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ABSTRACT

Existing text-to-motion (T2M) generation models typically rely on pretrained large
language models to encode textual inputs. However, these models, trained on
generic text corpora, lack explicit alignment between motion-related words (e.g.,
“clockwise”, “quickly”) and human skeletal movements. This misalignment, funda-
mentally rooted in the word embedding layers, severely limits the ability of T2M
models to understand and generalize fine-grained motion semantics. To tackle this
issue, we propose Motion-Aligned Text Encoding (MATE), a novel framework
that explicitly incorporates motion semantics into the word embedding layers of
large language models to enhance text-motion alignment for motion generation.
To address the challenge of inherent semantic entanglement in motion sequences,
MATE introduces two key components: 1) a motion localization strategy that estab-
lishes localized correspondences between sub-texts and motion segments, enabling
soft attention guidance for semantic localization; and 2) a motion disentanglement
module that isolates word-specific motion semantics via contrastive kinematic
prototypes, ensuring word-level alignment between linguistic and kinematic repre-
sentations. Remarkably, language models enhanced with MATE can be seamlessly
integrated into existing T2M methods, significantly surpassing state-of-the-art
performance on two standard benchmarks with minimal modifications. Codes and
pretrained models will be released upon acceptance.

1 INTRODUCTION

Text-to-motion (T2M) generation aims to synthesize sequences of human skeletal movements con-
ditioned on textual descriptions Zhou et al. (2024a); Chi et al. (2024); Liu et al. (2024a); Fan et al.
(2024); Wang et al. (2024). As a cross-modal generation task, T2M requires models to accurately
translate textual descriptions into motion semantics and decode them into realistic human motions.
However, existing T2M approaches still often exhibit limited cross-modal understanding. As shown in
Fig. 1, while current models achieve the sentence-level alignment in example (1), they often struggle
to robustly understand motion-related words such as “clockwise”, leading to poor generalization and
failure to generate plausible results for descriptions like “jogs in a clockwise motion” in example (2).

This limited word-level understanding largely stems from the limitations of text encoders, which
process the textual inputs and directly determine the semantic information conveyed to the mo-
tion generator. While most T2M methods adopt pretrained large language models (LLMs) such
as CLIP Radford et al. (2021) or DistilBERT Sanh et al. (2019) to leverage their strong textual
understanding capabilities, these models are trained on general text corpora (or text-image pairs in
the case of CLIP), lacking fine-grained alignment between motion-related words and human skeletal
movements. In particular, the word embedding layers in LLMs fundamentally define the word
semantics, which can differ substantially between linguistic and kinematic contexts. For instance,
while “clockwise” functions linguistically as an adjective or adverb, in the kinematic domain it
denotes a concrete rotational motion with a specific directional orientation. Without addressing
such cross-modal word-level misalignment, LLMs struggle to encode motion-aware information
effectively, inherently limiting the generation quality and generalization ability of T2M approaches.

To address this limitation, we propose Motion-Aligned Text Encoding (MATE), a novel framework
that incorporates motion semantics into the word embedding layers of LLMs to enhance text-motion
alignment for motion generation. MATE optimizes only the word embedding layers while freezing
the subsequent layers, which retain strong contextual modeling abilities acquired during large-scale

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

MoMask MoMask + MATE

(1) “a person walks in a clockwise circle”

MoMask

(2) “a person jogs in a clockwise motion and falls to 

their knees, he then gets back up onto his feet”

Figure 1: Examples generated by the state-of-the-art MoMask model Guo et al. (2024), with darker
colors indicating motion progression. MoMask correctly produces “clockwise” motion in (1), but
fails in (2), revealing limited robustness and generalization in capturing motion-related word-level
semantics. Incorporating our Motion-Aligned Text Encoding (MATE) enables MoMask to produce
the correct motion.

language model pretraining. We hypothesize that these higher layers can generalize effectively
to motion semantics, as language and motion share structural properties, i.e., both consisting of
compositional elements (e.g., words and actions) organized in temporal sequences.

However, incorporating word-specific motions semantics into word embeddings remains highly
challenging and largely underexplored, primarily due to the intrinsic entanglement of motion seman-
tics. Existing datasets typically provide only sentence-level annotations for entire motion sequences
Guo et al. (2022a); Plappert et al. (2016), lacking explicit alignment between specific words and
corresponding motion segments. This limitation restricts the model’s ability to temporally ground
word-level semantics, particularly in sequences involving multiple compositional actions. More
importantly, the semantics associated with related words are inherently intertwined, making it difficult
to attribute distinct motion patterns to individual words, thereby limiting the model’s capacity for
fine-grained semantic understanding.

To address these challenges, MATE introduces two key components: 1) A motion localization strategy
that jointly decomposes paired textual descriptions and motion sequences into semantically aligned
sub-units. This enables the construction of a soft attention prior that guides the temporal localization
of word semantics; and 2) A motion disentanglement module that isolates word-specific motion
semantics through two complementary mechanisms: self-disentanglement, which extracts shared
semantics across related motions via contrastive kinematic prototypes; and cross-disentanglement,
which enforces the exclusion of unrelated semantics, jointly ensuring semantic purity and inter-word
discriminability. The disentangled motion semantics are then aligned with their corresponding word
embeddings, effectively addressing the word-level misalignment inherent in LLMs.

MATE offers an resource-efficient solution for LLM fine-tuning by optimizing only word embedding
layers, while maintaining broad compatibility with various LLMs. The MATE-enhanced LLMs
can be seamlessly integrated into existing T2M methods with minimal architectural modifications.
Extensive experiments demonstrate that MATE consistently improves text-motion alignment and
generalization capability, significantly advancing the state of the art on standard benchmarks including
HumanML3D Mahmood et al. (2019) and KIT Plappert et al. (2016). The main contributions of this
work are summarized as follows:

1) To the best of our knowledge, MATE is the first framework to explicitly address the text-motion
misalignment fundamentally rooted in the word embeddings of LLMs for motion generation. 2)
We introduce a text-motion joint segmentation strategy that automatically establishes correspon-
dences between sub-texts and motion segments, enabling action-level semantic localization for
paired text-motion data. 3) We propose a motion disentanglement module that achieves word-level
semantic disentanglement, mitigating the challenge of semantic entanglement in motion sequences.
4) Extensive experiments demonstrate that MATE-enhanced language models can be seamlessly inte-
grated into existing T2M pipelines, yielding substantial performance improvements and significantly
surpassing state-of-the-art results across two standard benchmarks.

2 RELATED WORKS

Text-to-Motion Generation typically involves two stages: text encoding and motion synthesis
Shafir et al. (2024); Xie et al. (2024); Liu et al. (2023); Liang et al. (2024). Textual descriptions
are first projected into a latent feature space and subsequently translated into motion sequences.
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Most existing methods keep the text encoder frozen and primarily focus on improving the motion
generation process, leveraging advanced architectures such as diffusion models Tevet et al. (2023);
Zhang et al. (2023b); Jin et al. (2024a); Ren et al. (2023); Wang et al. (2023) and quantized variational
autoencoders Chen et al. (2023); Zhang et al. (2023a); Van Den Oord et al. (2017); Dai et al. (2024).
Another line of research seeks to enhance text encoding by constructing hierarchical semantic graphs
over text embeddings to better capture fine-grained motion semantics Wang et al. (2023); Jin et al.
(2024b). However, these methods typically rely on off-the-shelf text embeddings from pretrained large
language models (LLMs), overlooking the inherent semantic gap between linguistic and kinematic
representations caused by LLM itself. In contrast, our method introduces motion-aligned fine-tuning
of LLMs, facilitating more accurate and robust modeling of motion semantics from textual inputs.

Text-Motion Retrieval aims to retrieve the most relevant motion given a text query, or vice versa. Ex-
isting approaches often focus on enhancing text-motion alignment through contrastive representation
learning Yan et al. (2023); Yin et al. (2024); Guo et al. (2022b) or probabilistic divergence objectives
such as KL divergence Petrovich et al. (2022). These methods usually utilize pretrained LLMs Tevet
et al. (2022) or adapter-based enhancements Petrovich et al. (2022; 2023); Lu et al. (2024) to construct
the joint embedding space, but the underlying cross-modal misalignment originating from pretrained
language representations remains largely unresolved. Our work addresses this core limitation by
improving motion semantic alignment within language models.

Large Language Model Fine-Tuning has emerged as a powerful paradigm for adapting general-
purpose textual representations to downstream tasks such as domain adaptation Ding et al. (2023);
Susnjak et al. (2025); Wei et al. (2023), image generation Li et al. (2024); Liu et al. (2024b); Ruiz
et al. (2023), and video generation Rasheed et al. (2023); Wu et al. (2023). In the context of T2M,
recent works LMM Zhang et al. (2024a), MotionGPT Jiang et al. (2023), AvatarGPT Zhou et al.
(2024b), Motion-Agent Wu et al. (2025) unify multiple text-motion tasks within a single framework,
often incorporating expanded token vocabularies and instruction tuning techniques Ouyang et al.
(2022). Our method differs in two key aspects. First, rather than pretraining the entire language
model, which typically demands substantial computational resources and large-scale integrated
datasets, we focus specifically on the compact word embedding layers, offering a more data- and
resource-efficient solution. Second, instead of introducing a standalone framework, our approach
produces plug-and-play motion-aligned text encoders that can be directly integrated into various T2M
models, yielding substantial performance improvements without changing their architectures.

3 METHOD

3.1 OVERVIEW

Word embedding layers, typically placed at the input of LLMs, function as a lexical lookup table
that maps discrete word tokens to continuous vectors for contextual modeling. They play a crucial
role in encoding word meanings and inter-word relationships. However, word-level semantics in
linguistic domain often differ fundamentally from those in the kinematic domain. For example,
“clockwise” and “anti-clockwise” are linguistically similar, due to sharing morphological structure
and grammatical function. In contrast, they kinematically denote opposite directions of rotation and
are incompatible, thus leading to significant cross-modality discrepancies.

To bridge this gap, unlike existing T2M methods that use pretrained LLMs without adaptation, this
work introduces Motion-Aligned Text Encoding (MATE), a novel approach for explicitly aligning the
word embedding layers in LLMs with word-specific motion semantics.

Specifically, we formulate the learning objective as follows: given a triplet {t,m,w} sampled from
the training set, where t denotes a textual description, m is the corresponding motion sequence, and
w is a word token sampled from t, the goal is to align the textual semantics of w with its associated
motion semantics expressed in m by optimizing its word embeddings in language models.

To achieve this alignment, as illustrated in Fig. 2, MATE comprises two key components: 1) Motion
localization, which establishes correspondences between temporally aligned subtexts and motion
segments for word semantic localization; 2) Motion disentanglement, which disentangles motion
features that are semantically attributable to individual words for alignment with their corresponding
word embeddings.

3
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Figure 2: (1) Overview of the MATE framework, which comprises a text encoder (with trainable word
embedding layers), a motion encoder, and a motion decoder, together with: (2) Motion localization,
which establishes temporal text-motion correspondences to construct a Gaussian-shaped attention
prior for guiding word-level semantic localization; and (3) Motion disentanglement, which employs
multi-head attention to disentangle motion semantics of specific words for semantic alignment.

3.2 TEXT-GUIDED MOTION LOCALIZATION

A motion sequence is a complex integration of multiple word-level semantics, making fine-grained
semantic alignment particularly challenging, especially in long sentences involving multiple words
and actions. To tackle this issue, we adopt a coarse-to-fine semantic extraction strategy, with the
first sub-goal of localizing the motion semantics corresponding to an individual word w within the
motion sequence m. However, most existing motion datasets Guo et al. (2022a); Plappert et al.
(2016) provide only sentence-level annotations for entire sequences, lacking explicit supervision for
word-level localization. To overcome this limitation, we propose a text-motion joint segmentation
pipeline that automatically establishes correspondences between each sub-action described in the text
and its counterpart segment in the motion sequence, as illustrated in Fig. 2 (2).

Specifically, we employ ChatGPT Roumeliotis & Tselikas (2023) to decompose each textual de-
scription t into a set of sub-texts t1, · · · , tN (N ≥ 1), where each sub-text describes one or more
temporally coherent actions. We then seek to segment the motion sequence m into N non-overlapping
clips, each aligned with its corresponding sub-text. To this end, we formulate an optimal partitioning
problem, where segment boundaries are adjusted to minimize the matching loss between each sub-text
and its corresponding motion segment. Given a sentence decomposed into N sub-texts, the objective
is defined as:

min
{sn,en}

N∑
n=1

1− cos
(
Et(tn), Em(m[sn : en])

)
, (1)

where sn and en denote the start and end frames of the n-th segment, constrained by sn+1 = en.
Here, Et and Em are frozen text and motion encoders from a pretrained text-to-motion retrieval
model Lu et al. (2024), and cos(·, ·) denotes the cosine similarity between encoded text and motion
features. An exhaustive search over all valid partitions is performed to identify the boundaries that
best align motion segments with their respective sub-texts.

The obtained segmentation is not directly used as ground-truth localization, but instead serves as
a soft prior to guide the discovery of the semantics of the word w within the motion sequence m.
Specifically, a motion encoder simultaneously extracts a sequence-level representation fm ∈ RD

and frame-level features Fm ∈ RT×D from the motion sequence m, where T denotes the number of
frames and D is the feature dimension. We introduce a multi-head attention mechanism, in which the
word embeddings serve as a query to explicitly attend to relevant motion features, formulated as:

fm
word = MultiHead(Q,K, V ), (2)
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Q = Proj(WE(w)), K = (1 + λ ·AttentionPrior(t))⊙ Fm, V = Fm. (3)
Here, WE(w) is the trainable word embeddings of w from the text encoder, Proj is a linear projection
layer, and AttentionPrior(t) is a temporal attention prior derived from segmentation information:

AttentionPrior(t) = exp(− (t− cn)
2

2σ2
n

), with cn =
sn + en

2
, σn =

en − sn
2

. (4)

where t is the frame index, and sn, en are the start and end frames in the localized segment of w,
respectively. The Gaussian-shaped AttentionPrior(t) softly highlights frames near the center of the
localized segment while smoothly attenuating distant frames, thereby improving robustness against
localization errors introduced by the segmentation process.

3.3 WORD-GUIDED MOTION DISENTANGLEMENT

While the above approach enables localization of word-level semantics, the semantics of related
words remain highly intertwined. For instance, as shown in Fig. 2 (1) and (2), although the segment
corresponding to “turn clockwise” can be identified, it remains challenging for the model to accu-
rately distinguish between the semantics of “turn” and “clockwise”, thereby hindering the precise
understanding of individual words. To address this limitation, we propose a word-guided motion
disentanglement approach that explicitly isolates motion semantics attributable to individual word
units. Toward this goal, we introduce the following three criteria for effective motion disentanglement.

1) Stability: A given word query should consistently attend to shared motion features across
different motions that exhibit the corresponding semantics (e.g., the features disentangled by the word
“clockwise” from motions of “turn clockwise” and “jog in a clockwise circle” should remain similar.

2) Discriminability: Different word queries should result in semantically distinct motion features
(e.g., the features disentangled by “turn” should be distinguishable from those by “clockwise”).

3) Rationality: Disentanglement should yield meaningful features only when the motion sequence
contains semantics associated with the queried word (e.g., querying “clockwise” from the motion of
“walk forward” should not produce a meaningful feature representation).

To satisfy Criteria 1 and 2, we introduce a self-disentanglement mechanism based on prototype
representations. Specifically, we predefine a set of motion-word prototypes consisting of K learnable
vectors {fp

wk
}Kk=1, each representing the motion semantics associated with a specific word wk.

Suppose {ti,mi,wi} the i-th triplet sample in a mini-batch, the disentangled motion features fmi
wi

satisfy the self-disentanglement loss Lself:

Lself =
1

|V|
∑
i∈V

− log
exp(cos(fmi

wi
,fp

wi
)/τ)∑K

k=1 exp(cos(f
mi
wi ,f

p
wk)/τ)

, (5)

where V is the set of samples in a mini-batch. The loss Lself encourages fmi
wi

to be pulled closer to its
corresponding prototype fp

wi
while being pushed away from all other prototypes. Simultaneously,

each prototype is optimized towards a stable and shared semantic representation across motions that
express the semantics of wi. In contrast to conventional contrastive losses Radford et al. (2021);
Oord et al. (2018) that operate at the batch level, the introduction of prototypes enables contrastive
learning over dataset-wide word semantics, thereby enhancing the stability and discriminability of
motion disentanglement.

To satisfy Criterion 3, we further formulate a cross-disentanglement mechanism: the motion mi is
also queried by the word token wj from the j-th sample, and if mi does not contain the semantics
of wj , the model is encouraged to produce motion features that are orthogonal to the reasonably
disentangled features fmi

wi
. The cross-disentanglement loss Lcross is defined as

Lcross =
1

|N |
∑

(i,j)∈N

∣∣ cos(fmi
wi

,fmi
wj

)
∣∣+ ∣∣ cos(fmi

wi
,fmj

wi
)
∣∣,

where N is the set of negative pairs, and fmi
wj

denotes the disentangled motion features from the i-th
sequence mi with the word query wj from the j-th sample. Lcross drives the model to discriminate
whether the queried word semantics is expressed in the motion sequence to ensure the accuracy of
motion disentanglement.
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Table 1: Results on HumanML3D Mahmood et al. (2019). “↑”, “↓” and “→” indicate that higher
values, lower values, or values closer to real motion are better, respectively. Red and blue highlight
the top two results.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real motions 0.511±0.003 0.703±0.003 0.797±0.003 0.002±0.000 2.974±0.008 9.503±0.065 -

GraphMotion Jin et al. (2024b) 0.504±0.003 0.699±0.002 0.785±0.002 0.116±0.004 3.070±0.008 9.692±0.067 2.766±0.096

Motion Mamba Zhang et al. (2024c) 0.502±0.003 0.693±0.002 0.792±0.002 0.281±0.009 3.060±0.058 9.871±0.084 2.294±0.058

ParCo Zou et al. (2024) 0.515±0.003 0.706±0.003 0.801±0.002 0.109±0.005 2.927±0.008 9.576±0.088 1.382±0.060

CoMo Huang et al. (2024) 0.502±0.002 0.692±0.007 0.790±0.002 0.262±0.004 3.032±0.015 9.936±0.066 1.013±0.046

BAMM Pinyoanuntapong et al. (2024a) 0.522±0.003 0.715±0.003 0.808±0.003 0.055±0.002 2.936±0.077 9.636±0.009 1.732±0.055

MDM Tevet et al. (2023) 0.320±0.005 0.498±0.004 0.611±0.007 0.544±0.044 5.566±0.027 9.559±0.086 2.799±0.072

+MATE (ours) 0.509±0.002 0.698±0.002 0.797±0.003 0.332±0.002 3.057±0.063 9.468±0.053 2.773±0.062

MotionDiffuse Zhang et al. (2022) 0.491±0.001 0.681±0.001 0.782±0.001 0.630±0.001 3.113±0.001 9.410±0.049 1.553±0.042

+MATE (ours) 0.536±0.001 0.721±0.001 0.821±0.001 0.234±0.002 2.907±0.002 9.446±0.081 1.703±0.055

MMM Pinyoanuntapong et al. (2024b) 0.515±0.002 0.708±0.002 0.804±0.002 0.089±0.005 2.926±0.007 9.577±0.050 1.226±0.035

+ MATE (ours) 0.541±0.001 0.729±0.003 0.820±0.002 0.069±0.003 2.887±0.017 9.562±0.088 1.469±0.057

MoMask Guo et al. (2024) 0.521±0.002 0.713±0.002 0.807±0.002 0.045±0.002 2.958±0.008 9.632±0.072 1.241±0.040

+ MATE (ours) 0.550±0.002 0.737±0.002 0.832±0.002 0.040±0.002 2.811±0.007 9.516±0.092 1.369±0.036

3.4 MOTION-ALIGNED WORD EMBEDDING

To align the disentangled motion features with corresponding word embeddings, we formulate an
alignment loss Lalign as

Lalign =
1

|2V|
∑
i∈V

(− log
exp(cos(fe

wi
,fmi

wi
)/τ)∑

j∈V
exp(cos(fe

wi
,f

mj
wj )/τ)

− log
exp(cos(fmi

wi
,fe

wi
)/τ)∑

j∈V
exp(cos(fmi

wi ,f
e
wj

)/τ)
), (6)

where fe
wi

= Proj(WE(wi)) is the projected word embeddings, consistent with the query in Eq (3).
This loss adopts a symmetric InfoNCE formulation Oord et al. (2018) to encourage alignment between
paired word embeddings and their motion semantics while simultaneously promoting separation
between mismatched pairs. The motion-aligned word embedding loss is summarized as

Lword = Lself + Lcross + Lalign. (7)

However, the above approach primarily focuses on individual word-level alignment and overlooks
the contextual dependencies among words. To tackle this issue, we further introduce a sentence-level
alignment objective, which aligns the text feature vector f t extracted from t with the corresponding
motion feature vector fm from m using an InfoNCE loss Lsent. Additionally, fm is passed through
a motion decoder to reconstruct the original motion sequence m, guided by a reconstruction loss Lrec
to preserve detailed motion information. The overall training objective is:

Lall = Lrec + λ1 · Lword + λ2 · Lsent, (8)

where λ1 and λ2 are weighting factors.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Dataset. We conduct experiments on two standard human motion datasets: HumanML3D Mahmood
et al. (2019) and KIT Plappert et al. (2016). HumanML3D contains 14,616 motion sequences,
annotated with 44,970 textual descriptions, while KIT includes 3,911 motion sequences paired with
6,278 text descriptions.

Evaluation Protocols. Following the standard protocol Guo et al. (2022a), we adopt five evaluation
metrics: R-Precision and Multimodal Distance (MMDist) measure how accurately generated
motions match the text. Frechet Inception Distance (FID) evaluates the distributional similarity
between generated and real motion features. Diversity computes the average Euclidean distance
across 300 randomly sampled pairs of generated motions. MultiModality (MModality) reflects the
variation of generated motions, calculated as the average distance among 10 motions generated from
the same text.

6
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Table 2: Results on KIT Plappert et al. (2016), using the same notations as in Table 1.

Methods R-Precision ↑ FID ↓ MM-Dist ↓ Diversity → MModality ↑Top-1 Top-2 Top-3

Real motions 0.424±0.005 0.649±0.006 0.779±0.006 0.031±0.004 2.788±0.012 11.08±0.097 -

GraphMotion Jin et al. (2024b) 0.429±0.007 0.648±0.006 0.769±0.006 0.313±0.013 3.076±0.022 11.12±0.135 3.627±0.113

Motion Mamba Zhang et al. (2024c) 0.419±0.006 0.645±0.005 0.765±0.006 0.307±0.041 3.021±0.025 11.02±0.098 1.678±0.064

ParCo Zou et al. (2024) 0.430±0.004 0.649±0.007 0.772±0.006 0.453±0.027 2.820±0.028 10.95±0.094 1.245±0.022

CoMo Huang et al. (2024) 0.422±0.009 0.638±0.007 0.765±0.011 0.332±0.009 2.873±0.021 10.95±0.196 1.249±0.008

BAMM Pinyoanuntapong et al. (2024a) 0.436±0.007 0.660±0.006 0.791±0.005 0.200±0.011 2.714±0.016 10.91±0.097 1.517±0.058

MDM Tevet et al. (2023) 0.164±0.004 0.291±0.004 0.396±0.004 0.497±0.021 9.191±0.022 10.85±0.109 1.907±0.214

+ MATE (ours) 0.407±0.006 0.608±0.005 0.723±0.007 0.297±0.026 2.978±0.046 10.93±0.112 1.988±0.194

MotionDiffuse Zhang et al. (2022) 0.417±0.004 0.621±0.004 0.739±0.004 1.954±0.062 2.958±0.005 11.10±0.143 0.730±0.013

+ MATE (ours) 0.432±0.005 0.644±0.004 0.763±0.005 0.965±0.077 2.852±0.005 11.12±0.104 1.204±0.013

MMM Pinyoanuntapong et al. (2024b) 0.404±0.005 0.621±0.005 0.744±0.004 0.316±0.028 2.977±0.019 10.91±0.101 1.232±0.039

+ MATE (ours) 0.422±0.008 0.642±0.004 0.770±0.007 0.253±0.017 2.815±0.026 10.38±0.101 1.533±0.044

MoMask Guo et al. (2024) 0.433±0.007 0.656±0.005 0.781±0.005 0.204±0.011 2.779±0.022 10.88±0.099 1.131±0.043

+ MATE (ours) 0.443±0.006 0.669±0.005 0.798±0.007 0.197±0.015 2.732±0.014 10.96±0.098 1.683±0.041

Implementation Details. The text encoder in the MATE framework could be various large language
models, such as CLIP Radford et al. (2021), DistilBERT Sanh et al. (2019), etc. The number of
word prototypes (K) is automatically decided by the number of words included in the training set.
Specifically, we perform lemmatization on textual descriptions and summarize the vocabulary, estab-
lishing K= 5,161 and 1,191 prototypes for HumanML3D and KIT, respectively. These prototypes
are initialized with their corresponding word embeddings in the pretrained language models.

After training MATE, we integrate the MATE-enhanced text encoder into existing T2M models in
place of their original encoders, and retrain the models from scratch. The training and inference
procedures strictly follow the official implementations of the T2M models, without any modifications.
To ensure statistical reliability, we perform 20 rounds of inference and report the averaged results.
Unless otherwise stated, we use MoMask Guo et al. (2024) with the MATE-enhanced CLIP as the
default T2M model for evaluation. Additional details are provided in the supplementary materials.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Quantitative Comparison. Table 1 and Table 2 present the performance of state-of-the-art (SOTA)
T2M models. The “+MATE” variants of MDM Tevet et al. (2023), MotionDiffuse Zhang et al. (2022),
MMM Pinyoanuntapong et al. (2024b) and MoMask Guo et al. (2024) are obtained by retraining the
original models with the pretrained CLIP text encoders replaced by MATE-enhanced CLIP, where
only the word embedding layers are updated. Despite this minimal modification, our approach
consistently yields substantial improvements across all evaluation metrics on both benchmarks.
Notably, while the performance gains on HumanML3D are significant, the improvements on KIT
are relatively modest due to the smaller dataset size, which constrains the optimization of word
embeddings in large language models.

Visualization Comparison. Fig. 3 compares motion sequences generated by different SOTA methods.
MATE accurately distinguishes fine-grained semantics, such as “kick one time with the right leg” and
“three times with the left leg” in the upper example, and faithfully captures key textual descriptions
like “counterclockwise circle” and “yawn” in the lower example, demonstrating the superiority of
our approach in fine-grained motion semantic understanding and text-motion alignment.

4.3 ABLATION STUDY

Loss Functions. Table 3 presents the ablation study of the loss functions. Removing Lself, Lcross, or
Lalign leads to varying degrees of performance degradation, highlighting their complementary and
essential contributions. Specifically, Lself and Lcross promote the discriminability and effectiveness of
word-level disentangled motion semantics, while Lalign is critical for integrating these semantics into
the word embeddings. Additionally, Lsent plays an important role by enforcing alignment between
entire sentences and motion sequences, thereby modeling contextual dependencies across words.
Removing Lrec also results in slight performance degradation, as motion reconstruction can enhance
the informativeness of motion features.
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(1) “a person kicks one time with right and three times with left leg”

kick four times with left leg

Momask

kick with right then left then right leg

BAMM MATE

circlecircle yawn raise both hands

(2) “a person walks in a counterclockwise circle and raises their hand to their face to yawn.”

Figure 3: Comparison of motion sequences generated by different SOTA methods, with semantic
misalignments highlighted in red.

Table 3: Ablation study of loss functions on Hu-
manML3D by removing losses in Eq. (7) or (8).

Loss Removed Top-1 ↑ FID ↓ MM-Dist ↓
Lself 0.498 0.339 2.982
Lcross 0.533 0.044 2.934
Lalign 0.519 0.049 2.954
Lsent 0.324 0.524 2.983
Lrec 0.547 0.042 2.819
Full Model 0.550 0.040 2.811

Table 4: Evaluations of optimizing different layers
of CLIP text encoder on HumanML3D.

Trainable Layers Parameters Top-1 ↑ FID ↓
No trainable layers 0M 0.521 0.045
Word embedding layers 3.2M 0.550 0.040
Subsequent layers 37M 0.022 7.611
All layers 40.2M 0.014 9.468
Adapter (LoRA) Zhang et al. (2024b) 0.4M 0.525 0.051

Optimization of Different Layers. Table 4 compares the effects of optimizing different layers of
CLIP within the MATE framework. Fine-tuning subsequent layers or the entire model markedly
increases the number of trainable parameters, leading to severe overfitting and degraded generation
performance due to the limited size of motion datasets. Instead, MATE restricts optimization to
the word embedding layers, effectively aligning word-level semantics while preserving the strong
contextual representations captured by the subsequent frozen layers. We also evaluate the LoRA,
which is a commonly used LLM fine-tuning strategy Zhang et al. (2024b) by introducing additional
lightweight layers while keeping the pretrained model frozen. However, it does not lead to notable
performance improvements, suggesting its limited alignment ability in our setting.

Integration with Different Language Models. We tried constructing MATE with CLIP Radford
et al. (2021) and DistilBERT Sanh et al. (2019), two of the most commonly adopted language
models in T2M methods, as the text encoder. As shown in Table 5, incorporating MATE with either
model consistently leads to remarkable performance gains, showing the strong compatibility and
generalization capability of MATE across different language models.

Attention Prior. The attention prior, based on motion localization, is evaluated in Table 6. “No
prior” denotes using the raw motion features as keys in Eq. (3) without any attention prior, making
word-level semantic extraction from full sequences challenging. “Binary (sn ≤ t ≤ en)” applies a
hard binary mask, assigning 1 to frames within the target segment and 0 elsewhere, which is highly
sensitive to segmentation errors. “Gaussian” is the soft attention prior defined in Eq. (4). “Gaussian
(sn ≤ t ≤ en)” restricts the prior within the segment, with zero attention outside. “Gaussian
(0 ≤ t ≤ T )” extends the prior across the entire sequence, softly emphasizing the target region while
gradually attenuating attention to neighboring frames, thus improving robustness to localization noise
and achieving the best generation results.

4.4 VISUALIZATION RESULTS

Motion Consistency with Word Change. To demonstrate that MATE effectively learns word-level
semantic understanding, we present examples in Fig. 4, where individual words in the text prompts

8
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Table 5: Evaluation of integrating with different
large language models on HumanML3D.

Text Encoder Momask MDM
Top-1 ↑ FID ↓ Top-1 ↑ FID ↓

CLIP Radford et al. (2021) 0.521 0.045 0.491 0.630
+MATE 0.550 0.040 0.536 0.234
DistilBERT Sanh et al. (2019) 0.513 0.053 0.493 0.615
+MATE 0.546 0.045 0.542 0.244

Table 6: Ablation of the attention prior in Eq. (4)
on KIT.

Attention Prior Top-1↑ FID↓ MM-Dist↓
No prior 0.428 0.253 2.794
Binary (sn ≤ t ≤ en) 0.431 0.217 2.746
Gaussian (sn ≤ t ≤ en) 0.439 0.198 2.766
Gaussian (0 ≤ t ≤ T ) 0.443 0.197 2.732

over the same time span

“turn right and sit down” “turn left and sit down” “walk downstairs slowly” “walk downstairs quickly”

(1) (2)

Figure 4: Motions generated by MATE when individual words in the text prompts are replaced with
their antonyms. In subfigure (2), both the left and right motions span the same time period, while the
right motion descends more stairs and exhibits a faster pace.

are replaced with their antonyms. MATE accurately captures the semantic differences between “right”
and “left” as well as “slowly” and “quickly,” and generates motions that are semantically aligned
with the corresponding words, highlighting its robust fine-grained word-level understanding.

word embeddings with MATE

anti-clockwise

clockwise

circle

quickly

jog

run

slowly

attracted repelledword embeddings w/o MATE

downstairs

squat

sit

upstairs

Figure 5: Word embedding distributions on the unit sphere, visualized by DOSNES Lu et al. (2019).
MATE brings kinematically related words closer together while separating antonyms.

Distributions of Word Embeddings. To better understand the mechanism underlying the perfor-
mance gains of our approach, we visualize the effect of MATE on word embeddings in Fig. 5. MATE
draws together the embeddings of kinematically related motion words (e.g., “clockwise” and “circle”,
“run” and “jog”) while pushing apart those with contrasting semantics (e.g., “quickly” and “slowly”,
“upstairs” and “downstairs”). This suggests that MATE structurally regularizes the word embedding
space, promoting a closer alignment with motion semantics.

5 LIMITATIONS

1) Although our method focuses on word-level semantic alignment, certain words (e.g., “position”,
“starting”, “area”) inherently lack clear kinematic semantics or rely on contextual information.
Future work will explore selective word-level semantic modeling strategies and the incorporation
of contextualized queries to better handle such cases. 2) Word frequencies are imbalanced in the
motion descriptions, which is not explicitly considered in this initial exploration of word embedding
fine-tuning. An important direction for future work is to explore re-weighting or adaptive updating
strategies to mitigate this imbalance.

6 CONCLUSION

In this work, we have proposed a systematic framework that integrates word-level motion localization,
semantic disentanglement and alignment, addressing the text-motion misalignment fundamentally
rooted in the word embeddings of large language models for motion generation. Our approach not
only demonstrates substantial improvements over state-of-the-art performance on two benchmarks,
but also highlights the strong potential of word embedding fine-tuning for enabling motion-aware
language modeling.
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A LLM USAGE STATEMENT

In this paper, we employed Large Language Models (LLMs) exclusively for language polishing and
grammatical refinement of the manuscript. The LLMs were not involved in formulating research
ideas, designing methodology, conducting experiments, analyzing results, or drawing conclusions.
All scientific contributions, including problem formulation, technical approach, experiments, and
analysis, were conceived and carried out solely by the authors.

B ADDITIONAL EVALUATION RESULTS

B.1 USER STUDY
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Figure 6: Statistical results of user study.

Questionnaire Design. We conducted a user study to evaluate the subjective quality of motions
generated by state-of-the-art methods. The study consisted of a questionnaire containing 40 groups
of questions. Each group included a textual description and three motion sequences generated by Mo-
Mask Guo et al. (2024), BAMM Pinyoanuntapong et al. (2024a), and MATE. 20 textual descriptions
were randomly sampled from HumanML3D. For each description, one half of the corresponding
motions were generated by models trained on HumanML3D Mahmood et al. (2019), and the other
half by models trained on KIT Plappert et al. (2016), in order to evaluate the generalization ability
across datasets. Another 20 descriptions were sampled from KIT and evaluated using the same
protocol. In total, 20 descriptions served as cross-dataset samples for assessing generalization. For
each question group, users were asked to answer the following two questions (multiple selections
allowed): 1) Which motion sequence best aligns with the textual description? 2) Which motion
sequence appears most realistic?

Questionnaire Administration. The questionnaire survey was distributed through public channels
of several academic and social groups. The majority of respondents were undergraduate and graduate
students, as well as researchers. Importantly, a portion of them had backgrounds in computer vision
and were familiar with evaluating AI-generated results, which ensured a reasonable level of expertise
among participants.

Results Analysis. We collected responses from 24 respondents. The statistical results are shown
in Fig. 6. Alignment and realism scores were computed over all 40 groups based on answers to
questions 1) and 2), respectively. The generalization score was calculated over the 20 cross-dataset
groups using responses to question 1). MATE significantly outperforms MoMask and BAMM across
all three metrics, with particularly notable gains in alignment score, demonstrating its superiority in
text-motion alignment, generation fidelity, and generalization ability.

B.2 EVALUATION ON DIVERSE TEXT-MOTION TASKS

Beyond text-to-motion generation, we further evaluate MATE on text–motion retrieval, motion
inpainting, and motion editing tasks to demonstrate the broad utility and generalizability of our
approach.

Text-Motion Retrieval. We compare MATE with existing text-motion retrieval models, including
TEMOS Petrovich et al. (2022), TMR Petrovich et al. (2023), and LAVIMO Yin et al. (2024),
under the standard text-motion retrieval setting. As shown in Table 7, MATE significantly improves
retrieval accuracy compared to the baseline trained without the Lword loss, demonstrating the benefit
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Table 7: Top-1 text-motion mutual retrieval accuracy on HumanML3D. Baseline is MATE trained
without Lword. The evaluation protocols (a), (b), and (d) follow the settings provided in Yin et al.
(2024).

Retrieval Methods (a) All (b) All with threshold (d) Small batches

Text-Motion

TEMOS Petrovich et al. (2022) 2.12 5.21 40.49
TMR Petrovich et al. (2023) 5.68 11.60 67.16
LAVIMO Yin et al. (2024) 6.37 12.94 68.58
Baseline 2.34 2.46 23.65
MATE (ours) 6.03 11.42 71.24

Motion-Text

TEMOS Petrovich et al. (2022) 3.86 5.48 39.96
TMR Petrovich et al. (2023) 9.95 13.20 67.97
LAVIMO Yin et al. (2024) 9.72 13.89 68.64
Baseline 2.05 1.98 21.66
MATE (ours) 6.78 11.93 69.25

Table 8: Evaluation on motion inpainting and editing tasks on HumanML3D.

Tasks Methods Top 1 ↑ FID ↓ MM-Dist ↓
Motion Inpainting MMM Pinyoanuntapong et al. (2024b) 0.523 0.071 2.910

+MATE 0.538 0.066 2.884
Motion Editing MMM Pinyoanuntapong et al. (2024b) 0.500 0.103 2.972

+MATE 0.521 0.115 2.934

of explicitly optimizing word embeddings for enhancing text-motion alignment. While MATE
outperforms all compared methods under protocol (d), it does not achieve competitive performance
under protocols (a) and (b). This can be attributed to the different objectives: retrieval models aim to
maximize feature separability for retrieval accuracy, whereas MATE prioritizes semantically rich and
decodable representations that directly benefit motion generation.

Motion Inpainting and Editing. As shown in Table 8, MATE consistently improves performance on
motion inpainting and editing tasks when integrated with the MMM model Pinyoanuntapong et al.
(2024b). Word-level misalignment is a fundamental limitation in text-conditioned motion generation,
so addressing this issue benefits a wide range of related tasks.

B.3 DISTRIBUTIONS OF DISENTANGLED FEATURES

To intuitively evaluate the accuracy of motion disentanglement, we visualize the distributions of the
disentangled motion features in Fig. 7. In Fig. 7 (1), triangular, circular, and star-shaped markers of
the same color (corresponding to the same word) form distinct clusters, while features associated
with different words remain well separated. This indicates that the disentangled features are both
discriminative and semantically aligned with their respective word embeddings and prototypes.

In Fig. 7 (2), circular and rhombus-shaped markers of the same color are expected to be distinguish-
able, as meaningful disentanglement should occur only when the motion sequence contains the
semantics of the queried word. This behavior is clearly observed for words with clear kinematic mean-
ing, such as “upstairs” and “pick”, demonstrating that our approach does not indiscriminately extract
semantics from unrelated motions, which is essential for ensuring the disentanglement accuracy.

In contrast, for more ambiguous words like “quickly”, some overlap between markers is occasionally
observed, reflecting reduced robustness for semantically vague terms. This suggests that it remains
challenging to disentangle vague semantics such as “quickly” from mixed motion sequences that
both contain and do not contain the “quickly” semantics. Nevertheless, it is important to note that
during training, disentanglement for such vague terms is applied only to motion sequences whose
corresponding text explicitly contains the word “quickly”, thereby ensuring the accuracy of the
learned disentangled semantics.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Word embeddings

backward

sit

kneel

upstairs

quickly

spin

throw

clockwise

pick

upstairs

quickly

(1) Disentanglement from motions

containing the queried word

(2) Disentanglement from motions

containing and not containing the queried word

pick

Disentangled features from motions not containing the queried word
Disentangled features from motions containing the queried word

Prototypes

Figure 7: Visualization of motion disentanglement. • indicates motion features disentangled from
motions that semantically contain the queried word (e.g., using “upstairs” as query for motions like
“walk upstairs”). ♢ indicates motion features disentangled from motions that do not exhibit the
queried word’s semantics (e.g., using “upstairs” as query for motions like “sit down”). The features
are L2-normalized and subsequently visualized using t-SNE.

(1) “a person is playing tug-of-war”

(2) “a person is pulling a rope backward, as if in a tug-of-war”

MoMask BAMM MATE

Figure 8: Examples of generalizing state-of-the-art methods to unseen words. “Tug-of-war” is not
present in the training vocabulary. MATE generates a more plausible motion among the three motions
in (1), and a more accurate and contextually aligned motion in (2) when provided with more textual
details. Corresponding motion videos are available in the supplementary materials.

B.4 GENERALIZATION TO UNSEEN WORDS

MATE optimizes only the embeddings of words that appear in the training set. To evaluate its
generalization capability, we test MATE on unseen words and present qualitative examples in Fig. 8.
In the textual description “a person is playing tug-of-war”, the word “tug-of-war” does not appear in
the training vocabulary. Compared to MoMask Guo et al. (2024) and BAMM Pinyoanuntapong et al.
(2024a), MATE generates a more plausible motion of a person bending over and appearing to pull
something with their hands in place, making it the most consistent with a tug-of-war motion among
the three.

When the textual description is further specified as “a person is pulling a rope backward, as if in
a tug-of-war”, MATE generates the motion that best aligns with the input text, depicting a person
pulling a rope while slightly moving backward in place. This result demonstrates MATE’s superior
generalization ability to unseen words, particularly when provided with more detailed contextual
information.

This improvement can be attributed to two main factors. First, MATE develops a robust understanding
of seen words (e.g., “pulling”, “rope”, “backward”) by fine-tuning their embeddings within the
language model. The fine-tuning introduces only slight modifications to the word embeddings,
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thereby preserving the structural integrity of the original representations learned by the language
model. Second, the subsequent layers of the language model remain unchanged, maintaining
their strong contextual modeling capabilities. By combining the locally adapted word embeddings
for seen words with the inherent generalization ability of large language models, MATE improves
generalization performance on unseen words, especially when the textual descriptions are contextually
rich. More examples are provided in the supplementary video materials.

B.5 FAILURE CASES

The example on the right shows a failure case in which
the generated motion fails to accurately reflect the phrase
“walks back to starting point”. This illustrates a limitation
of MATE in capturing the semantics of abstract words like
“starting”, which require more contextual and temporal cues.
Our method focuses on extracting word semantics from the
target motion segment, while reducing attention to tempo-
rally distant content. Future work will incorporate richer
contextual cues to improve the semantic understanding of
words that depend on broader temporal context.

“a person takes steps forward, sits down, 

and then walks back to starting point.”

Figure 9: Failure case in capturing the
semantics of “starting point.”

C IMPLEMENTATION DETAILS

Text-Motion Joint Segmentation. We use ChatGPT (gpt-4-turbo) to decompose the textual descrip-
tions. An example prompt is shown below:

"a man staggers forward, turns clockwise, then jogs back to starting
point."
Goal: Split the above sentence with \n.
Each contains simultaneous one or more motions.
Return the sentence in which the actions are arranged in the order
they occur.
Notes:
1. Each word may be used only once.
2. Each phrase must include at least one verb; do not introduce any
new words.
3. Adverbial modifiers like "as if", "while" should remain in the
same sentence
as the action they describe.
4. If all actions occur simultaneously, return the original sentence.

If the sentence is split into more than one sentence, they are fed into a pretrained text-to-motion re-
trieval model Lu et al. (2024) with the paired motion sequence to identify motion segment boundaries
by minimizing the objective defined in Eq. (1).

To improve the efficiency of the exhaustive search, we assume that the semantics of an action remain
relatively stable for at least 0.5s. Based on this assumption, we constrain each segment’s length to
be a multiple of 0.5s and apply a fixed sliding window with a stride of 0.5s. This corresponds to 10
frames in HumanML3D and 6 frames in KIT. If the final segment is shorter than 0.5s, it is merged
with the preceding segment.

Examples of decomposed sentences and the corresponding motion segments are provided in the
supplementary video materials.

Model Structures. The text encoder adopts the original architecture of large language models
without any modifications. The motion encoder and decoder follow the design presented in Petrovich
et al. (2022). The motion encoder simultaneously extracts frame-level features Fm ∈ RT×D and a
sequence-level feature fm ∈ RD, where the feature dimension D is fixed at 512. This dimensionality
is consistently used across motion features, prototype representations fp

wk
, and the linear projection
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layer Proj. The MultiHead module is an 8-head attention mechanism with an embedding dimension
of 512 and a dropout rate of 0.1.

Training Details. Text-motion joint segmentation is performed as a preprocessing step prior to
training. The MATE framework is trained on the training sets of the respective datasets using the
AdamW optimizer. The learning rate is set to 1e-5 for the word embedding layer and 1e-4 for all
other layers. Training is performed on one RTX 4090 GPU (24 GB) with a batch size of 64 for 100
epochs.

To construct the word prototypes, we first lemmatize the textual descriptions and build the vocabulary
accordingly, resulting in K = 5, 161 and 1, 191 prototypes for HumanML3D and KIT, respectively.
Each word in the input text is lemmatized to match its corresponding prototype. For example, “walks”
and “walking” are both lemmatized to “walk” and share the same prototype.

The loss Lsent follows a similar formulation to Eq. (6), where paired text and motion features f t

and fm serve as positive examples, and mismatched pairs are treated as negatives. The loss Lrec is
defined as an L1 loss between the original motion sequence and the reconstructed sequence.

The hyperparameters are set as follows: the weight of the attention prior loss is λ = 0.1; the weights
for Lword and Lsent are λ1 = λ2 = 0.1; and all temperature parameters are set to τ = 0.05.

During the cross-disentanglement process, when computing the loss Lcross, the set of negative pairs
N is constructed as follows: For the i-th textual description ti and its associated word semantics wi,
we compute the cosine similarity between the feature of wi and those of all other textual descriptions
tj within the batch (where j ∈ V and j ̸= i). The top 8 samples with the lowest similarity scores are
selected to form the negative set for the i-th instance. This strategy ensures that the selected negatives
are the least likely to share the same target word semantics wi, thereby enhancing the reliability of
the cross-disentanglement process.

D ADDITIONAL ABLATION STUDY

D.1 ANALYSIS OF TEXT-MOTION JOINT SEGMENTATION

Table 9: Quantitative evaluation of text-motion joint segmentation results.

Metrics HumanML3D KIT
Text decomposition accuracy (%) 97.0 98.5
Motion segmentation errors (sec) 0.73 0.42

Quantitative Evaluation. To quantitatively evaluate text–motion joint segmentation, we manually
assess the text decomposition results and annotate ground-truth segmentation boundaries for 200
motion sequences randomly sampled from the HumanML3D and KIT datasets, respectively. We then
compute the average accuracy of text decomposition and the boundary errors between our predictions
and the ground truth, with results reported in Table 9. The decomposition accuracy reaches 97.0%
and 98.5% on the two datasets, demonstrating the strong text-processing capability of large language
models within our approach. The small boundary errors (0.73s and 0.42s) further indicate that our
method achieves precise alignment, with deviations well within a second, between decomposed texts
and segmented motion clips. Notably, while some noise may be introduced around the segmentation
boundaries, our Gaussian-based soft attention mechanism leverages soft localization signals rather
than rigid hard segmentation, thereby improving robustness to such noise.

Qualitative Analysis. We present examples of text-motion joint segmentation in Fig. 10. The textual
decomposition generated by ChatGPT is generally accurate. The primary source of error arises from
imprecise boundaries predicted by the segmentation module. For instance, the boundaries in (1) are
correctly identified, whereas in (2), the transition between “walks three steps forward” and “halts and
sits down” is slightly misaligned.

Such boundary inaccuracies are anticipated in our framework. Instead of applying a hard binary
mask to isolate target segments, MATE leverages the segmentation output as a soft attention prior,
modeled using Gaussian-shaped attenuation. This approach mitigates the impact of boundary errors
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“the figure spreads its 

arms, then claps, 

walks three steps 

forward; and finally 

halts and sits down”

“a person walks up 

stairs,  turns around 

at the top, and walks 

back down the stairs”

inaccurate boundary

(2)(1)

Figure 10: Examples of text-motion joint segmentation. Different colors represent the decomposed
sub-texts and their corresponding motion segments. The segmentation in (1) is accurate, while in (2),
the third motion segment corresponding to “halts and sits down” includes the partial semantics of the
second sub-text “walks three steps”, which reflects a minor boundary imprecision. Corresponding
motion videos are available in the supplementary materials.

and enhances robustness to segmentation imprecision, ultimately improving alignment quality. The
quantitative comparison of different attention strategies is shown in Table 6 in the main paper.

Segment Unit Length. As described in Sec. C, our ap-
proach constrains each segment length to be a multiple of
0.5s to improve computational efficiency. The effect of
the segment unit length is reported in Table 10. Results
show that 0.25s and 0.5s yield comparable performance,
whereas larger units (≥0.75s) cause slight degradation.
We adopt 0.5s as a balanced setting that maintains seg-
mentation quality while improving processing speed.

Table 10: Evaluation of segment unit length.

Segment Unit Length (s) Top 1 ↑ MM-Dist ↓
0.25 0.546 2.804
0.5 0.550 2.811
0.75 0.538 2.826
1.0 0.541 2.847

D.2 ANALYSIS OF WORD-LEVEL AND SENTENCE-LEVEL CONTRIBUTIONS

MATE directly optimizes word embeddings and indirectly optimizes sentence-level features. To
investigate their respective contributions to performance, we conduct experiments with MMM Pinyoa-
nuntapong et al. (2024b), which explicitly separates the effects of word embeddings and sentence
features, thereby providing a suitable framework for this analysis. Specifically, we selectively replace
the word embeddings and sentence features in CLIP within MMM with their MATE-enhanced
counterparts, and report the results in Table 11. The results reveal three key findings:

1) Enhancing either word embeddings or sentence features independently improves performance.
2) Sentence-level enhancement yields slightly larger gains, likely due to the stronger influence of
sentence features compared to word embeddings in MMM. 3) Joint enhancement at both levels leads
to the best performance, confirming that MATE improves generation by simultaneously enhancing
both representations.

Table 11: Evaluation of enhancing word embeddings or sentence features in MMM Pinyoanuntapong
et al. (2024b) on HumanML3D.

Word Embeddings Sentence Features Top 1 ↑ FID ↓ MM-Dist ↓
CLIP CLIP 0.515 0.089 2.926
MATE CLIP 0.522 0.098 2.913
CLIP MATE 0.530 0.081 2.909
MATE MATE 0.541 0.069 2.887
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D.3 COMPARISON WITH TEXT-MOTION RETRIEVAL METHODS

We also explore optimizing word embeddings of large
language models using text-motion retrieval models,
specifically TEMOS Petrovich et al. (2022) and TMR
Petrovich et al. (2023). We fine-tune word embeddings
of the CLIP text encoder using the alignment strategies
proposed in these works. The fine-tuned encoder then
replaces the original text encoder in MoMask, which is
retrained with this modification. As shown on the right,
neither TEMOS nor TMR leads to consistent or signif-
icant performance improvements for MoMask. This
is likely because both methods focus on sentence-level
alignment, without explicitly optimizing individual word
embeddings to capture fine-grained, motion-specific se-
mantics.

Methods Top 1 ↑ FID ↓ MM-Dist ↓
MoMask Guo et al. (2024) 0.433 0.204 2.779
+TEMOS Petrovich et al. (2022) 0.427 0.226 2.772
+TMR Petrovich et al. (2023) 0.434 0.235 2.767
+MATE 0.443 0.197 2.732

Table 12: Comparison of optimizing word em-
beddings with different text-motion retrieval
models on the KIT dataset.

D.4 ANALYSIS OF WORD FREQUENCY

We present the distribution of word frequencies on HumanML3D in Table 13. A small proportion
of words occur very frequently, while the majority appear infrequently, indicating a clear word
imbalance. To address this issue, we conducted an initial exploration using a classical re-weighting
strategy Cui et al. (2019) that decreases updates for high-frequency words and increases them for
low-frequency words, with results reported in Table 14. However, this strategy results in performance
degradation, which we attribute to the unique characteristics of our task compared with standard
long-tail learning.

In our setting, word embeddings are aligned with motion semantics through fine-tuning. This process
requires a delicate balance between adapting to motion-specific semantics and preserving pretrained
language priors, a balance that varies depending on word frequency.

1) High-frequency words. These benefit from abundant samples, which allow the construction of
more stable motion prototypes. As described in our stability principle and Eq. (5), we align word
embeddings with prototypes that capture shared semantics across many instances rather than single
examples, thereby reducing bias and instability. Suppressing updates for high-frequency words can
therefore weaken the learning of generalized motion semantics.

2) Low-frequency words. These are more susceptible to noisy supervision due to limited data. Simply
increasing their updates may lead to overfitting or semantic drift away from their original language
priors. In such cases, limiting updates can better preserve semantic stability and reduce the risk of
unreliable adaptation.

Overall, achieving an optimal trade-off remains challenging and requires more careful strategy design.
As future work, we plan to develop adaptive re-weighting strategies that not only account for word
frequency but also dynamically assess the reliability of motion semantics during updates.

Table 13: Word Frequency Statistics.

Frequency >1,000 100-1,000 10-100 <10

Words 5.3% 23.5% 47.6% 23.6%

Table 14: Evaluation of reweighting.

Methods Top 1 ↑ FID ↓ MM-Dist ↓
MATE 0.550 0.040 2.811
MATE with re-weighting 0.536 0.066 2.924

D.5 ANALYSIS OF HYPER-PARAMETERS

Fig. 11 illustrates the effect of key hyper-parameters in the MATE framework. In the left subfigure,
λ1 and λ2 denote the weight factors for the word-level loss Lword and the sentence-level loss Lsent,
respectively. Compared to λ2, λ1 has a more pronounced impact on the generation results, indicating
that the model is more sensitive to variations in word-level alignment than in sentence-level alignment.
In the right subfigure, λ controls the strength of the attention prior. A relatively small value may fail
to provide sufficient motion localization guidance, while an overly large value can compromise the
model’s robustness to inaccuracies in the prior. The best performance is observed when λ = 0.1. The
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temperature parameter τ used in Lself, Lalign, and Lsent, modulates the contrast between positive and
negative sample similarities. Empirically, the model achieves optimal performance when τ = 0.05.
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Figure 11: Analysis of hyper-parameters on HumanML3D dataset.

21


	Introduction
	Related Works
	Method
	Overview
	Text-Guided Motion Localization
	Word-Guided Motion Disentanglement
	Motion-Aligned Word Embedding

	Experiments
	Experiment Settings
	Comparison with State-of-the-Art Methods
	Ablation Study
	Visualization Results

	Limitations
	Conclusion
	LLM Usage Statement
	Additional Evaluation Results
	User Study
	Evaluation on Diverse Text-Motion Tasks 
	Distributions of Disentangled Features
	Generalization to Unseen Words
	Failure cases

	Implementation Details
	Additional Ablation Study
	Analysis of Text-Motion Joint Segmentation
	Analysis of Word-Level and Sentence-Level Contributions
	Comparison with Text-Motion Retrieval Methods
	Analysis of Word Frequency
	Analysis of Hyper-Parameters


