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Abstract
Dynamic pricing strategies are crucial for firms
to maximize revenue by adjusting prices based
on market conditions and customer characteris-
tics. However, designing optimal pricing strate-
gies becomes challenging when historical data
are limited, as is often the case when launch-
ing new products or entering new markets. One
promising approach to overcome this limitation is
to leverage information from related products or
markets to inform the focal pricing decisions. In
this paper, we explore transfer learning for non-
parametric contextual dynamic pricing under a
covariate shift model, where the marginal distri-
butions of covariates differ between source and
target domains while the reward functions remain
the same. We propose a novel Transfer Learn-
ing for Dynamic Pricing (TLDP) algorithm that
can effectively leverage pre-collected data from a
source domain to enhance pricing decisions in the
target domain. The regret upper bound of TLDP is
established under a simple Lipschitz condition on
the reward function. To establish the optimality
of TLDP, we further derive a matching minimax
lower bound, which includes the target-only sce-
nario as a special case and is presented for the first
time in the literature. Extensive numerical exper-
iments validate our approach, demonstrating its
superiority over existing methods and highlight-
ing its practical utility in real-world applications.

1. Introduction
Dynamic pricing is a fundamental strategy used across many
industries to maximize revenue by adjusting prices based
on market conditions (e.g. Araman & Caldentey, 2009; Bes-
bes & Zeevi, 2009; Wang et al., 2021b). In recent years,
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the rapid growth of online marketplaces and advances in
data collection have further enabled sellers to use contex-
tual information, such as customer characteristics, product
features and market trends, to make more informed pricing
decisions. This has fostered research in contextual dynamic
pricing (e.g. Wang et al., 2023; Luo et al., 2024; Fan et al.,
2024), which further incorporates in-depth information to
optimize pricing strategies.

Effective dynamic pricing involves balancing the explo-
ration of the unknown revenue model with the exploitation
of the estimated revenue model to maximize rewards. The
revenue model, representing the relationship between covari-
ates, prices and revenue, has been explored under both para-
metric and nonparametric settings in the literature. The para-
metric settings impose specific assumptions on the revenue
model and have been widely studied (e.g. Qiang & Bayati,
2016; Javanmard & Nazerzadeh, 2019; Ban & Keskin, 2021;
Wang et al., 2021a; Zhao et al., 2024). The nonparametric
settings provide more flexibility, making them more suitable
for real-world applications where customer behaviour and
market conditions are diverse and unpredictable (e.g. Chen
& Gallego, 2021; Chen et al., 2023).

Despite the wide applications of contextual dynamic pric-
ing, collecting sufficient data to design an optimal pricing
strategy can be challenging, particularly when launching
a new product or entering a new market with limited his-
torical data. In contrast, abundant data may be available
from related products or markets, from which one may lever-
age information to achieve improved decision-making. For
instance, historical data from other platforms or existing
markets can help sellers optimize pricing strategies more
efficiently when entering new environments. This naturally
falls in the territory of transfer learning (e.g. Pan & Yang,
2009), where datasets from similar but different distribu-
tions are utilized to enhance learning of a target dataset.

Transfer learning, as a research area, has been extensively
studied in the machine learning literature, with applications
in areas such as recommendation systems (e.g. Pan et al.,
2010), language models (e.g. Han et al., 2021) and disease
detection (e.g. Maqsood et al., 2019). It has recently also
gained attention in statistics and has been explored in vari-
ous problems, such as nonparametric regression (Cai & Pu,
2022b), contextual multi-armed bandits (Suk & Kpotufe,
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2021; Cai et al., 2024a) and functional data analysis (Cai
et al., 2024b). In statistical transfer learning, two common
settings are posterior drift, where the conditional distribu-
tions of responses given covariates vary (e.g. Reeve et al.,
2021; Maity et al., 2022), and covariate shift, where the
conditional distributions remain consistent but the marginal
distributions of covariates differ (e.g. Hanneke & Kpotufe,
2019; Kpotufe & Martinet, 2021).

1.1. List of contributions

In this paper, we study transfer learning for nonparametric
contextual dynamic pricing under the covariate shift model.
The main contributions of this paper are summarized as
follows.

Firstly, to the best of our knowledge, this is the first study to
explore transfer learning in dynamic pricing. We introduce a
novel algorithm, the Transfer Learning for Dynamic Pricing
(TLDP) algorithm, which effectively leverages source do-
main data to enhance pricing decisions in the target domain.

Secondly, we establish theoretical guarantees for the pro-
posed transfer learning algorithm and further derive a mini-
max lower bound. We demonstrate that the proposed algo-
rithm achieves minimax optimal regret, with the cumulative
regret (up to logarithmic factors) given by

nQ{nQ + (κnP )
d+3

d+3+γ }−
1

d+3 ,

where nQ ∈ Z+ represents the length of the target hori-
zon, nP ∈ N represents the number of observations in the
pre-collected source dataset, γ ∈ [0,∞] (see Definition 2.3
later) denotes the transfer exponent quantifying the simi-
larity between source and target covariate distributions and
κ ∈ [0, 1] (see Definition 2.4 later) represents the explo-
ration coefficient quantifying the minimal level to which the
source data adequately explores the price space.

Thirdly, as an important byproduct, our study covers the
special case of nonparametric contextual dynamic pricing
without transfer learning under the setting of a Lipschitz
reward function. Our proposed algorithm achieves the regret
upper bound of order

n
(d+2)/(d+3)
Q

up to logarithmic factors, with an accompanying minimax
lower bound. To the best of our knowledge, this is the first
minimax lower bound result under the Lipschitz condition
for nonparametric contextual dynamic pricing with a general
dimension d ≥ 1.

Finally, we validate the proposed approach through exten-
sive numerical experiments, demonstrating its effectiveness
compared to existing methods and highlighting its practical
utility in real-world applications.

1.2. Notation and organization

Denote X = [0, 1]d as the covariate space, P = [0, 1] as the
price space and Z = X ×P as the joint space of covariates
and prices. All balls in this paper are defined with respect to
the ℓ∞-norm. Let B(s, r), BX (s, r) and BP(s, r) denote
the balls in Z , X and P , respectively, centred at s with
radius r. For any ball B, let r(B) denote its radius and
c(B) its centre. For n ∈ Z+, let [n] = {1, . . . , n}. For any
distribution P , let supp(P ) be its support.

The remainder of the paper is organized as follows. In Sec-
tion 2, we formally define the problem. Section 3 introduces
the TLDP algorithm. In Section 4, we present theoretical re-
sults on the regret bounds of the proposed method, followed
by a matching minimax lower bound. We demonstrate the
practical performance of our approach through comprehen-
sive numerical experiments in Section 5 and conclude in
Section 6.

2. Problem formulation
In this section, we introduce a nonparametric contextual dy-
namic pricing model under the transfer learning framework.
Our goal is to minimize the regret for the target data by
leveraging pre-collected data from a related source domain.

For the target domain, the seller sells a product to nQ ∈ Z+

sequentially arriving consumers. At each time t ∈ [nQ], the
seller observes contextual information Xt ∈ X drawn from
the distribution QX . Based on Xt, the seller sets a price
pt ∈ P and then receives a random revenue Yt ∈ [0, 1] with
its conditional expectation

E{Yt|Xt, pt} = f(Xt, pt), (1)

where f : Z → [0, 1] is the unknown reward function.

In the context of transfer learning, we further assume that
the seller has access to a pre-collected source dataset

DP = {(XP
t , pPt , Y

P
t )}nP

t=1 ⊂ Z × [0, 1], (2)

where XP
t ∈ X is drawn from a distribution PX , pPt ∈ P

is the price and Y P
t corresponds to the observed random

revenue with its conditional expectation E{Y P
t |XP

t , pPt } =
fP (XP

t , pPt ). As mentioned in the introduction, this paper
focuses on the covariate shift model, where the marginal
distributions of covariates between the source and target
domains are different, i.e. PX ̸= QX , but the conditional
distributions of rewards are identical, i.e.

f(x, p) = fP (x, p), ∀(x, p) ∈ [0, 1]d × [0, 1]. (3)

Our primary objective is to design a pricing strategy that
minimizes the cumulative regret over the selling horizon in
the target domain by effectively utilizing both the source
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data DP and the observed target data. Formally, let Π
denote the family of all price policies π = {pπ1 , . . . , pπnQ

}
where each price pπt is Ft−1-measurable, t ∈ Z+. The field
Ft−1 is the σ-algebra generated by the history target data
{(Xs, ps, Ys)}t−1

s=1, all source data {(XP
s , pPs , y

P
s )}

nP
s=1 and

covariate Xt. For any price strategy π ∈ Π, the cumulative
regret over nQ steps is defined as

R = Rπ(nQ) =

nQ∑
t=1

E
{
f∗(Xt)− f(Xt, p

π
t )
}
, (4)

where f∗(x) = maxp∈P f(x, p) is the maximum expected
revenue for any x ∈ X . We further impose the follow-
ing assumptions on the reward function and the underlying
distributions.

Assumption 2.1. Assume that the reward function f : Z →
[0, 1] is Lipschitz continuous with respect to the ℓ∞-norm,
i.e. there exists an absolute constant CLip > 0 such that for
any (x1, p1), (x2, p2) ∈ Z ,

|f(x1, p1)−f(x2, p2)| ≤ CLip∥(x⊤
1 , p1)

⊤−(x⊤
2 , p2)

⊤∥∞.

Assumption 2.1 regulates the changes in the reward func-
tion led by the changes in covariates and prices. This is
commonly used in the literature of online learning with non-
parametric reward function (e.g. Slivkins, 2011; Chen &
Gallego, 2021; Chen et al., 2023), facilitating theoretical
analysis of the estimation and learning processes. Assump-
tion 2.2 below is a regularity condition on QX to ensure the
covariate space will be explored sufficiently.

Assumption 2.2. Assume that for the target distribution
QX , there exist constants 0 < cQ < CQ such that for any
x ∈ supp(QX) and r ∈ (0, 1],

cQr
d ≤ QX

(
BX (x, r)

)
≤ CQr

d.

To quantify the potential benefit of transfer learning from
the source domain to the target domain, we introduce the
notion of transfer exponent, a parameter widely used in the
transfer learning literature with covariate shift (e.g. Kpotufe
& Martinet, 2021; Suk & Kpotufe, 2021; Cai et al., 2024a).
It quantifies the degree of similarity between the source
and target covariate distributions, regulating the potential of
effective knowledge transfer.

Definition 2.3 (Transfer exponent). The transfer exponent
γ ∈ [0,∞] of the source covariate distribution PX with
respect to the target covariate distribution QX is defined as

γ = inf
{
γ′ ≥ 0

∣∣∣∃ a constant 0 < cγ′ ≤ 1 such that

PX

(
BX (x, r)

)
≥ cγ′rγ

′
QX

(
BX (x, r)

)
,

∀x ∈ supp(QX), r ∈ (0, 1]
}
.

The transfer exponent γ quantifies the extent to which the
source covariate distribution PX covers the target covariate
distribution QX . A smaller γ indicates a greater overlap,
enabling more efficient information transfer. In an extreme
case where PX and QX are identical, γ = 0 indicating a
perfect overlap. This parameter is crucial for analyzing the
potential performance improvements achievable by transfer
learning in our framework.

To ensure that the source data provides sufficient variability
in prices across different covariates, we further introduce
the exploration coefficient. This parameter quantifies the
minimal extent to which the source data adequately explores
the price space. It is essential for accurately estimating the
reward function over various price levels.

Definition 2.4 (Exploration coefficient). Let µ denote the
joint distribution of the source covariate-price pairs and let
PX be the marginal distribution of the source covariates.
Define the exploration coefficient κ ∈ [0, 1] as

κ = inf
x∈supp(PX),
r∈(0,1/2],
p∈[r,1−r]

µ
(
[p− r, p+ r]×BX (x, r)

)
2r · PX (BX (x, r))

.

The exploration coefficient κ measures the minimal condi-
tional probability density of the price given the covariates.
A larger κ indicates that the source data provides better
exploration of the price space for each covariate. This co-
efficient is crucial in assessing the usefulness of the source
data for learning the reward function in the target domain.
The definition of κ extends the exploration coefficient intro-
duced in Cai et al. (2024a) for multi-armed bandits (MAB)
to continuous action spaces in dynamic pricing. To illustrate
this concept, consider the following example.
Example 2.5. Suppose that the source dataset DP is defined
in (2) and the source prices are drawn independently of
source covariates from a distribution with density hP given
by hP (p) = δi if p ∈ (ai−1, ai], for i ∈ [m], where 0 =
a0 < a1 < · · · < am−1 < am = 1 and δi > 0 such that∫ 1

0
hP (p) dp = 1. This is a piecewise uniform distribution

and the exploration coefficient is κ = mini∈[m] δi, which
holds for any source covariate distribution PX .

3. Transfer learning algorithm
In this section, we introduce the Transfer Learning for Dy-
namic Pricing (TLDP) algorithm, detailed in Algorithm 1.
TLDP borrows the idea of contextual zooming from Slivkins
(2011) proposed for MAB problems with only target data,
and addresses the unique challenge of leveraging source
data to refine the exploration of the covariate-price space
in the target domain. At a high level, TLDP is an upper
confidence bound (UCB) type algorithm that handles the
nonparametric setting through an adaptive partitioning strat-
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Algorithm 1 Transfer Learning for Dynamic Pricing (TLDP)
Input: horizon length nQ, source dataset DP and the
smallest radius to explore r̃
Initialize: t ← 1, At ← {Z}, nt(B) ← nP

B(DP ),
ret(B)← rePB(DP ), ∀B ∈ At

while t ≤ nQ do
Observe Xt

relt ← {B∈At :∃p ∈ [0, 1],(Xt, p) ∈ dom(B,At)}
Bsel ← uniformly choose from argmaxB∈relt It(B)
pt ∼ Uniform{p : (Xt, p) ∈ dom(Bsel,At)}
nQ
t (B

sel)← nt(B
sel)− nP

Bsel(DP )

while nQ
t (B

sel) ≥ TQ
Bsel and r(Bsel) ≥ 2r̃ do

B′ ← B
(
(Xt, pt), r(B

sel)/2
)

At ← At ∪ {B′}, nt(B
′)← nP

B′(DP )
ret(B′)← rePB′(DP ), Bsel ← B′

end while
for B ∈ At\{Bsel} do
nt+1(B)← nt(B), ret+1(B)← ret(B)

end for
nt+1(B

sel)← nt(B
sel) + 1

ret+1(B
sel)← ret(Bsel) + Yt, t← t+ 1

end while

egy. Unlike approaches relying on predefined partitions,
TLDP sequentially refines partitions of the covariate-price
space in response to observed data. The key components of
TLDP are outlined following Algorithm 1.

A head start by the source data. At the core, the pric-
ing is conducted by sequentially discretizing the contin-
uous covariate-price space Z . To be specific, this is to
produce a collection of active l∞-balls in Z , namely At

at step t ∈ [nQ]. The source data provide a head start for
such partitioning, starting with the entire space A1 = {Z}.
TLDP sequentially refines the partition and adds smaller
balls into At. This partitioning is to be detailed later. We
first introduce some necessary notation. For a ball B ⊂ Z ,
let its count and cumulative revenue utilizing the source
dataset DP be

nP
B(DP ) =

∑
(X,p,Y )∈DP

1{(X, p) ∈ B} (5)

and

rePB(DP ) =
∑

(X,p,Y )∈DP

Y 1{(X, p) ∈ B}. (6)

For any ball B ∈ At, let its domain be

dom(B,At) = B\(∪B′∈At : r(B′)<r(B)B
′), (7)

excluding any overlaps caused by strictly smaller balls inAt,
thereby preventing redundant coverage.

Dynamic pricing via UCB. At each time t ∈ [nQ], af-
ter observing the covariate Xt, TLDP sets a price by first
selecting a ball B in the covariate-price space from the
current candidate set At that maximizes the revenue poten-
tial It(B) - defined below, then randomly chooses a price
such that the covariate-price pair (Xt, p) is in B, to be spe-
cific, in dom(B,At) as defined in (7).

Definition of It. Let nt(B) and ret(B) denote the cumula-
tive count and revenue of B from the target data before time
t and the source data DP , defined as nt(B) = nP

B(DP ) +∑t−1
s=1 1{(Xs, ps) ∈ B} and ret(B) = rePB(DP ) +∑t−1
s=1 Ys1{(Xs, ps) ∈ B}, with nP

B(DP ) and rePB(B) de-
fined in (5) and (6), respectively. For any B ⊂ Z , let its
UCB uncertainty level be

conft(B) = 2

√
log
{
nQ ∨ (κnP )

d+3
d+3+γ

}
nt(B)

. (8)

As nt(B) grows, i.e. more samples are collected in B,
conft(B) decreases, reflecting increasing in confidence.
The revenue potential index is then defined as

It(B) =CIr(B) + min
B′∈At

{
Ipre
t (B′)

+ CI∥c(B)− c(B′)∥∞
}
, (9)

where CI > 0 is a constant and the pre-index Ipre
t (B) is

given by

Ipre
t (B) = vt(B) + CIr(B) + conft(B), (10)

with vt(B) = ret(B)/nt(B).

The index It(B) is adapted from its MAB counterpart
proposed in Slivkins (2011) to balance the estimated re-
ward vt(B), the radius of the ball r(B), the uncertainty
level conft(B) and its distance to its neighbours ∥c(B) −
c(B′)∥∞ - the choice of the norm is reflected in the Lips-
chitz condition imposed in Assumption 2.1. The selection
of inputs κ and CI is further discussed in Section 5.1.

Partitioning. The last ingredient is the sequential parti-
tioning. A ball is further refined when enough samples are
collected and its radius is not too small. The refinement is
conducted by adding a smaller sub-ball to the candidate set
At. To be specific, the partitioning is summoned when the
target sample count nQ

t (B) exceeds TQ
B , where

TQ
B := TQ

B (DP ) =

{
0, ω(B) < nP

B(DP ),

ω(B), ω(B) ≥ nP
B(DP ),

(11)

with

ω(B) =

⌈
log
{
nQ ∨ (κnP )

d+3
d+3+γ

}
r(B)2

⌉
. (12)
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This threshold incorporates the contributions from the
source data. Note that when there is sufficient source data
within the ball, no additional target data is required for ex-
ploration.

4. Minimax optimality
In this section, we establish theoretical guarantees for the
TLDP algorithm presented in Algorithm 1. Specifically,
we derive an upper bound on the cumulative regret and a
matching minimax lower bound, demonstrating that TLDP
achieves minimax optimality under the given assumptions.
We also compare our findings with existing literature to
highlight the contributions of our approach. We begin by
presenting the upper bound on the regret achieved by TLDP.
Theorem 4.1. Suppose that the source dataset DP =
{(XP

t , pPt , Y
P
t )}nP

t=1 is defined in (2) with triplets indepen-
dent across time. Assume that the target dataset, defined
in (1), satisfies (3), and that Assumptions 2.1 and 2.2 hold,
with CI ≥ CLip where CI , CLip > 0 are constants defined
in (9) and Assumption 2.1, respectively. Let Algorithm 1
have input r̃ satisfying that

r̃ = Cr

[
log
{
nQ + (κnP )

d+3
d+3+γ

}
nQ + (κnP )

d+3
d+3+γ

] 1
d+3

, (13)

and C4
r cγcQ ≥ 8, where Cr > 0 is a constant and

cγ , cQ > 0 are constants defined in Definition 2.3 and
Assumption 2.2, respectively. Let π denote the TLDP pol-
icy given by Algorithm 1. Recall the cumulative regret R
defined in (4) and it holds that

R ≤CnQ

{
nQ + (κnP )

d+3
d+3+γ

}− 1
d+3

· log
1

d+3
{
nQ + (κnP )

d+3
d+3+γ

}
,

where C > 0 is a constant only depending on constants CI ,
Cr, CLip, cγ and cQ.
Remark 4.2. Theorem 4.1 establishes the regret bound under
the assumption that the reward function f is Lipschitz con-
tinuous with respect to the ℓ∞-norm (see Assumption 2.1).
This assumption can be relaxed to accommodate more gen-
eral smoothness conditions. In particular, one may consider
a Hölder continuity assumption (e.g. Kleinberg, 2004; Cai &
Pu, 2022a), where there exists an absolute constant Ch > 0
such that for any (x1, p1), (x2, p2) ∈ Z ,

|f(x1, p1)− f(x2, p2)| ≤ Ch∥(x⊤
1 , p1)

⊤ − (x⊤
2 , p2)

⊤∥β∞,

for some smoothness parameter β ∈ (0, 1]. We believe that
the techniques developed in this paper can be extended to
this setting. Choosing the smallest exploration radius as

r̃ = Cr

[
log
{
nQ + (κnP )

d+1+2β
d+1+2β+γ

}
nQ + (κnP )

d+1+2β
d+1+2β+γ

] 1
d+1+2β

,

we conjecture the TLDP algorithm (Algorithm 1) can
achieve a regret bound

R ≲nQ

{
nQ + (κnP )

d+1+2β
d+1+2β+γ

}− 1
d+1+2β

· log
1

d+1+2β
{
nQ + (κnP )

d+1+2β
d+1+2β+γ

}
.

The smallest radius to explore r̃ mediates an exploration-
exploitation trade-off. A smaller r̃ leads to finer partitions
and more precise local estimates but increases exploration
cost, while a larger r̃ reduces the exploration cost at the
expense of estimation accuracy. The choice of r̃ in (13)
strikes a balance in this trade-off, ensuring the algorithm
achieves optimal regret bounds.

The regret bound in Theorem 4.1 elucidates the dependence
of the cumulative regret on the transfer exponent γ and
the exploration coefficient κ. A lower transfer exponent γ
indicates higher similarity between the source and target co-
variate distributions PX and QX , leading to a larger adjusted
source data size (κnP )

(d+3)/(d+3+γ) and thus reducing the
regret.
Remark 4.3. As an alternative to the global exploration
coefficient in Definition 2.4, one can instead define a scale-
dependent exploration coefficient κr ∈ [0, 1] for any radius
r ∈ (0, 1/2] as

κr = inf
x∈supp(PX),
r′∈[r,1/2],
p∈[r′,1−r′]

µ
(
[p− r′, p+ r′]×BX (x, r′)

)
2r′ · PX (BX (x, r′))

.

Note that κr is non-decreasing in r and satisfies that κ =
infr∈(0,1/2] κr. It quantifies how well the source data ex-
plores the covariate-price space at a given scale. Under the
conditions of Theorem 4.1, for any choice of the smallest
radius to explore r̃ ∈ (0, 1/2], with the local coefficient κr̃,
the regret satisfies that

R ≲



nQr̃ + r̃−(d+2) log(nQ), nQ ≥ (κr̃nP )
d+3

d+3+γ ,

nQr̃, nQ < (κr̃nP )
d+3

d+3+γ ,

and r̃ ≥
{

8 log
{
(κr̃nP )

d+3
d+3+γ

}
cγcQκr̃nP

} 1
d+3+γ

,

r̃−(d+2) log(κr̃nP ), otherwise.

These three regimes illustrate how both the sample size and
the exploration radius r̃ jointly influence the overall regret.
While we focus on the global coefficient κ in this paper for
simplicity, the local coefficient κr characterizes tighter per-
formance guarantees in scenarios where exploration quality
varies across different scales, particularly useful when the
source data do not uniformly cover the entire price space.

We now show that the regret upper bound in Theorem 4.1 is
minimax optimal (up to a logarithmic factor) by presenting
the following matching lower bound.
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Theorem 4.4. Let I(γ, cγ , κ, CLip, cQ) denote the class
of nonparametric dynamic pricing problems such that (i)
the source dataset DP = {(XP

t , pPt , Y
P
t )}nP

t=1, defined in
(2), satisfies Definition 2.4 with triplets independent across
time; (ii) the target dataset, defined in (1), satisfies Assump-
tion 2.2; and (iii) both datasets satisfy (3), Assumption 2.1
and Definition 2.3. It holds that

inf
π

sup
I∈I(γ,cγ ,κ,CLip,cQ)

Rπ,I(nQ)

≥ cnQ

(
nQ + (κnP )

d+3
d+3+γ

)− 1
d+3 ,

where c > 0 is a constant only depending on constants CLip,
cγ and cQ.

Theorems 4.1 and 4.4 together exhibit a phase transition
depending on the relative sizes of the adjusted source data
(κnP )

d+3
d+3+γ and the target data nQ. When (κnP )

d+3
d+3+γ ≫

nQ, the algorithm significantly benefits from transfer learn-
ing, otherwise the regret is of the same rate as when only
the target data are used.

The most relevant work is Cai et al. (2024a), which studied
transfer learning for nonparametric contextual MAB under
covariate shift. In their setting, actions (i.e. arms) are dis-
crete and for simplicity are treated as a constant (i.e. the
number of arms K ≍ 1). They established a regret bound
of order

nQ

(
nQ + (κnP )

d+2
d+2+γ

)− β
d+2β , (14)

with β denoting the smoothness parameter of the reward
function (β = 1 in our setting). The simplification K ≍ 1
results in their regret bound losing explicit control of K,
making their approach inapplicable to infinite or uncount-
able action spaces. In contrast, dynamic pricing presents
a unique challenge due to its continuous action space
(i.e. prices), requiring more intricate methodologies than
that in Cai et al. (2024a). Our approach effectively ad-
dresses this by adaptively partitioning the joint covariate-
price space. This adaptation ensures optimal regret scaling
while accounting for both the covariates (of dimension d)
and price (of dimension 1). Substituting d+ 1 for d in (14)
shows that their regret bound aligns with the one established
in Theorem 4.1.

When only target data are utilized, several existing studies
have developed methods and analyzed regret bounds for dy-
namic pricing under semi-parametric forms (e.g. Luo et al.,
2022; Xu & Wang, 2022; Fan et al., 2024) or additional
shape constraints beyond Lipschitz continuity (e.g. Chen &
Gallego, 2020), with detailed comparisons in Appendix A.

We conclude with a minimax lower bound for the scenario
where only target data is available.

Corollary 4.5. Let I(CLip, cQ) denote the class of non-
parametric dynamic pricing problems such that target data

satisfy (1), Assumptions 2.1 and 2.2. It holds that

inf
π

sup
I∈I(CLip,cQ)

Rπ,I(nQ) ≥ cn
d+2
d+3

Q ,

where c > 0 is a constant only depending on constants CLip

and cQ.

It is worth noting that even without considering transfer
learning (i.e. when only target data are available), the min-
imax lower bound in Corollary 4.5 is, to the best of our
knowledge, the first result established under the Lipschitz
assumption stated in Assumption 2.1. Previous works have
only established minimax lower bounds either for the case
with a semi-parametric form of the expected revenue func-
tion (e.g. Luo et al., 2022; Xu & Wang, 2022) or with addi-
tional assumption beyond Lipschitz condition on the reward
function (e.g. Chen & Gallego, 2020).

5. Numerical experiments
In this section, we conduct numerical experiments to support
our theoretical findings. Synthetic and real data analysis are
in Sections 5.1 and 5.2, respectively. The code and datasets
are available online1.

5.1. Simulation studies

We conduct simulation studies under the covariate shift
model as stated in (3). The target covariates {Xt}

nQ

t=1 are
independently and identically distributed (i.i.d.) accord-
ing to QX , a uniform distribution over [0, 1]d. For the
source domain, covariate-price pairs {XP

t , pPt }
nP
t=1 are gen-

erated i.i.d. from a joint distribution µ. We let the source
marginal covariate distribution PX be chosen such that the
density function pX(x) obeys pX(x) = c∥x− x∗∥γ∞, with
x∗ = (1/2, . . . , 1/2) ∈ Rd and a normalization constant
c = 2γ(γ + d)/d. This choice of pX(x) ensures that PX

satisfies Definition 2.3. The generation of the source prices
is detailed in each scenario below. We consider the source
data size nP ∈ {10000(k − 1) : k ∈ [5]}, the target data
size nQ ∈ {10000k : k ∈ [5]} and the transfer exponent
γ ∈ {0.5k : k ∈ [5]}.

To assess the performance of TLDP (Algorithm 1) in reduc-
ing target-domain regret, we compare it with TLDP utilising
the target data only (Target-Only TLDP), the Adaptive Bin-
ning and Exploration (ABE) algorithm proposed in Chen &
Gallego (2020) and the Explore-then-UCB (ExUCB) algo-
rithm developed in Luo et al. (2022).

Through this subsection, TLDP refers to Algorithm 1 with
nP = 2nQ. Note that both TLDP and Target-Only TLDP
require the smallest exploration radius r̃ as an input and the

1https://github.com/chrisfanwang/
dynamic-pricing
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Figure 1. Results for Configuration 1 in Scenario 1. Panel (A)
and (B): varying source data size nP and target data size nQ,
respectively. Panel (C) varying the transfer exponent γ (top axis)
and the exploration coefficient κ (bottom axis). Panel (D): varying
the index constant CI (top axis) and the exploration radius constant
Cr (bottom axis). For Panels (B), (C) and (D), we fix nQ = 10000.

constant CI to construct the index defined in (9). Specif-
ically, we set CI = 1 and compute r̃ from (13) using the
true values of the exploration coefficient κ, the transfer ex-
ponent γ and Cr = 1/4. To evaluate robustness, we also
conduct simulations using a list of mis-specified values of κ
and γ when computing r̃. The corresponding simulation
results can be found in Appendix D.1. Furthermore, to ex-
amine the sensitivity of TLDP to the choice of the constants,
additional simulation studies are conducted for varying CI

and Cr. For the ABE algorithm, we set M = 0.1, the
constant used to define the maximal number observed in a
level-k bin in the partition, as suggested by Chen & Gal-
lego (2020). For ExUCB, parameter choices include the
phase exponent β = 2/3, the UCB exponent γ = 1/6, the
exploration phase constant C1 = 1, the discretization con-
stant C2 = 20 and the regularization parameter in UCB
λ = 0.1, as suggested by Luo et al. (2022). In addition,
we fix the maximum price pmax = 1 and the maximum
possible revenue B = 1 for the ExUCB implementation.

Scenario 1. The conditional density of the source price,
given the source covariates, is defined as follows for any
x ∈ [0, 1]d and p ∈ [0, 1], hP (p|x) = κ if p ∈ [p∗ −
r∗/2, p∗ + r∗/2] and hP (p|x) = {1− κr∗}/(1− r∗) oth-
erwise, with p∗ = 1/2, r∗ = 1/4 and κ ∈ {0.2k : k ∈ [5]}.
Furthermore, conditioned on the covariate x and price p,

200
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Figure 2. Results for Scenario 3 under posterior drift. The drift
level r varies, with the target data size nQ = 10000, the source
data size nP = 2nQ, the transfer exponent γ = 1, the exploration
coefficient κ = 1, the index constant CI = 1 and the exploration
radius constant Cr = 1/4.

the observed rewards for both target and source datasets
are independently and uniformly distributed in the interval
[f(x, p)−ν, f(x, p)+ν], where f(·, ·) denotes the expected
reward function and ν = 0.1. The expected reward function
f is constructed as f(x, p) = θ0 + θ⊤xp + θ̃p2, for any
x ∈ [0, 1]d, p ∈ [0, 1], where θ0, θ̃ ∈ R and θ ∈ Rd are
specified for each configuration.

We further consider two configurations. Configuration 1.
Let the covariate space dimension be d = 2. The parameters
of the reward function are set as θ0 = 0.2, θ = (0.3, 0.2)⊤

and θ̃ = −0.1. Configuration 2. Let the covariate space
dimension be d = 3. The parameters of the reward function
are set as θ0 = 0.3, θ = (0.1, 0.4,−0.2)⊤ and θ̃ = −0.1.

Scenario 2. The conditional density of the source price,
given the source covariates, is defined as follows for any
x ∈ [0, 1]d and p ∈ [0, 1]: hP (p|x) = {1− κ(1− r∗)}/r∗
if p ∈ [p∗ − r∗/2, p∗ + r∗/2] and hP (p|x) = κ other-
wise, with p∗ = 1/2, r∗ = 1/4 and κ ∈ {0.2k : k ∈
[5]}. Further, conditioned on the covariate x and price p,
the observed rewards for both target and source datasets
are independently distributed Y ∼ N (f(x, p), σ2) with
σ = 0.01. For the expected reward function f , we adopt
the setting from Cai et al. (2024a). Define a function
ϕ : R+ → [0, 1] by ϕ(z) = 1 for 0 ≤ z < 1/12,
ϕ(z) = 2 − 12z for 1/12 ≤ z < 1/6 and 0 ϕ(z) = 0
otherwise. The reward function f : [0, 1]d × [0, 1]→ [0, 1]
is then set to be f(x, p) = 1/4 +

∑m
i=1 3/4ϕ

(
∥(x⊤, p)⊤ −

((x∗
i )

⊤, p∗i )
⊤∥∞

)
1
{
x ∈ BX (x∗

i , r
∗)
}
, where m > 0,

r∗ ∈ (0, 1] and {((x∗
i )

⊤, p∗i )
⊤}mi=1 are specified for each

configuration.

We further consider two configurations. Configuration
1. Let the covariate space dimension be d = 2. Let
m = 4, r∗ = 1/4 and centres be {((x∗

i )
⊤, p∗i )

⊤}mi=1 =

7



Transfer Learning for Nonparametric Contextual Dynamic Pricing

{(1/4, 1/4, 1/4), (3/4, 1/4, 1/4), (1/4, 3/4, 3/4), (3/4,
3/4, 1/4)}. Configuration 2. Let the covariate space
dimension be d = 3. Let m = 8, r∗ = 1/4 and
centres be {((x∗

i )
⊤, p∗i )

⊤}mi=1 = {(1/4, 1/4, 1/4, 1/4),
(3/4, 1/4, 1/4, 1/4), (1/4, 3/4, 1/4, 1/4), (3/4, 3/4, 1/4,
1/4), (1/4, 1/4, 3/4, 3/4), (3/4, 1/4, 3/4, 3/4), (1/4, 3/4,
3/4, 3/4), (3/4, 3/4, 3/4, 3/4)}.

Scenario 3. Building on the setup of Configuration 1 in
Scenario 1, we fix the target reward parameters as θ0 =
0.2, θ = (0.3, 0.2)⊤ and θ̃ = −0.1. We then modify the
true source reward function to f(x, p) = θ′0 + x⊤θ′p +
θ̃′p2, where θ′0 ∼ N (θ0, σ

2), θ′ ∼ N (θ, σ2Id) and θ̃′ ∼
N (θ̃, σ2). We set σ = r ·min{|θ0|, ∥θ∥∞, |θ̃|}, where the
drift severity parameter r ∈ {0.05(k − 1) : k ∈ [5]}.

In Scenarios 1 and 2, we consider the covariate shift set-
ting, where the reward functions are identical between the
source and target domains. Specifically, in Scenario 1, the
reward function is linear in the covariates and quadratic in
the price, while in Scenario 2, it is fully nonparametric.
In contrast, Scenario 3 considers a posterior drift, where
the reward functions differ between source and target do-
mains, allowing us to assess the robustness of TLDP under
model misspecification. The simulation results for Config-
uration 1 of Scenario 1 are presented in Figure 1 while
results for Scenario 3 are shown in Figure 2, Additional
results are provided in Appendix D. Some key observations
are highlighted in order.

In Scenarios 1 and 2, TLDP outperforms the alternatives.
In Scenario 1, ExUCB outperforms ABE and Target-Only
TLDP due to the linear structure of the reward function in
the covariates. The ExUCB algorithm is specifically de-
signed to leverage such linear relationships, thereby achiev-
ing superior performance. In Scenario 2, ABE and Target-
Only TLDP demonstrate better performance than ExUCB.
These findings align with the discussion in Section 4 and
Appendix A.

In Panel (A), as the target data size nQ increases, the regret
for all four methods increases. TLDP, however, exhibits a
significantly slower rate of regret increase compared to its
competitors, due to its ability to leverage information from
the additional source data. Moreover, both TLDP and Target-
Only TLDP demonstrate sublinear growth in regret as nQ

increases, aligning with the theoretical regret order estab-
lished in Theorem 4.1. In Panel (B), as the source data size
nP increases, the regret of TLDP decreases, reflecting im-
proved performance with larger source datasets. This trend
aligns with the theoretical results in Theorem 4.1, where
the regret is expected to decrease at the rate n

−1/(d+3+γ)
P ,

further validating the algorithm’s performance.

In Panel (C), as the transfer exponent γ increases, reflecting
reduced overlap between source and target covariate distri-

Table 1. Results for the auto loan dataset with East South Central
data as the target division. Columns correspond to the source
divisions utilized in TLDP. Here, nP represents the number of
the source data utilized in TLDP and n denotes the total number
of source observations. Each cell reports the mean and standard
deviation over 100 simulations.

METHODS MOUNTAIN PACIFIC

ABE 70.81 (1.40) 70.81 (1.40)
EXUCB 64.91 (5.31) 64.91 (5.31)
TLDP(nP = 0) 71.95 (2.87) 71.95 (2.87)
TLDP(nP = 0.25n) 55.63 (8.04) 51.61 (8.89)
TLDP(nP = 0.5n) 54.29 (7.06) 51.44 (7.12)
TLDP(nP = 0.75n) 51.38 (6.92) 49.40 (7.40)
TLDP(nP = n) 50.23 (7.34) 48.72 (8.27)

butions, the regret of TLDP also increases. This indicates
less efficient information transfer from the source to the
target domain. Moreover, as the exploration coefficient κ
increases, the source data provide better exploration of the
price space for each covariate. Consequently, the regret
of TLDP decreases, indicating more effective information
transfer. Panel (C) is consistent with Theorem 4.1, demon-
strating the impact of these parameters on the efficiency of
the transfer learning framework. It is evident from Panel
(D) that the performance of TLDP remains relatively stable
across different values of the index constant CI and the ex-
ploration radius constant Cr, indicating that TLDP is robust
to the choice of the two constants.

In Scenario 3, Figure 2 demonstrates that TLDP continues
to perform well under moderate posterior drift, indicating
robustness beyond the covariate shift setting.

5.2. Real data analysis

In this section, we evaluate the practical utility of our pro-
posed algorithm using the auto loan dataset (Phillips et al.,
2015), which consists of 208, 085 applications submitted
to a major online lender in the United States between July
2002 and November 2004. This dataset has been extensively
studied in previous works, such as Phillips et al. (2015), Luo
et al. (2024) and Zhao et al. (2024), to assess various dy-
namic pricing algorithms. The performance of TLDP is still
compared against ABE and ExUCB.

The loan price is calculated as the net present value of future
payments adjusted by the loan amount, as follows: Price =

Monthly Payment×
∑Term

i=1 (1+Rate)−i−Loan Amount,
where Rate = 0.12% represents the average monthly Lon-
don interbank offered rate during the study period. The
reward metric is defined as the product of the consumer’s
decision (whether the loan is accepted) and the computed
price, capturing the total revenue generated for the lender.
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For this analysis, five covariates identified as significant
in prior studies (e.g. Luo et al., 2024; Zhao et al., 2024)
are included: the loan amount approved, the approved term,
the prime rate, the competitor’s rate and the customer’s
FICO score. All features, including rewards, prices and
covariates, are normalized to the range [0, 1]. Additionally,
U.S. states are grouped into nine divisions following the
United States Census Bureau classification: East North Cen-
tral, East South Central, Middle Atlantic, Mountain, New
England, Pacific, South Atlantic, West North Central and
West South Central. Table 2 in Appendix D provides a
sample of the processed dataset.

For this study, the East South Central division (8, 062 appli-
cations) is designated as the target domain due to its smallest
data size. The Mountain (12, 527 applications), East North
Central (20, 686 applications), West South Central (25, 695
applications) and Pacific (34, 870 applications) divisions are
used as source domains for the TLDP algorithm. The true re-
ward function is approximated using a random forest model
implemented in R (R Core Team, 2021), leveraging the
randomForest package (Liaw & Wiener, 2002), trained
on the target data. Optimal prices for each observation are
determined by numerically optimizing the approximated
reward function.

The results are averaged over 100 simulations, with each
simulation randomly selecting 90% of the target data as the
test data. All results can be found in Appendix D.2. Table 1
presents selected results with the key findings as follows.
When no source data are utilized (np = 0), TLDP incurs
slightly higher regret compared to ABE and ExUCB. While
ExUCB achieves the lowest average cumulative regret, it
exhibits significantly higher variance. Conversely, ABE
demonstrates low variance but relatively high regret. As the
source data size (nP ) increases, TLDP’s cumulative regret
consistently decreases, indicating its ability to effectively
leverage data from other divisions.

6. Conclusion
In this paper, we study transfer learning for nonparametric
contextual dynamic pricing under covariate shift, which, to
the best of our knowledge, is the first time seen in the liter-
ature. We propose the TLDP algorithm, which adaptively
partitions the covariate-price space and leverages source
data information to guide pricing for the target data. We
show that TLDP achieves optimal regret by establishing a
matching minimax lower bound.

Our work offers several interesting directions for future
research. First, the optimality of TLDP depends on prior
knowledge of the transfer exponent γ and the exploration co-
efficient κ, which are often unknown in practice. A natural
extension is to estimate κ from the source data before ana-

lyzing the target data and to adaptively update an estimate
of γ by measuring empirical overlaps between the source
and target covariate distributions. Second, in many applica-
tions, multiple source datasets (K > 1) may be available,
each with distinct transfer exponents γk and exploration
coefficients κk. A straightforward approach is to combine
all sources into a single dataset before running TLDP. A
more refined approach is to weight sources adaptively by
estimating κk and γk. Establishing regret bounds for such
methods would be more challenging. Lastly, it is intriguing
to explore transfer learning for nonparametric contextual
dynamic pricing under posterior drift. In this framework, we
need to quantify the discrepancies between the reward func-
tions in the source and target domains and to develop novel
methods that effectively leverage transferable information.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix
All technical details of this paper can be found in the Appendix. A detailed comparison of our regret bound in Theorem 4.1
with those from non-transfer learning studies is presented in Appendix A. The proofs of Theorem 4.1 and Theorem 4.4 are
included in Appendices B and C, respectively. Additional details and results for Section 5 are collected in Appendix D.

A. Comparisons with non-transfer learning regret bounds
We compare the regret bound established for TLDP in Theorem 4.1 with those from relevant studies on dynamic pricing and
contextual bandits that do not incorporate transfer learning:

• Slivkins (2011) studied contextual bandits with similarity information, where both contexts and actions are embedded
in a metric space equipped with a distance function. The regret bounds in Slivkins (2011), adapted to our notation, are
of order

n
d+2
d+3

Q log(nQ),

matching our result up to a logarithmic factor;

• Chen & Gallego (2020) investigated nonparametric dynamic pricing with covariates and proposed the ABE algorithm,
which adaptively partitions the covariate space based on observed data to balance exploration and exploitation. They
showed that the ABE algorithm achieves a regret bound of order

n
d+2
d+4

Q log2(nQ),

which grows more slowly than ours due to additional assumptions beyond the standard Lipschitz condition stated in
Assumption 2.1, such as the local strong concavity of the reward function;

• Several studies on nonparametric dynamic pricing (e.g., Luo et al., 2022; Xu & Wang, 2022; Fan et al., 2024) consider
a specific form of the expected revenue function,

f(x, p) = p{1− F (p− x⊤θ)},

where F is a nonparametric cumulative distribution function (CDF) of noise influencing customer valuations and
θ ∈ Rd is an unknown parameter vector representing customer sensitivity. For instance, Luo et al. (2022) developed
the ExUCB algorithm and derived a regret bound of order

n
3/4
Q .

independent of d in the exponent. This independence arises from the linear parametric form of x⊤θ, which reduces the
intrinsic complexity of the problem and mitigates the curse of dimensionality often encountered in fully nonparametric
settings. In contrast, our results address a more general nonparametric reward function, which introduces additional
complexity in capturing the covariate-price relationship without structural simplifications. Consequently, this leads to
dimensional dependence, reflected in the d appearing in the exponent of our regret bound;

• Bu et al. (2022) studied dynamic pricing under two partially linear demand models:

f(x, p) = p{bp+ g(x)} and f(x, p) = p{g′(p) + x⊤a},

where b < 0, a ∈ Rd, and g, g′ are unknown functions. They derived minimax regret bounds for both models. For the
first model, assuming that g is β-Hölder continuous, they established a minimax regret bound of order

√
T ∨ T

d
d+2β .

In comparison, our setting considers a reward function that is nonparametric in both the covariates and the price, leading
to a regret bound with d+ 1 in the exponent instead of d, thereby capturing the additional complexity introduced by
the price dimension. For the second model, assuming that g′ is kth-order smooth with a smoothness parameter δ, the
minimax regret is of order √

T ∨ (δT k+1)
1

2k+1 ,

which is independent of d in the exponent, as the model assumes a linear parametric structure in the covariates.

12
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B. Proof of Theorem 4.1
The proof of Theorem 4.1 is in Appendix B.1 with all necessary auxiliary results in Appendix B.2.

B.1. Proof of Theorem 4.1

Proof. For any t ≤ nQ, let At denote the set of active balls at the beginning of time t. For any B ∈ At, let ret(B) and
nt(B) denote the cumulative revenue and the cumulative count of B from the target data before time t and the source data
DP . Further, define

Et1 =
{
∀B ∈ At :

∣∣vt(B)− f(B)
∣∣ ≤ CLipr(B) + conft(B)

}
,

and

Et2 =
{
∀B ∈ At : EB holds

}
with EB =

{
nP
B

(
DP ) ≥ CEκnP r(B)d+γ+1

}
,

where CE = cγcQ and f(B) = f(c(B)). Intuitively speaking, Et1 represents the good event where the empirical average
revenue vt(B) for every active ball B ∈ At lies within the upper confidence bound around the true expected revenue f(B),
while Et2 states that the source data (measured by the number) can still provide sufficient information up to time t.

Consequences of Et1: Suppose for any time point t, Et1 holds. Then by (10), the condition CI ≥ CLip and the event Et1, for
any B ∈ At, we have

Ipre
t (B) ≥ f(B). (15)

For any x ∈ X , denote p∗(x) = min{p′ ∈ argmaxp∈P f(x, p)}. By Lemma B.3, there exists a B ∈ At such that
(Xt, p

∗(Xt)) ∈ dom(B,At). Let Bsel
t denote the selected ball at time t, then we derive that for such B,

It(B
sel
t ) ≥It(B)

=CIr(B) + min
B′∈At

{
Ipre
t (B′) + CI∥c(B)− c(B′)∥∞

}
≥CIr(B) + min

B′∈At

{
f(B′) + CI∥c(B)− c(B′)∥∞

}
≥CIr(B) + f(B) ≥ f∗(Xt), (16)

where the first inequality follows from the selection rule in Algorithm 1 (Step 4 therein), the first equality follows from (9),
the second inequality follows from (15), and the third and the last inequalities follow from Assumption 2.1 and CI ≥ CLip.

Let Bpar
t be the parent of Bsel

t , we have that (due to step 9 in Algorithm 1)

∥c(Bpar
t )− c(Bsel

t )∥∞ ≤ r
(
Bpar

t

)
. (17)

Further note that Bpar
t must satisfy the condition in Step 7 in Algorithm 1 (in order to produce Bsel

t ), we have nt(B
par
t )−

nP
Bpar

t
(DP ) ≥ TQ

Bpar
t
(DP ). Then

conft(Bpar
t ) =2

√
log
{
nQ ∨ (κnp)

d+3
d+3+γ

}
nt(B

par
t )

≤ 2

√√√√ log
{
nQ ∨ (κnp)

d+3
d+3+γ

}
TQ

Bpar
t

+ nP
Bpar

t
(DP )

≤2

√
log
{
nQ ∨ (κnp)

d+3
d+3+γ

}
ω(Bpar

t )
≤ 2r

(
Bpar

t

)
, (18)

where the second inequality follows from (11) and the last form (12). Note that

Ipre
t

(
Bpar

t

)
=vt

(
Bpar

t

)
+ CIr

(
Bpar

t

)
+ conft

(
Bpar

t

)
≤f
(
Bpar

t

)
+ (CI + CLip)r

(
Bpar

t

)
+ 2conft

(
Bpar

t

)
≤f
(
Bpar

t

)
+ (4 + CI + CLip)r

(
Bpar

t

)
≤ f

(
Bsel

t

)
+ (4 + CI + 2CLip)r

(
Bpar

t

)
, (19)

13
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where the first equality follows from (10), the first inequality follows from the event Et1, the second inequality follows form
(18) and the last inequality follows from Assumption 2.1 and (17). Note that

It
(
Bsel

t

)
≤CIr

(
Bsel

t

)
+ Ipre

t

(
Bpar

t

)
+ CI∥c(Bsel

t )− c(Bpar
t )∥∞

≤CIr
(
Bsel

t

)
+ Ipre

t

(
Bpar

t

)
+ CIr

(
Bpar

t

)
≤CIr

(
Bsel

t

)
+ f

(
Bsel

t

)
+ (4 + 2CI + 2CLip)r

(
Bpar

t

)
≤f
(
Bsel

t

)
+ (8 + 5CI + 4CLip)r

(
Bsel

t

)
≤ f

(
Xt, pt

)
+ (8 + 5CI + 5CLip)r

(
Bsel

t

)
, (20)

where the first inequality holds due to (9), second inequality follows from (17), the third inequality follows from (19), the
forth holds due to r

(
Bsel

t

)
= r
(
Bpar

t

)
/2, and the last inequality follows from Assumption 2.1 and that (Xt, pt) ∈ Bsel

t .

Combining (16) and (20), we have that

f∗(Xt)− f
(
Xt, pt

)
≤ C1r

(
Bsel

t

)
, (21)

where C1 = (8 + 5CI + 5CLip).

Step 1: Consider the case where nQ ≥ (κnP )
d+3

d+3+γ .

Regret decomposition: We then decompose the regret into several terms

Rπ(nQ) =E
{ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}}

=E
[ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}
1{(Et

1)
c}

]
+ E

[ nQ∑
t=1

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]
:=(I) + (II). (22)

In the following, we deal with the above two terms separately.

Step 1.1: Bound for (I). By a union bound argument and Lemma B.1, we have that

P
{
(Et1)c

}
≤
∑

B∈At

18n−2
Q r̃−2 log(nQ) ≤ 18tn−2

Q r̃−3 log(nQ) ≤ 18n−1
Q r̃−3 log(nQ), (23)

where the second inequality holds by noting |At| ≤ tr̃−1 since the smallest radius is lower bounded by r̃ and hence at most
r̃−1 balls can be activated at each time point; and the third inequality holds by t ≤ nQ.

Therefore, recall that 0 ≤ f(Xt, pt) ≤ f∗(Xt) ≤ 1, it holds that

(I) ≤
nQ∑
t=1

P{Ec1} ≤ 18r̃−3 log(nQ) ≤ 4C1r̃
−3 log(nQ). (24)

Step 1.2: Bound for (II). For any r ∈ (0, 1], let Fr = {B ∈ AnQ
: r(B) = r}. For any B ⊂ Z , let SQ(B) be the set of

times s ∈ [nQ] when ball B was selected for the target data. By Lemma B.3, we have that

|Fr| ≤ NPack
r (Z) ≤ Nr/2(Z) ≤

(
2

r

)d+1

, (25)

where NPack
r (Z) and Nr(Z) denote r-packing number and r-covering number of Z , respectively, and the second inequality

follows from the fact that NPack
2r (Z) ≤ Nr(Z).

14
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Then, note that

(II) =E
[ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]
≤E
[ ∑
r:r̃≤r≤1

∑
B∈Fr

∑
t∈SQ(B)

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]

=E
[ ∑
B∈Fr̃

∑
t∈SQ(B)

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]

+ E
[ ∑
r:r̃<r≤1

∑
B∈Fr

∑
t∈SQ(B)

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]

≤C1nQr̃ + E
{ ∑

r:r̃<r≤1

∑
B∈Fr

∑
t∈SQ(B)

C1r1{Et
1}

}
, (26)

where the second inequality holds due to (21).

When nQ ≥ (κnP )
d+3

d+3+γ , by (11) and (12), for any r(B) > r̃, we have

|SQ(B)| ≤ TQ
B ≤ ω(B) ≤ log(nQ)

r(B)2
+ 1. (27)

as otherwise a new ball within B will be activated due to Step 6 in Algorithm 1. As a consequence, by (25), (26) and (27),
we have that

(II) ≤C1nQr̃ +
∑

r:r̃<r≤1

C1r

(
2

r

)d+1{
log(nQ)

r2
+ 1

}
≤C1nQr̃ + 2d+1C1

∑
r:r̃<r≤1

{
r−(d+2) log(nQ) + r−d

}
≤C1nQr̃ + 2d+2C1

{
r̃−(d+2) log(nQ) + r̃−d

}
, (28)

where the last inequality follows from the fact that

∑
r:r̃<r≤1

r−d =

⌈− log2(r̃)⌉−1∑
k=0

2kd =
2⌈− log2(r̃)⌉d − 1

2d − 1
≤ 2dr̃−d − 1

2d − 1
≤ 2d

2d − 1
r̃−d ≤ 2r̃−d.

Combining (22), (24) and (28), we have that in the case where nQ ≥ (κnP )
d+3

d+3+γ ,

Rπ(nQ) ≤4C1r̃
−3 log(nQ) + C1nQr̃ + 2d+2C1

{
r̃−(d+2) log(nQ) + r̃−d

}
≤C1nQr̃ + 2d+4C1r̃

−(d+2) log(nQ). (29)

Step 2: Consider the case where nQ < (κnP )
d+3

d+3+γ and

r̃ ≥
{8 log {(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

, (30)

where CE = cγcQ.
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Regret decomposition: We then decompose the regret into several terms

Rπ(nQ) =E
{ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}}

=E
[ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}
1{(Et

1)
c}

]
+ E

[ nQ∑
t=1

{
f∗(Xt)− f(Xt, pt)

}
1{

Et
1∩Et

2

}]

+ E
[ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}
1{

Et
1∩(Et

2)
c
}]

:=(I) + (II) + (III). (31)

In the following, we deal with the above three terms separately.

Step 2.1: Bound for (I). Similar to (23), we have that

P
{
(Et1)c

}
≤
∑

B∈At

3{(κnP )
d+3

d+3+γ }−2 ≤ 3tr̃−1{(κnP )
d+3

d+3+γ }−2 ≤ 3nQr̃
−1{(κnP )

d+3
d+3+γ }−2. (32)

Therefore, recall that 0 ≤ f(Xt, pt) ≤ f∗(Xt) ≤ 1, it holds that

(I) ≤
nQ∑
t=1

P{Ec1} ≤ 3n2
Qr̃

−1{(κnP )
d+3

d+3+γ }−2. (33)

Step 2.2: Bound for (II). By similar arguments as (26), we have

(II) ≤C1nQr̃ + E
[ ∑
r:r̃<r≤1

∑
B∈Fr

∑
t∈SQ(B)

{
f∗(Xt)− f(Xt, pt)

}
1{

Et
1∩Et

2

}]. (34)

Note that under nQ < (κnP )
d+3

d+3+γ and (30), if Et2 holds, by Lemma B.4, we have that TQ
B = 0 for any B ∈ At. This

implies that SQ(B) = ∅. Therefore, the second term in (34) vanishes and thus we have,

(II) ≤ C1nQr̃. (35)

Step 2.3: Bound for (III). Note that by Lemma B.4 and a union bound argument, under nQ < (κnP )
d+3

d+3+γ and (30), it
holds that

P
{
(Et2)c

}
≤ nQr̃

−1{(κnP )
d+3

d+3+γ }−2.

Therefore,

(III) ≤
nQ∑
t=1

P
{
(Et2)c

}
≤ n2

Qr̃
−1{(κnP )

d+3
d+3+γ }−2. (36)

Combining (31), (33), (35) and (36), we can conclude that

Rπ(nQ) ≤3n2
Qr̃

−1{(κnP )
d+3

d+3+γ }−2 + C1nQr̃ + n2
Qr̃

−1{(κnP )
d+3

d+3+γ }−2

≤4n2
Qr̃

−1{(κnP )
d+3

d+3+γ }−2 + C1nQr̃ ≤ 2C1nQr̃, (37)

where the last inequality follows from (30).

Step 3: Consider the case where nQ < (κnP )
d+3

d+3+γ and

r̃ <
{8 log {(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

.
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Regret decomposition: We then decompose the regret into several terms

Rπ(nQ) =E
{ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}}

=E
[ nQ∑

t=1

{
f∗(Xt)− f(Xt, pt)

}
1{(Et

1)
c}

]
+ E

[ nQ∑
t=1

{
f∗(Xt)− f(Xt, pt)

}
1{Et

1}

]
:=(I) + (II). (38)

In the following, we deal with the above two terms separately.

Step 3.1: Bound for (I). By the same argument as (23), we can show that

P
{
(Et1)c

}
≤ 18n−1

Q r̃−3 log
{
(κnp)

d+3
d+3+γ

}
, (39)

which implies that

(I) ≤
nQ∑
t=1

P{(Et1)c} ≤ 18r̃−3 log
{
(κnp)

d+3
d+3+γ

}
. (40)

Step 3.2: Bound for (II). By similar arguments as (26), we have

(II) ≤C1nQr̃ + E
{ ∑

r:r̃<r≤1

∑
B∈Fr

∑
t∈SQ(B)

C1r1{Et
1}

}
. (41)

When nQ < (κnP )
d+3

d+3+γ , similar to (27), we have

|SQ(B)| ≤ TQ
B ≤ ω(B) ≤

log
{
(κnp)

d+3
d+3+γ

}
r(B)2

+ 1. (42)

As a consequence, by (25), (41) and (42), we have that

(II) ≤C1nQr̃ +
∑

r:r̃<r≤1

C1r

(
2

r

)d+1{ log
{
(κnp)

d+3
d+3+γ

}
r2

+ 1

}
≤C1nQr̃ + 2d+1C1

∑
r:r̃<r≤1

{
r−(d+2) log

{
(κnp)

d+3
d+3+γ

}
+ r−d

}
≤C1nQr̃ + 2d+2C1

{
r̃−(d+2) log

{
(κnp)

d+3
d+3+γ

}
+ r̃−d

}
. (43)

Combining (38), (40) and (43), in the case where nQ < (κnP )
d+3

d+3+γ and

r̃ ≤
{8 log {(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

, (44)

we have that

Rπ(nQ) ≤18r̃−3 log
{
(κnp)

d+3
d+3+γ

}
+ C1nQr̃ + 2d+2C1

{
r̃−(d+2) log

{
(κnp)

d+3
d+3+γ

}
+ r̃−d

}
≤2d+4C1r̃

−(d+2) log
{
(κnp)

d+3
d+3+γ

}
, (45)

where the last inequality follows from (44).
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Step 4: Combining all results. Combining (29), (37) and (45), we have that

Rπ(nQ) ≤


C1nQr̃ + 2d+3C1r̃

−(d+2) log(nQ), if nQ ≥ (κnP )
d+3

d+3+γ ,

2C1nQr̃, if nQ < (κnP )
d+3

d+3+γ and r̃ ≥
{

8 log
{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

,

2d+4C1r̃
−(d+2) log

{
(κnp)

d+3
d+3+γ

}
, otherwise.

By (13), C4
r cγcQ ≥ 8, we can conclude that

Rπ(nQ) ≤ CnQ

{
nQ + (κnP )

d+3
d+3+γ

}− 1
d+3

log
1

d+3
{
nQ + (κnP )

d+3
d+3+γ

}
,

where C > 0 is a constant only depending on constants CI , Cr, CLip, cγ and cQ. We complete the proof.

B.2. Auxiliary results

Lemma B.1. For Algorithm 1, at the beginning of the round t for t ≤ nQ, if ball B ∈ At , then under Assumptions 2.1 and
2.2 , we have that

P
{
|vt(B)− f(B)

∣∣ ≤ CLipr(B) + conft(B)
}
≥ 1− ϵr̃,

where CLip > 0 is defined in Assumption 2.1 and

ϵr̃ =


18n−2

Q r̃−2 log(nQ), if nQ ≥ (κnP )
d+3

d+3+γ ,

3{(κnP )
d+3

d+3+γ }−2, if nQ < (κnP )
d+3

d+3+γ and r̃ ≥
{

8 log
{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

,

18n−2
Q r̃−2 log

{
(κnp)

d+3
d+3+γ

}
, otherwise.

(46)

Here CE = cγcQ with constants cγ defined in Definition 2.3 and Assumption 2.2, respectively.

Proof. Fix time t and a ball B ∈ At, and recall its centre as c(B). Let SQt (B) be the set of times s ∈ [t− 1] when ball B
was selected for the target data, with |SQt (B)| = nQ

t (B). Let SP (B) be the set of times s ∈ [nP ] when ball B was fallen
for the source data, with |SP (B)| = nP

B(DP ). Note that nt(B) = nQ
t (B) + nP

B(DP ) and

vt(B) =
1

nt(B)

{ ∑
s∈SQ

t (B)

Ys +
∑

s∈SP (B)

Y P
s

}
.

Denote

ṽt(B) =
1

nt(B)

{ ∑
s∈SQ

t (B)

f(Xs, ps) +
∑

s∈SP (B)

f(XP
s , pPs )

}
.

By Lemma B.2, it holds that

P
{∣∣vt(B)− ṽt(B)

∣∣ > U
(
nQ
t (B), nP

B(DP ), δ1, δ2
)∣∣∣{(XP

t , pPt )}
nP
t=1

}
≤ 8δ1T

Q
B + 2δ2,

where TQ
B is defined in (11) and

U
(
nQ
t (B), nP

B(DP ), δ1, δ2
)
=


√

2 log(1/δ1)

nQ
t (B)+nP

B(DP )
if nQ

t (B) > 0,√
2 log(1/δ2)

nP
B(DP )

if nQ
t (B) = 0.

Let δ1 = n−2
Q and δ2 = {nQ ∨ (κnP )

d+3
d+3+γ }−2. By (8), we have that

P
{∣∣vt(B)− ṽt(B)

∣∣ > conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1

}
≤ 8n−2

Q TQ
B + 2{nQ ∨ (κnP )

d+3
d+3+γ }−2. (47)
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Furthermore, note that∣∣ṽt(B)− f(B)
∣∣ ≤ 1

nt(B)

{ ∑
s∈SQ

t (B)

∣∣f(Xs, ps)− f(c(B))
∣∣+ ∑

s∈SP (B)

∣∣f(XP
s , pPs )− f(c(B))

∣∣}
≤CLipr(B), (48)

where the second inequality follows form Assumption 2.1. Finally, combining (47) and (48), we have that

P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1

}
≤8n−2

Q TQ
B + 2{nQ ∨ (κnP )

d+3
d+3+γ }−2. (49)

In what follows, we consider different cases in (46).

Case 1. In this case, we consider nQ ≥ (κnP )
d+3

d+3+γ . Then, we have that

8n−2
Q TQ

B + 2{nQ ∨ (κnP )
d+3

d+3+γ }−2 ≤8n−2
Q ω(B) + 2n−2

Q ≤ 8n−2
Q r(B)−2 log(nQ) + 10n−2

Q

≤8n−2
Q r̃−2 log(nQ) + 10n−2

Q

≤18n−2
Q r̃−2 log(nQ), (50)

where the first inequality follows from (11), the second inequality follows from (12), and the third inequality follows from
r(B) ≥ r̃. Then combining (49) and (50), we have that

P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
}

=E
[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1

}]
≤18n−2

Q r̃−2 log(nQ). (51)

Case 2. In this case, we consider nQ < (κnP )
d+3

d+3+γ , and

r̃ ≥
{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

.

Define the event

EB =

{
nP
B

(
DP ) ≥ CEκnP r(B)d+γ+1

}
.

By Lemma B.4, we have that

P
{
EcB
}
≤ {(κnP )

d+3
d+3+γ }−2, (52)

and that under the event EB , we have TQ
B = 0. Then it holds that

P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
}

=E
[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1

}]
=E
[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1, EB

}
P
{
EB
∣∣∣{(XP

t , pPt )}
nP
t=1

}]
+ E

[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1, EcB

}
P
{
EcB
∣∣∣{(XP

t , pPt )}
nP
t=1

}]
≤E
[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1, EB

}]
+ P

{
EcB
}

≤3{(κnP )
d+3

d+3+γ }−2 (53)
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where the second inequality follows from (49) and (52).

Case 3. In this case, we consider nQ < (κnP )
d+3

d+3+γ , and

r̃ <

{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

.

Then, we have that

8n−2
Q TQ

B + 2{nQ ∨ (κnP )
d+3

d+3+γ }−2

≤8n−2
Q ω(B) + 2{(κnP )

d+3
d+3+γ }−2

≤8n−2
Q r(B)−2 log

{
(κnp)

d+3
d+3+γ

}
+ 8n−2

Q + 2{(κnP )
d+3

d+3+γ }−2

≤16n−2
Q r̃−2 log

{
(κnp)

d+3
d+3+γ

}
+ 2{(κnP )

d+3
d+3+γ }−2

≤18n−2
Q r̃−2 log

{
(κnp)

d+3
d+3+γ

}
, (54)

where the first inequality follows from (11), the second inequality follows from (12), the third inequality follows from
r(B) ≥ r̃ and the last inequality follows from nQ < (κnP )

d+3
d+3+γ . Then combining (49) and (54), we have that

P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
}

=E
[
P
{∣∣vt(B)− f(B)

∣∣ > CLipr(B) + conft(B)
∣∣∣{(XP

t , pPt )}
nP
t=1

}]
≤18n−2

Q r̃−2 log
{
(κnp)

d+3
d+3+γ

}
. (55)

Finally, combining (51), (53) and (55), we complete the proof.

Lemma B.2. Let {Xi}i≥1 be bounded martingale difference sequence with Xi ∈ [−1, 1]. Then for any δ1, δ2 > 0, and
integers T ≥ 0 and n ≥ 1, it holds that

P
{
∃0 ≤ t ≤ T :

∣∣∣∣ n∑
i=1

Xi +

n+t∑
i=n+1

Xi

∣∣∣∣ > U(t, n, δ1, δ2)

}
≤ 8Tδ1 + 2δ2,

where

U(t, n, δ1, δ2) =

{√
2(n+ t) log(1/δ1) if t > 0,√
2n log(1/δ2), if t = 0.

Proof. The proof here is a minor modification of Lemma 12 in Cai et al. (2024a). For completeness, we provide the details.

We start with the case T = 0. Following the Azuma–Hoeffding inequality (e.g. Corollary 2.20 in Wainwright, 2019), it
holds that

P
{∣∣∣∣ n∑

i=1

Xi

∣∣∣∣ >√2n log(1/δ2)

}
≤ 2δ2. (56)

We consider the case T > 0. Note that

P
{
∃0 ≤ t ≤ T :

∣∣∣∣ n∑
i=1

Xi +

n+t∑
i=n+1

Xi

∣∣∣∣ > U(t, n, δ1, δ2)

}

≤P
{∣∣∣∣ n∑

i=1

Xi

∣∣∣∣ >√2n log(1/δ2)

}
+ P

{
∃0 < t ≤ T :

∣∣∣∣ n+t∑
i=1

Xi

∣∣∣∣ >√2(n+ t) log(1/δ1)

}

≤2δ2 + P
{
∃t ∈ [T ] :

∣∣∣∣ n+t∑
i=1

Xi

∣∣∣∣ >√2(n+ t) log(1/δ1)

}
, (57)
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where the second inequality follows from a union bound argument and the final inequality follows from (56).

It remains to control the second term in (57). Note that for any δ > 0 and T ′ > 0, by Azuma–Hoeffding inequality (e.g.
Corollary 2.20 in Wainwright, 2019), we have that

P
{
∃t ∈ [T ′] :

∣∣∣∣ n+t∑
i=1

Xi

∣∣∣∣ > δ

}
≤

T ′∑
t=1

2 exp

{
− δ2

2(n+ t)

}
≤ 2T ′ exp

{
− δ2

2(n+ T ′)

}
. (58)

Note that

P
{
∃t ∈ [T ] :

∣∣∣∣ n+t∑
i=1

Xi

∣∣∣∣ >√2(n+ t) log(1/δ1)

}

≤
⌊log2(T )⌋∑

j=0

P
{
∃2j ≤ t ≤ 2j+1 :

∣∣∣∣ n+t∑
i=1

Xi

∣∣∣∣ >√2(n+ t) log(1/δ1)

}

≤
⌊log2(T )⌋∑

j=1

2j+2 exp

{
− 2

(
n+ 2j

n+ 2j+1

)
log(1/δ1)

}

≤
⌊log2(T )⌋∑

j=1

2j+2δ1 ≤ 2log2(T )+3δ1 = 8Tδ1, (59)

where the second inequality follows from (58) and the third inequality follows from the fact that (n+2j)/(n+2j+1) ≥ 1/2
for any integers n, j ≥ 0.

Combining (57) and (59), we complete the proof.

Lemma B.3. For any t ∈ [nQ],
Z ⊂ ∪B∈Atdom(B,At). (60)

Moreover, for any two different balls B1, B2 ∈ AnQ
with the same radius r, their centres are at a distance of at least r.

Proof. Note that for any t ∈ [nQ],
∪B∈Atdom(B,At) = ∪B∈AtB,

By construction, Z ⊂ ∪B∈At
B. This completes the proof of (60).

For the second part, consider two distinct balls B1, B2 ∈ AnQ
with radius r. By construction, they cannot be activated at

the same time t ∈ [nQ]. Without loss of generality, let B1 be activated at time t, with parent Bpar, and B2 be activated
earlier. Denote the centre of B1 as (x⊤, p)⊤. We have that (x⊤, p)⊤ ∈ dom(Bpar,At\{B1}). Since r(Bpar) > r(B2) and
B2 is activated earlier, we have that (x⊤, p)⊤ /∈ B2, which establishes the required separation between B1 and B2, and
completes the proof.

Lemma B.4. For any t ∈ [nQ] and B ∈ At, denote

EB =
{
nP
B

(
DP ) ≥ CE(κnP )r(B)d+γ+1

}
,

where CE = cγcQ. Under Assumption 2.2, it holds that

P
{
EB
}
≥ 1− exp

{
− 4−1CE(κnP )r̃

d+γ+1
}
. (61)

Furthermore, if nQ < (κnP )
d+3

d+3+γ and

r̃ ≥
{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

, (62)
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we have that
P
{
EB
}
≥ 1− {(κnp)

d+3
d+3+γ }−2, (63)

and under the event EB ,
TQ
B = 0, (64)

where TQ
B is defined in (11).

Proof. Fix time t and a ball B ∈ At, and recall its centre as c(B) = (x⊤
B , pB)

⊤. By Step 8 of Algorithm 1, we have that
xB ∈ supp(QX). Note that nP

B

(
DP
)

is a sum of i.i.d. zero mean Bernoulli random variables with

E
{
nP
B

(
DP
)}

=nPµ(B) = nPµ
(
[pB − r(B), pB + r(B)]×BX

(
xB , r(B)

))
≥2nPκr(B)PX

(
BX (xB , r(B))

)
≥ 2cγnPκr(B)γ+1QX

(
BX (xB , r(B))

)
≥2cγcQnPκr(B)d+γ+1 = 2CEκnP r(B)d+γ+1,

where the first inequality follows from Definition 2.4, the second inequality follows from Definition 2.3 and the third
inequality follows from Assumption 2.2. As a consequence, by Chernoff’s bound, we have that

P{EcB
}
=P
{
nP
B

(
DP
)
< CEnPκr(B)d+γ+1

}
≤P
{
E
{
nP
B

(
DP
)}
− nP

B

(
DP
)
> E

{
nP
B

(
DP
)}

/2

}
≤ exp

{
− 4−1CEκnP r(B)d+γ+1

}
.

Since r(B) ≥ r̃, it holds that

P
{
EcB
}
≤ exp

{
− 4−1CEκnP r̃

d+γ+1
}
, (65)

which completes the proof of (61).

Now we consider the case where

nQ < (κnP )
d+3

d+3+γ and r̃ ≥
{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

.

Note that

r(B) ≥ r̃ ≥
{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+3+γ

≥
{
8 log

{
(κnp)

d+3
d+3+γ

}
CEκnP

} 1
d+1+γ

. (66)

Combining (65) and (66), it holds that

P
{
EcB
}
≤ {(κnp)

d+3
d+3+γ }−2,

which proves (63). Under the event EB , we have that

ω(B)− nP
B

(
DP
)

≤
log
{
(κnp)

d+3
d+3+γ

}
r(B)2

+ 1− CEκnP r(B)d+γ+1

≤
log
{
(κnp)

d+3
d+3+γ

}
r̃2

+ 1− CEκnP r̃
d+γ+1

≤
(
CE

8

) 2
d+3+γ

(κnP )
2

d+3+γ log
d+1+γ
d+3+γ

{
(κnp)

d+3
d+3+γ

}
+ 1

− 8
d+1+γ
d+3+γ C

2
d+3+γ

E (κnP )
2

d+3+γ log
d+1+γ
d+3+γ

{
(κnp)

d+3
d+3+γ

}
≤1− 21/2C

2
d+3+γ

E (κnP )
2

d+3+γ log
d+1+γ
d+3+γ

{
(κnp)

d+3
d+3+γ

}
< 0,
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where the first inequality follows from (12) and the event EB , the second inequality follows from r(B) ≥ r̃ and the third
inequality follows from (62). Thus by (11), we have under the event EB , TQ

B = 0, which proves (64).

C. Proof of Theorem 4.4
The proof of Theorem 4.4 is in Appendix C.1 with all necessary auxiliary results in Appendix C.2.

C.1. Proof of Theorem 4.4

Proof. Let r̃ ∈ (0, 1/2) be specified later and define

SX ,r̃ =
{
x = (x1, x2, . . . , xd) ∈ X | xi = (ki − 1/2)2r̃, ki ∈ [⌊1/(2r̃)⌋], ∀i ∈ [d]

}
,

with cardinality ⌊1/(2r̃)⌋d. We define a grid set of covariates as

SX ,r̃ =
{
x∗
1, . . . , x

∗
⌊1/(2r̃)⌋d

}
.

Next, define the integer m = ⌊cm/r̃⌋d for s constant 0 < cm < 1/2. Using Varshamov-Gilbert bound (e.g. Lemma 2.9 in
Tsybakov, 2009), we can find a set of well-separated vectors Ωm = {ω(i)}Mi=0 ⊂ {±1}m such that

log2(M) ≥ m

8
and ρ(ω(i), ω(j)) ≥ m

8
, ∀0 ≤ i < j ≤M, (67)

where ρ(ω, ω′) = |{k ∈ [m] : ωk ̸= ω′
k}| is the Hamming distance between ω and ω′.

In the same spirit of SX ,r̃, we define the grid set for price as

SP,r̃ =
{
(k − 1/2)r̃, k ∈ [⌊1/r̃⌋]

}
=
{
p∗1, . . . , p

∗
⌊1/r̃⌋

}
.

In the following proof, we first construct a collectionHΩm
= {(Qω

X , µω, fω) | ω ∈ Ωm} of probability distributions, where
Qω

X is a probability distribution over X representing the covariate distribution in target data, µω is a probability distribution
over Z representing the joint distribution of covariate-price pairs in source data, and fω : Z → [0, 1] is the reward function
for both target and source data. We then verify the constructedHΩm

⊂ I(γ, cγ , κ, CLip, cQ), from which the lower bound
follows by applying Proposition C.1, which is Proposition 1 in Kpotufe & Martinet (2020).

Step 1. Constructing the distribution collectionHΩm = {(Qω
X , µω, fω) : ω ∈ Ωm}.

Constructing the target covariate distribution. Let the target covariate distribution be independent of ω, with the density
denoted by qX , defined for any x ∈ X as follows

qX(x) =


q1, if x ∈ ∪mi=1BX (x∗

i , r̃/4),

q0, if x ∈ X\ ∪mi=1 BX (x∗
i , r̃),

0, otherwise,
(68)

where

q1 =
cQr̃

d

Leb
(
BX (x∗

1, r̃/4)
) and q0 =

1−mcQr̃
d

Leb
(
X\ ∪mi=1 BX (x∗

i , r̃))
,

with cQ > 0 defined in Assumption 2.2.

Constructing the source covariate-price pair distribution. Let the distribution of the source covariate-price pairs be
independent of ω. The density of the source covariate, denoted by pX , is defined for any x ∈ X as follows

pX(x) =


cγ r̃

γq1, if x ∈ ∪mi=1BX (x∗
i , r̃/4),

δ, if x ∈ ∪mi=1BX (x∗
i , r̃)\BX (x∗

i , r̃/2),

q0, if x ∈ X\ ∪mi=1 BX (x∗
i , r̃),

0, otherwise,

(69)
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where

δ =
1− cγ r̃

γq1Leb
(
∪mi=1 BX (x∗

i , r̃/4)
)
− q0Leb

(
X\ ∪mi=1 BX (x∗

i , r̃)
)

Leb
(
∪mi=1 BX (x∗

i , r̃)\BX (x∗
i , r̃/2)

) .

Let p̃ ∈ SP,r̃ be defined later. The density of the conditional distribution of the source price p ∈ [0, 1] given the source
covariate x ∈ X is defined as

pP (p|x) =

{
κ, if p ∈ [p̃− r̃/2, p̃+ r̃/2],
1−r̃κ
1−r̃ , otherwise.

(70)

Constructing the reward distributions. For both target and source data, let the random reward, conditional on the covariate
x and price p, be a Bernoulli random variable with parameter fω(x, p). The reward functions {fω}ω∈Ωm

are constructed as
follow. First, define the function ϕ : R+ 7→ [0, 1] by

ϕ(z) =


1, if 0 ≤ z < 1/4,

2− 4z, if 1/4 ≤ z < 1/2,

0, otherwise.

Next, define the function φ : Z 7→ [0, 1/4] via

φ(x, p) = Cφr̃ϕ
(
∥(x⊤, p)⊤∥∞/r̃

)
,

where Cφ = (CLip ∧ 1)/4. For any ω ∈ Ωm, the reward function fω : Z 7→ [0, 1] is defined as follows

fω(x, p) = 1/2 +

m∑
i=1

ωiφ
(
x− x∗

i , p− p̃
)
1
{
x ∈ BX (x∗

i , r̃)
}

(71)

By construction, we note that if x ∈ BX (x∗
i , r̃/4) for some i ∈ [m], then fω(x, p) only depends on the value of p and ω;

and if x ∈ X \
⋃m

i=1 BX (x∗
i , r̃/2), f

ω(x, p) = 1/2 for any p and ω.

For any ω ∈ Ωm and x ∈ X , let pω,∗(x) = min
{
p′ ∈ argmaxp∈[0,1] f

ω(x, p)
}

be the optimal price. Furthermore, recall
that p̃ ∈ SP,r̃, we define the function h : [0, 1]→ {0, 1} as

h(p) = 1

{
p ∈ (p̃− r̃/2, p̃+ r̃/2]

}
.

We now make the following remarks:

• For any ω ∈ Ωm, x ∈
⋃m

i=1 BX (x∗
i , r̃/4) and p ∈

⋃⌊1/r̃⌋
i=1 [p∗i − r̃/4, p∗i + r̃/4],

fω
(
x, pω,∗(x)

)
− fω(x, p) =Cφr̃1

{
h
(
pω,∗(x)

)
̸= h(p)

}
. (72)

To see this, we first note that x ∈ BX (x∗
i , r̃/4) for some i ∈ [m]. If ωi = −1, we have pω,∗(x) = 0 ̸∈ (p̃ −

r̃/2, p̃ + r̃/2], and h(pω,∗(x)) = 0. Therefore, fω
(
x, pω,∗(x)

)
− fω(x, p) = Cφr̃1

{
|p − p̃| ≤ r̃/2

}
= Cφr̃h(p) =

Cφr̃1
{
h
(
pω,∗(x)

)
̸= h(p)

}
where the first equality holds since p ∈

⋃⌊1/r̃⌋
i=1 [p∗i − r̃/4, p∗i + r̃/4]. Next, if ωi = 1, we

have pω,∗(x) = p̃ − r̃/4, and h(pω,∗(x)) = 1. Hence fω
(
x, pω,∗(x)

)
− fω(x, p) = Cφr̃[1 − 1

{
|p − p̃| ≤ r̃/2

}
] =

Cφr̃[1− h(p)] = Cφr̃1
{
h
(
pω,∗(x)

)
̸= h(p)

}
.

• For any ω ∈ Ωm, p ∈ [0, 1], if x ∈ X \
⋃m

i=1 BX (x∗
i , r̃/2),

fω(x, p) = 1/2. (73)

• For any ω ∈ Ωm and x ∈ X , if p ∈ [0, 1]\[p̃− r̃/2, p̃+ r̃/2],

fω(x, p) = 1/2. (74)
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• For any two different ω ̸= ω′ ∈ Ωm, if x ∈ BX (x∗
i , r̃/4) for some i ∈ [m] such that ωi ̸= ω′

i,

h
(
pω,∗(x)

)
̸= h

(
pω

′,∗(x)
)
. (75)

Step 2. VerifyingHΩm
⊂ I(γ, cγ , κ, CLip, cQ).

Transfer exponent. Recall that the support of QX is the union of the set ∪mi=1BX (x∗
i , r̃/4) and X\ ∪mi=1 BX (x∗

i , r̃).
Therefore, we only need to check Definition 2.3 for x in these sets.

First, if x ∈ BX (x∗
i , r̃/4) for some i ∈ [m], and r ≤ 3r̃/4, by (68), it holds that

QX

(
BX (x, r)

)
= q1Leb

(
BX (x, r) ∩BX (x∗

i , r̃/4)
)
.

By (69), it follows that

PX

(
BX (x, r)

)
≥cγ r̃γq1Leb

(
BX (x, r) ∩BX (x∗

i , r̃/4)
)

≥cγrγQX

(
BX (x, r)

)
.

Second, for any x ∈ X\ ∪mi=1 BX (x∗
i , r̃) and r ≤ 3r̃/4, by (68), it holds that

QX

(
BX (x, r)

)
= q0Leb

{
BX (x, r) ∩

(
X\ ∪mi=1 BX (x∗

i , r̃)
)}

.

By (69), it holds that

PX

(
BX (x, r)

)
≥ q0Leb

{
BX (x, r) ∩

(
X\ ∪mi=1 BX (x∗

i , r̃)
)}

= QX

(
BX (x, r)

)
.

Thus, for small r ≤ 3r̃/4, the transfer exponent defined in Definition 2.3 equals γ with respect to the constant 0 < cγ ≤ 1.

Furthermore, since we set
PX

(
BX (x∗

i , r̃)
)
= QX

(
BX (x∗

i , r̃)
)
, ∀i ∈ [m],

we can verify that the above inequalities hold for 3r̃/4 < r ≤ 1. Thus, the transfer exponent of the constructed source
covariate distribution with respect to the target covariate distribution is γ, with the corresponding constant cγ .

Exploration coefficient. For any x ∈ X , r ∈ (0, 1] and p ∈ [r, 1− r], we have that

µ
(
[p− r, p+ r]×BX (x, r)

)
≥ PX

(
BX (x, r)

)
2rmin

{
κ,

1− r̃κ

1− r̃

}
= PX

(
BX (x, r)

)
2rκ,

where the first inequality follows from (70) and the final equality holds beacuse

κ− 1− r̃κ

1− r̃
=

κ− 1

1− r̃
≤ 0.

As a result, the exploration coefficient defined in Definition 2.4 for the constructed source covariate-price pair distribution
equals κ.

Lipschitz condition. By the construction in (71), it suffices to show that the function φ : Z 7→ [0, 1/4] satisfies Assump-
tion 2.1 with respect to the Lipschitz constant CLip > 0. For any (x, p), (x′, p′) ∈ Z , we have that

|φ(x, p)− φ(x′, p′)| = Cφr̃
∣∣ϕ(∥(x⊤, p)⊤∥∞/r̃)− ϕ(∥(x′⊤, p′)⊤∥∞/r̃)

∣∣ (76)

Since ϕ is a Lipschitz function with Lipschitz constant 4, it follows that

|φ(x, p)− φ(x′, p′)| ≤4Cφr̃
∣∣∥(x⊤, p)⊤∥∞/r̃ − ∥(x′⊤, p′)⊤∥∞/r̃

∣∣
≤4Cφ∥(x⊤, p)⊤ − (x′⊤, p′)⊤∥∞ ≤ CLip∥(x⊤, p)⊤ − (x′⊤, p′)⊤∥∞,
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where the first inequality follows from the triangle inequality and the last inequality holds since Cφ = (CLip/4) ∧ (1/4).
Thus, for any ω ∈ Ωm, the reward function fω satisfy Assumption 2.1 with respect to the Lipschitz constant CLip > 0.

Lower-bounded density. It is straightforward to see that

q1 =
cQr̃

d

(r̃/2)d
= 2dcQ,

and

q0 =
1−mcQr̃

d

1−m(2r̃)d
=

1− ⌊cm/r̃⌋dcQr̃d

1− ⌊cm/r̃⌋d(2r̃)d
= 1 +

⌊cm/r̃⌋dr̃d(2d − cQ)

1− ⌊cm/r̃⌋d(2r̃)d
> 1.

Thus, we confirm that the constructed target covariate distribution satisfies Assumption 2.2.

Step 3. Applying Proposition C.1. We now verify the conditions required for applying Proposition C.1.

Step 3.1. Verification of condition (i) in Proposition C.1. For any admissible price policy π = {pπ1 , . . . , pπnQ
} and for

ω ∈ Ωm, let

Rπ,ω(nQ) =

nQ∑
t=1

Eω

{
fω
(
Xt, p

ω,∗(Xt)
)
− fω(Xt, p

π
t )
}
,

where Eω denotes the expectation under the distribution (Qω
X , µω, fω). Note that for any price policy π, if there exists a

time point t′ ∈ [nQ] such that

pπt′ ∈
⌊1/r̃⌋⋃
i=1

[p∗i − r̃/2, p∗i + r̃/2]\[p∗i − r̃/4, p∗i + r̃/4],

then there exists a policy π′ with

pπ
′

t′ ∈
⌊1/r̃⌋⋃
i=1

[p∗i − r̃/4, p∗i + r̃/4],

and pπt = pπ
′

t for all t ̸= t′, which satisfies

Rπ′,ω(nQ) ≤ Rπ,ω(nQ), for any ω ∈ Ωm.

To see this, suppose pπt′ ∈ [p∗i − r̃/2, p∗i + r̃/2]\[p∗i − r̃/4, p∗i + r̃/4], for some i ∈ [⌊1/r̃⌋]. If ωi = −1, then one simply
chooses pπ

′

t′ ∈ [p∗j− r̃/4, p∗j + r̃/4] for some j ̸= i; otherwise if ωi = 1, then one chooses the same index j = i. Furthermore,
if x ∈ X \

⋃m
i=1 BX (x∗

i , r̃), then fω(x, p) = 1/2 is universal for all p ∈ [0, 1] due to (73).

Therefore, it suffices to consider price policies where pπt ∈ ∪
⌊1/r̃⌋
i=1 [p∗i − r̃/4, p∗i + r̃/4] for all t ∈ [nQ]. By (72), we have

that

Rπ,ω(nQ) =Cφr̃

nQ∑
t=1

Eω

[
1
{
h
(
pω,∗(Xt)

)
̸= h(pπt )

}
1
{
Xt ∈ ∪mi=1BX (x∗

i , r̃/4)
}]

=Cφr̃

nQ∑
t=1

m∑
i=1

Eω

[
1
{
h
(
pω,∗(Xt)

)
̸= h(pπt )

}
1
{
Xt ∈ BX (x∗

i , r̃/4)
}]

.

Let Π denote the space of all price policies. For any pπ, pπ
′ ∈ Π, define the semi-metric

ρ̄(pπ, pπ
′
) =Cφr̃

nQ∑
t=1

m∑
i=1

Eω

[
1
{
h(pπ

′

t ) ̸= h(pπt )
}
1
{
Xt ∈ BX (x∗

i , r̃/4)
}]

.
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For any ω ∈ Ωm, denote p̃ω,∗ = {pω,∗(X1), . . . , p
ω,∗(XnQ

)}. For any ω, ω′ ∈ Ωm we have that

ρ̄
(
p̃ω,∗, p̃ω

′,∗) =Cφr̃

nQ∑
t=1

m∑
i=1

Eω

[
1
{
h
(
pω,∗(Xt)

)
̸= h

(
pω

′,∗(Xt)
)}
1
{
Xt ∈ BX (x∗

i , r̃/4)
}]

(a)

≥Cφr̃

nQ∑
t=1

m∑
i=1

Eω

[
1
{
Xt ∈ BX (x∗

i , r̃/4)
}
)1
{
ωi ̸= ω′

i

}]
(b)
=CφcQnQr̃

d+1ρ(ω, ω′)
(c)

≥ CφcQnQr̃
d+1m

8
=

CφcQ
8

nQr̃
d+1⌊cm/r̃⌋d ≥ CρnQr̃, (77)

where (a) holds by (75), (b) follows from (68), (c) is derived from (67), and Cρ > 0 is a constant only depending on constant
Cφ, cQ and cm.

Step 3.2. Verification of condition (ii) in Proposition C.1.

Fix a policy π, for any u ∈ [⌊1/r̃⌋], let

Ou =

nQ∑
t=1

1{pπt ∈ [p∗u − r̃/2, p∗u + r̃/2]}. (78)

Since
M∑
i=1

⌊1/r̃⌋∑
u=1

Eω(i)(Ou) ≤MnQ,

it follows that for at least ⌊M/2⌋ elements in {ω(i)}Mi=1, there must exist at least one index u ∈ [⌊1/r̃⌋] such that

Eω(i)(Ou) ≤
2nQ

⌊1/r̃⌋
. (79)

Therefore, we can choose one such u and without loss of generality, assume that {ω(i)}⌊M/2⌋
i=1 satisfy (79). Define p̃ = p∗u to

construct the density of the conditional distribution of the source price given the source covariate in (70) in Step 1.

Denote the target data and source data by DQ
nQ

= {Xt, p
π
t , Yt}

nQ

t=1, DP = {XP
t , pPt , Y

P
t }

nP
t=1, respectively. For each

ω(i) ∈ Ωm, let Θi be the joint distribution of the random variables in DQ
nQ

and DP induced by
(
Qω(i)

X , µω(i)

, fω(i))
, i.e.

under Θi:

• the target data DQ
nQ

follow the target covariate distribution QX with density qX , the price policy π is represented by its

conditional density π̃(·|Xt,Ft−1) and rewards drawn from Bernoulli
(
fω(i)

(Xt, p
π
t )
)
, whose likelihood is denoted by

θ
fω(i) ;

• the source data DP follow the source covariate distribution PX (the marginal from µω(i)

) with density pX , the source
price distribution with conditional density denoted by pω

(i)

P (·|Xt) and rewards drawn from Bernoulli
(
fω(i)

(XP
t , pPt )

)
again with likelihood denoted by θ

fω(i) .

We denote by θi the density corresponding to Θi, then

θi(DP
nP

, DQ
nQ

) =

nQ∏
t=1

qX(Xt)π̃
(
pπt
∣∣Xt,Ft−1

)
θ
fω(i)

(
Yt

∣∣Xt, p
π
t

)
×

nP∏
t=1

pX(XP
t )pP

(
pPt
∣∣XP

t

)
θ
fω(i)

(
Y P
t

∣∣XP
t , pPt

)
. (80)
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Note that the densities involving the policy π̃
(
pπt
∣∣Xt,Ft−1

)
are identical since π is fixed. For any i ∈ [⌊M/2⌋], and

ω(0) ∈ Ωm,

log

{
dΘi

dΘ0
(DP

nP
, DQ

nQ
)

}
=

nQ∑
t=1

log

{
θ
fω(i)

(
Yt

∣∣Xt, p
π
t

)
θ
fω(0)

(
Yt

∣∣Xt, pπt
)}+

nP∑
t=1

log

{
θ
fω(i)

(
Y P
t

∣∣XP
t , pPt

)
θ
fω(0)

(
Y P
t

∣∣XP
t , pPt

)}.
Taking the expectation with respect to Θi, we obtain

KL(Θi,Θ0) =Eω(i)

[
nQ∑
t=1

log

{
θ
fω(i)

(
Yt

∣∣Xt, p
π
t

)
θ
fω(0)

(
Yt

∣∣Xt, pπt
)}+

nP∑
t=1

log

{
θ
fω(i)

(
Y P
t

∣∣XP
t , pPt

)
θ
fω(0)

(
Y P
t

∣∣XP
t , pPt

)}]

=Eω(i)

[
nQ∑
t=1

log

{
θ
fω(i)

(
Yt

∣∣Xt, p
π
t

)
θ
fω(0)

(
Yt

∣∣Xt, pπt
)}]+ Eω(i)

[
nP∑
i=1

log

{
θ
fω(i)

(
Y P
t

∣∣XP
t , pPt

)
θ
fω(0)

(
Y P
t

∣∣XP
t , pPt

)}]
=KLQ +KLP . (81)

Note that

KLQ =

∫
X
Eω(i)

[
nQ∑
t=1

log

{
θ
fω(i)

(
Yt

∣∣x, pπt )
θ
fω(0)

(
Yt

∣∣x, pπt )
}]

qX(x)dx

=

∫
⋃m

j=1 BX (x∗
j ,r̃/4)

Eω(i)

[
nQ∑
t=1

1
{
pπt ∈

[
p∗u − r̃/2, p∗u + r̃/2

]}
log

{
θ
fω(i)

(
Yt

∣∣x, pπt )
θ
fω(0)

(
Yt

∣∣x, pπt )
}]

qX(x)dx

≤
∑

j∈[m] : ω
(i)
j ̸=ω

(0)
j

QX

(
BX (x∗

j , r̃/4)
)
Eω(i)(Ou)KL

(
Bernoulli(1/2 + Cφr̃),Bernoulli(1/2− Cφr̃)

)
≤32C2

φr̃
2

∑
j∈[m] : ω

(i)
j ̸=ω

(0)
j

QX

(
BX (x∗

j , r̃/4)
)
Eω(i)(Ou)

≤64C2
φcQ

nQ

⌊1/r̃⌋
mr̃d+2 ≤ CQnQr̃

d+3m, (82)

where

• the second equality follows from (68), (73), (74) and p̃(x) = p∗u,

• the first inequality follows from (71) and (78),

• the second inequality follows from Lemma 15 in Cai et al. (2024a),

• the third inequality follows from (68) and (79),

• and CQ > 0 is a constant only depending on constants Cφ and cQ.

We also have that

KLP =

∫
X
Eω(i)

[
nP∑
t=1

log

{
θ
fω(i)

(
Y P
t

∣∣x, pPt )
θ
fω(0)

(
Y P
t

∣∣x, pPt )
}]

pX(x)dx

=

∫
∪m

j=1BX (x∗
j ,r̃/4)

Eω(i)

[
nP∑
i=1

1
{
pPt ∈

[
p∗u − r̃/2, p∗u + r̃/2

]}
log

{
θ
fω(i)

(
Yt

∣∣x, pPt )
θ
fω(0)

(
Yi

∣∣x, pPt )
}]

pX(x)dx

≤κnP r̃
∑

j∈[m]:ω
(i)
j ̸=ω

(0)
j

PX

(
BX (x∗

j , r̃/4)
)
KL
(
Bernoulli(1/2 + Cφr̃),Bernoulli(1/2− Cφr̃)

)
≤32C2

φnPκr̃
3

∑
j∈[m]:ω

(i)
j ̸=ω

(0)
j

PX

(
BX (x∗

i , r̃/4)
)

≤32C2
φcQcγnPκmr̃d+γ+3 = CPκnP r̃

d+γ+3m, (83)

where

28



Transfer Learning for Nonparametric Contextual Dynamic Pricing

• the second equality follows from (69), (73) and (74),

• the first inequality follows from (70) and (71),

• the second inequality follows from Lemma 15 in Cai et al. (2024a),

• the third inequality follows from (69),

• and CP > 0 is a constant only depending on constants Cφ, cQ and cγ .

Combining (81), (82) and (83), it holds that

⌊M/2⌋−1

[⌊M/2⌋]∑
i=1

KL(Θi,Θ0) ≤CQnQr̃
d+3m+ CPκnP r̃

d+γ+3m. (84)

Now set

r̃ = cr

(
nQ + (κnP )

d+3
d+3+γ

)− 1
d+3

, (85)

where cr > 0 is a sufficiently small constant. From (67), it holds that

⌊M/2⌋−1

[⌊M/2⌋]∑
i=1

KL(Θi,Θ0) ≤ α log2(⌊M/2⌋).

where 0 < α < 1/8.

Step 3.3. We have verified that all conditions of Proposition C.1 hold for the family {Θi}⌊M/2⌋
i=0 . By applying Proposition C.1,

Markov’s inequality, (77) and (85), we obtain that

inf
π

sup
I∈I(γ,cγ ,κ,CLip,cQ)

Rπ,I(nQ) ≥ cnQ

(
nQ + (κnP )

d+3
d+3+γ

)− 1
d+3 ,

where c > 0 is a constant only depending on constants CLip, cγ and cQ. This completes the proof.

C.2. Auxiliary results

For completeness, we include Proposition 1 from Kpotufe & Martinet (2020) below, as it is a key tool for establishing the
minimax lower bound.

Proposition C.1 (Proposition 1 in Kpotufe & Martinet (2020)). Let {Θh}h∈H be a family of distributions indexed by a
subsetH of a semi-metric space (F , ρ̄). Assume that there exists h0, . . . , hM ∈ H, with M ≥ 2, such that

(i) ρ̄(hi, hj) ≥ 2s > 0, ∀0 ≤ i < j ≤M ,

(ii) Θhi
≪ Θh0

, ∀i ∈ [M ] and the average KL-divergence to Θh0
satisfies

1

M

M∑
i=1

KL(Θhi
,Θh0

) ≤ α logM, where 0 < α < 1/8.

Let Z ∼ Θh and let ĥ : Z → F denote any improper learner of h ∈ H. It holds that

sup
h∈H

Θh

(
ρ̄
(
ĥ(Z), h

)
≥ s
)
≥

√
M

1 +
√
M

(
1− 2α−

√
2α

log(M)

)
≥ 3− 2

√
2

8
.
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D. Additional details in Section 5
D.1. Additional results in Section 5.1

Scenario 1. The simulation results for Configuration 2 of Scenario 1, as described in Section 5.1, are presented in Figure 3.

Scenario 2. The simulation results for Configurations 1 and 2 of Scenario 2, as described in Section 5.1, are presented in
Figure 4 and Figure 5, respectively.

To assess robustness of TLDP, we conducted additional simulations under Configuration 1 in Scenario 1, using a list of
mis-specified values of tuning parameters (κ, γ), while keeping the true values fixed at κ = 0.6 and γ = 1. The results,
presented in Figure 6, indicate that our method remains robust under moderate misspecification of these parameters.
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Figure 3. Results for Configuration 2 in Scenario 1. Panel (A) and (B): varying source data size nP and target data size nQ, respectively.
Panel (C) varying the transfer exponent γ (top axis) and the exploration coefficient κ (bottom axis). Panel (D): varying the index constant
CI (top axis) and the exploration radius constant Cr (bottom axis). For Panels (B), (C) and (D), we fix nQ = 10000.

D.2. Additional results in Section 5.2

In this subsection, we present samples of the processed auto loan dataset and the corresponding results in Tables 2 and 3,
respectively.
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Figure 4. Results for Configuration 1 in Scenario 2. Panel (A) and (B): varying source data size nP and target data size nQ, respectively.
Panel (C) varying the transfer exponent γ (top axis) and the exploration coefficient κ (bottom axis). Panel (D): varying the index constant
CI (top axis) and the exploration radius constant Cr (bottom axis). For Panels (B), (C) and (D), we fix nQ = 10000.
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Figure 5. Results for Configuration 2 in Scenario 2. Panel (A) and (B): varying source data size nP and target data size nQ, respectively.
Panel (C) varying the transfer exponent γ (top axis) and the exploration coefficient κ (bottom axis). Panel (D): varying the index constant
CI (top axis) and the exploration radius constant Cr (bottom axis). For Panels (B), (C) and (D), we fix nQ = 10000.
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Figure 6. Results for Configuration 1 in Scenario 2. Left panel: Varying the estimated κ with true fixed at κ = 0.6. Right panel: Varying
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nP = 2nQ, and we set the index constant CI = 1 and the exploration radius constant Cr = 1/4.

32



Transfer Learning for Nonparametric Contextual Dynamic Pricing

Table 2. Sample of the normalized auto loan dataset, including key covariates, prices and reward values.
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Table 3. Results for the auto loan dataset with East South Central data as the target division. Columns correspond to the source divisions
utilized in TLDP. Here, nP represents the number of the source data utilized in TLDP and n denotes the total number of source
observations. Each cell reports the mean and standard deviation over 100 simulations.

METHODS MOUNTAIN EAST NORTH CENTRAL WEST SOUTH CENTRAL PACIFIC

ABE 70.81 (1.40) 70.81 (1.40) 70.81 (1.40) 70.81 (1.40)
EXUCB 64.91 (5.31) 64.91 (5.31) 64.91 (5.31) 64.91 (5.31)
TLDP(nP = 0) 71.95 (2.87) 71.95 (2.87) 71.95 (2.87) 71.95 (2.87)
TLDP(nP = 0.25n) 55.63 (8.04) 56.80 (8.59) 53.95 (8.26) 51.61 (8.89)
TLDP(nP = 0.5n) 54.29 (7.06) 55.31 (8.60) 54.07 (7.44) 51.44 (7.12)
TLDP(nP = 0.75n) 51.38 (6.92) 51.52 (7.43) 50.67 (7.19) 49.40 (7.40)
TLDP(nP = n) 50.23 (7.34) 51.92 (7.09) 49.85 (7.97) 48.72 (8.27)
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