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Abstract

This study presents a reproducibility analysis of the p-Poisson surface reconstruction method
presented by Park et al. (NeurIPS 2023). The method utilizes the p-Poisson equation and
a curl-free constraint for improved surface reconstruction from point clouds, claiming sig-
nificant advancements over existing implicit neural representation techniques. This study
evaluates the reproducibility and generalizability of the results reported in the original pa-
per, focusing on the evaluation using the Surface Reconstruction Benchmark (SRB) dataset.
The neural network architecture and training procedures are entirely re-implemented from
scratch, emphasizing correctness and efficient execution. While the replication generally
outperforms the four alternative methods mentioned in the original paper, the distance
results reported in the original paper fail to be reproduced by the re-implementation. No-
tably, training with the code published in the original paper yields similar results to the
reproduced results, still deviating from the findings presented in the original paper. The
presented implementation demonstrates a significant improvement in training performance,
achieving a five-fold acceleration in training times compared to the code used in the original
paper by vectorizing the gradient calculations and leveraging just-in-time compilation of
the training loop, which gives an actionable insight for others to explore and integrate such
optimizations into their machine learning code. The re-implementation is available at 1.

1 Introduction

Extensive research in computer vision and graphics has focused on the task of surface reconstruction from
unorganized point clouds. As traditional mesh-based methods lack flexibility and do not ensure watertight
surfaces, implicit function-based approaches such as signed distance functions (SDFs) or occupancy functions
offer a solution to this problem. The rise of deep learning methods has led to the introduction of implicit
neural representations (INRs), utilizing neural networks to parameterize implicit functions for expressive
reconstructions. Early INRs formulated the problem as supervised regression and faced challenges with
ground-truth distance values. Some methods employ partial differential equations (PDEs) like the eikonal
equation to alleviate the need for 3D supervision, but they struggle with non-unique solutions and reliance
on accurate normal vectors, which may be unavailable in raw point cloud data. Additionally, these meth-
ods are sensitive to noise and outliers, limiting their effectiveness in reconstructing fine details or realistic
surfaces without normal vectors. This study aims to evaluate the reproducibility of the method termed p-
Poisson equation based Implicit Neural representation with Curl-free constraint (PINC) introduced by Park
et al. (2023) which purportedly achieves significant improvements over comparable INRs without relying on
supplementary information such as surface normals.

2 Scope of reproducibility

The goal of this study is to evaluate the reproducibility of the results presented by Park et al. (2023) and the
performance of the proposed method for surface reconstruction from unorganized point clouds, focusing on

1https://anonymous.4open.science/r/pinc-B7CD
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the efficient implementation of the PDE-based variable-splitting strategy and training process. Furthermore
the proposed approach’s surface reconstruction performance on the surface reconstruction benchmark (SRB)
dataset (Berger et al., 2013) is analyzed. The original paper claims that the proposed method outperforms
existing implicit neural representation approaches in terms of the metrics Chamfer and Hausdorff distances,
robustness to noise, and handling of incomplete observations. This reproducibility study also offers a novel
implementation of the proposed method using JAX which significantly improves training speed by vectorizing
the multiple gradient calculations of the model and by writing the entire training loop using primitives that
can be transformed into low-level instructions using the XLA compiler.

3 Methodology

The original paper by Park et al. (2023) introduces a novel approach to surface reconstruction from point
clouds using INRs. The proposed method leverages the p-Poisson equation and a curl-free constraint to
enhance the accuracy and robustness of the reconstructed surfaces. Unlike comparable methods that require
additional information such as surface normals, the proposed approach learns the SDF implicitly, allowing
more flexible and accurate surface reconstructions.

3.1 Problem Formulation

Given an unorganized point cloud X = {xi}N
i=1 sampled from a closed surface Γ, the goal is to learn a signed

distance function u : R3 → R, where the zero level set of u accurately represents the surface Γ, such that
Γ =

{
x ∈ R3 | u(x) = 0

}
. In the following equations, Ω represents a subset of the entire definition space of

u(x) for which we sample points to constrain the optimization.

p-Poisson Equation The p-Poisson equation serves as the foundation for PINC, allowing us to model
the signed distance function with high precision. The decision to utilize the p-Poisson equation in PINC
stems from its ability to provide a unique and stable solution to the surface reconstruction problem. Unlike
methods that rely solely on the eikonal equation, which can lead to non-unique solutions and numerical
instability, the p-Poisson equation offers a more robust framework for approximating the signed distance
function. By formulating the surface reconstruction problem as a minimization of the p-Poisson equation,
PINC can achieve more accurate and reliable reconstructions of surfaces from point clouds. The equation is
defined as:

min
u

∫
Γ

|u|dx + λ1

∫
Ω

∣∣∇x ·
(
∥∇xu∥p−2∇xu

)
+ 1

∣∣ dx, (1)

where λ1 > 0 is a weighting hyperparameter, Γ represents the surface, and Ω denotes a subset of the domain
where points are sampled for optimization. This equation seeks to minimize the integral of the absolute value
of the SDF over the surface Γ, subject to a regularization term in the domain Ω. In the PINC framework,
this equation is redefined into a loss function of the form:

Lp-Poisson =
∫

Γ
|u|dx + λ1

∫
Ω

∥∇xu − G∥2dx (2)

where G is introduced using variable splitting, decomposing a complex minimization problem into simpler
sub-problems and coupling them. G is derived from the auxiliary neural network output vector Ψ, along
with a fixed function F (x) = x

3 , chosen such that ∇x · F = 1. This expression of G acts as a hard constraint
for G and is formulated as

G = ∇x × Ψ − F

∥∇x × Ψ − F∥
p−2
p−1

. (3)

This auxiliary variable G plays a crucial role within the PINC framework since it serves as a proxy for ∇xu,
which makes it possible to incorporate the hard contract set on G into the optimization. This could not
have been achieved solely through the direct automatic differentiation of ∇xu without the use of variable
splitting.

Curl-Free Constraint In the original paper, the authors argue that to enhance the accuracy of surface
reconstructions from point clouds, a curl-free constraint should be applied to the auxiliary variable G, which
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represents the gradient of the SDF, to ensure that G forms a conservative vector field. A conservative vector
field condition, expressed as G = ∇xu, indicates that G is curl-free (∇x × G = 0) if it can be written as the
gradient of some scalar potential function u.

Implementing a direct penalty for the curl of G to enforce this constraint (
∫

Ω ∥∇x × G∥2
dx) is claimed to

introduce computational challenges and a complex loss landscape due to high-order derivatives required by
automatic differentiation (Park et al., 2023). To mitigate these issues, an additional auxiliary variable G̃ is
introduced to satisfy both G = G̃ and the curl-free condition ∇x × G̃ = 0, through the loss function

LPINC = Lp-Poisson + λ2

∫
Ω

∥∥G − G̃
∥∥2

dx + λ3

∫
Ω

∥∥∇x × G̃
∥∥2

dx. (4)

where λ2, λ3 > 0 are weighting hyperparameters.

The optimality conditions suggest that G̃ should have a unit norm, as dictated by the Eikonal equation. To
simplify adherence to this non-convex equality constraint, it is relaxed to a convex condition ∥G̃∥ ≤ 1, using
a projection that maps the auxiliary output Ψ̃ to G̃ within the three-dimensional unit sphere:

G̃ = Ψ̃
max

{
1, ∥Ψ̃∥

} , (5)

How the neural network structure relates to the auxiliary variable is summarized in figure 1.

Primary output

Auxiliary output

Auxiliary output

Multi-layer perceptron

Figure 1: The visualization of the augmented network structure with two auxiliary variables.

Variable-Splitting Strategy

PINC adopts a variable-splitting strategy to simplify the optimization process; splitting the network into
multiple outputs, as illustrated in Fig. 1, for the signed distance function and its gradient. In the original
paper, it is argued that this approach enables more effective training and better adherence to the p-Poisson
and curl-free constraints.

3.2 Loss Function

Real point clouds from range scanners often have incomplete data due to occlusions and concavities, resulting
in holes. Estimating accurate closed surfaces becomes challenging, requiring a strategy to interpolate across
gaps and reconstruct the surface cohesively.

PINC’s approach is to minimize the surface area of the zero-level set, which is encapsulated in the final
augmented loss function:

Ltotal = LPINC + λ4

∫
Ω

δϵ(u) ∥∇xu∥ dx (6)

where λ4 > 0 is the weighting hyperparameter of the surface area minimization component in the total loss
function, and δϵ(x) = 1 − tanh2 (

x
ϵ

)
represents a smoothed Dirac delta function with a smoothing parameter
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ϵ > 0. This addition aims to guide the surface reconstruction process by encouraging the minimization of
the zero-level set area of u, thereby promoting a more coherent filling of the missing parts of the scanned
point cloud.

To implement the loss function in code, all integrals are approximated using Monte Carlo integration. This
involves simply replacing the integrals with sums over the correct data points.

3.3 Distance Metrics and Evaluation

We quantify the separation between two sets of points, denoted as X and Y, through the application of
conventional one-sided and double-sided ℓ2 Chamfer distances, denoted as dC⃗ , dC , and Hausdorff distances,
denoted as dH⃗ , dH . The definitions for each are as follows:

dC⃗(X , Y) = 1
|X |

∑
x∈X

min
y∈Y

∥x − y∥2, dC(X , Y) = 1
2

(
dC⃗(X , Y) + dC⃗(Y, X )

)
dH⃗(X , Y) = max

x∈X
min
y∈Y

∥x − y∥2 dH(X , Y) = max
{

dH⃗(X , Y) + dH⃗(Y, X )
}

.

The estimation of the distance from the INR to the target point clouds is performed identically as in the
original paper (Park et al., 2023) by first creating a mesh by extracting the zero level set of u using the
marching cubes algorithm Lorensen & Cline (1987) on a 512 × 512 × 512 uniform grid, then by sampling 107

points uniformly from the surface and finally by measuring the presented distances from the sampled points
and the target points cloud.

Furthermore, to measure the accuracy of the trained gradient field, normal consistency (NC) is evaluated
between the learned G and the surface normal from a given oriented point cloud X , N = {xi, ni}N

i=1 com-
prising of sampled points xi and the corresponding outward normal vectors ni, NC is defined by the average
of the absolute dot product of the trained G and the surface normals.

NC(G, X , N ) = 1
N

N∑
i=1

∣∣∣G (xi)T ni

∣∣∣ (7)

3.4 Datasets

The SRB dataset (Berger et al., 2013) is used to benchmark this re-implementation against the original
results. It consists of five different benchmark figures. Each of them has a scan point cloud and a ground
truth point could. The scan is used for training the reconstruction models while the ground truth is used to
evaluate the trained model.

An evaluation of the Thingy10K Zhou & Jacobson (2016) dataset was also initially planned, but as the
specific objects used for experiments by Park et al. (2023) were not specified in detail, it was not possible to
evaluate our implementation on this dataset without substantial effort to recover the 3D models used in the
original paper.

All scanned data points are utilized as boundary points in the loss function. To enhance consistency,
neighboring points around these boundary points are sampled by adding a normally distributed variable
with a variance equal to the distance to their 50th closest neighbor within the scanned dataset. One local
point is sampled per scanned point in the batch of scan points.

To ensure that the model has been trained on points representing the entire data distribution, 2048 points
are uniformly sampled from the cubic space [−1.1, 1.1]3 at each training step.

3.5 Hyperparameters

The numerous hyperparameters of the method are all configured to match the experimental setup of the
original paper. However, one notable exception is the epsilon parameter in the loss function. In the source
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code, it is suggested that using a value of ϵ = 0.1 might yield better results than the original value of ϵ = 1,
leading us to test both values. The appendix figure 2 presents how the function δϵ(x) = 1−tanh2 (

x
ϵ

)
depends

on ϵ. The loss weight hyperparameters of the loss terms were set to λ1 = 0.1, λ2 = 10−4, λ3 = 5 · 10−4 and
λ4 = 0.1, p = ∞ and F = x

3 as in the original paper. The Adam (Kingma & Ba, 2014) optimizer is used with
a learning rate of 10−3 and a learning rate schedule that reduces the learning rate by a factor of 0.99 every
2000 step. It has to be noted that this schedule is a fraction of a reduction in learning rate and probably
has an insignificant impact on training (0.99 100000

2000 = 0.995 ≈ 0.95). The model is trained for 100 000 steps
with a batch size of 16384. The network architecture consists of 7 layers with 512 hidden dimensions and
skip connections from the first layer to the fourth layer. The softplus activation function is used with a beta
parameter of 100.0 which makes it very close to a ReLU activation function.

3.6 Experimental Setup

The experiments involved training the model depicted in Figure 1 using the loss function specified in Equation
6 and hyperparameters detailed in Section 3.5. Training was conducted on the entire SRB dataset, and the
trained networks were subsequently evaluated using all metrics outlined in Section 3.3. To provide robust
estimates, these steps were iterated three times to gauge the uncertainty of the training process.

Implementation of the model and training loop was carried out using JAX Bradbury et al. (2018). Initially,
the implementation strictly followed the instructions provided in the original paper. Subsequently, to ensure
accuracy and consistency, the published code 2 was consulted for additional guidance and verification.

Consistent with the methodology employed by Park et al. (2023), all experiments were conducted on a single
NVIDIA® RTX 3090 GPU with 24GB of memory.

3.7 Performance Optimizations

Multiple steps were taken to increase the performance of the re-implementation of the training code. In
PyTorch Paszke et al. (2017), the computational graph is built dynamically and the low-level operations
are dispatched on the fly during the training process, which can hamper execution speed but eliminates
the need for a compilation step and enables flexibility. In the re-implementation, all the operations of the
training process are expressed using JAX primitives such as jax.lax.scan, which can be compiled using XLA.
The computational graph in JAX is built during the just-in-time compilation step and then transformed
into low-level instructions using the XLA compiler, which results in more optimized low-level instructions
and faster run times in general, sacrificing the dynamism of the PyTorch code. This re-implementation is
therefore considerably faster as every operation part of the training loop has static shapes and is transformed
into low-level instructions using the XLA compiler.

Furthermore, to calculate the total loss at each training step, the PyTorch code used in the original pa-
per makes 11 different calls to the torch.autograd.grad function, which calculates the gradient of the
outputs with respect to the inputs. On the other hand, the re-implementation combines these 11 calls to
torch.autograd.grad into one vectorized call to jax.jacfwd. Forward-mode automatic differentiation with
jax.jacfwd was chosen to replace the 11 different calls to the backward-mode automatic differentiation with
torch.autograd.grad as the number of outputs is larger than the number of inputs.

3.8 Correctness of the Reproducibility

A numerical verification of the correctness of the re-implementation is conducted 3 by comparing the results
of a forward and backward pass using both the re-implemented code and the code of the original paper. The
weights of the neural network are initialized using the code of the original paper and then converted to JAX
arrays to use in the re-implemented code. 16384 random points are then passed to both networks and the
maximum difference between the outputs is 10−7. To verify that the loss is calculated correctly a difference
of the gradients of the model parameters with respect to the loss of the two models is calculated using JAX

2https://github.com/yebbi/pinc
3https://anonymous.4open.science/r/pinc-B7CD/scripts/forward_pass_comparison.py
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and PyTorch autodiff and the maximum difference is measured to less than 10−6. It is therefore reasonable
to assume that the implementations are the same.

The two training implementations differ due to the calculation of the distance to the 50th nearest neighbor
that in the code for the original paper mistakenly includes the normals together with the coordinates in the
distance calculation, which influences the standard deviation of the boundary points for creating local filler
points. This difference is detailed in the code’s README 4.

4 Results

Table 1: Distance results for the SRB dataset using different surface reconstruction methods. The re-
implementation is labeled as "[Re] PINC", the code of the original paper running on our hardware is labeled
as "PINC (rerun)", and the results presented in the original paper are labeled as "PINC". The results of the
other methods are sourced from their respective papers. The ground truth data is referred to as "GT", while
the training data is referred to as "Scan".

Anchor Daratech Dc Gargoyle Lord quas
GT Scan GT Scan GT Scan GT Scan GT Scan

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

dC dH d−→
C

d−→
H

IGR 0.45 7.45 0.17 4.55 4.90 42.15 0.70 3.68 0.63 10.35 0.14 3.44 0.77 17.46 0.18 2.04 0.16 4.22 0.08 1.14
SIREN 0.72 10.98 0.11 1.27 0.21 4.37 0.09 1.78 0.34 6.27 0.06 2.71 0.46 7.76 0.08 0.68 0.35 8.96 0.06 0.65
SAL 0.42 7.21 0.17 4.67 0.62 13.21 0.11 2.15 0.18 3.06 0.08 2.82 0.45 9.74 0.21 3.84 0.13 414.00 0.07 4.04
PHASE 0.29 7.43 0.09 1.49 0.35 7.24 0.08 1.21 0.19 4.65 0.05 2.78 0.17 4.79 0.07 1.58 0.11 0.71 0.05 0.74
DiGS 0.29 7.19 0.11 1.17 0.20 3.72 0.09 1.80 0.15 1.70 0.07 2.75 0.17 4.10 0.09 0.92 0.12 0.91 0.06 0.70
PINC 0.29 7.54 0.09 1.20 0.37 7.24 0.11 1.88 0.14 2.56 0.04 2.73 0.16 4.78 0.05 0.80 0.10 0.92 0.04 0.67
PINC (rerun) ε = 1 0.32 7.63 0.10 1.26 5.97 55.25 0.64 4.38 0.15 2.62 0.05 2.80 0.16 4.77 0.06 0.81 0.11 0.79 0.04 0.74
PINC (rerun) ε = 0.1 0.37 9.10 0.10 3.94 7.48 62.82 0.66 7.39 0.16 2.26 0.06 2.75 0.19 5.95 0.07 3.86 0.14 3.41 0.05 1.50
[Re] PINC ε = 1 0.31 6.01 0.17 1.41 4.73 53.51 0.48 3.42 0.17 2.18 0.10 2.73 0.21 4.67 0.14 0.91 0.18 1.81 0.12 0.86
[Re] PINC ε = 0.1 0.35 7.67 0.16 1.39 7.52 69.12 0.24 3.10 0.17 2.37 0.11 2.72 0.21 5.25 0.13 1.36 0.17 1.17 0.12 1.01

The published results of various comparable surface reconstruction methods applied to the SRB dataset
Gropp et al. (2020); Sitzmann et al. (2020); Atzmon & Lipman (2020); Lipman (2021); Ben-Shabat et al.
(2022); Park et al. (2023) compared to the results obtained in this study are presented in Table 1. Notably,
our replication of the model exhibits superior performance compared to most other models for all bench-
marks except Daratech which fails to converge to a closed surface. However, it falls short of achieving the
performance levels reported in the original paper. Interestingly, upon training the model using the code
from the original paper, this study obtains results comparable to those of the re-implemented models. A
significant observation is the consistently inadequate performance of both evaluated models in the case of
Daratech, where no convergence to a stable solution could be measured. This can be visually confirmed in
6 and the observation holds for both this re-implementation and the models trained with the code used in
the original paper.

Furthermore, the training with a smaller ε produces a less smooth mesh which means that dC⃗ improves while
dH deteriorates.

The normal consistency 7 of the trained models is compared to the normal consistency of the other methods
reported by Park et al. (2023) in Table 2. It is apparent that the evaluation results of the re-implementation
are higher than those of similar methods except for the Daratech reconstruction. It is not entirely clear why
this is the case and since Park et al. (2023) did not publish their evaluation code or their trained model, it
is not possible to verify that the evaluation implementation is numerically identical.

All reconstructed surfaces are evaluated using sampling of a mesh constructed with marching cubes, which
means that the evaluation metrics vary for each calculation. Furthermore, the evaluation code is not included
in the code for the original paper, making the utilization of an identical random seed impossible. The variation
due to the surface sampling during the evaluation over 15 different evaluation runs is presented in Table 3,
which shows that this variation is negligible.

4https://anonymous.4open.science/r/pinc-B7CD/README.md

6

https://anonymous.4open.science/r/pinc-B7CD/README.md


Under review as submission to TMLR

Table 2: Normal consistency of reconstructed surfaces on SRB. The values for other surface reconstruction
are those reported by Park et al. (2023).

Anchor Daratech Dc Gargoyle Lord quas
IGR 0.9706 0.8526 0.9800 0.9765 0.9901
SIREN 0.9438 0.9682 0.9735 0.9392 0.9762
DiGS 0.9767 0.9680 0.9826 0.9788 0.9907
SAP 0.9750 0.9414 0.9636 0.9731 0.9838
PINC 0.9754 0.9311 0.9828 0.9803 0.9915
[Re] PINC ε = 1 0.9864 0.8595 0.9940 0.9915 0.9962
[Re] PINC ε = 0.1 0.9874 0.8722 0.9940 0.9917 0.9963

Table 3: Uncertainty estimation from the random sampling during the evaluation step. Mean and standard
deviation over 15 different evaluation runs using different random seeds and 107 surface sample points, as in
Park et al. (2023). The evaluated runs are using the reimplemented JAX code.

GT Scan
dC dH d−→

C
d−→

H

Anchor ε = 1 0.31157 ± 0.00005 6.01387 ± 0.00012 0.17076 ± 0.00001 1.41510 ± 0.00024
ε = 0.1 0.34599 ± 0.00007 7.67212 ± 0.00002 0.16095 ± 0.00001 1.38895 ± 0.00011

Daratech ε = 1 4.72754 ± 0.00157 53.49058 ± 0.01563 0.47939 ± 0.00001 3.41532 ± 0.00010
ε = 0.1 7.52066 ± 0.00249 69.10534 ± 0.01205 0.24270 ± 0.00002 3.10309 ± 0.00160

Dc ε = 1 0.16654 ± 0.00024 2.18049 ± 0.00052 0.09928 ± 0.00018 2.73660 ± 0.00175
ε = 0.1 0.17487 ± 0.00002 2.37276 ± 0.00006 0.10850 ± 0.00001 2.72449 ± 0.00011

Gargoyle ε = 1 0.20605 ± 0.00003 4.66616 ± 0.00019 0.13511 ± 0.00001 0.90959 ± 0.00098
ε = 0.1 0.20768 ± 0.00002 5.25331 ± 0.00010 0.12680 ± 0.00001 1.36158 ± 0.00036

Lord quas ε = 1 0.18022 ± 0.00002 1.80669 ± 0.00006 0.12490 ± 0.00001 0.85823 ± 0.00023
ε = 0.1 0.17083 ± 0.00001 1.17148 ± 0.00009 0.12495 ± 0.00001 1.01274 ± 0.00010

Table 4 presents the mean values and 95% confidence intervals of the metrics, calculated with the Student’s
t-test, for three training runs with different random seeds. The discrepancies between the originally reported
results in Table 1 and the re-implementation results with confidence intervals in Table 4 suggest significant
differences, raising questions about potential methodological errors or the influence of selective reporting
in the original paper. However, the confidence intervals of our findings indicate that these variations are
unlikely to be attributed to mere chance or "bad luck." Furthermore, none of the previous papers did not
include results with confidence bounds using multiple training runs.

The training times of the code used in the original paper and this re-implementation are examined in Table 5.
It can be noted that the re-implementation requires approximately 5 less training time compared to the code
used in the original paper.

A visualization of all the final reconstructed surfaces is presented in the appendix figure 6, highlighting the
failure of converging for the Daratech example by the trained models, all with the hyperparameters reported
by Park et al. (2023).

5 Reproducibility Discussion

Replicating various aspects of the paper presented both straightforward and challenging elements.

Firstly, the paper provided detailed explanations of the p-Poisson equation and the incorporation of the
curl-free constraint, which simplified the implementation process of the equations.

Furthermore, the experimental setup section offered details about the neural network architecture, the
variable-splitting strategy, the use of auxiliary variables, the proposed loss function, the integration of the
minimal area criterion, and the explicit handling of occlusions, which facilitated the rewriting of the model
and forward pass using JAX primitives.

The use of Chamfer and Hausdorff distances as evaluation metrics made it possible to benchmark the
reproduced results against the original findings and to compare them to the metrics reported by other
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Table 4: Uncertainty estimation of the distance metrics and normal consistency from three training runs
compared to the results reported in the original paper. Mean and t-student confidence interval of 95% over
three different training runs using different random seeds are reported. The rows labeled ’PINC’ present
the reported metrics in the original paper and the rows with confidence intervals present results from three
training runs using the reimplemented JAX code with two different values of ε.

GT Scan
dC dH d−→

C
d−→

H
NC

Anchor PINC 0.290 7.540 0.090 1.200 0.975
ε = 1 0.315 ± 0.007 6.046 ± 0.073 0.167 ± 0.008 1.404 ± 0.041 0.987 ± 0.000
ε = 0.1 0.350 ± 0.010 7.787 ± 0.564 0.163 ± 0.011 1.399 ± 0.070 0.987 ± 0.000

Daratech PINC 0.370 7.240 0.110 1.880 0.931
ε = 1 3.782 ± 2.124 45.591 ± 17.924 0.497 ± 0.152 3.491 ± 0.449 0.854 ± 0.012
ε = 0.1 5.876 ± 10.483 50.889 ± 85.656 0.391 ± 0.334 3.392 ± 0.735 0.873 ± 0.007

Dc PINC 0.140 2.560 0.040 2.730 0.983
ε = 1 0.173 ± 0.013 2.134 ± 0.473 0.106 ± 0.015 2.722 ± 0.042 0.994 ± 0.001
ε = 0.1 0.176 ± 0.003 2.358 ± 0.366 0.109 ± 0.001 2.722 ± 0.006 0.993 ± 0.002

Gargoyle PINC 0.160 4.780 0.050 0.800 0.980
ε = 1 0.203 ± 0.007 4.567 ± 0.235 0.134 ± 0.004 0.968 ± 0.134 0.991 ± 0.001
ε = 0.1 0.209 ± 0.006 5.224 ± 0.068 0.132 ± 0.014 1.342 ± 0.279 0.992 ± 0.000

Lord quas PINC 0.100 0.920 0.040 0.670 0.992
ε = 1 0.175 ± 0.016 1.514 ± 1.173 0.125 ± 0.001 0.871 ± 0.029 0.996 ± 0.000
ε = 0.1 0.170 ± 0.010 1.179 ± 0.056 0.125 ± 0.008 0.958 ± 0.177 0.996 ± 0.000

Table 5: Comparison of total training times for 100 000 steps.

Total Training Time (hours)
Code used in the original paper 13.5
Re-implemented code 2.2

comparable implicit neural representation methods for surface reconstruction. The reliance on the widely
used SRB dataset (Berger et al., 2013) enabled a direct comparison of the performance of the reproduced
model with the results reported in the original paper, without the need for additional data pre-processing
or acquisition.

However, several challenges were encountered during the reproduction process.

Multiple undocumented numerical details were not mentioned in the original paper. The number of sampled
global points is not mentioned in the paper and there is an undocumented division by

√
2 after the skip

connection in the multi-layer perceptron. Furthermore, the geometric initialization is also slightly different
between implementations. In IGR Gropp et al. (2020), the weights are initialized with N (

√
π/ndim, 10−6)

and the bias is initialized to −1 5, in SAL Atzmon & Lipman (2020), the weights are the weights are initialized
with N (2

√
π/ndim, 10−6)) and the bias is initialized to −1 6, and in PINC Park et al. (2023), the weights

are initialized with N (
√

π/ndim, 10−6)) and the bias is initialized to −0.1 7.

From the results obtained in this study, it is apparent that training models using the code of the original
paper result in distance values comparable to those of this re-implementation. However, these distance values
are not on par with those presented in Park et al. (2023). As the confidence intervals of our findings indicate
that these variations are unlikely to be attributed to mere chance or "bad luck", this raises questions about
potential methodological errors or the influence of selective reporting in the original paper.

Another encountered challenge, was that code used for the original paper has very long training times, which
means that substantial computational resources are needed to run the published code for comparison.

An e-mail was sent to the authors (Park et al., 2023) inquiring about the availability of evaluation code,
trained models, and reconstruction results but has not been answered at the time of writing.

5https://github.com/amosgropp/IGR/blob/master/code/model/network.py#L48
6https://github.com/matanatz/SAL/blob/master/code/model/network.py#L112
7https://github.com/Yebbi/PINC/blob/main/model/network.py#L46
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6 Conclusion

In this study, the primary objective was to replicate and verify the findings of the implicit neural represen-
tation surface reconstruction method proposed by Park et al. (2023). The original study introduces a novel
technique that integrates the p-Poisson equation into the model’s loss function, enabling surface reconstruc-
tion from point clouds without relying on additional information such as surface normals. This purportedly
leads to substantial improvements over comparable implicit neural representations.

The results of this study reveal that while the surface reconstruction method delineated in the original paper
surpasses numerous alternative approaches, it significantly fails to achieve the distance metrics initially
reported when subjected to rerunning or re-implementation as part of this study. Notably, when utilizing
the code from the original paper for training, we observed discrepancies in performance compared to the
reported distance metrics. The numerical comparisons of the model, loss, and gradients from the original
paper and this re-implementation demonstrate identical numerical values up to 10−6.

Finally, the re-implementation of the method surpassed the training speed of the code used in the original
paper, resulting in a remarkable five-fold speedup in training times. This reveals that the adoption of just-
in-time compilers such as the one in JAX for implementing machine learning algorithms and optimizing
computational tasks can considerably increase computational efficiency and the speed of training. This
gives an actionable insight for others to explore and integrate such compilers into their machine-learning
workflow, with a potential for significant improvements in research output, especially for resource-intensive
computational tasks.
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A Appendix
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Table 6: 3D Reconstruction results for SRB Dataset.
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