 0.120 24.7 0.800 0.228 21.1 0.639 0.387
µSplitD 27.9 0.908 0.127 25.2 0.808 0.241 21.3 0.648 0.399

denoiSplit 27.3 0.857 0.772 26.2 0.843 0.794 21.8 0.750 0.824
MicroSplit 24.0 0.771 0.896 21.8 0.688 0.952 18.8 0.540 1.000

InDI 29.9 0.943 0.131 23.9 0.858 0.192 21.7 0.741 0.248
scSplit0.5 29.0 0.948 0.082 27.1 0.904 0.135 21.2 0.774 0.226

scSplit−agg 33.9 0.976 0.035 27.1 0.903 0.166 23.9 0.819 0.387
scSplit 35.1 0.977 0.033 27.6 0.907 0.155 24.3 0.823 0.377

Table 1: Quantitative evaluation of unmixing performance across five tasks. We categorize the input
into three regimes based on the dominance of the target channel: dominant (w ∈ {0.9, 0.8, 0.7}), balanced
(w ∈ {0.6, 0.5, 0.4}), and weak (w ∈ {0.3, 0.2, 0.1}). The reported metric values are averaged across both
channels and all values of w within each regime. To account for the varying difficulty of the regimes, we include
a comparison between the input and the target in the first row for each dataset. Metrics include Multiscale
SSIM (MS-SSIM) [27] and range-invariant PSNR [28]. The grayed and underlined entries indicate the best and
second-best results for each metric, respectively.
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Figure 2: Qualitative evaluation of unmixing performance. We show qualitative evaluation on Hagen et
al. [29] (top panel) and BioSR [30] (bottom panel). For each dataset, the full input frame (top-left) and a
zoomed-in input patch (bottom-left) are displayed. Predictions and corresponding targets (last column) are for
the input patch. They are shown for both channels, with each channel displayed in a separate row. PSNR values
are also reported for the predicted patch. The mixing ratio w indicated above the input column corresponds to
the first channel, with the second channel naturally having a ratio of (1− w). Additional qualitative evaluations
across different w values for all datasets are provided in the Supplementary Figures 4 through 18.

HT-LIF24 HT-T24
PSNR SSIM LPIPS PSNR SSIM LPIPS

Inp vs Tar 32.9 .947 .193 29.4 .894 .152
U-Net 40.7 .990 .021 35.6 .955 .015
µSplitL 40.6 .990 .022 35.0 .949 .017
µSplitR 40.9 .991 .021 35.1 .950 .017
µSplitD 40.9 .991 .021 35.2 .950 .017
denoiSplit 39.8 .988 .032 36.6 .961 .030
MicroSplit 40.1 .991 .034 35.8 .954 .031
InDI 41.2 .992 .012 34.4 .946 .037
scSplit0.5 41.1 .993 .016 35.9 .956 .017
scSplit−agg 40.5 .991 .015 35.6 .955 .019
scSplit 40.9 .992 .015 36.0 .957 .017

Table 2: Evaluation on superimposed raw mi-
croscopy images. For the HT-LIF24 and HT-T24
datasets, we evaluate raw superimposed images with
roughly balanced channel intensities. The metric
‘SSIM’ refers to MicroMS3IM [31]. Best and second-
best results per metric are indicated by grayed and
underlined entries, respectively.

Model Mixing-ratio PSNR SSIM LPIPS
UNet (4:1) 30.1 0.906 0.074
denoiSplit (4:1) 28.8 0.854 0.096
scSplit 0.5 (4:1) 32.3 0.914 0.069
scSplit (tagg = .82) (4:1) 35.8 0.956 0.020
UNet (1:4) 28.5 0.878 0.109
denoiSplit (1:4) 30.3 0.920 0.115
scSplit 0.5 (1:4) 32.3 0.927 0.067
scSplit (tagg = .25) (1:4) 35.6 0.955 0.020

Table 3: Evaluation on superimposed raw mi-
croscopy images exhibiting increased train-test dis-
tribution shift. We use the HT-T24 dataset, with the
test set and metrics identical to those in Table 2. How-
ever, relative to Table 2, the training data exhibits a
substantially different mixing ratio from the test set,
resulting in a noticeable drop in the performance of
the strongest baseline methods. Despite this, scSplit
still demonstrates comparatively robust performance
in these conditions.

Baselines. As a baseline, we use U-NET [10], with the implementation as used in [3]. Next, we
use the three architectures proposed in µSplit [3], namely Lean-LC, Regular-LC, and Deep-LC, as
baselines which we refer to as µSplitL, µSplitR, and µSplitD, respectively. For the Hagen et al. [29]
and the PaviaATN [3] data, we used publicly available pretrained models for the abovementioned
baselines. Next, we use the official implementation of denoiSplit as a baseline where we increased
the patch size (from 128 to 512) to ensure a fair comparison with scSplit. We use the official
implementation of MicroSplit with its default hyperparameters. Finally, we use InDI as a baseline.
Since there is no available official implementation for InDI, we implemented it. To ensure a fair
comparison, we utilized the same hyperparameters for both InDI and scSplit implementations. For
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a)

b)

Figure 3: Performance evaluation of the regressor network Reg . (a) Quantitative evaluation of performance
degradation with incorrect w during inference: This analysis highlights the sensitivity to inaccurate predictions
by Reg . The x-axis represents the assumed w during inference, the legend represents the actual w, and the y-axis
quantifies the performance. (b) Qualitative evaluation on the BioSR dataset with varying w during inference:
Predictions are shown for each channel (two rows) under different assumed w values. For each w, the input is
divided into upper and lower halves, displayed in two sub-rows. The first sub-row sets negative pixel values to
zero during visualization, while the second sub-row uses default visualization. It is worth noting that significant
artefacts (tiling artifacts, disappearance of structures, and increased "crispness" of microtubule curves) get
manifested when the assumed w is reasonably far from w = 0.8, the w value used to create the input.

our InDI baseline, we use t = 0.5 during inference and use the p(t) defined in Eq. 3 during training.
Please refer to the supplement for more details on these baselines. To evaluate the models on
superimposed images directly captured with a microscope, we trained all models with synthetic inputs
and used these ‘real’ inputs for evaluation. To separately showcase the benefits of the Reg network
and the aggregation operation, we have two variants of scSplit, namely scSplit0.5 and scSplit−agg
as additional baselines. scSplit0.5 does not use the Reg network, and instead always uses t = 0.5
during inference. scSplit−agg uses the Reg network, but does not perform aggregation of estimated
t. Finally, for InDI, scSplit, and all variants of scSplit, we employ one-step inference to minimize
distortion. For a more detailed discussion on it, please see Sup. Sec. D.

Quantitative Evaluation. In Table 1, we present quantitative results. Here, we consider three input
regimes, namely ‘Dominant’, ‘Balanced’, and ‘Weak’, each differing from the other on the strength
of the structure we are interested in. While in the Weak regime, the structure we desire to extract
from the input is barely present, the desired structure is dominant in inputs from the ‘Dominant’
regime. Within the lexicon of microscopy, inputs derived from the Strong regime are designated as
exhibiting ’bleedthrough’. For each regime, we average the performance over the two channels and
the 3 different w values as mentioned in Table 1. Please refer to the Sup. Sec. E for more details on
the evaluation procedures.

From Table 1, it is clear that scSplit does a good job across all input regimes, and especially for the
Dominant regime, that is, for higher w values. This result shows that a single trained scSplit network,
which is cognizant of the severity of superposition, can solve both the bleedthrough removal task and
image unmixing task.
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Figure 4: Analysis of factors contributing to the superior performance of scSplit. (Left) Justification for
the normalization module on the Hagen et al. dataset: The conventional normalization of C0 and C1 leads to
out-of-distribution issue during test evaluation. In contrast, our w-specific normalization scheme demonstrates
superior performance. (Right) Comparison against suitable augmentations: We investigate one key factor
behind scSplit’s enhanced performance: its exposure to inputs with varying levels of mixing during training.
For this, we introduce two augmentations to the input generation process of µSplitD [3], one of our baselines,
allowing it to also observe different mixing levels during training. While these augmented µSplitD variants show
improved performance over the vanilla µSplitD , scSplit consistently outperforms them across mixing ratios w.

.

As mentioned above, we also have real superimposed images for the balanced regime in the HTT24
and HTLIF24 datasets. We show the quantitative evaluation in Table 2. Although all baseline methods
are optimized for the balanced regime and these real input images also belong to that regime, scSplit
achieves competitive performance even under these conditions, as evidenced by the results in Table 2.
To address potential concerns that scSplit may offer limited advantages for real superimposed images,
we conduct an additional experiment on the HTT24 dataset to demonstrate its effectiveness. In this
experiment, we demonstrate that scSplit outperforms baseline methods when the relative intensities of
structures in real superimposed inputs differ from those in synthetic sums. From the HTT24 dataset,
we created two variants by multiplying all pixel values in one structural channel by a factor of 4. In
the first variant, the first channel is brighter than the second, while the opposite holds for the second
variant. As a result, the mixing ratios between the test set and the synthetically summed inputs (used
during training) differ significantly. For each variant, scSplit and the two top baselines (U-Net for
LPIPS, denoiSplit for PSNR) were trained and evaluated on the unaltered real superimposed images.
The results in Table 3 show that scSplit consistently outperforms both baselines by a substantial
margin in PSNR across both variants, demonstrating robustness to variations in relative structure
intensity.

Effectiveness on a Downstream Segmentation Task. For the bleed-through removal task (w ∈
0.7, 0.8, 0.9), we used the test set of the BioSR dataset to evaluate segmentation as a downstream
task with Featureforest (max_depth=9, numtrees=450, encoder=SAM2_large), a recently
developed segmentation method [32]. To avoid model bias, we manually annotated the ground truth
and trained Featureforest using these annotations (as target) alongside model predictions (as input).
If we had annotated the predictions instead, it would raise concerns about the consistency and quality
of annotations when doing it for scSplit’s predictions as opposed to when doing the same for the
baseline models. We trained 4 × 2 × 3 = 24 Featureforest models—one per model, channel, and
mixing ratio. We show the results in Table 4, where the evaluation used the Dice dissimilarity from
scipy (lower is better). Among all methods, segmentations from scSplit predictions best matched
those of the ground truth channel.

Model Channel 1 Channel 2
w = 0.7 w = 0.8 w = 0.9 w = 0.7 w = 0.8 w = 0.9

denoiSplit 0.077 0.073 0.065 0.064 0.061 0.056
µSplit 0.055 0.051 0.047 0.051 0.047 0.038
InDI 0.055 0.050 0.044 0.046 0.045 0.045
scSplit 0.048 0.039 0.035 0.038 0.032 0.026

Table 4: DICE dissimilarity scores for various models and mixing ratios. scSplit achieves the best (lowest)
DICE dissimilarity across all settings.
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Utility of SCIN. Its utility can be inferred by comparing InDI with our scSplit0.5 variant in Table 1,
with scSplit0.5 outperforming by 1.2db PSNR on average across all regimes and all four datasets.
Note that all hyperparameters for the InDI and Geni networks of scSplit0.5 are identical, and the
only difference is in the normalization. Please find the ablation for the normalization module in Sup.
Sec. C. One can also note its utility by comparing the performance of Reg network trained with or
without our normalization scheme in Figure 4(left). We also present a comparison between SCIN and
Instance Normalization in Sup. Sec. B, as the latter can likewise address the issue we identified.

Utility of Aggregation and Reg network. Across Tables 1 and 2 scSplit outperforms the ablated
network scSplit−agg on all tasks for the PSNR metric, thereby clearly justifying the utility of the
aggregation operation. See Sup. Sec. H for experiments with other aggregation methodologies.
One can observe the utility of using Reg when comparing scSplit0.5 with scSplit−agg, with the
latter variant outperforming the former across several tasks in Table 1. It is worth noting that the
improvement is more pronounced with more asymmetric mixing ratios (Dominant and Weak regimes).
We argue that scSplit0.5’s assumption of w = 0.5 becomes reasonable in the Balanced input regime,
leading to its competitive performance in this regime.

Degradation Analysis for Reg. In Figure 3(a), with the BioSR dataset, we analyze the performance
degradation when using increasing incorrect estimates for w during inference. We evaluate scSplit
using a fixed w (x-axis) in the inference, while the inputs have been created with a different w
(legend). We find scSplit to be relatively stable to small differences between the assumed w and
actual w. We support this claim qualitatively in Figure 3(b).

Exploring Augmentations. One of the critical advantages scSplit and InDI have over other base-
lines is that during training, they observe inputs with different mixing ratios, and so naturally, it makes
it easier for them to outperform them. InDI, however, cannot leverage this advantage since it does
not have the Reg network and is therefore forced to use t = 0.5. In this experiment, we attempted
to give this advantage to the baselines through augmentations. We experimented with two different
augmentations in the training procedure of µSplitD, the most powerful variant of µSplit. During
training µSplitD, instead of creating the input inp by simply summing the two channel images, we
instead compute inp = tc0 + (1− t)c1, where t is sampled from p(t). We work with two variants of
p(t): (i) p(t) = U [0, 1] and (ii) p(t) as defined in Eq. 3. Results shown in Figure 4 demonstrate that
these augmentations help µSplitD to improve performance for w further away from 0.5, along with
some performance degradation for w = 0.5. However, scSplit still consistently outperforms the best
of all three variants by 2.4db PSNR on average. We note that the suboptimal normalization settings
for µSplitD also contribute to this, which is analyzed in the Sup. Fig. S.3.

5 Conclusion, Limitations, and Future Directions

In this work, we introduce scSplit, a network designed to simultaneously address two key challenges
in fluorescence microscopy: image unmixing and bleedthrough removal. Our architecture is explicitly
designed to account for the severity of the superposition that needs to be unmixed. We also identify
limitations in the normalization methodologies of existing image unmixing approaches and propose an
alternative normalization strategy that is better suited for inputs with varying levels of superposition.
Additionally, we developed an aggregation module that improves the estimation of mixing ratios.

Despite its strengths, scSplit has a couple of limitations that warrant future investigation. First, the
current framework is not optimized for noisy data—though a two-step approach (self-supervised
denoising followed by unmixing) can be a suitable approach, an end-to-end solution could offer
significant advantages. Second, extending scSplit to handle more than two channels would broaden its
applicability. Finally, interference-based imaging modalities may challenge the linear superposition
assumption of input formation, and therefore the effectiveness of scSplit and other semantic unmixing
methods [6, 3, 2] on such modalities remains to be evaluated.

While scSplit is designed for fluorescence microscopy, its core principle of bringing severity cog-
nizance into the inductive bias of the network could benefit general image restoration. In Sup. Sec. J,
we do a proof-of-concept experiment to show that our approach can enhance motion deblurring
performance. However, adapting scSplit to natural images would require integrating task-specific
inductive biases—an exciting direction for future work.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce a novel image unmixing network architecture scSplit capable of
handling varying levels of superposition severity. The evidence of scSplit working across
different superposition severity levels can be inferred from its outperformance over multiple
baseline methods in Table 1. This outperformance also indicates that it indeed solves image
unmixing and bleedthrough removal task. The benefit of regressor network can also be
assessed by comparing scSplit with InDI in Table 1. In Section 3.2 we motivate the necessity
of the normalization module and provide the complete proof in the Sup. Sec. A.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations and future work in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In the Sup. Sec. A, we provide the proof for our claim made in Section 3.2
(Equation 2).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The training setup, along with all hyperparameters, is mentioned in detail
in the main paper and supplementary material. While the manuscript provides sufficient
information for re-implementation, exact reproduction of qualitative and quantitative results
may require access to our code, which is submitted along with the manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code will be publicly available under a permissive license.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are outlined in the manuscript and in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide standard error tables in the supplementary material.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute details are listed in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, this work adheres to the NeurIPS Code of Ethics. We have maintained
transparency in our methodology, publicly shared evaluation protocols, and ensured repro-
ducibility. Our approach is designed for responsible scientific imaging applications and does
not involve human subjects, sensitive data, or personally identifiable information. We have
also explicitly outlined the limitations of our method.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: This work focuses on enhancing fluorescence microscopy. The model has
a low parameter count, thereby eliminating any negative societal image due to resource
utilization. Since our method does not perform unconditional generation, producing synthetic
or misleading images is not a concern (beyond the scientific use and interpretation of obtained
results).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models in this work are specialized for fluorescence microscopy en-
hancement—a domain with inherently lower misuse potential than general generative AI.
However, we are committed to responsible dissemination: code and pretrained models will
be released with comprehensive documentation, clearly specifying intended applications
and limitations to avoid improper use beyond scientific imaging.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]

Justification: We only use public datasets and have written the core logic responsible for
this work ourselves.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not use novel datasets or new software. The model architecture is well
described, and code is provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing and research with human subjects was conducted.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing and research with human subjects was conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No part of this research involves the use of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Supplementary Material for

scSplit: Bringing Severity Cognizance to
Image Decomposition in Fluorescence Microscopy

Ashesh Ashesh, Florian Jug
Jug Group, Human Technopole, Milano, Italy

Figure S.1: Handling varying levels of superposition. For the objective of image unmixing task, superimposed
images acquired with Fluorescence microscopy can have varying levels of mixing of the constituent structures.
Additionally, insufficiently precise optical filtering often leads to ‘bleedthrough’ wherein a structure of interest
gets superimposed with a shadowed presence of another structure. scSplit uniquely addresses these varying
levels of structural mixing in the superimposed input images. Unlike existing unmixing methods, scSplit’s
architecture adapts to different degrees of superposition and accounts for the resulting variations in pixel intensity
distributions (inset plot in red), enabling effective input image normalization and leading to efficient unmixing
across diverse mixing ratios.

A Severity Cognizant Input Normalization

In this section, we extend the formulations presented in Section 3.2 to accommodate images of
arbitrary dimensions H × W . Let pt[i, j] be a random variable denoting a pixel intensity value
present in ct ∈ Ct at the location (i, j). Let us now compute the mean (µ(t)) and variance (σ2(t)) of
ct.

µ(t) =
1

P

∑
i,j

pt[i, j], (1)

and
σ2(t) =

1

P

∑
i,j

pt[i, j]
2 − µ(t)2, (2)

where P is the total number of pixels in ct. Note that µ(t) and σ(t) are also random variables. Their
expected values E[µ(t)] and E[σ(t)] are typically used for normalization.

Next, describing µ(t) in terms of random variables p0 and p1, we get,

µ(t) =
1

P

∑
i,j

((1− t)p0[i, j] + tp1[i, j])

= (1− t)
1

P

∑
i,j

p0[i, j] + t
1

P

∑
i,j

p1[i, j]

= (1− t)µ(0) + tµ(1).

(3)

Taking the expectation in the above equation, we get
E[µ(t)] = (1− t)E[µ(0)] + tE[µ(1)]. (4)
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Doing a similar analysis for the variance, we get,

E[σ2(t)] =
1

P

∑
i,j

E[pt[i, j]2]− E[µ(t)]2. (5)

Next, we simplify E[pt[i, j]2] and E[µ(t)]2 to get

E[p2t [i, j]] = E[(1− t)2p20[i, j] + t2p21[i, j]

+2t(1− t)p0[i, j]p1[i, j]]

= (1− t)2E[p20[i, j]] + t2E[p21[i, j]]
+2t(1− t)E[p0[i, j]p1[i, j]], and

(6)

E[µ(t)]2 = (1− t)2E[µ(0)]2 + t2E[µ(1)]2

+2t(1− t)E[µ(0)]E[µ(1)].
(7)

Using expressions derived above, the expression for E[σ(t)] becomes,

E[σ2(t)] = (1− t)2(
1

P

∑
i,j

E[p20[i, j]]− E[µ(0)]2)

+t2(
1

P

∑
i,j

E[p21[i, j]]− E[µ(1)]2)

+2t(1− t)(
1

P

∑
i,j

E[p0[i, j]p1[i, j]]− E[µ(0)]E[µ(1)])

(8)

With biological data, the image acquisition process works in the following way: a random location
on the specimen slide is picked and that is then captured to generate an image frame. So, all pixel
locations can be assumed to be equally likely to capture any part of any structure. We therefore
assume, E[pt[a, b]] = E[pt[c, d]] ∀a, b, c, d and E[p2t [a, b]] = E[p2t [c, d]] ∀a, b, c, d. So, we remove
the pixel location and define pt to be a random variable denoting a pixel in ct. We define E[pt] :=
E[pt[a, b]] ∀a, b and E[p2t ] := E[p2t [a, b]] ∀a, b. The expression for E[σ2(t)] now simplifies to,

E[σ2(t)] = (1− t)2(
1

P

∑
i,j

E[p20]− E[µ(0)]2)

+t2(
1

P

∑
i,j

E[p21]− E[µ(1)]2)

+2t(1− t)(
1

P

∑
i,j

E[p0p1]− E[µ(0)]E[µ(1)])

= (1− t)2(E[p20]− E[µ(0)]2) + t2(E[p21]− E[µ(1)]2)
+2t(1− t)(E[p0p1]− E[µ(0)]E[µ(1)])

= (1− t)2E[σ2(0)] + t2E[σ2(1)] + 2t(1− t)Cov(p0, p1),

(9)

where Cov(:, :) is the covariance function. Now that we have the expressions for E[µ(t)] and
E[σ2(t)], we consider a plausible normalization methodology where c0 and c1 are normalized using
the following procedure: for every c0 in C0, we compute its mean and standard deviation. We average
the mean and standard deviation values computed over all images from C0 to obtain a global mean
and a global standard deviation. We use them to normalize every c0 image. An identical procedure is
followed for c1. In this case, by construction E[µ(0)] = E[µ(1)] = 0 and E[σ2(0)] = E[σ2(1)] = 1.
So, from Eq. 4, E[µ(t)] = 0. However, E[σ(t)] still remains the following function of t,

E[σ2(t)] = (1− t)2 + t2 + 2t(1− t)Cov(p0, p1) (10)

As discussed in the main manuscript, this causes serious issues during normalization.
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B Instance Normalization: Another Way to Achieve Our Normalization
Objectives

If one thinks about the normalization requirements we discovered in this work, one realizes that
applying instance normalization (IN) in the first layer can, in principle, also mitigate the normalization
issue we discovered for the semantic unmixing task. Instead of making expected mean to zero and
expected standard deviation to one as in our approach, it will ensure that for every input patch coming
out from IN layer, its mean and standard deviation are zero and one respectively. It is simpler and
therefore makes up for an attractive alternative approach. However, we found both empirical and
domain-specific reasons led us to have the SCIN normalization approach we proposed in the main
text.

For the empirical evaluation, we conducted experiments on the Hagen et al. dataset [29] using
instance normalization. We trained two additional baselines: (1) InDI (firstIN), with instance
normalization as the first layer, and (2) InDI (allIN), replacing all group normalization layers with
instance normalization plus a first-layer instance normalization. Similar variants were also created
for the scSplit network. Results presented in the Supplementary Table S.1 show our original scSplit
model outperforms most baselines. Among ‘firstIN’ and ‘allIN’ variants, the ‘firstIN’ variant performs
better than the ‘allIN’ variant. Results for the PaviaATN task with ‘firstIN’ are also reported in which
case as well, scSplit has clear out-performance for the bleedthrough regime (Dom.) and is competitive
in others. More specifically, scSplit outperforms scSplit (firstIN) across three input regimes and
two datasets, with an average PSNR gain of 0.33 dB. Since both models share the same network
architecture and incorporate our key innovations—(a) the Reg network, (b) aggregation of t, and (c)
correction of the normalization issue—the performance gap could not be large and thus we consider
this performance gap as an evidence of superiority of our normalization module over IN.

Dataset Model Dom. Bal. Weak.
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Hagen et al. InDI (allIN) 36.5 0.987 0.026 32.4 0.968 0.060 27.9 0.914 0.132
Hagen et al. InDI (firstIN) 36.7 0.987 0.032 33.5 0.974 0.052 26.6 0.881 0.154
Hagen et al. scSplit (allIN) 36.6 0.988 0.025 32.4 0.967 0.061 27.9 0.916 0.131
Hagen et al. scSplit (firstIN) 40.1 0.993 0.016 34.0 0.976 0.051 29.0 0.924 0.129
Hagen et al. scSplit 40.9 0.994 0.011 33.9 0.977 0.046 29.3 0.934 0.123
PaviaATN InDI (firstIN) 28.8 0.950 0.102 27.1 0.903 0.150 21.3 0.768 0.248
PaviaATN scSplit (firstIN) 33.5 0.975 0.042 27.7 0.906 0.172 24.8 0.825 0.440
PaviaATN scSplit 35.1 0.977 0.033 27.6 0.907 0.155 24.3 0.823 0.377

Table S.1: Comparing our normalization scheme (scSplit) with using instance normalization (scSplit (firstIN)).

Next we provide logical arguments which favor SCIN over IN for the task at hand. Instance norm
has been reported to degrade discriminative performance in tasks where intensity clues or instance
specific contrast is relevant [33, 34]. In microscopy, intensity cues are important. For instance, the
background can be easily distinguished from the ’content-less’ interior of an organelle like nucleus
simply by comparing average intensity value. However, instance norm can make it difficult as it
normalizes per patch. This will be more true for smaller patch sizes, typically used for semantic
unmixing (patch size of 64 and 128 were used by µSplit [3] and denoiSplit [2] respectively). A
similar argument can be made for the Reg network. IN when applied to ct distorts the structure of
the distribution Ct, by eliminating statistical differences between individual images, whereas these
remain preserved with SCIN. Applying IN to ct could actually negatively affect the ability of the
Reg network to reliably estimate t, because by eliminating inter-image statistical differences, IN may
discard the very signal that the Reg network requires to estimate t.

Finally, from the computational efficiency standpoint as well, our normalization approach SCIN is
better. Our normalization module’s extra computation occurs only once before training, when means
and standard deviations for each t are calculated—a fast pre-processing step (e.g., about 7 minutes
for Hagen et al. in a naive implementation). After this, training (taking 3 days on a Tesla V100
GPU) normalizes input patches using these precomputed values, adding no overhead during training.
However, we provide evidence that the IN-based approach could actually be more computationally
demanding, particularly when using smaller patch sizes. IN internally needs to compute the standard
deviation over the full frame for each input patch , and this computation is performed within the
dataset class, and therefore must happen on the CPU. With frame dimensions of several thousand
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pixels found typically in microscopy datasets (e.g., 2720 × 2700 for PaviaATN, 2048 × 2048 for
Hagen et al., 4096× 4096 for Chicago-Sch23 [6] ), we conducted a quick estimation: On our high-
performance cluster (Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz), it takes around 28 milliseconds
(measured with %timeit in ipython) to run torch.nn.InstanceNorm2d(1) on a 3000× 3000 image. For
a training schedule of 450K iterations with a batch size 8 (our configuration), this would amount to
about 28× 10−3 × 450K × 8/3600, which is around 28 hours of added training time solely due to
the IN operation. Even with 4 workers (our configuration), this step alone would still require 7 hours.
This is about 10 percent increment in training time for our task. Additionally, when using smaller
patch sizes, either batch size or iteration count needs to increase if we want the training to see the
data ‘same number of times’, which would only increase the computational cost. For instance, just
halving the patch size to 256 would increase the extra computation cost to 28 hours.

C Ablation of Normalization Module

Model Dom. Bal. Weak.
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

PaviaATN 35.1 0.978 0.032 25.9 0.895 0.202 23.7 0.813 0.492
Hagen 39.4 0.990 0.017 30.8 0.962 0.067 27.8 0.923 0.120
HTT24 42.7 0.992 0.003 37.1 0.973 0.011 33.7 0.934 0.034
BioSR 39.3 0.979 0.017 33.6 0.936 0.059 28.1 0.874 0.146

Table S.2: Model performance (PSNR, SSIM, LPIPS) without SCIN module.

Here, we conduct an ablation study where the scSplit model was trained without SCIN module.
Instead, we used the commonly adopted approach in iterative inference models, where the two images
are normalized first using mean-std normalization and then combined via a convex combination to
form the intermediate input xt. In the supplementary table S.2, we present the results of scSplit
using this 2-image normalization scheme across four datasets. For each task, we trained the Reg and
networks under this normalization approach. Across all tasks and all input regimes, it is evident that
the PSNR values of the original scSplit model (as reported in Table 1 of the main text) outperform
those reported here, with the sole exception of the task on PaviaATN dataset under the dominant
input regime, where the PSNR values are equal.

It is important to highlight a limitation in the normalization approach used by current semantic
unmixing methods [3, 2, 6]. These methods typically estimate a single set of mean and standard
deviation values from all input data and apply this global normalization to input patches from the
training, validation, and test sets. In practice, this presents a challenge: test images acquired from
microscopes often exhibit distinct intensity distributions compared to the training data. Therefore, it
would be more appropriate to normalize test images using statistics computed specifically from each
newly acquired dataset. Some existing methods [3, 2] performed well using global normalization
because their train, validation, and test images originated from the same acquisition session. In Sup.
Tab. S.8, we report the performance of µSplit variants when global normalization statistics—shared
across train, validation, and test—are used. Notably, scSplit (shown in Table 1) still achieves
superior results. Nevertheless, we emphasize that applying global normalization in this manner is not
practically feasible for real-world inference scenarios.

D Thoughts on Iterative Inference

Our implementation of InDI has the possibility of doing iterative inference with any number of steps.
With minimal change one can also perform iterative inference with out scSplit. However, in this
work, we have consciously avoided iterative inference and have always performed 1-step inference.
In the next few paragraphs, we explain the rationale behind it.

In Figure 3 of InDI [4], the authors quantitatively show that more iterations lead to worse PSNR
(higher distortion) but improved perceptual quality. The same is shown for three datasets in Figure 9
of InDI, that shows a monotonous drop in PSNR when increasing the number of iterations, with total
drop being atleast 2db PSNR in all three cases. When working with predictive models on biological
data, one can argue that in the perception-distortion tradeoff [35], the motivation is to get the model
with a better fidelity to the recorded image (lower distortion). This would not be true if the motivation
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was to generate synthetic datasets, in which case better perceptual quality might be the major goal.
With a focus on better fidelity, we use one step prediction for both InDI and inDiSplit. Note that
training in InDI is not iterative and so this choice does not affect in any way how InDI is trained.

That all being said, iterative inference in indiSplit can done in the following way: Instead of starting
from t = 1 as done in InDI, one needs to start from the value of t estimated with Reg network. ∆,
the unit decrement in t, can simply be computed as ∆ = tstart/totalSteps. This is implemented in
code (see line 93 in model/ddpm_modules/indi.py). The one change that needs to happen
is to ensure that E[µ(xt)] = 0 and E[σ(xt)] = 1, where µ() and σ() represents the mean and the
standard deviation operators. This can easily be achieved by a normalization step in each step of the
iterative inference.

E Quantitative Evaluation Methodology

In this section, we illustrate the methodology used to compute the results presented in Table 1 of
the main manuscript by taking the following example. Let us describe the performance evaluation
process for a specific value of w, such as w = 0.7. To assess a model’s performance for w = 0.7 on
a given dataset, we first generate inputs with t = 0.3 using Equation 1 and evaluate the performance
metrics for C0 (using Gen0). Next, we generate inputs with t = 0.7 and evaluate the performance for
C1. The average of these two metric values represents the model’s overall performance for w = 0.7.
Each metric is computed on individual image frames, and the average performance reflects the mean
metric value across all test set frames. The corresponding standard errors (computed over all test
frames) for Table 1, averaged across both channels, are provided in Table S.10. For Table 2, the
standard error values, averaged across both channels, are presented in Table S.9.

F Normalization Details for Our Baselines

The official implementations of various µSplit variants and denoiSplit are publicly available, and
they share an identical input normalization scheme. During training, all pixels from images in both
sub-datasets C0 and C1 are aggregated into a one-dimensional array, and the mean and standard
deviation of this array are used to normalize all input images in the validation and test sets. It is
important to note that the set of normalized patches from training data does not have a zero mean
and unit standard deviation. So, similar to InDI, the optimal normalization scheme which should be
employed on test images is easy to obtain.

For evaluating these baselines on the tasks presented in Table 1, we adhere to their normalization
scheme with one modification: for each mixing ratio t, the mean and standard deviation are computed
using pixels exclusively from the input images ct. Note that when evaluating test images, we cannot
assume access to individual channels and so cannot use their normalization scheme. Note that this
scheme is applied solely to these baselines during evaluation.

G Hyper-parameters and Training Details

We use a patch size of 512 to train scSplit, InDI, U-Net and denoiSplit networks. For µSplit variants,
we kept the patch size as 64, which is used in their official implementation. The reason is that, in spite
of using 64 as the patch size, they effectively see the content of 1024×1024 sized region surrounding
the primary input patch. This is because of the presence of the LC module they have in their network
which takes as input additional low-resolution patches centered on the primary patch but spanning
larger and larger spatial regions. For training Geni networks, we use MAE loss and for training
Reg network, we use MSE loss. We use Adam optimizer with a learning rate of 1e− 3. To have a
fair comparison between InDI and scSplit, we used the same parameter count, non-linearity, number
of layers etc. between them. We used MMSE-count of 10 to compute all metrics. In other words,
for every input, we predicted 10 times, and used the average prediction for metric computation. All
metric computation has been done on predictions of entire frames (and not on patches).

For Hagen et al. dataset, to allow all methods to compare with pretrained models of µSplit variants,
we followed µSplit code of applying upper-clip to the data at 0.995 quantile. We upper-clipped
the data at intensity value of 1993. This corresponds to 0.995 quantile of the entire training data.
Similarly, for PaviaATN, the upper-clipping operation was done at 1308 value.
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GT Mean Median Mode WgtSum WgtProd

0.00 0.13 0.12 0.11 0.14 0.15
0.10 0.15 0.14 0.10 0.16 0.16
0.20 0.21 0.20 0.13 0.20 0.20
0.30 0.31 0.28 0.27 0.29 0.27
0.40 0.43 0.41 0.35 0.42 0.40
0.50 0.54 0.53 0.66 0.54 0.51
0.60 0.64 0.64 0.61 0.63 0.61
0.70 0.72 0.72 0.74 0.71 0.69
0.80 0.77 0.78 0.79 0.77 0.76
0.90 0.80 0.79 0.78 0.79 0.80
1.00 0.80 0.80 0.78 0.80 0.81

Table S.3: Quantitative evaluation of different aggregation methodologies on BioSR data. First column is the
ground truth t and all other columns are the aggregated predictions using different aggregation methodologies.

GT Mean Median Mode WgtSum WgtProd

0.00 0.13 0.10 0.09 0.11 0.11
0.10 0.14 0.12 0.10 0.12 0.12
0.20 0.25 0.23 0.22 0.22 0.24
0.30 0.35 0.35 0.35 0.34 0.36
0.40 0.45 0.45 0.46 0.45 0.46
0.50 0.53 0.54 0.54 0.53 0.55
0.60 0.61 0.62 0.64 0.61 0.63
0.70 0.69 0.70 0.71 0.69 0.71
0.80 0.78 0.80 0.79 0.78 0.80
0.90 0.87 0.89 0.87 0.86 0.87
1.00 0.92 0.96 0.96 0.93 0.92

Table S.4: Quantitative evaluation of different aggregation methodologies on HTT24 data. First column is the
ground truth t and all other columns are the aggregated predictions using different aggregation methodologies.

H Different Aggregation Methodologies

In this section, we experiment with different ways to aggregate the estimates of the mixing ratio
t. We iterate over the test set and for each patch, we get an estimate of t. We tried several ways
to aggregate the estimates. We aggregated the estimates using mean, median and mode as three
different ways. Next, based on the hypothesis that mixing ratio estimates predicted from patches
containing both structures could be more accurate than those from patches dominated by a single
structure, we implemented two additional aggregation methods. For them, we replicate the scalar
mixing ratio predictions to match the shape of the input patches. We then tile these replicated mixing
ratio predictions so that they have the same shape as the full input frames. Using t = 0.5, we first
make a rough estimate of both channels, ĉ0 and ĉ1. We then take the weighted average of the pixels
present in the tiled mixing ratio frame, with weights computed by normalizing (I) ĉ0 + ĉ1 and (II)
ĉ0 ∗ ĉ1. So, pixels in which both structures are present will get a higher weight. We call them WgtSum
(corresponding to I) and WgtProd (corresponding to II). We do not observe any significant advantage
for any of the above mentioned aggregation methods in Tables S.3, S.4 and S.5 and so we resort to
using mean as our aggregation method on all tasks.

I On Design of Geni

As described in the main text, we worked with a setup which requires one generator network per
channel. While one can envisage an alternative implementation using a single generative network with
two channels instead of two separate networks Gen0 and Gen1, extending it to multiple channels
with each channel contributing differently to the input, which is our future goal, would become
complicated and so we decided on this cleaner design.
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GT Mean Median Mode WgtSum WgtProd

0.00 0.13 0.11 0.09 0.13 0.13
0.10 0.18 0.16 0.14 0.18 0.18
0.20 0.24 0.22 0.17 0.24 0.24
0.30 0.34 0.33 0.26 0.32 0.32
0.40 0.43 0.42 0.44 0.40 0.40
0.50 0.52 0.51 0.52 0.49 0.48
0.60 0.60 0.58 0.57 0.56 0.56
0.70 0.69 0.68 0.61 0.66 0.65
0.80 0.78 0.78 0.76 0.76 0.75
0.90 0.87 0.88 0.88 0.88 0.87
1.00 0.89 0.90 0.90 0.91 0.90

Table S.5: Quantitative evaluation of different aggregation methodologies on HTLIF24 data. First column is the
ground truth t and all other columns are the aggregated predictions using different aggregation methodologies.

tassumed PSNR
0.3 35.0
0.5 37.3
0.7 36.2
1.0 32.4

Table S.6: Evaluating performance of scSplit on synthetic inputs created from the test sub-dataset of GoPro
motion deblurring dataset. Informally speaking, half of the haze was removed from the original test images
using Equation 11. scSplit indeed was able to yield superior performance when t was set to 0.5 during inference.

J Application to Natural Images

For image restoration tasks, it is evident that in reality, images with different levels of degradation
exist and therefore, a method that is cognizant of the severity of degradation is expected to have
advantages.

However, to make our idea applicable to image restoration tasks on natural images, one would need
to account for the differences between the image unmixing task performed on microscopy data and
those tasks. For example, in fluorescence microscopy, we made a plausible assumption that a single
acquisition amounts to a single mixing ratio. However, in a motion deblurring task, the portion of the
image containing a moving object, e.g. a car, will have more severe blurring when compared to a
static object, like a wall. So, one would need to account for this spatial variation of the degradation.
For de-hazing and de-raining tasks, a similar challenge holds. Objects more distant from the camera
typically have more degradation. So, to handle such spatially varying degradations in a diligent
manner, t, the input to scSplit also needs to be spatially varying and therefore should not remain
a scalar. Secondly, for the image unmixing task described in this work, we have access to the two
channels, and so we can correctly define the mixing ratio. However, with these image restoration
tasks, one does not have access to the other channel, which would be pure degradation. One instead
has access to the clean content and an intermediately degraded image. So, t = 1 will have different
connotations for the image-unmixing task described in this work and image restoration tasks on
natural images, which need to be properly accounted for.

However, as a proof of concept, we trained scSplit with just one generator network Gen0 for the
motion deblurring task on GoPro motion deblurring dataset [36]. Since all the variations of severity
of degradation present in the training data were explicitly mapped to t = 1 during training ( all
degraded images belong to C1, which means t = 1 for all such images and this is irrespective of their
qualitative degradation levels), it is expected that during inference, t = 1 will be the optimum choice
on the test sub-dataset provided in this dataset.

So, to enhance the diversity of the degradation, we took the test set of the GoPro dataset and created
a set of less degraded input images, by simply averaging the inputs with the respective targets i.e. ,

xi
new = 0.5xi + 0.5yi, (11)
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Figure S.2: Here, we qualitatively show the potential benefit of regulating the restoration process by making the
network cognizant to severity of degradation present in the input image. Predictions are made on ‘Synthesized
Input’, which is created by doing the pixelwise average of Actual Input and the ground truth image. This
essentially yields a less blurry image. In the reference frame of the trained scSplit, t = 0.5 would be the optimal
inference setting for these synthesized inputs. We cherry picked few 100× 100 size crops where the difference
between the prediction made by scSplit with t = 0.5 and with t = 1.0 was clearly visible. We also show
quantitative evaluation on all similarly synthesized input frames from the test sub-dataset in Table S.6.
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where xi is the original input image and yi is the corresponding target image. Next, we evaluate the
scSplit network on all xi

new images while using different values of t during inference. We show the
results in Table S.6 and the qualitative results in Figure S.2.

In this case, one indeed observes that t = 0.5 is the optimal choice. Interestingly, even slightly off
estimates of t (t = 0.3, and t = 0.7) also yield superior performance over t = 1.0. This proof-of-
concept experiment shows that when handling blurry images with lower levels of degradation, t = 1
is not an optimal choice. But due to the non-trivial differences between our current image unmixing
task and these restoration tasks, as outlined above, we plan to take up the task of adapting scSplit for
natural images in a separate work.

K Analyzing the Effect of Precision

In the official configuration of µSplit variants, we found that the training was done with 16 bit floating
point precision. The pre-trained models for µSplit are also trained with 16 bit precision. However,
other baselines and scSplit are trained with 32 bit precision. So, we trained µSplitL with 32 bit
precision to assess the performance difference. We compare the performance in Table S.7. Across the
three input regimes, one observes the average PSNR increment of 0.3db, MS-SSIM increment of
0.002 and LPIPS decrement of 0.004 when one uses 32 bit floating point precision. By observing
Table 1, it is evident that this change is smaller than the advantage scSplit has across all three input
regimes.

L Selecting Number of Intervals n

During training, we chose the number of intervals n used to partition the domain of mixing ratio,
which is [0, 1], based on the principle that the interval width should not exceed the error in estimating
t using Reg. If it did, we would accept reducing the mixing ratio granularity that the Reg network is,
in principle, capable of giving us. For example, in the HTLIF24 derived task, the mean absolute error
(MAE) between the predicted and actual t values within the valid range [0.1, 0.9] is 0.03 (see Supple-
mentary Table S3, column 2). Therefore, any interval size smaller than 0.03 would be appropriate
for this task. Following this reasoning, we selected a smaller interval size of 0.01—resulting in 100
intervals—to ensure the interval width remained sufficiently low across all tasks.

Since interval count is a hyper-parameter rather than a learnable parameter, and we do not perform
explicit optimization on it, it would be inaccurate to assert that 100 is the best choice universally. Our
selection of 100 was based on an intuitive argument presented in the previous paragraph. However,
there is no downside to choosing a sufficiently large number of intervals (apart from the one time
compute required to estimate the mean and std for each t), so one may opt to do so.

M Qualitative Performance Evaluation

For different values of w, we show the qualitative results for the Hagen et al. dataset in Figures S.4, S.5
and S.6. For the BioSR dataset, results are shown in Figures S.7, S.8 and S.9. For the HTT24 dataset,
results are shown in Figures S.10, S.11 and S.12. For the HTLIF24 dataset, results are shown in
Figures S.13, S.14 and S.15. For the PaviaATN dataset, results are shown in Figures S.16, S.17
and S.18.

Dominant Balanced Weak
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

µSplitL (16-bit) 37.8 0.918 0.066 33.5 0.959 0.051 25.7 0.738 0.291
µSplitL (32-bit) 38.1 0.918 0.065 33.9 0.962 0.045 25.9 0.741 0.284

Table S.7: Analysing the effect of training with 32 bit vs. training with 16 bit floating point precision. In µSplit
variants, the official configuration is to train with 16 bit floating point precision.
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Figure S.3: This figure investigates the influence of normalization on the performance of µSplitD , empha-
sizing its inferior outcomes relative to scSplit. Notably, other µSplit variants and denoiSplit share the same
normalization setup as µSplitD , making this analysis broadly applicable to several existing unmixing methods.
We evaluate µSplitD and two of its variants, each utilizing distinct augmentation strategies, as outlined in the
main manuscript’s Fig 4. Performance is assessed under two normalization schemes: (1) the default approach,
where mean and standard deviation are derived from the training data, and (2) a w-dependent method, where
statistics are calculated separately for inputs with a specific w. The results demonstrate that all µSplitD variants
underperform compared to scSplit under both normalization strategies. Furthermore, we note that µSplitD ,
trained with uniform normalization statistics, performs more effectively under the default evaluation setup, which
as discussed in the main manuscript is not a reasonable choice given the intensity variations across different
microscopy acquisitions.

Dataset Dominant Balanced Weak
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Hagen et.
al

Inp vs Tar 34.1 0.973 0.047 25.1 0.889 0.148 21.2 0.784 0.243
U-Net 33.5 0.976 0.038 33.4 0.960 0.066 23.3 0.840 0.190

µSplitL 34.2 0.974 0.044 32.3 0.959 0.071 23.8 0.843 0.187
µSplitR 34.6 0.971 0.041 32.4 0.957 0.068 24.5 0.842 0.189
µSplitD 33.9 0.975 0.039 33.6 0.963 0.061 24.1 0.849 0.179

Table S.8: This table, analogous to Table 1 in the main manuscript, evaluates performance on the Hagen et al.
dataset across the same three input categories. Here, we utilize the mean and standard deviation computed from
the training data for normalization. Since µSplit variants are trained with these statistics, they achieve superior
performance with this normalization setting, since the test images share the same intensity distribution as the
training data due to being from the same acquisition. However, as outlined in the main manuscript, this approach
is not viable for evaluating images from different acquisitions, where intensity distributions may vary. Notably,
scSplit surpasses even these results, demonstrating its robustness and superior performance.

HT-LIF24 HT-T24
PSNR SSIM LPIPS PSNR SSIM LPIPS

U-Net .692 .002 .002 .613 .006 .002
µSplitL .635 .001 .002 .614 .007 .002
µSplitR .697 .002 .002 .624 .007 .002
µSplitD .734 .002 .002 .626 .008 .002

denoiSplit .675 .001 .002 .574 .005 .003
InDI .560 .002 .002 .596 .007 .004

scSplit0.5 .704 .001 .001 .627 .007 .002
scSplit−agg .669 .002 .001 .657 .008 .002

scSplit .736 .001 .001 .627 .007 .002

Table S.9: Standard error estimates in Table 2 (channel-averaged).
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.7) µSplitD denoiSplit InDI scSplit Target

Figure S.4: Qualitative evaluation for Hagen et al. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.6) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.5) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.4) µSplitD denoiSplit InDI scSplit Target

Figure S.5: Qualitative evaluation for Hagen et al. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.3) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.2) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.1) µSplitD denoiSplit InDI scSplit Target

Figure S.6: Qualitative evaluation for Hagen et al. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.7) µSplitD denoiSplit InDI scSplit Target

Figure S.7: Qualitative evaluation for BioSR dataset. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.6) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.5) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.4) µSplitD denoiSplit InDI scSplit Target

Figure S.8: Qualitative evaluation for BioSR dataset. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.3) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.2) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.1) µSplitD denoiSplit InDI scSplit Target

Figure S.9: Qualitative evaluation for BioSR dataset. In each panel, we show the full input frame (top-left) and
the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the two
channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of the
input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.7) µSplitD denoiSplit InDI scSplit Target

Figure S.10: Qualitative evaluation for HTT24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.6) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.5) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.4) µSplitD denoiSplit InDI scSplit Target

Figure S.11: Qualitative evaluation for HTT24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.3) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.2) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.1) µSplitD denoiSplit InDI scSplit Target

Figure S.12: Qualitative evaluation for HTT24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.7) µSplitD denoiSplit InDI scSplit Target

Figure S.13: Qualitative evaluation for HTLIF24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.

S.20



Input (w = 0.6) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.5) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.4) µSplitD denoiSplit InDI scSplit Target

Figure S.14: Qualitative evaluation for HTLIF24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.3) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.2) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.1) µSplitD denoiSplit InDI scSplit Target

Figure S.15: Qualitative evaluation for HTLIF24 dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.9) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.8) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.7) µSplitD denoiSplit InDI scSplit Target

Figure S.16: Qualitative evaluation for PaviaATN dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.6) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.5) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.4) µSplitD denoiSplit InDI scSplit Target

Figure S.17: Qualitative evaluation for PaviaATN dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.
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Input (w = 0.3) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.2) µSplitD denoiSplit InDI scSplit Target

Input (w = 0.1) µSplitD denoiSplit InDI scSplit Target

Figure S.18: Qualitative evaluation for PaviaATN dataset. In each panel, we show the full input frame (top-left)
and the zoomed-in input patch (bottom-left) for which we show the predictions and the targets (last col) for the
two channels, one in each row. We also report PSNR values for the patch shown. The w value reported on top of
the input column is for the first channel. It naturally becomes 1− w for the second channel.

Figure S.19: Analysis of input patch variability across mixing factors w using 2000 randomly sampled 512×512
image pairs (c0, c1): (a) Supervised image restoration models like InDI [4] normalizes c0 and c1 separately
before interpolation, resulting in input patches with standard deviation strongly correlated with w; (b) our
proposed method decouples this relationship. Results across Hagen et al. (left), HTLIF24 (center), and BioSR
(right) datasets demonstrate reduced dependency on w with our approach.
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Dataset Dominant Balanced Weak
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

Hagen et.
al

U-Net 0.5 0.003 0.003 0.5 0.007 0.007 0.6 0.015 0.014
µSplitL 0.8 0.004 0.004 0.6 0.005 0.006 0.5 0.015 0.014
µSplitR 0.8 0.004 0.004 0.6 0.005 0.006 0.6 0.015 0.015
µSplitD 0.7 0.003 0.004 0.6 0.004 0.005 0.6 0.015 0.013

denoiSplit 0.8 0.005 0.012 0.6 0.005 0.013 0.6 0.016 0.020
MicroSplit 0.7 0.004 0.012 0.7 0.004 0.012 0.6 0.015 0.019

InDI 0.8 0.003 0.004 0.7 0.004 0.005 0.5 0.013 0.012
scSplit0.5 0.8 0.002 0.003 0.6 0.003 0.004 0.6 0.013 0.012

scSplit−agg 0.5 0.001 0.001 0.5 0.003 0.004 0.5 0.007 0.010
scSplit 0.5 0.001 0.001 0.5 0.002 0.004 0.6 0.007 0.010

HTLIF24

U-Net 0.7 0.001 0.002 0.7 0.001 0.001 0.8 0.005 0.004
µSplitL 0.7 0.002 0.002 0.7 0.001 0.001 0.8 0.005 0.004
µSplitR 0.7 0.002 0.002 0.8 0.001 0.001 0.8 0.005 0.004
µSplitD 0.7 0.002 0.002 0.7 0.001 0.001 0.8 0.005 0.004

denoiSplit 0.7 0.002 0.002 0.6 0.001 0.002 0.8 0.005 0.005
MicroSplit 0.6 0.002 0.002 0.6 0.001 0.002 0.7 0.005 0.005

InDI 0.7 0.002 0.002 0.7 0.001 0.001 0.7 0.003 0.004
scSplit0.5 0.7 0.001 0.001 0.8 0.001 0.001 0.8 0.005 0.004

scSplit−agg 0.8 0.000 0.000 0.7 0.001 0.001 0.8 0.003 0.003
scSplit 0.8 0.000 0.000 0.7 0.001 0.001 0.7 0.003 0.003

BioSR

U-Net 0.6 0.003 0.005 0.4 0.004 0.006 0.7 0.014 0.015
µSplitL 0.4 0.004 0.005 0.2 0.004 0.006 0.6 0.011 0.014
µSplitR 0.4 0.004 0.004 0.2 0.004 0.006 0.7 0.013 0.016
µSplitD 0.3 0.004 0.007 0.3 0.005 0.007 0.5 0.011 0.014

denoiSplit 0.5 0.003 0.008 0.2 0.004 0.010 0.7 0.012 0.019
MicroSplit 0.6 0.003 0.007 0.3 0.003 0.010 0.7 0.013 0.019

InDI 1.0 0.003 0.005 0.4 0.004 0.006 0.9 0.014 0.015
scSplit0.5 0.9 0.003 0.003 0.4 0.003 0.005 0.7 0.015 0.014

scSplit−agg 0.4 0.002 0.002 0.7 0.003 0.006 0.8 0.011 0.016
scSplit 0.4 0.002 0.002 0.4 0.003 0.005 0.6 0.011 0.014

HTT24

U-Net 0.7 0.002 0.002 0.7 0.003 0.002 0.5 0.008 0.007
µSplitL 0.7 0.004 0.002 0.6 0.005 0.002 0.5 0.010 0.007
µSplitR 0.7 0.003 0.002 0.7 0.005 0.002 0.5 0.009 0.007
µSplitD 0.7 0.004 0.002 0.7 0.005 0.002 0.5 0.009 0.007

denoiSplit 0.7 0.003 0.004 0.6 0.004 0.003 0.5 0.006 0.007
MicroSplit 0.7 0.003 0.004 0.7 0.004 0.003 0.5 0.007 0.007

InDI 0.6 0.002 0.003 0.6 0.003 0.002 0.5 0.006 0.005
scSplit0.5 0.6 0.001 0.001 0.6 0.003 0.001 0.5 0.005 0.007

scSplit−agg 0.8 0.002 0.000 0.7 0.003 0.001 0.6 0.005 0.003
scSplit 0.6 0.001 0.000 0.6 0.002 0.001 0.6 0.005 0.003

PaviaATN

U-Net 0.3 0.002 0.001 0.3 0.004 0.001 0.3 0.006 0.002
µSplitL 0.2 0.002 0.001 0.3 0.004 0.001 0.2 0.006 0.002
µSplitR 0.3 0.002 0.001 0.3 0.004 0.001 0.2 0.007 0.002
µSplitD 0.3 0.003 0.002 0.3 0.005 0.002 0.3 0.007 0.002

denoiSplit 0.3 0.004 0.001 0.3 0.005 0.001 0.3 0.007 0.002
MicroSplit 0.1 0.004 0.001 0.1 0.004 0.001 0.1 0.004 0.001

InDI 0.2 0.001 0.001 0.1 0.003 0.001 0.1 0.005 0.002
scSplit0.5 0.3 0.002 0.001 0.3 0.003 0.001 0.2 0.004 0.002

scSplit−agg 0.2 0.001 0.001 0.3 0.003 0.002 0.2 0.004 0.003
scSplit 0.2 0.001 0.000 0.3 0.003 0.002 0.2 0.004 0.003

Table S.10: Standard error values for Table 1 (channel-averaged).
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Figure S.20: Qualitative evaluation for superimposed raw microscopy images from HTLIF24 dataset. In each
panel, we show the full input frame (top-left) and the zoomed-in input patch (bottom-left) for which we show
the predictions and the targets (last col) for the two channels, one in each row. We also report PSNR values for
the patch shown.
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Figure S.21: Qualitative evaluation for superimposed raw microscopy images from HTT24 dataset. In each
panel, we show the full input frame (top-left) and the zoomed-in input patch (bottom-left) for which we show
the predictions and the targets (last col) for the two channels, one in each row. We also report PSNR values for
the patch shown.
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