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ABSTRACT

Existing text-to-motion (T2M) generation models typically rely on pretrained large
language models to encode textual inputs. However, these models, trained on
generic text corpora, lack explicit alignment between motion-related words (e.g.,
“clockwise”, “quickly”’) and human skeletal movements. This misalignment, funda-
mentally rooted in the word embedding layers, severely limits the ability of T2M
models to understand and generalize fine-grained motion semantics. To tackle this
issue, we propose Motion-Aligned Text Encoding (MATE), a novel framework
that explicitly incorporates motion semantics into the word embedding layers of
large language models to enhance text-motion alignment for motion generation.
To address the challenge of inherent semantic entanglement in motion sequences,
MATE introduces two key components: 1) a motion localization strategy that estab-
lishes localized correspondences between sub-texts and motion segments, enabling
soft attention guidance for semantic localization; and 2) a motion disentanglement
module that isolates word-specific motion semantics via contrastive kinematic
prototypes, ensuring word-level alignment between linguistic and kinematic repre-
sentations. Remarkably, language models enhanced with MATE can be seamlessly
integrated into existing T2M methods, significantly surpassing state-of-the-art
performance on two standard benchmarks with minimal modifications. Codes and
pretrained models will be released upon acceptance.

1 INTRODUCTION

Text-to-motion (T2M) generation aims to synthesize sequences of human skeletal movements con-
ditioned on textual descriptions|Zhou et al.| (2024a)); |Chi et al.| (2024)); Liu et al.| (2024a)); Fan et al.
(2024); Wang et al.|(2024). As a cross-modal generation task, T2M requires models to accurately
translate textual descriptions into motion semantics and decode them into realistic human motions.
However, existing T2M approaches still often exhibit limited cross-modal understanding. As shown in
Fig. [1] while current models achieve the sentence-level alignment in example (1), they often struggle
to robustly understand motion-related words such as “clockwise”, leading to poor generalization and
failure to generate plausible results for descriptions like “jogs in a clockwise motion” in example (2).

This limited word-level understanding largely stems from the limitations of text encoders, which
process the textual inputs and directly determine the semantic information conveyed to the mo-
tion generator. While most T2M methods adopt pretrained large language models (LLMs) such
as CLIP |Radford et al.| (2021) or DistilBERT [Sanh et al.| (2019) to leverage their strong textual
understanding capabilities, these models are trained on general text corpora (or text-image pairs in
the case of CLIP), lacking fine-grained alignment between motion-related words and human skeletal
movements. In particular, the word embedding layers in LLMs fundamentally define the word
semantics, which can differ substantially between linguistic and kinematic contexts. For instance,
while “clockwise” functions linguistically as an adjective or adverb, in the kinematic domain it
denotes a concrete rotational motion with a specific directional orientation. Without addressing
such cross-modal word-level misalignment, LLMs struggle to encode motion-aware information
effectively, inherently limiting the generation quality and generalization ability of T2M approaches.

To address this limitation, we propose Motion-Aligned Text Encoding (MATE), a novel framework
that incorporates motion semantics into the word embedding layers of LLMs to enhance text-motion
alignment for motion generation. MATE optimizes only the word embedding layers while freezing
the subsequent layers, which retain strong contextual modeling abilities acquired during large-scale
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(1) “a person walks in a clockwise circle”  (2) “a person jogs in a clockwise motion and falls to
their knees, he then gets back up onto his feet”
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Figure 1: Examples generated by the state-of-the-art MoMask model (2024), with darker
colors indicating motion progression. MoMask correctly produces “clockwise” motion in (1), but
fails in (2), revealing limited robustness and generalization in capturing motion-related word-level
semantics. Incorporating our Motion-Aligned Text Encoding (MATE) enables MoMask to produce
the correct motion.

language model pretraining. We hypothesize that these higher layers can generalize effectively
to motion semantics, as language and motion share structural properties, i.e., both consisting of
compositional elements (e.g., words and actions) organized in temporal sequences.

However, incorporating word-specific motions semantics into word embeddings remains highly
challenging and largely underexplored, primarily due to the intrinsic entanglement of motion seman-
tics. Existing datasets typically provide only sentence-level annotations for entire motion sequences
Guo et al| (2022a); [Plappert et al| (2016)), lacking explicit alignment between specific words and
corresponding motion segments. This limitation restricts the model’s ability to temporally ground
word-level semantics, particularly in sequences involving multiple compositional actions. More
importantly, the semantics associated with related words are inherently intertwined, making it difficult
to attribute distinct motion patterns to individual words, thereby limiting the model’s capacity for
fine-grained semantic understanding.

To address these challenges, MATE introduces two key components: 1) A motion localization strategy
that jointly decomposes paired textual descriptions and motion sequences into semantically aligned
sub-units. This enables the construction of a soft attention prior that guides the temporal localization
of word semantics; and 2) A motion disentanglement module that isolates word-specific motion
semantics through two complementary mechanisms: self-disentanglement, which extracts shared
semantics across related motions via contrastive kinematic prototypes; and cross-disentanglement,
which enforces the exclusion of unrelated semantics, jointly ensuring semantic purity and inter-word
discriminability. The disentangled motion semantics are then aligned with their corresponding word
embeddings, effectively addressing the word-level misalignment inherent in LLMs.

MATE offers an resource-efficient solution for LLM fine-tuning by optimizing only word embedding
layers, while maintaining broad compatibility with various LLMs. The MATE-enhanced LLMs
can be seamlessly integrated into existing T2M methods with minimal architectural modifications.
Extensive experiments demonstrate that MATE consistently improves text-motion alignment and
generalization capability, significantly advancing the state of the art on standard benchmarks including

HumanML3D [Mahmood et al.| (2019) and KIT [Plappert et al|(2016). The main contributions of this

work are summarized as follows:

1) To the best of our knowledge, MATE is the first framework to explicitly address the text-motion
misalignment fundamentally rooted in the word embeddings of LLMs for motion generation. 2)
We introduce a text-motion joint segmentation strategy that automatically establishes correspon-
dences between sub-texts and motion segments, enabling action-level semantic localization for
paired text-motion data. 3) We propose a motion disentanglement module that achieves word-level
semantic disentanglement, mitigating the challenge of semantic entanglement in motion sequences.
4) Extensive experiments demonstrate that MATE-enhanced language models can be seamlessly inte-
grated into existing T2M pipelines, yielding substantial performance improvements and significantly
surpassing state-of-the-art results across two standard benchmarks.

2 RELATED WORKS

Text-to-Motion Generation typically involves two stages: text encoding and motion synthesis

[Shafir et al.| (2024); Xie et al.| (2024); [Liu et al| (2023)); [Liang et al| (2024). Textual descriptions

are first projected into a latent feature space and subsequently translated into motion sequences.
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Most existing methods keep the text encoder frozen and primarily focus on improving the motion
generation process, leveraging advanced architectures such as diffusion models Tevet et al.| (2023);
/hang et al.[(2023b); Jin et al.|(2024a)); Ren et al.|(2023);|Wang et al.| (2023)) and quantized variational
autoencoders |Chen et al.| (2023)); Zhang et al.|(2023a); Van Den Oord et al.| (2017)); Dai et al.| (2024).
Another line of research seeks to enhance text encoding by constructing hierarchical semantic graphs
over text embeddings to better capture fine-grained motion semantics Wang et al.| (2023); Jin et al.
(2024b). However, these methods typically rely on off-the-shelf text embeddings from pretrained large
language models (LLMs), overlooking the inherent semantic gap between linguistic and kinematic
representations caused by LLM itself. In contrast, our method introduces motion-aligned fine-tuning
of LLMs, facilitating more accurate and robust modeling of motion semantics from textual inputs.

Text-Motion Retrieval aims to retrieve the most relevant motion given a text query, or vice versa. Ex-
isting approaches often focus on enhancing text-motion alignment through contrastive representation
learning Yan et al.|(2023)); Yin et al.| (2024); |Guo et al.| (2022b) or probabilistic divergence objectives
such as KL divergence Petrovich et al.| (2022). These methods usually utilize pretrained LLMs [Tevet
et al. (2022) or adapter-based enhancements |Petrovich et al.| (2022;2023)); |Lu et al.| (2024) to construct
the joint embedding space, but the underlying cross-modal misalignment originating from pretrained
language representations remains largely unresolved. Our work addresses this core limitation by
improving motion semantic alignment within language models.

Large Language Model Fine-Tuning has emerged as a powerful paradigm for adapting general-
purpose textual representations to downstream tasks such as domain adaptation |Ding et al.| (2023));
Susnjak et al.| (2025)); Wei et al.|(2023)), image generation [Li et al.|(2024); |[Liu et al.| (2024b); Ruiz
et al.| (2023), and video generation Rasheed et al.| (2023); Wu et al.|(2023)). In the context of T2M,
recent works LMM |[Zhang et al.| (2024a), MotionGPT [Jiang et al.| (2023)), AvatarGPT [Zhou et al.
(2024b), Motion-Agent |Wu et al.| (2025)) unify multiple text-motion tasks within a single framework,
often incorporating expanded token vocabularies and instruction tuning techniques |Ouyang et al.
(2022)). Our method differs in two key aspects. First, rather than pretraining the entire language
model, which typically demands substantial computational resources and large-scale integrated
datasets, we focus specifically on the compact word embedding layers, offering a more data- and
resource-efficient solution. Second, instead of introducing a standalone framework, our approach
produces plug-and-play motion-aligned text encoders that can be directly integrated into various T2M
models, yielding substantial performance improvements without changing their architectures.

3 METHOD

3.1 OVERVIEW

Word embedding layers, typically placed at the input of LLMs, function as a lexical lookup table
that maps discrete word tokens to continuous vectors for contextual modeling. They play a crucial
role in encoding word meanings and inter-word relationships. However, word-level semantics in
linguistic domain often differ fundamentally from those in the kinematic domain. For example,
“clockwise” and “anti-clockwise” are linguistically similar, due to sharing morphological structure
and grammatical function. In contrast, they kinematically denote opposite directions of rotation and
are incompatible, thus leading to significant cross-modality discrepancies.

To bridge this gap, unlike existing T2M methods that use pretrained LLMs without adaptation, this
work introduces Motion-Aligned Text Encoding (MATE), a novel approach for explicitly aligning the
word embedding layers in LLMs with word-specific motion semantics.

Specifically, we formulate the learning objective as follows: given a triplet {¢, m, w} sampled from
the training set, where ¢ denotes a textual description, m is the corresponding motion sequence, and
w is a word token sampled from ¢, the goal is to align the textual semantics of w with its associated
motion semantics expressed in m by optimizing its word embeddings in language models.

To achieve this alignment, as illustrated in Fig. 2] MATE comprises two key components: 1) Motion
localization, which establishes correspondences between temporally aligned subtexts and motion
segments for word semantic localization; 2) Motion disentanglement, which disentangles motion
features that are semantically attributable to individual words for alignment with their corresponding
word embeddings.
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(1) Motion-Aligned Text Encoding (MATE) framework (3) Motion Disentanglement Prototypes

Figure 2: (1) Overview of the MATE framework, which comprises a text encoder (with trainable word
embedding layers), a motion encoder, and a motion decoder, together with: (2) Motion localization,
which establishes temporal text-motion correspondences to construct a Gaussian-shaped attention
prior for guiding word-level semantic localization; and (3) Motion disentanglement, which employs
multi-head attention to disentangle motion semantics of specific words for semantic alignment.

3.2 TEXT-GUIDED MOTION LOCALIZATION

A motion sequence is a complex integration of multiple word-level semantics, making fine-grained
semantic alignment particularly challenging, especially in long sentences involving multiple words
and actions. To tackle this issue, we adopt a coarse-to-fine semantic extraction strategy, with the
first sub-goal of localizing the motion semantics corresponding to an individual word w within the
motion sequence m. However, most existing motion datasets |(Guo et al.| (2022a); [Plappert et al.
(2016) provide only sentence-level annotations for entire sequences, lacking explicit supervision for
word-level localization. To overcome this limitation, we propose a text-motion joint segmentation
pipeline that automatically establishes correspondences between each sub-action described in the text
and its counterpart segment in the motion sequence, as illustrated in Fig. 2](2).

Specifically, we employ ChatGPT Roumeliotis & Tselikas| (2023) to decompose each textual de-
scription ¢ into a set of sub-texts t! ... tY (N > 1), where each sub-text describes one or more
temporally coherent actions. We then seek to segment the motion sequence 1m into N non-overlapping
clips, each aligned with its corresponding sub-text. To this end, we formulate an optimal partitioning
problem, where segment boundaries are adjusted to minimize the matching loss between each sub-text
and its corresponding motion segment. Given a sentence decomposed into /V sub-texts, the objective

is defined as:
N

min 1 —cos (&(t"), Em(mls, : e,])), (1

{5n7€n} n=1

where s,, and e,, denote the start and end frames of the n-th segment, constrained by s, 11 = e,,.
Here, & and &, are frozen text and motion encoders from a pretrained text-to-motion retrieval
model |Lu et al. (2024), and cos(-, -) denotes the cosine similarity between encoded text and motion
features. An exhaustive search over all valid partitions is performed to identify the boundaries that
best align motion segments with their respective sub-texts.

The obtained segmentation is not directly used as ground-truth localization, but instead serves as
a soft prior to guide the discovery of the semantics of the word w within the motion sequence m.
Specifically, a motion encoder simultaneously extracts a sequence-level representation f™ € R
and frame-level features F™ € RT*D from the motion sequence m, where 7" denotes the number of
frames and D is the feature dimension. We introduce a multi-head attention mechanism, in which the
word embeddings serve as a query to explicitly attend to relevant motion features, formulated as:

f\:/?)rd = MultlHead(Qa Ka V)a (2)
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Q = Proj(WE(w)), K = (1+ X- AttentionPrior(t)) @ F™, V =F™. 3)

Here, WE(w) is the trainable word embeddings of w from the text encoder, Proj is a linear projection
layer, and AttentionPrior(t) is a temporal attention prior derived from segmentation information:

(t—cn)?
202

), with ¢, = Sn Tl +€n, On = S “

AttentionPrior(t) = exp(— 5 5

where ¢ is the frame index, and s, e,, are the start and end frames in the localized segment of w,
respectively. The Gaussian-shaped AttentionPrior(¢) softly highlights frames near the center of the
localized segment while smoothly attenuating distant frames, thereby improving robustness against
localization errors introduced by the segmentation process.

3.3 WORD-GUIDED MOTION DISENTANGLEMENT

While the above approach enables localization of word-level semantics, the semantics of related
words remain highly intertwined. For instance, as shown in Fig. 2| (1) and (2), although the segment
corresponding to “turn clockwise” can be identified, it remains challenging for the model to accu-
rately distinguish between the semantics of “turn” and “clockwise”, thereby hindering the precise
understanding of individual words. To address this limitation, we propose a word-guided motion
disentanglement approach that explicitly isolates motion semantics attributable to individual word
units. Toward this goal, we introduce the following three criteria for effective motion disentanglement.

1) Stability: A given word query should consistently attend to shared motion features across
different motions that exhibit the corresponding semantics (e.g., the features disentangled by the word
“clockwise” from motions of “turn clockwise” and “jog in a clockwise circle” should remain similar.

2) Discriminability: Different word queries should result in semantically distinct motion features
(e.g., the features disentangled by “turn” should be distinguishable from those by “clockwise”).

3) Rationality: Disentanglement should yield meaningful features only when the motion sequence
contains semantics associated with the queried word (e.g., querying “clockwise” from the motion of
“walk forward” should not produce a meaningful feature representation).

To satisfy Criteria 1 and 2, we introduce a self-disentanglement mechanism based on prototype
representations. Specifically, we predefine a set of motion-word prototypes consisting of K learnable
vectors { fgk},[f:l, each representing the motion semantics associated with a specific word wy.
Suppose {t;, m;, w;} the i-th triplet sample in a mini-batch, the disentangled motion features f;":
satisfy the self—disentanglement loss Leeis:

B exp(cos(fiov, f5.)/7)
ZQZV Zﬁ{:l exp(COS( w; 7fwk)/T)

where V is the set of samples in a mini-batch. The loss Ls.ir encourages f,'* to be pulled closer to its
corresponding prototype fZ_ while being pushed away from all other prototypes. Simultaneously,
each prototype is optimized towards a stable and shared semantic representation across motions that
express the semantics of w;. In contrast to conventional contrastive losses Radford et al.| (2021);
Oord et al.|(2018)) that operate at the batch level, the introduction of prototypes enables contrastive
learning over dataset-wide word semantics, thereby enhancing the stability and discriminability of
motion disentanglement.

self ‘V| (5)

To satisfy Criterion 3, we further formulate a cross-disentanglement mechanism: the motion m; is
also queried by the word token w; from the j-th sample, and if m; does not contain the semantics
of w;, the model is encouraged to produce motion features that are orthogonal to the reasonably
disentangled features f;'¢. The cross-disentanglement loss Leross 1 defined as

1
Ecross = W Z |COS( $17fu7}n;1)

| ‘ (i,)EN

+ [cos(furs fur):

where N is the set of negative pairs, and fml denotes the disentangled motion features from the i-th
sequence m; with the word query w; from the j-th sample. L drives the model to discriminate
whether the queried word semantics is expressed in the motion sequence to ensure the accuracy of
motion disentanglement.
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Table 1: Results on HumanML3D Mahmood et al.| (2019). “1”, “|” and “—” indicate that higher
values, lower values, or values closer to real motion are better, respectively. Red and blue highlight
the top two results.

Methods R-Precision 1

FID | MM-Dist |  Diversity - MModality 1

Top-1 Top-2 Top-3

Real motions 0'51110 003 0'703i0.0()3 0_797i0.003 000210.000 297410.008 9‘5031().065 _

GraphMotion Jin et al.|(2024b) 0.504%0-003 () 699E0.002 () 785E0.002 () 116+0.004 3 ()7(£0.008 g 5g+0.067 2.766+0-096
Motion Mamba Zhang et al.|(2024c) 0.502%£0-003 () 693+0-002 (3 799+0.002 () 981+0.009 3 (50058 g g71+0.084 9.294+0.058
ParCo|Zou et al.|(2024) 0.515+0:003 () 706+0-003 () 801+0-002 (), 109+0-005 9 g97+0.008 g 576+0.088 1 389+0.060
CoMo |Huang et al. [(2024) 0.502£0-002 () 692£0.007 () 79)E0.002 () 962+0.004 3 ()39£0.015 g 933+0.066 1 (j13+0.046
BAMM Pinyoanuntapong et al.|(2024a) ~ 0.522%0-003 (7150003 ,808+0-008 (0 05540002 ,936=0.07T 9 36+0-009 1 739%0.05
MDM Tevet et al. |(2023) 0.320+0:005 () 498+0-004 () 511+0-007 () 544+0.044 5 5660027 g 559+0.086 9 799+0.072
+MATE (ours) 0.509%0-002 () 698+0.002 () 7g7E0.003 () 339%0.002 3 )57£0.063 g 4580053 9 773+0.062
MotionDiffuse[Zhang et al.|(2022} 0.491%0-001 () 681+0.001 (3 789+0.001  (j G3)£0.001 3 113+0.001 g 41(£0.049 1.553%0.042
+MATE (ours) 0.536%0-001  (.721%0:00L (5 8910001 () 934+0.002 9 gy7+0.002 g g4G+0.081 1 7(3+0.055
MMM [Pinyoanuntapong et al.|(2024b}) ~ 0.51530-002  ( 708+0-002 (5 gpg=0-002 () 0g9=0-005 2.026+0:007 g 577E0.050 1 99g+0.035
+ MATE (ours) 0.541+0:001 (7990003 g9E0.002 9 090003 9 gg7H0.017 g 5+0.088 ] 4GQ+0.057
MoMask Guo et al. (2024} 0.521%0:002 (0, 713+0:002 (0 go7+0:002 () 45+0-002 9 g58+0.008 ¢ G39+0.072 1 941+0.040
+ MATE (ours) U‘{—)g—)[)tO.OOQ 0‘737t0.002 (J,SSQiO'('OQ (J‘(),wio.ﬂ(m 2.81 110.007 9(51()10.092 1‘36910.036

3.4 MOTION-ALIGNED WORD EMBEDDING

To align the disentangled motion features with corresponding word embeddings, we formulate an
alignment loss Ljign as

1 exp(cos(f,, fu')/7) exp(cos(fu' fu,)/7T)
‘Cai N — Tavsl (—10g . Im‘ - Og 1mv . )7 (6)
o = o] 2 > expleos(Fo Fu)/1) ¢ o epleos(FE £5,)/7)
Jje Jje

w;
This loss adopts a symmetric InfoNCE formulation Oord et al.|(2018) to encourage alignment between
paired word embeddings and their motion semantics while simultaneously promoting separation
between mismatched pairs. The motion-aligned word embedding loss is summarized as

»Cword = »Cself + »Ccross + £align~ @)

where f¢ = Proj(WE(w;)) is the projected word embeddings, consistent with the query in Eq .

However, the above approach primarily focuses on individual word-level alignment and overlooks
the contextual dependencies among words. To tackle this issue, we further introduce a sentence-level
alignment objective, which aligns the text feature vector f? extracted from ¢ with the corresponding
motion feature vector f”* from m using an InfoNCE loss L. Additionally, f™ is passed through
a motion decoder to reconstruct the original motion sequence m, guided by a reconstruction loss Lyec
to preserve detailed motion information. The overall training objective is:

‘Call = Lrec + )\1 ' Eword + )\2 : L‘senh (8)

where \; and )\, are weighting factors.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. We conduct experiments on two standard human motion datasets: HumanML3D Mahmood
et al.| (2019) and KIT [Plappert et al.| (2016). HumanML3D contains 14,616 motion sequences,
annotated with 44,970 textual descriptions, while KIT includes 3,911 motion sequences paired with
6,278 text descriptions.

Evaluation Protocols. Following the standard protocol |Guo et al.[(2022a), we adopt five evaluation
metrics: R-Precision and Multimodal Distance (MMDist) measure how accurately generated
motions match the text. Frechet Inception Distance (FID) evaluates the distributional similarity
between generated and real motion features. Diversity computes the average Euclidean distance
across 300 randomly sampled pairs of generated motions. MultiModality (MModality) reflects the
variation of generated motions, calculated as the average distance among 10 motions generated from
the same text.



Under review as a conference paper at ICLR 2026

Table 2: Results on KIT [Plappert et al. (2016)), using the same notations as in Table

Methods Top] R'P’Te(f;'z"" T Top3 FID|  MMDist| Diversity > MModality
Real motions 0.424+0:005 06490006 0 779£0.006 0,031 £0.001 9 788+0-012 17 g+0.097 -

GraphMotion Jin et al.|(2024b} 0.429+0:007 0,648+0:006 (. 769=0.006 0 313£0.018 3 g76+0-022 17 1920135 3 Go7+0.113
Motion Mamba|Zhang et al.|(2024c} 0.419%0:006 () 645+0-005 () 765+0-006 () 37+£0.041 3 ()91+£0.025 17 (9+0.098 7 §7g+0.064
ParCo|Zou et al. [(2024] 0.430£0004 () 649+0-007 () 779£0-006 () 453%0.027 9 g9(£0.028 () 95+0.094 ] 945+0.022
CoMo|Huang et al.[(2024) 0.422%0-009 (9 638+0.007 ) 7650011 () 339+0.009 9 g7340.021 () 95+0.196 1 94940.008
BAMM |Pinyoanuntapong et al.|[(2024a)  0.436%0-007  (0.6600-006  (,791£0:005 () 20(+0-011 9 714+0.016 1 9]+£0.097 1 51740058
MDM |Tevet et al.|(2023} 0.164+0:004 () 291+0-004 () 395+0-004 () 497+0.021 ¢ 19]£0.022 () g5+0.109 7 g(j7+0.214
+ MATE (ours) 0.407+0:006 0,608*0-005  ,723£0.007 (0, 297%£0-026 9 g7g*0.046 () g3£0.112 7 ggg+0.194
MotionDiffuse[Zhang et al.|(2022} 041710004 (9 621£0.004 () 739£0.004 | 954+0.062 9 g5g+0.005 17 1£0.143 () 730%0.013
+ MATE (ours) 0.432+0005 () 644+0-004 () 763+0.005 () 9G5+0.077 9 gro+£0.005 ] 9+0.104 7 9()4+0.013
MMM |Pinyoanuntapong et al.|(2024b) ~ 0.404%0:005 (0 621%0-005 (), 744+0-004 (7 316+0.028 9 g77+0.019 10 91+0.101 1 939+0.039
+ MATE (ours) 0.420%0-008 () 64950001 () 770£0.007 () 953+0.017 9 g]5£0.026  1() gg£0101 533:£0.014
MoMask Guo et al. (2024} 0.433%0:007  ,656+0-005 (7810005 (7,204 F0-011 9 7790.022  1() gg0.099 1 137+0.043
+ MATE (ours) 0.443%0006 () 69E0-005 () 79gE0.007 () 197£0.015 9 739E0.014 () g5+0.098 7 (g3+0.041

Implementation Details. The text encoder in the MATE framework could be various large language
models, such as CLIP Radford et al.| (2021)), DistilBERT |Sanh et al.| (2019), etc. The number of
word prototypes (K) is automatically decided by the number of words included in the training set.
Specifically, we perform lemmatization on textual descriptions and summarize the vocabulary, estab-
lishing K= 5,161 and 1,191 prototypes for HumanML3D and KIT, respectively. These prototypes
are initialized with their corresponding word embeddings in the pretrained language models.

After training MATE, we integrate the MATE-enhanced text encoder into existing T2M models in
place of their original encoders, and retrain the models from scratch. The training and inference
procedures strictly follow the official implementations of the T2M models, without any modifications.
To ensure statistical reliability, we perform 20 rounds of inference and report the averaged results.
Unless otherwise stated, we use MoMask |Guo et al.|(2024) with the MATE-enhanced CLIP as the
default T2M model for evaluation. Additional details are provided in the supplementary materials.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Comparison. Table [T]and Table [2] present the performance of state-of-the-art (SOTA)
T2M models. The “+MATE” variants of MDM [Tevet et al.|(2023)), MotionDiffuse Zhang et al.|(2022),
MMM |Pinyoanuntapong et al.| (2024b)) and MoMask |(Guo et al.| (2024) are obtained by retraining the
original models with the pretrained CLIP text encoders replaced by MATE-enhanced CLIP, where
only the word embedding layers are updated. Despite this minimal modification, our approach
consistently yields substantial improvements across all evaluation metrics on both benchmarks.
Notably, while the performance gains on HumanML3D are significant, the improvements on KIT
are relatively modest due to the smaller dataset size, which constrains the optimization of word
embeddings in large language models.

Visualization Comparison. Fig. [3|compares motion sequences generated by different SOTA methods.
MATE accurately distinguishes fine-grained semantics, such as “kick one time with the right leg” and
“three times with the left leg” in the upper example, and faithfully captures key textual descriptions
like “counterclockwise circle” and “yawn” in the lower example, demonstrating the superiority of
our approach in fine-grained motion semantic understanding and text-motion alignment.

4.3 ABLATION STUDY

Loss Functions. Tablepresents the ablation study of the loss functions. Removing Lgjf, Leross, OF
Lalign leads to varying degrees of performance degradation, highlighting their complementary and
essential contributions. Specifically, Lgr and L;oss promote the discriminability and effectiveness of
word-level disentangled motion semantics, while Lajigy is critical for integrating these semantics into
the word embeddings. Additionally, L, plays an important role by enforcing alignment between
entire sentences and motion sequences, thereby modeling contextual dependencies across words.
Removing L. also results in slight performance degradation, as motion reconstruction can enhance
the informativeness of motion features.
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(1) “a person kicks one time with right and three times with left leg”

@ kick with right then left then right leg € kick four times with left leg (V]

(2) “a person walks in a counterclockwise circle and raises their hand to their face to yawn.”

® circle @ yawn @ circle € raise both hands
Momask BAMM

Figure 3: Comparison of motion sequences generated by different SOTA methods, with semantic
misalignments highlighted in red.

Table 3: Ablation study of loss functions on Hu- Table 4: Evaluations of optimizing different layers
manML3D by removing losses in Eq. (]Z[) or (EI) of CLIP text encoder on HumanML3D.

Loss Removed TOp-l T FID i MM-Dist *L Trainable Layers Parameters Top-11 FID |
Lsei 0.498 0.339 2.982 No trainable layers oM 0.521  0.045
Leross 0.533 0.044 2934 ‘Word embedding layers 3.2M 0.550  0.040
. Subsequent layers 3M 0.022  7.611
ﬁahg" 823 82‘2‘2 %ggg All layers 40.2M 0.014  9.468
sent - . . Adapter (LoRA)[Zhang et al. (2024b| 0.4M 0.525  0.051
Lyec 0.547  0.042 2.819
Full Model 0.550  0.040 2.811

Optimization of Different Layers. Table[d]compares the effects of optimizing different layers of
CLIP within the MATE framework. Fine-tuning subsequent layers or the entire model markedly
increases the number of trainable parameters, leading to severe overfitting and degraded generation
performance due to the limited size of motion datasets. Instead, MATE restricts optimization to
the word embedding layers, effectively aligning word-level semantics while preserving the strong
contextual representations captured by the subsequent frozen layers. We also evaluate the LoRA,
which is a commonly used LLM fine-tuning strategy [Zhang et al.| (2024D) by introducing additional
lightweight layers while keeping the pretrained model frozen. However, it does not lead to notable
performance improvements, suggesting its limited alignment ability in our setting.

Integration with Different Language Models. We tried constructing MATE with CLIP
and DistilBERT [Sanh et al| (2019), two of the most commonly adopted language
models in T2M methods, as the text encoder. As shown in Table[5] incorporating MATE with either
model consistently leads to remarkable performance gains, showing the strong compatibility and
generalization capability of MATE across different language models.

Attention Prior. The attention prior, based on motion localization, is evaluated in Table |6} “No
prior” denotes using the raw motion features as keys in Eq. (3) without any attention prior, making
word-level semantic extraction from full sequences challenging. “Binary (s,, <t < e,)” applies a
hard binary mask, assigning 1 to frames within the target segment and O elsewhere, which is highly
sensitive to segmentation errors. “Gaussian” is the soft attention prior defined in Eq. (). “Gaussian
(s, <t < ey)” restricts the prior within the segment, with zero attention outside. “Gaussian
(0 <t < T)” extends the prior across the entire sequence, softly emphasizing the target region while
gradually attenuating attention to neighboring frames, thus improving robustness to localization noise
and achieving the best generation results.

4.4 VISUALIZATION RESULTS

Motion Consistency with Word Change. To demonstrate that MATE effectively learns word-level
semantic understanding, we present examples in Fig. ] where individual words in the text prompts
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Table 5: Evaluation of integrating with different Table 6: Ablation of the attention prior in Eq. (E[)
large language models on HumanML3D. on KIT.

Momask MDM Attention Prior Top-1* FID] MM-Dist]
Top-1T FID] Top-1T FID]

= No prior 0.428 0.253 2.794
CLIP|Radford et al.|(2021} 0.521  0.045 0491  0.630 !
+MA‘I'E—I 0550  0.040 0536 0234  Binary (s, <t <ey) 0431 0217 2.746
DistilBERT[Sanh et al [2019] 0513 0053 0493  0.615 Gaussian (s, <t <e,) 0439 0.198 2.766
+MATE 0546 0.045 0542 0.244 Gaussian (0 <t <T) 0.443 0.197 2.732

Text Encoder

“turn right and sit down”  “turn left and sit down” “walk downstairs slowly”  “walk downstairs quickly”
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Figure 4: Motions generated by MATE when individual words in the text prompts are replaced with
their antonyms. In subfigure (2), both the left and right motions span the same time period, while the
right motion descends more stairs and exhibits a faster pace.

$

i1

are replaced with their antonyms. MATE accurately captures the semantic differences between “right
and “left” as well as “slowly” and “quickly,” and generates motions that are semantically aligned
with the corresponding words, highlighting its robust fine-grained word-level understanding.

circle xﬁo\ run \o SN sit N
clockwise To‘/ \ Jog —;‘O; squat vtj \
/- slowly =1 b / upstairs 4 /

quickly downstairs

anti-clockwise

O word embeddings w/o MATE O word embeddings with MATE =~ < attracted <« repelled

Figure 5: Word embedding distributions on the unit sphere, visualized by DOSNES (2019).
MATE brings kinematically related words closer together while separating antonyms.

Distributions of Word Embeddings. To better understand the mechanism underlying the perfor-
mance gains of our approach, we visualize the effect of MATE on word embeddings in Fig.[5] MATE
draws together the embeddings of kinematically related motion words (e.g., “clockwise” and “circle”,
“run” and “jog”) while pushing apart those with contrasting semantics (e.g., “quickly” and “slowly”,
“upstairs” and “downstairs”). This suggests that MATE structurally regularizes the word embedding
space, promoting a closer alignment with motion semantics.

5 LIMITATIONS

1) Although our method focuses on word-level semantic alignment, certain words (e.g., “position”,
“starting”, “area”) inherently lack clear kinematic semantics or rely on contextual information.
Future work will explore selective word-level semantic modeling strategies and the incorporation
of contextualized queries to better handle such cases. 2) Word frequencies are imbalanced in the
motion descriptions, which is not explicitly considered in this initial exploration of word embedding
fine-tuning. An important direction for future work is to explore re-weighting or adaptive updating
strategies to mitigate this imbalance.

6 CONCLUSION

In this work, we have proposed a systematic framework that integrates word-level motion localization,
semantic disentanglement and alignment, addressing the text-motion misalignment fundamentally
rooted in the word embeddings of large language models for motion generation. Our approach not
only demonstrates substantial improvements over state-of-the-art performance on two benchmarks,
but also highlights the strong potential of word embedding fine-tuning for enabling motion-aware
language modeling.
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A LLM USAGE STATEMENT

In this paper, we employed Large Language Models (LLMs) exclusively for language polishing and
grammatical refinement of the manuscript. The LLMs were not involved in formulating research
ideas, designing methodology, conducting experiments, analyzing results, or drawing conclusions.
All scientific contributions, including problem formulation, technical approach, experiments, and
analysis, were conceived and carried out solely by the authors.

B ADDITIONAL EVALUATION RESULTS

B.1 USER STUDY

43.1
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Figure 6: Statistical results of user study.

Questionnaire Design. We conducted a user study to evaluate the subjective quality of motions
generated by state-of-the-art methods. The study consisted of a questionnaire containing 40 groups
of questions. Each group included a textual description and three motion sequences generated by Mo-
Mask |Guo et al.| (2024), BAMM Pinyoanuntapong et al.|(2024a)), and MATE. 20 textual descriptions
were randomly sampled from HumanML3D. For each description, one half of the corresponding
motions were generated by models trained on HumanML3D |Mahmood et al.[{(2019), and the other
half by models trained on KIT |Plappert et al.|(2016)), in order to evaluate the generalization ability
across datasets. Another 20 descriptions were sampled from KIT and evaluated using the same
protocol. In total, 20 descriptions served as cross-dataset samples for assessing generalization. For
each question group, users were asked to answer the following two questions (multiple selections
allowed): 1) Which motion sequence best aligns with the textual description? 2) Which motion
sequence appears most realistic?

Questionnaire Administration. The questionnaire survey was distributed through public channels
of several academic and social groups. The majority of respondents were undergraduate and graduate
students, as well as researchers. Importantly, a portion of them had backgrounds in computer vision
and were familiar with evaluating Al-generated results, which ensured a reasonable level of expertise
among participants.

Results Analysis. We collected responses from 24 respondents. The statistical results are shown
in Fig.[6] Alignment and realism scores were computed over all 40 groups based on answers to
questions 1) and 2), respectively. The generalization score was calculated over the 20 cross-dataset
groups using responses to question 1). MATE significantly outperforms MoMask and BAMM across
all three metrics, with particularly notable gains in alignment score, demonstrating its superiority in
text-motion alignment, generation fidelity, and generalization ability.

B.2 EVALUATION ON DIVERSE TEXT-MOTION TASKS

Beyond text-to-motion generation, we further evaluate MATE on text-motion retrieval, motion
inpainting, and motion editing tasks to demonstrate the broad utility and generalizability of our
approach.

Text-Motion Retrieval. We compare MATE with existing text-motion retrieval models, including
TEMOS [Petrovich et al.| (2022), TMR [Petrovich et al.| (2023)), and LAVIMO [Yin et al. (2024),
under the standard text-motion retrieval setting. As shown in Table[7] MATE significantly improves
retrieval accuracy compared to the baseline trained without the L4 l0ss, demonstrating the benefit

14



Under review as a conference paper at ICLR 2026

Table 7: Top-1 text-motion mutual retrieval accuracy on HumanML3D. Baseline is MATE trained
without Lyoq. The evaluation protocols (a), (b), and (d) follow the settings provided in|Yin et al.
(2024).

Retrieval Methods (a) All  (b) All with threshold (d) Small batches
TEMOS [Petrovich et al.|(2022)  2.12 5.21 40.49

Text-Motion TMR Petrov_ich et al. (2023jt 5.68 11.60 67.16
LAVIMO |Yin et al.|(2024) 6.37 12.94 68.58
Baseline 2.34 2.46 23.65
MATE (ours) 6.03 11.42 71.24
TEMOS [Petrovich et al.|(2022)  3.86 5.48 39.96

Motion-Text TMR Petroyich et al. (2023:' 9.95 13.20 67.97
LAVIMO |Y1n et al.|(2024) 9.72 13.89 68.64
Baseline 2.05 1.98 21.66
MATE (ours) 6.78 11.93 69.25

Table 8: Evaluation on motion inpainting and editing tasks on HumanML3D.

Tasks Methods Topl11 FID| MM-Dist]

Motion Inpainting MMM [Pinyoanuntapong et al.|(2024b) ~ 0.523  0.071 2910
+MATE 0.538  0.066 2.884

Motion Editing MMM Pinyoanuntapong et al.|(2024b) ~ 0.500  0.103 2.972
+MATE 0.521 0.115 2.934

of explicitly optimizing word embeddings for enhancing text-motion alignment. While MATE
outperforms all compared methods under protocol (d), it does not achieve competitive performance
under protocols (a) and (b). This can be attributed to the different objectives: retrieval models aim to
maximize feature separability for retrieval accuracy, whereas MATE prioritizes semantically rich and
decodable representations that directly benefit motion generation.

Motion Inpainting and Editing. As shown in Table[8] MATE consistently improves performance on
motion inpainting and editing tasks when integrated with the MMM model |Pinyoanuntapong et al.
(2024b). Word-level misalignment is a fundamental limitation in text-conditioned motion generation,
so addressing this issue benefits a wide range of related tasks.

B.3 DISTRIBUTIONS OF DISENTANGLED FEATURES

To intuitively evaluate the accuracy of motion disentanglement, we visualize the distributions of the
disentangled motion features in Fig.[7} In Fig. (1), triangular, circular, and star-shaped markers of
the same color (corresponding to the same word) form distinct clusters, while features associated
with different words remain well separated. This indicates that the disentangled features are both
discriminative and semantically aligned with their respective word embeddings and prototypes.

In Fig.[/|(2), circular and rhombus-shaped markers of the same color are expected to be distinguish-
able, as meaningful disentanglement should occur only when the motion sequence contains the
semantics of the queried word. This behavior is clearly observed for words with clear kinematic mean-
ing, such as “upstairs” and “pick”, demonstrating that our approach does not indiscriminately extract
semantics from unrelated motions, which is essential for ensuring the disentanglement accuracy.

In contrast, for more ambiguous words like “quickly”, some overlap between markers is occasionally
observed, reflecting reduced robustness for semantically vague terms. This suggests that it remains
challenging to disentangle vague semantics such as “quickly” from mixed motion sequences that
both contain and do not contain the “quickly” semantics. Nevertheless, it is important to note that
during training, disentanglement for such vague terms is applied only to motion sequences whose
corresponding text explicitly contains the word “quickly”, thereby ensuring the accuracy of the
learned disentangled semantics.
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Figure 7: Visualization of motion disentanglement. e indicates motion features disentangled from
motions that semantically contain the queried word (e.g., using “upstairs” as query for motions like
“walk upstairs”). ¢ indicates motion features disentangled from motions that do not exhibit the
queried word’s semantics (e.g., using “upstairs” as query for motions like “sit down”). The features
are L2-normalized and subsequently visualized using t-SNE.

(1) “a person is playing tug-of-war”

(*] (~]
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Figure 8: Examples of generalizing state-of-the-art methods to unseen words. “Tug-of-war” is not
present in the training vocabulary. MATE generates a more plausible motion among the three motions
in (1), and a more accurate and contextually aligned motion in (2) when provided with more textual
details. Corresponding motion videos are available in the supplementary materials.

B.4 GENERALIZATION TO UNSEEN WORDS

MATE optimizes only the embeddings of words that appear in the training set. To evaluate its

generalization capability, we test MATE on unseen words and present qualitative examples in Fig. [§]
In the textual description “a person is playing tug-of-war”, the word “tug-of-war” does not appear in

the training vocabulary. Compared to MoMask Guo et al | and BAMM [Pinyoanuntapong et al.|
(2024a), MATE generates a more plausible motion of a person bending over and appearing to pull

something with their hands in place, making it the most consistent with a tug-of-war motion among

the three.

When the textual description is further specified as “a person is pulling a rope backward, as if in
a tug-of-war”, MATE generates the motion that best aligns with the input text, depicting a person
pulling a rope while slightly moving backward in place. This result demonstrates MATE’s superior
generalization ability to unseen words, particularly when provided with more detailed contextual
information.

This improvement can be attributed to two main factors. First, MATE develops a robust understanding

of seen words (e.g., “pulling”, “rope”, “backward”) by fine-tuning their embeddings within the
language model. The fine-tuning introduces only slight modifications to the word embeddings,
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thereby preserving the structural integrity of the original representations learned by the language
model. Second, the subsequent layers of the language model remain unchanged, maintaining
their strong contextual modeling capabilities. By combining the locally adapted word embeddings
for seen words with the inherent generalization ability of large language models, MATE improves
generalization performance on unseen words, especially when the textual descriptions are contextually
rich. More examples are provided in the supplementary video materials.

B.5 FAILURE CASES

The example on the right shows a failure case in which
the generated motion fails to accurately reflect the phrase
“walks back to starting point”. This illustrates a limitation
of MATE in capturing the semantics of abstract words like
“starting”, which require more contextual and temporal cues.
Our method focuses on extracting word semantics from the
target motion segment, while reducing attention to tempo-
rally distant content. Future work will incorporate richer “a person takes steps forward, sits down,
contextual cues to improve the semantic understanding of and then walks back to starting point.”

words that depend on broader temporal context.

Figure 9: Failure case in capturing the
semantics of “starting point.”

C IMPLEMENTATION DETAILS

Text-Motion Joint Segmentation. We use ChatGPT (gpt-4-turbo) to decompose the textual descrip-
tions. An example prompt is shown below:

"a man staggers forward, turns clockwise, then jogs back to starting
point."

Goal: Split the above sentence with \n.

Each contains simultaneous one or more motions.

Return the sentence in which the actions are arranged in the order
they occur.

Notes:

1. Each word may be used only once.

2. Each phrase must include at least one verb; do not introduce any
new words.

3. Adverbial modifiers like "as if", "while" should remain in the
same sentence

as the action they describe.

4. If all actions occur simultaneously, return the original sentence.

If the sentence is split into more than one sentence, they are fed into a pretrained text-to-motion re-
trieval model |Lu et al.[(2024) with the paired motion sequence to identify motion segment boundaries
by minimizing the objective defined in Eq. (1).

To improve the efficiency of the exhaustive search, we assume that the semantics of an action remain
relatively stable for at least 0.5s. Based on this assumption, we constrain each segment’s length to
be a multiple of 0.5s and apply a fixed sliding window with a stride of 0.5s. This corresponds to 10
frames in HumanML3D and 6 frames in KIT. If the final segment is shorter than 0.5s, it is merged
with the preceding segment.

Examples of decomposed sentences and the corresponding motion segments are provided in the
supplementary video materials.

Model Structures. The text encoder adopts the original architecture of large language models
without any modifications. The motion encoder and decoder follow the design presented in |Petrovich
et al.[(2022). The motion encoder simultaneously extracts frame-level features F'"* € RT*D and a
sequence-level feature f™ € R, where the feature dimension D is fixed at 512. This dimensionality
is consistently used across motion features, prototype representations f7 , and the linear projection
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layer Proj. The MultiHead module is an 8-head attention mechanism with an embedding dimension
of 512 and a dropout rate of 0.1.

Training Details. Text-motion joint segmentation is performed as a preprocessing step prior to
training. The MATE framework is trained on the training sets of the respective datasets using the
AdamW optimizer. The learning rate is set to le-5 for the word embedding layer and le-4 for all
other layers. Training is performed on one RTX 4090 GPU (24 GB) with a batch size of 64 for 100
epochs.

To construct the word prototypes, we first lemmatize the textual descriptions and build the vocabulary
accordingly, resulting in K = 5,161 and 1, 191 prototypes for HumanML3D and KIT, respectively.
Each word in the input text is lemmatized to match its corresponding prototype. For example, “walks”
and “walking” are both lemmatized to “walk” and share the same prototype.

The 10ss Lgen; follows a similar formulation to Eq. (6), where paired text and motion features f?
and f™ serve as positive examples, and mismatched pairs are treated as negatives. The loss L. is
defined as an L1 loss between the original motion sequence and the reconstructed sequence.

The hyperparameters are set as follows: the weight of the attention prior loss is A = 0.1; the weights
for Lyorg and Lgene are Ay = Ao = 0.1; and all temperature parameters are set to 7 = 0.05.

During the cross-disentanglement process, when computing the 10ss Lros5, the set of negative pairs
N is constructed as follows: For the i-th textual description #; and its associated word semantics w;,
we compute the cosine similarity between the feature of w; and those of all other textual descriptions
t; within the batch (where j € V and j # %). The top 8 samples with the lowest similarity scores are
selected to form the negative set for the ¢-th instance. This strategy ensures that the selected negatives
are the least likely to share the same target word semantics w;, thereby enhancing the reliability of
the cross-disentanglement process.

D ADDITIONAL ABLATION STUDY

D.1 ANALYSIS OF TEXT-MOTION JOINT SEGMENTATION

Table 9: Quantitative evaluation of text-motion joint segmentation results.

Metrics HumanML3D KIT
Text decomposition accuracy (%) 97.0 98.5
Motion segmentation errors (sec) 0.73 0.42

Quantitative Evaluation. To quantitatively evaluate text-motion joint segmentation, we manually
assess the text decomposition results and annotate ground-truth segmentation boundaries for 200
motion sequences randomly sampled from the HumanML3D and KIT datasets, respectively. We then
compute the average accuracy of text decomposition and the boundary errors between our predictions
and the ground truth, with results reported in Table[9] The decomposition accuracy reaches 97.0%
and 98.5% on the two datasets, demonstrating the strong text-processing capability of large language
models within our approach. The small boundary errors (0.73s and 0.42s) further indicate that our
method achieves precise alignment, with deviations well within a second, between decomposed texts
and segmented motion clips. Notably, while some noise may be introduced around the segmentation
boundaries, our Gaussian-based soft attention mechanism leverages soft localization signals rather
than rigid hard segmentation, thereby improving robustness to such noise.

Qualitative Analysis. We present examples of text-motion joint segmentation in Fig. The textual
decomposition generated by ChatGPT is generally accurate. The primary source of error arises from
imprecise boundaries predicted by the segmentation module. For instance, the boundaries in (1) are
correctly identified, whereas in (2), the transition between “walks three steps forward” and “halts and
sits down” is slightly misaligned.

Such boundary inaccuracies are anticipated in our framework. Instead of applying a hard binary
mask to isolate target segments, MATE leverages the segmentation output as a soft attention prior,
modeled using Gaussian-shaped attenuation. This approach mitigates the impact of boundary errors
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Figure 10: Examples of text-motion joint segmentation. Different colors represent the decomposed
sub-texts and their corresponding motion segments. The segmentation in (1) is accurate, while in (2),
the third motion segment corresponding to “halts and sits down” includes the partial semantics of the
second sub-text “walks three steps”, which reflects a minor boundary imprecision. Corresponding
motion videos are available in the supplementary materials.

and enhances robustness to segmentation imprecision, ultimately improving alignment quality. The
quantitative comparison of different attention strategies is shown in Table 6 in the main paper.

Segment Unit Length. As described in Sec.|§|, our ap-
proach constrains each segment length to be a multiple of
0.5s to improve computational efficiency. The effect of
the segment unit length is reported in Table[I0] Results

Table 10: Evaluation of segment unit length.

Segment Unit Length (s) Top 11 MM-Dist |

show that 0.25s and 0.5s yield comparable performance, 0.25 0.546 2.804
whereas larger units (>0.75s) cause slight degradation. 0.5 0.550  2.811
We adopt 0.5s as a balanced setting that maintains seg- 0.75 0.538  2.826

mentation quality while improving processing speed. 1.0 0.541 2.847

D.2 ANALYSIS OF WORD-LEVEL AND SENTENCE-LEVEL CONTRIBUTIONS

MATE directly optimizes word embeddings and indirectly optimizes sentence-level features. To
investigate their respective contributions to performance, we conduct experiments with MMM [Pinyoa+
nuntapong et al.| (2024b)), which explicitly separates the effects of word embeddings and sentence
features, thereby providing a suitable framework for this analysis. Specifically, we selectively replace
the word embeddings and sentence features in CLIP within MMM with their MATE-enhanced
counterparts, and report the results in Table[TT]} The results reveal three key findings:

1) Enhancing either word embeddings or sentence features independently improves performance.
2) Sentence-level enhancement yields slightly larger gains, likely due to the stronger influence of
sentence features compared to word embeddings in MMM. 3) Joint enhancement at both levels leads
to the best performance, confirming that MATE improves generation by simultaneously enhancing
both representations.

Table 11: Evaluation of enhancing word embeddings or sentence features in MMM

(2024b) on HumanML3D.

Word Embeddings  Sentence Features Top1{ FID] MM-Dist]

CLIP CLIP 0.515 0.089  2.926
MATE CLIP 0.522 0.098 2913
CLIP MATE 0.530 0.081  2.909
MATE MATE 0.541 0.069 2.887
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D.3 COMPARISON WITH TEXT-MOTION RETRIEVAL METHODS

We also explore optimizing word embeddings of large
language models using text-motion retrieval models,
specifically TEMOS |Petrovich et al.|(2022) and TMR

. . Methods Top1+ FID| MM-Dis
Petrovich et al.| (2023). We fine-tune word embeddings sthods _ op 11 + istd

Fthe CLIP toxt ) ine the ali { strateei MoMask|Guo et al.|(2024) 0433 0204 2779
of the CLIP text encoder using the alignment strategies +TEMOS|[Petrovich et al.[(2022) 0427  0.226 2772
proposed in these works. The fine-tuned encoder then +TMR [Petrovich et al.|(2023} 0434 0235 2767

o - o +MATE 0443 0197 2732

replaces the original text encoder in MoMask, which is
retrained with this modification. As shown on the right,
neither TEMOS nor TMR leads to consistent or signif- Table 12: Comparison of optimizing word em-
icant performance improvements for MoMask. This  beddings with different text-motion retrieval

is likely because both methods focus on sentence-level models on the KIT dataset.
alignment, without explicitly optimizing individual word

embeddings to capture fine-grained, motion-specific se-

mantics.

D.4 ANALYSIS OF WORD FREQUENCY

We present the distribution of word frequencies on HumanML3D in Table[I3] A small proportion
of words occur very frequently, while the majority appear infrequently, indicating a clear word
imbalance. To address this issue, we conducted an initial exploration using a classical re-weighting
strategy |Cui et al.| (2019) that decreases updates for high-frequency words and increases them for
low-frequency words, with results reported in Table[I4] However, this strategy results in performance
degradation, which we attribute to the unique characteristics of our task compared with standard
long-tail learning.

In our setting, word embeddings are aligned with motion semantics through fine-tuning. This process
requires a delicate balance between adapting to motion-specific semantics and preserving pretrained
language priors, a balance that varies depending on word frequency.

1) High-frequency words. These benefit from abundant samples, which allow the construction of
more stable motion prototypes. As described in our stability principle and Eq. (3)), we align word
embeddings with prototypes that capture shared semantics across many instances rather than single
examples, thereby reducing bias and instability. Suppressing updates for high-frequency words can
therefore weaken the learning of generalized motion semantics.

2) Low-frequency words. These are more susceptible to noisy supervision due to limited data. Simply
increasing their updates may lead to overfitting or semantic drift away from their original language
priors. In such cases, limiting updates can better preserve semantic stability and reduce the risk of
unreliable adaptation.

Overall, achieving an optimal trade-off remains challenging and requires more careful strategy design.
As future work, we plan to develop adaptive re-weighting strategies that not only account for word
frequency but also dynamically assess the reliability of motion semantics during updates.

Table 13: Word Frequency Statistics. Table 14: Evaluation of reweighting.
Frequency >1,000 100-1,000 10-100 <10 Methods Toplt FID] MM-Dist|
Words 53% 235%  47.6% 23.6%  MAIE 0550 0.040 2811

MATE with re-weighting ~ 0.536  0.066 2.924

D.5 ANALYSIS OF HYPER-PARAMETERS

Fig.|l1]illustrates the effect of key hyper-parameters in the MATE framework. In the left subfigure,
A1 and )\, denote the weight factors for the word-level loss Lyoq and the sentence-level 10ss Ly,
respectively. Compared to Ay, A1 has a more pronounced impact on the generation results, indicating
that the model is more sensitive to variations in word-level alignment than in sentence-level alignment.
In the right subfigure, A controls the strength of the attention prior. A relatively small value may fail
to provide sufficient motion localization guidance, while an overly large value can compromise the
model’s robustness to inaccuracies in the prior. The best performance is observed when A = 0.1. The
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temperature parameter 7 used in Lgeir, Latign, and Lgen, modulates the contrast between positive and
negative sample similarities. Empirically, the model achieves optimal performance when 7 = 0.05.

0.56 0.56

Top 1 score

0.5 0.5
001 01 05 1 5 0.01 005 01 05 1 5

A A - A T

Figure 11: Analysis of hyper-parameters on HumanML3D dataset.
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