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Abstract

Neural population activity often exhibits distinct dynamical features across time,
which may correspond to distinct internal processes or behavior. Linear methods
and variations thereof, such as Hidden Markov Model (HMM) and Switching Linear
Dynamical System (SLDS), are often employed to identify discrete states with
evolving neural dynamics. However, these techniques may not be able to capture
the underlying nonlinear dynamics associated with neural propagation. Recurrent
Neural Networks (RNNs) are commonly used to model neural dynamics thanks to
their nonlinear characteristics. In our work, we develop Switching Recurrent Neural
Networks (SRNN), RNNs with weights that switch across time, to reconstruct
switching dynamics of neural time-series data. We apply these models to simulated
data as well as cortical neural activity across mice and monkeys, which allows
us to automatically detect discrete states that lead to the identification of varying
neural dynamics. In a monkey reaching dataset with electrophysiology recordings,
a mouse self-initiated lever pull dataset with widefield calcium recordings, and
a mouse self-initiated decision making dataset with widefield calcium recording,
SRNNs are able to automatically identify discrete states with distinct nonlinear
neural dynamics. The inferred switches are aligned with the behavior, and the
reconstructions show that the recovered neural dynamics are distinct across different
stages of the behavior. We show that the neural dynamics have behaviorally-relevant
switches across time and we are able to use SRNNs to successfully capture these
switches and the corresponding dynamical features.

1 Introduction

How does complex neural activity lead to dynamic behavior? A foundational principle in theoretical
neuroscience suggests that the computations within the nervous system can be explained through
the dynamics of the underlying non-linear systems (Breakspear [2017], Pandarinath et al. [2018],
Durstewitz et al. [2023]). As our ability to record from larger areas of the brain with unprecedented
spatial and temporal resolution increases, we find neural population activity often exhibits distinct
dynamical features across time. These features may correspond to distinct internal processes or
behavior (Saxena and Cunningham [2019], Churchland et al. [2012]). Identifying these dynamical
features may help us understand how cognitive functions are implemented in the brain. Previous works
have revealed a number of computational strategies through analysis of neural dynamics, particularly
across tasks, and during orchestration of precise behavioral states such as during movement generation
(Kaufman et al. [2014], Miri et al. [2017]).

State space modeling is a promising analytical approach for characterizing dynamics of time series;
such models can be highly effective and have received substantial attention over many decades
on analyzing temporal neural dynamics (He et al. [2023], Durstewitz et al. [2023], Sani et al.
[2021]). Well-established methods on inference and learning algorithms have contributed towards
learning the parameters of state space models (Blei et al. [2017], Salimans et al. [2015], Kingma and
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Welling [2013], Linderman et al. [2017], Fox et al. [2008]). Neural dynamics can be time-varying
due to internal fluctuations of physiological states as well as the external effect of environment.
Previous works such as (Kaufman et al. [2014], Miri et al. [2017]) have found differences in neural
subspaces between distinct behavioral states. Furthermore, correlation-based analysis methods, such
as functional connectivity, also reveal that the brain-wide covariation in neural activity changes during
movement. For example, West et al. [2022] highlight the changes in functional connectivity in the
cerebral cortex, representing a series of changes in the cortical state from rest to locomotion and
on return to rest. In practice, researchers typically model switching temporal dynamics by fitting
different model parameters to consecutive temporal windows of neural activity (He et al. [2023],
Mitelut et al. [2022], Song et al. [2022]).

In the past decade, we have seen that neural dynamics can be broadly considered to be non-linear
and in a lower dimensional subspace of the recorded neural activity (McKenna et al. [1994], Rigotti
et al. [2013], Hernandez et al. [2018], Saxena and Cunningham [2019], Cunningham and Yu [2014]).
Accordingly, Recurrent Neural Networks (RNNs) have shown efficiency in modeling dynamics due
to their non-linearity (Mante et al. [2013]). While goal-driven models have been very useful to build
in normative function in these networks, data-driven RNNs are becoming more popular over recent
years (Durstewitz et al. [2023], Perich et al. [2020], Duncker and Sahani [2021], Valente et al. [2022]).
Specifically, these RNNs can be trained to reproduce temporal neural activity from large-scale neural
recordings across a set of trials. They are also able to capture a very high amount of explained variance
of the neural activity because of their static non-linearities (Durstewitz et al. [2023], Perich and Rajan
[2020]). Once trained, the internal mechanisms of the RNNs can be analyzed, thus extracting the
structure of the neural dynamics. Prior works have studied RNNs that perform a wide range of tasks,
e.g., cognitive, sensory, motor tasks, and so on (Dubreuil et al. [2022], Mastrogiuseppe and Ostojic
[2018]). However, with a few notable exceptions, models do not typically express neural activity
as a set of switching nonlinear functions and directly reproduce recorded neural data. Here, we
develop Switching Recurrent Neural Networks (SRNNs) which, through switches between different
time-varying weights as determined by Markov transitions, are able to directly model neural activity
as emanating from a discretely changing set of low-dimensional dynamical models. We perform
end-to-end training of SRNNs to reconstruct the neural observations through Variational Inference.
We validate SRNNs on a simulated dataset, and then analyze the performance of SRNNs on three
different experimental data with distinct recording modalities and behavioral tasks with different
animals: (1) electrophysiological recordings of single-unit MC activity from a non-human primate
performing a reaching task (Churchland et al. [2012]), (2) cortex-wide widefield calcium imaging
(WFCI) from mice performing a complex self-initiated decision-making task (Musall et al. [2019]),
and (3) WFCI from mice performing a simple self-initiated lever-pull task (Mitelut et al. [2022]). We
are able to not only reconstruct the multidimensional neural activity but accurately predict forward in
time and recover behaviorally-relevant switches of neural dynamics. Finally, we visualize the neural
dynamics in flow fields plotting and find they are distinct among different states.

2 Related Work
Data-Driven Neural Networks An artificial neural network trained to directly reconstruct observed
neural activity is called a data-driven neural network. Prior studies have concentrated on employing
various models to extract the underlying neural dynamics and characterize the connectivity between
different components of the brain (Perich and Rajan [2020], Mastrogiuseppe and Ostojic [2018]). In
Perich and Rajan [2020], the authors introduce Current-Based Decomposition (CURBD), an approach
for inferring brain-wide interactions using data driven RNNs that directly reproduce experimentally-
obtained neural data. In Mastrogiuseppe and Ostojic [2018], the authors used low-rank RNNs trained
on high-dimensional neural activity obtained from different tasks and successfully characterized the
neural dynamics and connectivity between neurons. Importantly, previous work does not consider
switches in the underlying low-dimensional neural dynamics; in our work, we focus on the extraction
of low-dimensional neural dynamics based on switching data-driven neural networks.

Switching State Space Models Hidden Markov Model (HMM) is a commonly-used statistical
model based on a Markov process: it dictates the evolution of observations where the evolution
is determined by internal factors, which are not directly observable. HMMs are widely used in
computational neuroscience to identify different neural events (Baldassano et al. [2017], Masaracchia
et al. [2023], Baldassano et al. [2016]). Previous studies have also explored switching dynamical
systems, with the observations emanating from a dynamical system that discretely switches according
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Figure 1: Switching Recurrent Neural Network (SRNN) (A) Schematic showing an SRNN with
neural outputs. (B) Structure of the generative model for SRNN. (C) Structure of Inference Neural
Network for SRNN. The hf

t and hb
t represent the states of a bidirectional RNN, followed by a hs

t ,
which model the inferred ht from the given observation yt.

to a Markov process. Auto-regressive HMMs and Switching Linear Dynamical System (SLDS) are
commonly used models, where the discrete state transitions and observation dynamics are both linear
and dependent solely on the previous timepoints. Various extensions of these also applied changes
to these models. For example, in Linderman et al. [2017], the authors make the current discrete
state dependent on the previous continuous state, termed recurrent-SLDS (rSLDS). Researchers have
also changed the dynamics process to be nonlinear, such as in a Structured Variational Autoencoder
(SVAE) (Johnson et al. [2016]). Moreover, both nonlinear transitions and nonlinear dynamics
processes were also proposed, such as in a Switching Nonlinear Dynamical System (SNLDS) (Dong
et al. [2020]). Out of these, SRNNs have the most comparable structure to SNLDS; the main
differences are: (1) we specify the dynamical system as an RNN instead of passing the data to neural
networks with nonlinear activation functions; (2) our transition process is the same as rSLDS, which
is dependent on the previous hidden state instead of the observation in SNLDS; (3) we constrain the
structure of the models in order to predict future observations. Moreover, here we analyze the ability
of the model to reconstruct and elucidate the structure of recorded neural activity, while examining
prediction as well as region-to-region interactions (Appendix). A relevant recent study also explored
the communication between brain regions via multi-regional switching dynamical systems (MR-SDS)
(Karniol-Tambour et al. [2023]), which reveals the relationship between brain regions but does not
focus on analyzing behaviorally-relevant neural dynamical states and characterizing distinct neural
dynamics.
Variational Inference Researchers have proposed numerous powerful algorithms for optimizing
the parameters of Switching State Space Models. A well-known approach is the Expectation-
Maxmization (EM) algorithm, which is to find maximum likelihood estimates of parameters in State
Space Models, e.g., Baum-Welch Algorithm for HMMs (Bishop and Nasrabadi [2006]). Another
common approach to estimating the parameters of Switching State Space Model is Variational
Inference (VI), which turns the problem of computing conditional distributions of latent variables
into an optimization problem that can be efficiently solved by gradient descent. Essentially, this
consists of maximizing the Evidence Lower Bound (ELBO) to learn the parameters (Kingma and
Welling [2013], Linderman et al. [2017]). The reparameterization trick is a crucial technique in VI,
which enables more efficient gradient estimation during optimization. Instead of sampling from the
variational distribution itself, reparameterization models the parameters of a distribution, usually
Gaussian. This allows the gradient of the objective function with respect to the variational distribution
parameters to be computed directly, and backpropagation to be implemented easily. To enable the
model to generalize effectively to unseen data, we use Amortized VI. Instead of optimizing for single
trials of neural activity independently as in traditional VI, Amortized VI allows us to train the models
on multiple trials simultaneously, thus creating a more stable mapping between the observations and
the latent variables (Dong et al. [2020], Ganguly et al. [2023], Margossian and Blei [2023]).

3 Methods

3.1 Switching Recurrent Neural Network (SRNN)

A common switching state space model is:

pθ(y, h, z) = pθh(h1|z1)pθy (y1|h1)

T∏
t=2

pθz (zt|zt−1)pθh(ht|ht−1, zt)pθy (yt|ht) (1)
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where zt ∈ {1, ...,K} is the discrete hidden states or labels, controlling the switch of the dynamics, ht

is the continuous latent state with dimensionality P , and yt is the observation or output; in this work,
the observations are directly the neural activity. We build a data-driven model with neural time-series
data y1:T ∈ RN×T×R from N sequences, T time points and R different neural dimensions as the
outputs. Here, we implement a transition network, a set of dynamical networks with recurrent layers
and a nonlinear activation function, and finally a linear emissions network to reconstruct the observed
neural activity. We show the structure of SRNN in Figure 1A; following are the equations of the
generative network:

pθz (zt|zt−1, ht−1) = Cat(Softmax(f(θzht−1))) (2)
pθh(ht|ht−1, zt = k) = N (ht|f(θhk

ht−1), σh) (3)
pθy (yt|ht) = N (yt|θyht, σy) (4)

where Cat represents Categorical distribution, Softmax represents Softmax activation function, N
represents Gaussian distribution, and σh and σy are the covariance matrices of the relevant Gaussian
distributions. θz , θh, and θy are parameters of transition networks, dynamical networks, and emission
networks respectively, which are learned through gradient descent. Here, we consider the nonlinearity
f(·) = tanh(·) as commonly done in neuroscience in order to model the saturation effect of firing
rates Pandarinath et al. [2018], Saxena et al. [2022].

3.2 Inference of SRNNs

We use VI to learn the parameters of our model. Here, we maximize the posterior:
qθ,ϕ(z1:T , h1:T |y1:T ) = qϕ(h1:T |y1:T )pθ(z1:T |h1:T , y1:T ) (5)

where qϕ(h|y) is the posterior of continuous hidden states given the observation, ϕ is the parameters
of our inference network. pθ(z|h, y) is the Bayesian posterior of discrete hidden states given the
continuous hidden states and the observations, which we compute using the generative network via
Bayes’ rule.

Inference Network and qϕ(h1:T |y1:T ) We show the structure of our inference network in Figure
1B; we build an inference network to model qϕ(h|y) as the following:

qϕ(h1:T |y1:T ) =
T∏

t=1

q(ht|y1:T ) :=
T∏

t=1

N (ht|µt, σt) (6)

where µ and σ are the mean and variance of a Gaussian distribution. Here, we use the reparameteriza-
tion trick to infer the continuous hidden states Kingma and Welling [2013]:

ht = µt + ϵσt (7)
where ϵ ∈ N (0, 1) is a Gaussian noise parameter. The mean µ and variance σ are typically learned
via training neural networks Kingma and Welling [2013]. However, here, we do not find apparent
improvement with learning the σ in our work. Therefore, as done in previous studies, we set the
variance σ to be constant to reduce the complexity of the model and only optimize the µ Dong et al.
[2020], Ganguly and Earp [2021]; we use 0.0001 for σ. Since our generative model is based on
RNNs, we make ht depend on ht−1 to match the recurrence property. Thus, we have

µt = f(y1:T , ht−1) (8)
We pass y1:T to a bidirectional recurrent neural network followed by forwarding the output to a
standard recurrent neural network to model Equation 8.

Evidence Lower Bound and pθ(z1:T |h1:T , y1:T ) Typically, to learn the parameters via VI, we
maximize the evidence lower bound (ELBO). Here, the ELBO is defined as:

ELBO = Eqθ,ϕ(z1:T ,h1:T |y1:T )[log pθ(y1:T , h1:T , z1:T )− log qθ,ϕ(z1:T , h1:T |y1:T )] (9)
With Equation 1 and Bayes’ rule, we get

ELBO = Eqϕ(h1:T |y1:T )pθ(z1:T |h1:T ,y1:T )[log pθ(y1:T , h1:T )pθ(z1:T |y1:T , h1:T )

− log qϕ(h1:T |y1:T )pθ(z1:T |h1:T , y1:T )] (10)
≈ Eqϕ(h1:T |y1:T )[log pθ(y1:T , h1:T )− log qϕ(h1:T |y1:T )] (11)

where the discrete hidden states z1:T have been marginalized out given
∑K

k=1 p(zt = k) = 1 (Murphy
and Russell [2001], Dong et al. [2020]).
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Initialization Previous studies have found that a generative model trained by VI may become
stuck in a single discrete state (Alemi et al. [2018], Dong et al. [2020]). Researchers have explored
various methods to solve this problem, such as initialization of the transitions parameters using the
parameters of auto-regressive HMM in Linderman et al. [2017] and entropy regularization in Dong
et al. [2020]. In our work, we address this by initializing our model using states from an HMM
trained on the same training data, which encourages the model to utilize all states and optimize the
weights corresponding to each of the states. Practically, during a first phase of training, we add a
term to the loss that penalizes the posterior if it does not utilize all the discrete hidden states of the
HMM. In the second phase of training, we remove this penalization and train the model with our loss
as described in Equation 15.

Optimization We use gradient descent to optimize the parameters θ and ϕ. Given the fact that we
use reparameterization to model qϕ(h1:T |y1:T ), and qϕ(h1:T |y1:T ) is independent to θ, the gradient
can be approximated as following:

∇θ,ϕELBO ≈ ∇θ,ϕ log pθ(y1:T , h1:T (ϕ))−∇ϕ log qϕ(h1:T |y1:T ) (12)

where h1:T (ϕ) is the output of inference network, therefore, is dependent on ϕ. Since
∑

z p(z)=1,
therefore, log pθ(y1:T , h1:T (ϕ)) =

∑
z p(z) log pθ(y, h|z) = Ep(z) log pθ(y, h|z), and with Bayes’

rule pθ(y, h|z) = pθ(y,h,z)
p(z) , Equation 12 is equivalent to:

∇θ,ϕELBO ≈ Ep(z)∇θ,ϕ log pθ(y1:T , h1:T , z1:T )−∇ϕ log qϕ(h1:T |y1:T ) (13)

In Equation 13, the first term can be rewritten by the Markov Chain.

Ep(z1:T )∇θ,ϕ log pθ(y1:T , h1:T , z1:T ) =

K∑
k=1

p(z1 = k)∇ log p(z1 = k)p(h1|z1 = k)p(y1|h1)

+

T∑
t=2

K∑
k=1

J∑
j=1

p(zt = k, zt−1 = j)∇ log p(zt = k|zt−1 = j)p(ht|ht−1, zt = k)p(yt|ht) (14)

where we use the posterior probability of the discrete hidden states, e.g., p(z1 = k|h1:T , y1:T ) and
p(zt = k, zt−1 = j|h1:T , y1:T ), which can be obtained easily through Baum-Welch algorithm. The
transition, dynamics, and emission are defined in Equation 2, Equation 3, and Equation 4 respectively.
The second term of Equation 13 can be optimized via backpropagation through time (BPTT) of the
inference network. In summary, with Equation 11, Equation 13, and Equation 14, our loss function is:

ℓ = −
K∑

k=1

p(z1 = k) log p(z1 = k)p(h1|z1 = k)p(y1|h1)

−
T∑

t=2

K∑
k=1

J∑
j=1

p(zt = k, zt−1 = j) log p(zt = k|zt−1 = j)p(ht|ht−1, zt = k)p(yt|ht)

−H(qϕ(h1:T |y1:T )) (15)

where we use the fact that −Eqϕ(h1:T |y1:T ) log qϕ(h1:T |y1:T ) is the entropy H of qϕ(h1:T |y1:T ). We
minimize the loss function via Adam optimizer. Our implementation is based on Pytorch 2.2.1
and we train our models using NVIDIA A100 GPUs. We provide the analysis and the results in
this paper; the original code for the entire SRNNs framework on Pytorch has been made public
https://github.com/saxenalab-neuro/SRNN.

3.3 Analysis of SRNNs

Dynamical Features: Fixed points and other dynamical features are crucial for understanding how
nonlinear dynamical systems process sequences and maintain information (Sussillo and Barak [2013],
Golub and Sussillo [2018]). We visualize the flow fields of RNNs, which provides a graphical
representation of the evolution of network states over time. To compute these flow fields, we train
our model on the entire dataset (without separating a training set from a test set) in order to capture
neural dynamics across the entire data. We use 10, 000 initial hidden states uniformly sampled in a
grid to compute the flow fields.

5

https://github.com/saxenalab-neuro/SRNN


Figure 2: Lorenz Attractor: (A) Reconstruction using an SRNN on simulated data (thick red is the
original data, thin black is the reconstruction by SRNN. The reconstruction is almost overlapped with
the ground truth). (B) Comparison between ground truth discrete states and SRNN-recovered discrete
states. (C) Plot of latent dynamics in each discrete state shows recovery of dynamics.

Neural Activity Prediction: Given the fact that SRNNs are generative models, we test all models on
prediction of future neural activity using past observations. Specifically, the models are provided a
time-series of previously unseen neural activity y1:t, with which we can infer discrete hidden states
z1:t and continuous hidden states h1:t. Next, we sample zt:t+K and ht:t+K through transitions of
discrete states and dynamics of continuous states, i.e., using Equations 2 and 3, respectively. Finally,
we predict the neural activity in the future time points yt:t+K using the emissions network, i.e.,
Equation 4. Here, we change the bidirectional layers of our inference network to standard forward
recurrent layers to match the prediction tasks (see Figure 1C). We explore the prediction performance
by giving the model an input in different lengths (t ∈ [t0, T ], here we use t0 = 10 timepoints),
and we also explore the prediction performance by predicting different lengths of neural activity
(K ∈ [10, 20, 30, 40] timepoints).

4 Results
We detail the results of SRNNs on inferred neural dynamics of a simulated dataset and three
diverse experimental datasets ranging from monkey electrophysiology to mouse calcium imaging.
On each dataset, we do N -fold cross-validation, where N equals to the number of conditions,
sessions, or subjects in the dataset. All the results in this section are reported on the test set.
Additionally, we compare our method with other switching dynamical systems: Switching Linear
Dynamical Systems (SLDS), recurrent Switching Linear Dynamical Systems (rSLDS) (Linderman
et al. [2017]), Switching Non-linear Dynamical Systems (SNLDS) (Dong et al. [2020]), and multi-
regional Switching Dynamical Systems (mrSDS) (Karniol-Tambour et al. [2023]). Additionally, we
provide comparisons with Latent Factor Analysis with Dynamical Systems (LFADS) in Appendix
Figure D.6. Lastly, we show example curves of the training loss, reconstruction MSE on validation
data, and discrete states recovery error on validation data for SRNNs across different epochs for all
three experimental datasets in Figure D.7.

4.1 Simulated data: Lorenz Attractor

We first apply SRNN on a well-known simulated dynamical system, the Lorenz attractor, which is
famous for its “butterfly” shape (see Appendix A for relevant equations; the dimensionality of the
data is R = 3). The dynamics can be expressed as a 2-state switching system. In our work, we
generate the Lorenz data using the method and code in (Linderman et al. [2017], Dong et al. [2020]).
In Figure 2, we show that SRNNs are able to reconstruct the Lorenz attractor precisely, and recover
the switching states correctly, as well as identify the underlying dynamics in each discrete state.

4.2 Experimental data: Electrophysiology Recordings during a Monkey Reaching Task

We explore switching models on the firing rates of single units recorded from monkey motor and
premotor cortex (R = 180), while the monkey performs a reaching task in 27 reaching conditions
given targets at different locations. More details can be found in Appendix B and Churchland et al.
[2012]. We have 5 different behaviorally-relevant states: (1) resting; (2) delay before the ‘go’ cue; (3)
reaction time (from receiving ‘go’ cue to the beginning of movement); (4) movement execution; (5)
hold at the target. Using SRNNs, we recover these states purely using the neural activity.

Firstly, we train SRNNs and competing methods on the two different types of reaching conditions
(curved reaches and direct reaches) separately. We use N -fold cross-validation, where N equals
to the number of conditions in the data; N = 18 for curved reaches and N = 9 for direct reaches.
We show an example of comparison between neural dynamical states recovered by different models
and the behavioral states, in Figure 3A and Figure D.1A. The neural dynamical states recovered
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Figure 3: Curved Reaching: (A) Examples of comparison between behavioral states and neural
dynamical states recovered by SRNNs, SLDS, rSLDS, SNLDS, and mrSDS. (B) Error between
behaviorally-relevant states and recovered neural dynamical states; each dot represents one session,
with the triangle as the mean of all sessions. (C) Mean squared error (MSE) between neural activity
and the reconstruction. (D) MSE between neural activity and the prediction forward in time. (E)
Flow fields of latent dynamics of SRNNs in different discrete states. (F) Reconstruction of neural
activity and the corresponding ground truth for one example neuron for three models, the top color
bars represent the performance on 0.1 seconds ahead prediction. More examples are shown in Figure
D.2. All results for direct reaching are shown in Figure D.1.

by SRNNs in both curved and direct reaching match their corresponding behavioral states. We use
P = 16 for the latent state (h) dimensionality for all three models in Figure 3A. We quantify the
difference between the recovered neural dynamical states and the behavioral states by considering
them an imbalanced multi-class classification, i.e., one state as one class, the error of the classification
measures the difference between the neural and behavioral states. Specifically, it is defined as the
average of ‘1-recall’ obtained on each class (Mosley [2013]). We claim that 0 error between the
recovered neural dynamical states and behavioral states does not necessarily mean that the recovered
neural dynamical states are perfectly identified, because the neural dynamical switches may happen
consistently leading to or following the behavioral state switches. However, these states recovered
by the models with small errors can still be considered as behaviorally-relevant states, which can
help us understand the cognitive function implemented in the brain. We show the error for different
hidden states in Figure 3B, which illustrates that SRNNs outperform SLDS, rSLDS, SNLDS, and
mrSDS on recovering the behavior-relevant neural dynamical states for 4 different values for the
latent state dimensionality P . We determine the number of discrete latent states via a hyperparameter
sweep for SRNNs. We consider the following metrics to compare the performance of SRNNs with
different K: (1) Convergence to lower number of discrete states and reuse of discrete states:
We tested our model by changing the number of hidden states K while keeping the number of
continuous latent states P constant. We show a comparison in Figure D.3A. We found that 61% of
SRNNs with a higher number of discrete hidden states (e.g., K = 6) finally converge to the optimal
number of discrete hidden states, i.e., K = 5, and 94% of SRNNs with a lower number of discrete
hidden states (e.g., K = 4) had at least one hidden state reused after other states; in other words,
SRNNs are not able to perform well with 4 unique discrete hidden states without reusing one of
them. (2) Reconstruction performance plateau: While keeping other hyperparameters constant, the
reconstruction accuracy plateaus at the same number of discrete states as in the behavior. Thus, we
can set K as the minimum number of discrete states as it takes for the model to perform well. We
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show that SRNNs with K = 5 have lower reconstruction error in Figure D.3B. Moreover, we also
implemented a ‘co-smoothing’ analysis (Yu et al. [2008]Karniol-Tambour et al. [2023]); we show
the results in Figure D.3C, where we found that K = 5 also does well in reconstructing the data
with a ‘co-smoothing’ neuron drop-out analysis. (3) Variability across conditions: In stereotyped
tasks or experiments, such as reaching, there may not be a significant amount of variability in the
timing of behavior across conditions, and this variability can thus be used as a metric for determining
the optimal number of discrete states. Here, we found that SRNNs with K = 5 have much lower
variability on recovered behaviorally-relevant states than K = 4 and K = 6 (i.e., 0.098 for K = 5,
0.384 for K = 4, and 0.282 for K = 6 in Figure D.3D).

We show the performance of all models on the reconstruction of the neural activity in Figure 3C;
the mean squared error (MSE) between desired neural activity and the reconstruction by models
indicate that SRNNs also outperform other models on reconstruction of neural activity. We note that
as P increases, the MSE difference between SRNNs and other models becomes smaller. Next, we
show the prediction capability of future neural activity by SRNNs and competing methods in Figure
3D. We found that the prediction capabilities of SRNNs outperform competing models with linear
dynamics. In addition, we show the comparison of behavioral states recovering and neural activity
reconstructing performance between SRNNs with bidirectional recurrent inference networks and
SRNNs with forward recurrent networks in Figure D.8. Moreover, we show the reconstruction of
neural activity along with one example neuron with the corresponding ground truth in Figure 3F,
with more example neurons shown in Figure D.2A-B. Here, the color bars represent performance of
neural prediction. Furthermore, as a non-switching comparison model, we train an LFADS network
(Pandarinath et al. [2018]) on the reaching datasets. We show reconstruction MSEs in Figure D.6A,
where we use P = 16 for SRNN, SLDS, and rSLDS, and P = 64 for LFADS to keep a similar
number of overall parameters in the hidden layers. We found that all three switching models have
lower reconstruction error than LFADS (Figure D.6B).

We visualize the neural dynamics by plotting the flow field of the latent states h in each discrete
SRNN state in Figure 3E, where we used P = 16 based on Figures 3B,C. In order to visualize the flow
fields in 2D, we apply principal component analysis (PCA) on the latent states of SRNNs to decrease
the dimensionality of the flow fields to 2D. We see that the neural dynamics in different discrete states
are distinct in Figure 3E: the plots reveal that the neural dynamics change from relatively stable in the
first two states, to unstable after the ‘go cue’, and finally oscillatory during the execution and end of
movement. We also show the flow fields for direct reaches in Figure D.1, and we found that the neural
dynamics between curved and direct reaches are comparable during the first three discrete states, but
their dynamics become different in ‘movement’ states, which matches the difference between the
reaching type.

4.3 Experimental data: Widefield Calcium Imaging during Mouse Decision-Making

We show the performance of SRNNs on a decision-making task, with neural activity recorded using
widefield calcium imaging (WFCI). The number of neural components is R = 210. The details of
this dataset and preprocessing can be found in Appendix B of this paper and Musall et al. [2019]. In
this data, mice have 5 behaviorally-relevant states, i.e., (1) from baseline to holding of the handle;
(2) holding the handle; (3) stimulus presentation; (4) delay from the end of stimulus to the start of
licking; (5) licking the spout.

Here, we use N = 8 pseudo-sessions, and perform N -fold cross-validation. In Figure 4A, we show
an example of comparison between neural dynamical states recovered by different models, along with
the behaviorally-relevant states described above. Here, we use a latent dimensionality of P = 8 for
all models. We also quantify the discrete state recovery using the same approach as described in the
previous section in Figure 4B, where we found that SRNNs are able to identify 5 behaviorally-relevant
neural dynamical states, especially as the latent state dimensionality increases. Here, we use the same
approach as in reaching task to determine K. We show the performance of SRNNs with different K
in Figure D.4, we also found that SRNNs with K = 6 converge to lower number of discrete states.
Additionally, SRNNs with K = 5 perform better in the co-smoothing test in Figure D.4C. Indeed,
we found that SRNNs with K = 4 have better reconstruction performance. However, in Figure D.4D,
we found that SRNNs with K = 5 have much lower variability on recovered behaviorally-relevant
states than K = 4 and K = 6. Therefore, given the visualization of recovered states, co-smoothing
test, and variance of recovered states across different pseudo-sessions, we consider K = 5 as the
best hyperparameter. Furthermore, we show the reconstruction performance of all models in Figure
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Figure 4: WFCI Decision-Making: (A-F) Legend similar to Figure 3 legend. The top color bars in
(F) represent 0.33s ahead prediction accuracy; more examples shown in Figure D.2.
4C, with the SRNN slightly outperforming other models. Analogous to the reaching datasets, a
higher latent dimensionality results in better reconstruction. Notably, the prediction capabilities of
SRNNs far outperform competing models with linear dynamics (Figure 4D). In addition, we show
the reconstruction of neural activity for an example component with the corresponding ground truth
in Figure 4F, with more results shown in Figure D.2C in the Appendix. Furthermore, we visualize
the neural dynamics in Figure 4E with P = 8. We again apply PCA to visualize the flow fields,
where we see that the flow fields of different RNNs are also distinct. However, the difference is
smaller as compared with the reaching dataset, which may reveal that WFCI may have fewer change
in dynamics over the course of a trial, potentially due to the slow timescales of calcium indicators.

4.4 Experimental data: Widefield Calcium Imaging during Mouse Self-initiated Lever Pull
Finally, we explore the utility of SRNNs on another WFCI data, where large-scale neural activity
from the mouse dorsal cortex is recorded while mice are engaged in a spontaneous lever-pull behavior
for water reward (R = 16). More details can be found in Appendix B and Mitelut et al. [2022]. Here,
while the observed behavior happens in a very short time because the mice pull the lever very fast,
Mitelut et al. [2022] found that the neural activity has obvious inhibitory dynamics starting from
around 5 seconds before the self-initiated lever pull behavior. Thus, the mice have 3 behaviorally-
relevant states: (1) from resting to the starting of inhibitory dynamics (as found in Mitelut et al.
[2022]); (2) from the starting of inhibitory dynamics to behavior onset; (3) lever-pull execution.

We use data from 6 different mice, and perform 6-fold cross-validation. In Figure 5, we show the
results with the same quantification methods as in the datasets above. SRNNs also outperform in
recovering the behaviorally-relevant neural dynamical states; an example is shown in Figure 5A.
While SRNNs can recover the inhibitory dynamics of neural activity from around 3 seconds before the
behavior onset, SLDS and rSLDS can only identify a short state before behavior onset. We use P = 2
hidden states for this example since more hidden states do not improve the recovery of these discrete
states (Figure 5B). We use the same approach as above to determine K. We show the performance of
SRNNs with different K in Figure D.5, where we found that SRNNs with K = 2 are not able to detect
the switches before the behavior onset. Additionally, SRNNs with K = 3 have lower reconstruction
error in Figure D.5B and perform better in the co-smoothing test in Figure D.5C. Moreover, we
found that SRNNs with K = 2 have relatively lower variability on recovered behaviorally-relevant
states than K = 3 and K = 4 in Figure D.5. However, as demonstrated in the state visualizations
in Figure D.5A, this is primarily due to the majority of time points being classified as a single state.
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Figure 5: WFCI Self-Initiated Lever Pull: (A-F) Legend similar to that of Figure 4.
Moreover, the reconstruction of neural activity using SRNNs performs slightly worse than other
methods (Figure 5C); however, the prediction of neural activity even 1 or 1.33 seconds ahead is
better than competing methods. We show the reconstruction of neural activity from one example
brain region in Figure 5F, with more results shown in Figure D.2D. Here, the color bars represent
the performance of neural prediction. Indeed, all three methods have acceptable reconstruction and
SRNNs have better prediction capabilities. Lastly, we visualize the neural dynamics in Figure 5E
using P = 2. We find that the latent dynamics are only different from the starting of the inhibitory
dynamics to behavior onset, which may reflect the mechanism through with internal dynamics in
the brain achieve movements, with primarily changes in preparatory neural dynamics (here the
inhibitory state) leading to upcoming movements (Churchland et al. [2012]). Finally, we explore
modular SRNNs constrained to the activity of different regions in order to elucidate region-to-region
communication in Figure D.9.
5 Limitations and Conclusions
We developed a novel model for recovering neural dynamics and neural state changes, termed
Switching Recurrent Neural Networks (SRNNs). The results show that SRNNs outperform competing
models in both recovering behaviorally-relevant neural states, and predicting future neural activity.
However, certain limitations of this method still exist. Firstly, we set the maximum number of discrete
states manually based on our observations of behavior, but we note that the reconstruction accuracy
does not change drastically if we change this hyperparameter. Secondly, analogous to other generative
models trained via Variational Inference, the model needs a good initialization to be trained efficiently;
without this, the model may get stuck in one state and not adequately capture the switching nature
of neural dynamics. Lastly, the complexity of the model increases the training time, for example,
one experiment for SRNNs trained on reaching datasets may take several hours (e.g., around 6.5
hours on one session of curved reaching on NVIDIA A100 GPUs), which is more than the amount
of time taken by SLDS and rSLDS (typically less than one hour). In conclusion, we use SRNNs
to identify behaviorally-relevant neural dynamical states. We find that the neural dynamics have
behaviorally-relevant switches across time and we are able to use SRNNs to capture these switches
as well as the corresponding dynamical features. Straightforward extensions of this method include
adding inputs or control signals to SRNNs to explore the identification of behaviorally-relevant neural
dynamics while providing external stimuli.

While this paper focuses on neuroscience impact, methods such as SRNNs have the potential to be
applied in health-related fields for positive societal impact towards design of intervention based on
accurate prediction of neural dynamics. No negative societal impact is noted.
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A Simulated data: Lorenz Attractor

The equations of Lorenz Systems are:

dx

dt
= σ(y − x) (16)

dy

dt
= x(ρ− z)− y (17)

dz

dt
= xy − βz (18)

where x, y, z represent 3 dimensions of the system, and σ, ρ, β are three parameters. Here we use
commonly used values for the parameters, i.e., σ = 10, ρ = 28, β = 2.667.

B Experimental Datasets

Electrophysiology Recordings during a Monkey Reaching Task In the reaching dataset, the
recording starts with the monkey in a resting state, and a target shows up after 400ms. The monkey
then gets a ‘go’ cue after a delay. Thereafter, the monkey starts moving from the origin to the targets
and hold at the targets upon reaching. More details can be found in Churchland et al. [2012]. We
explore the relationship between the change of neural dynamics and the change of behavioral states.
Here, we use the trial-average neural activity which is averaged across multiple trials with the same
conditions, details of the trial-average data can be found in Churchland et al. [2012]. The data is
recorded for 180 neurons and has 236 time points representing 2.36 seconds.

Widefield Calcium Imaging during Mouse Decision-Making Behavior In self-initiated decision
making dataset, mice initiated trials by touching either of two handles and hold a handle for 1s
followed by sensory stimuli. The sensory stimulus was presented for 600ms, and after a 500ms pause
with no stimulus and then the stimulus was repeated for another 600ms. After the second stimulus,
a 1000ms delay was imposed, then the mice are required to lick one of two spouts, the mice were
rewarded with a drop of water if they licked the spout twice on the same side as the stimulus. More
details can be found in Musall et al. [2019]. Here, we average across multiple trials recorded from the
same mouse to create pseudo-sessions. Specifically, we averaged around 80 trials of 516 trials in one
mice to produce N = 8 pseudo-sessions, and fit the trial-averaged data using our models. The details
of the data can be found in Musall et al. [2019]. The data is also processed via LocaNMF Saxena
et al. [2020], and the 210 temporal components returned by LocaNMF are used. The data has 189
time points representing 6.3 seconds.

Widefield Calcium Imaging during Mouse Self-initiated Lever Pull Behavior In self-initiated
lever pull data, mice were trained to pull a lever and hold it at an angle (for > 100ms) in order to
receive a water supplement. We then apply LocaNMF Saxena et al. [2020] while spatially aligning
the imaged neural activity with the Allen mouse brain coordinate framework Wang et al. [2020] using
affine transformations, as previously performed in Musall et al. [2019], and take 16 components as
identified by LocaNMF, which form our input signals, with each input dimension from one brain
region. In this work, we focus on the signals around the lever pull, i.e., from 10 seconds before lever
pull to 1 second after lever pull (overall 330 time points). More details can be found in Mitelut et al.
[2022]. Likewise, we use trial-averaged data which is averaged across all trials of the same mouse.
We use the data across N = 6 mice; details of this data can be found in Mitelut et al. [2022].

C Region-to-region Communication on WFCI

We also use our model to uncover the relationship between different brain regions using self-initiated
lever pull dataset recorded by WFCI, because the data has only one component for each brain region.
We add a constraint to our SRNNs, specifically, we force 4 hidden states of SRNNs to reconstruct
neural activity from 4 brain region independently via constraining the output weights of SRNNs. We
focus on communication between ‘Motor’, ‘Visual’, ‘Somatosensory’, and ‘Other’ regions except
these 3. Finally, we visualize the recurrent weights of each RNN of SRNNs in Figure D.9A, we find
that the region-to-region communication is highly different between different states. Moreover, the
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self-communication during rest state (diagonal of SRNN1) is at a low amplitude. Nevertheless, this
self-communication becomes higher during the ‘inhibitory dynamics’ (SRNN2), then decreases in
‘after lever pull’ (SRNN3). Additionally, the ‘Visual’ region has more communication with other
regions during the states prior to the behavior onset (SRNN1 and SRNN2), the ‘Somatosensory’
region has little communication at early states, but it then increases close to behavior onset. The
‘Motor’ region actively communicates with other regions near behavior.

D Appendix Figures

Figure D.1: Direct Reaching: (A) Examples of comparison between behavioral states and neural
dynamical states recovered by SRNNs, SLDS, and rSLDS. (B) Error between behaviorally-relevant
states and recovered neural dynamical states; each dot represents one session, with the triangle as the
mean of all sessions. (C) Mean squared error (MSE) between neural activity and the reconstruction.
(D) MSE between neural activity and the prediction forward in time. (E) Reconstruction of neural
activity and the corresponding ground truth for one example neuron for three models, the top color
bars represent the performance on 0.1 seconds ahead prediction. More examples are shown in Figure
D.2. (F) Flow fields of latent dynamics of SRNNs in different discrete states.
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Figure D.2: Reconstruction of neural activity and the corresponding ground truth in different brain
region/neuron for (A) curved reaching, (B) direct reaching, (C) self-initiated decision making, and
(D) self-initiated lever pull. Red color represents SLDS, green color represents rSLDS, blue color
represents SRNN, purple color represents SNLDS, and orange color represents mrSDS.

16



Figure D.3: Curved Reaching: (A) Examples of comparison between behavioral states and neural
dynamical states recovered by SRNN with K = 4, K = 5, and K = 6. (B) Mean squared error
(MSE) between neural activity and the reconstruction by SRNN with K = 4, K = 5, and K = 6.
(C) Mean squared error (MSE) between neural activity and the reconstruction by SRNN with K = 4,
K = 5, and K = 6 using the co-smoothing test. (D) Variance of behavioral states recovered by
SRNN with K = 4, K = 5, and K = 6.

Figure D.4: WFCI Decision-Making: (A) Examples of comparison between behavioral states and
neural dynamical states recovered by SRNN with K = 4, K = 5, and K = 6. (B) Mean squared
error (MSE) between neural activity and the reconstruction by SRNN with K = 4, K = 5, and
K = 6. (C) Mean squared error (MSE) between neural activity and the reconstruction by SRNN with
K = 4, K = 5, and K = 6 using the co-smoothing test. (D) Variance of behavioral states recovered
by SRNN with K = 4, K = 5, and K = 6.
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Figure D.5: WFCI Self-Initiated Lever Pull: (A) Examples of comparison between behavioral
states and neural dynamical states recovered by SRNN with K = 2, K = 3, and K = 4. (B) Mean
squared error (MSE) between neural activity and the reconstruction by SRNN with K = 2, K = 3,
and K = 4. (C) Mean squared error (MSE) between neural activity and the reconstruction by SRNN
with K = 2, K = 3, and K = 4 using the co-smoothing test. (D) Variance of behavioral states
recovered by SRNN with K = 2, K = 3, and K = 4.

Figure D.6: (A) Comparison of neural activity reconstruction among SLDS, rSLDS, SRNN and
LFADS in reaching dataset. (B) Reconstruction of neural activity and the corresponding ground truth
in four example neurons for LFADS.
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Figure D.7: First column: Plot of SRNN training loss across 5000 epochs for example run in (A)
reaching dataset, (D) self-initiated lever pull dataset, and (G) self-initiated decision making dataset.
Second column: Plot of MSE between desired neural activity in validation set and the corresponding
reconstruction by SRNN for (B) reaching dataset, (E) self-initiated lever pull dataset, and (H) self-
initiated decision making dataset. Third column: Plot of error between behavioral states in validation
set and the corresponding recovered state by SRNN for (C) reaching dataset, (F) self-initiated lever
pull dataset, and (I) self-initiated decision making dataset.

Figure D.8: Error between behavioral states and recovered states by SRNN with bidirectional
recurrent inference layers (blue) vs SRNN with forward recurrent inference layers (gray) in (A)
reaching dataset, (B) self-initiated lever pull dataset, and (C) self-initiated decision making dataset.
MSE between desired neural activity and reconstruction by SRNN with bidirectional recurrent
inference layers (blue) vs SRNN with forward recurrent inference layers (gray) in (D) reaching
dataset, (E) self-initiated lever pull dataset, and (F) self-initiated decision making dataset.
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Figure D.9: (A) Region-to-region communication map uncovered by constrained SRNN trained
on self-initiated lever pull dataset. We focus on 4 regions, i.e., "Visual", "Motor", "Somatosensory
(SSp)", and "Others". (B) Error between behavioral states and recovered states by constrained SRNN
on self-initiated lever pull dataset. (C) MSE between desired neural activity and reconstruction by
constrained SRNN on self-initiated lever pull dataset.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim that our abstract and introduction accurately reflect our contributions
and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussion the limitations of our model in the Conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide equations on the main text for our theory.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We cite all the source of our datasets in the main text and include the details of
our experiments in Method and Result section, and we will provide our code for reproduction
upon publication.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We cite all the source of our datasets which are all in the public domain; we
provide our full code for reproduction.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details in the Methods and Results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide details in the Results section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details in the Methods section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This is addressed in the Conclusions section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the source of our datasets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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