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ABSTRACT

We introduce a novel model for updating perceptual beliefs about the environment
by extending the concept of Allostasis to the control of internal representations.
Allostasis is a fundamental regulatory mechanism observed in animal physiology
that orchestrates responses to maintain a dynamic equilibrium in bodily needs and
internal states. In this paper, we focus on an application in numerical cognition,
where a bump of activity in an attractor network is used as a spatial-numerical
representation. While existing neural networks can maintain persistent states, to
date, there is no unified framework for dynamically controlling spatial changes in
neuronal activity in response to environmental changes. To address this, we cou-
ple a well-known allostatic microcircuit, the Hammel model, with a ring attractor,
resulting in a Spiking Neural Network architecture that can modulate the location
of the bump as a function of some reference input. This localized activity in turn is
used as a perceptual belief in a simulated subitization task – a quick enumeration
process without counting. We provide a general procedure to fine-tune the model
and demonstrate the successful control of the bump location. We also study the
response time in the model with respect to changes in parameters and compare
it with biological data. Finally, we analyze the dynamics of the network to un-
derstand the selectivity and specificity of different neurons to distinct categories
present in the input. The results of this paper, particularly the mechanism for mov-
ing persistent states, are not limited to numerical cognition but can be applied to a
wide range of tasks involving similar representations

1 INTRODUCTION

Neural networks in the brain are structured networks with a space-like structure, topologically anal-
ogous to a metric space (i.e. Euclidean) (Gerstner et al. (2014)). The use of these organized structure
are found not only in concrete representations, such as head direction (Pisokas et al. (2020)), ori-
entation and compass for foraging (Stentiford et al. (2024)), and place and grid cells (Whelan et al.
(2022)), but also in more abstract topographic maps that represent emotions, relationships, and, as
we show in this paper, numbers (Leslie et al. (2008)). Moreover, these structures extend beyond
biological systems; they are increasingly being employed in artificial embodied agents, demon-
strated through tasks such as numerical cognition through embodied learning mechanisms and on
development of grounding transfer from concrete concept of sensorimotor experiences to abstract
conceptual knowledge (Alessandro & Angelo (2021)).

A key property of these networks is their capacity to hold persistent states, or bumps of activity
(Gerstner et al. (2014)), which are associated with the representation of information in all of the
mentioned systems of concrete and abstract representations (Hopfield (2015)). In this paper, we ex-
plore one such key network, the ring attractor model, which uses a bump of activity that is localized
to dynamically control spatial changes in neuronal activity (i.e., activities influenced by changes
in surrounding contextual features) (Pisokas et al. (2020)). Although these networks can represent
to track changes in the environment, this raises the question of how we can exert arbitrary control
over the position of bump activity in a structured spiking neural network. We infer that a structured
network (i.e., ring attractor models, place cell and grid cells, Kohonen maps) would more closely
resemble the brain’s functionality than continuous neural field models, for which results in these
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continuous neural field models already exists (Gerstner et al. (2014)). Moreover, we pose a question
on whether these bumps can represent abstract information that does not have explicit dynamics.

To approach the first question, we propose the use of self-regulation as a mechanism for controlling
the bump activity towards a desired state. The self-regulation mechanism here considers a neu-
ronal model of set-point thermo-regulation, i.e., Hammel Model (Boulant (2006)), where this acts
as a negative feedback control system for the bump activity. Considering that self-regulation can
achieve arbitrary control of manifold physiological variables, these variables have similar properties
to the bump activity (i.e., there is always a “place” where the bumps are supposed to be). An im-
portant aspect of self-regulation is allostasis (Sterling (2012)), which extends the simpler concept
of homeostasis (i.e. the maintenance of physiological set-points) to cover adaptive, predictive and
competitive aspects of self-regulation. Thus, we further extend the usage of allostasis to tackle per-
ception and computation in structured neural networks by demonstrating the predictive behaviors
towards its desired state based on numerical cognition tasks.

Thus, we introduce subitization to approach the second question as a predictive task over numer-
ical capability. We use subitizing as a model system to explore abstract properties with neither
intrinsic nor explicit dynamics, yet with a putative metric representation: the number line (Leslie
et al. (2008)). Subitization is a special mechanism capable of recognizing quantity strictly through
perception without the need for counting (Dehaene & Cohen (1994)) and it can be characterized
as a form of categorization (Benoit & Henri Lehalle (2004)). This requires the distinction of ele-
ments and their mapping to specific internal representations; in this case, bump activity is mapped
to numerical representations. Since subitization tasks are associated with the prediction of discrete
number representations, this form of representations can be modeled as an accumulator model with
bi-directional mappings (Gallistel & Gelman (2000)). Thus, we can consider numerosity tasks, such
as subitization, to exemplify the spatial-temporal control of these mappings. While there are other
models that encode numerosity tasks into a single neuron network (Rapp & Martin Paul Nawrot
(2020)), we use our allostatic network approach to achieve results that can match behavioral and
neuronal findings.

1.1 MODEL DERIVATION

Figure 1: AlloNet model definition. A. Overview of model architecture. Two inputs are associated to
homeostasis model: Environmental input (S1) and Ring attractor feedback (S2). B. Representation
of how Hammel model is used in the architecture. Higher and lower neurons are associated to one-
to-all connection onto high gain modulation (HGM) and low gain modulation (LGM) respectively.
C. Synaptic connection management between the ring attractor and gain modulation neurons (LGM
and HGM). D. Representation of S1 and S2. These define how information, both external input
(bottom figure) and feedback input (top figure), is being represented into the network.
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Table 1: Default neuron parameters from NEST simulator are used for the network. The following
parameters are initially based on (Laing & Chow (2001)), where a parameter search is done to find
the regime for the ring attractor drift to be linear to the Hammel input. In the case of changes made,
these parameters are mentioned below and abbreviations used for parts of the model can be referred
from Figure 1.

Name Description Value
Vth Threshold Function 0.8mV
τ1syn ex Excitatory Synaptic Alpha Function(Hammel Model, S) 75ms
τ2syn ex Excitatory Synaptic Alpha Function (Ring Attractor) 27ms
τ3syn ex Excitatory Synaptic Alpha Function (HGM, LGM) 1000ms
τ4syn ex Excitatory Synaptic Alpha Function (Slow Inhibitory Neuron, 100ms

Number Discrimination Neuron)
τ5syn ex Excitatory Synaptic Alpha Function (I) 1ms
τsyn in Inhibitory Synaptic Alpha Function 50ms
Ie Input Current (Default) 0.45× 106pA
I1e Input Current (HGM, LGM, Slow Inhibitory Neuron, 0pA

Number Discrimination Neuron)
τm Membrane Time Constant (Default) 7.04ms
τ1m Membrane Time Constant (HGM, LGM) 4.2ms
τ2m Membrane Time Constant (I) 7.06ms
Cm Membrane Capacitance (Default) 3.96× 106pF
C1

m Membrane Capacitance (HGM, LGM, I) 0.8× 106pF

The Allostatic Controller of Persistent States architecture (AlloNet) starts with a group of neurons
that function as afferent neurons, providing input for the downstream tasks to be done by the external
perception neuron (figure 1A). These inputs are used by the Hammel model to self-regulate internal
beliefs, representing the interaction with the environment. At its core, we implement a spatially
structured network, i.e. the ring attractor network, with N neurons that are fine-tuned to maintain
persistent states or bumps. These persistent states are defined to be the internal beliefs that will be
controlled by the Hammel model. Each neuron in the model is an Integrate and fire (IAF) neuron,
and all the synapses are based on alpha synapses (Gerstner et al. (2014)) with decay constant τkex,
where k varies based on the specific sub-networks.

The synaptic weights of these neurons are defined by a symmetry of local excitation and surrounding
inhibition to ensure the stability of the persistent states. These synaptic weights, w, can be defined
by the following equation:

wij =
σ2e

−
dij

2

2σ2
1 − σ1e

−
dij

2

2σ2
2

σ2 − σ1
(1)

Here, i represents the pre-synaptic neuron and j represents the post-synaptic neuron. The terms

e
−

dij
2

2σ2
1 and e

−
dij

2

2σ2
2 are Gaussian functions that define the spread of the inhibition and excitation

within the network, where the standard deviation σ2 and σ1 act as parameters controlling the width
of the two Gaussian functions. The parameters dij here is a distance-dependent coupling between
the pre-synaptic and post-synaptic neuron, where we can consider as d(|i− j|). To scale the weights
for larger or smaller network populations, we define σn = δn100

N , where n ∈ {1, 2} and N is the
population size. The model used in our experiment consists of (N = 100) neurons with σ2 = 5
and σ1 = 10 being used for tuning the parameters of the network. Thus, the δn parameter is the
standard deviation of the Gaussian function that will be scaled based on this population and standard
deviation parameters. The tuned parameters of the ring attractor network are provided in table 1.

To control the position, we use a homeostatic circuit inspired by the Hammel model of autonomic
nervous system for temperature regulation in mammals (Boulant (2006)). This model is composed
of four neurons (figure 1B). In the original model, an insensitive neuron (I) receives input for the
model and a sensitive neuron (S) function as a set-regulatory point. The excitation-inhibition balance
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of these two neurons is processed through two downstream neurons. These neurons control opposite
effectors that aim to either generate or lose heat. This depends on a reference signal relayed to some
sensitive neurons by heat receptors in the skin or internal tissues. We adapt this concept to align
internal representations, i.e. the localized bump activity representing the system’s predicted belief,
toward the external inputs in our model. In our adaptation of the model, the reference signal that
functions similarly to the insensitive neuron corresponds towards system’s predicted belief, and the
sensitive neuron that are typically a set-regulatory point can be dynamically adjusted to responses
from the environment. This meant that the effectors are the system’s belief requiring a mechanism
to shift its perception. Thus, we introduce a method that would allow the Hammel Model to shift
the localized activity of the ring attractor and be fed back into the network to form a closed control
loop.

It is known that under a symmetric kernel with local excitation and surrounding inhibition, the
ring attractor network can hold persistent activities in a localized region (Gerstner et al. (2014)).
These activities can be directed in a particular direction within the ring attractor by breaking the
symmetry of activities in the network. Typically, these are achieved through offsets implemented by
an asymmetric connection (Khona & Fiete (2022); Zhang (1996)). Thus, we hypothesize that this
control on shifting the position of the bump can be maintained by breaking the symmetry through
gain modulation, which will be explained in the next section. This mechanism is in charge of an
outer layer of two population of neurons connected to the ring attractor as shown in figure (1C).
The homeostatic effector neurons of the Hammel model are connected to the Left Gain Modulation
(LGM) and (RGM) neurons to simulate the process of generating or losing heat, respectively.

Finally, a readout network is defined to feed back into the homeostasis model as a reference signal,
where these inputs are based upon the position of the bump in the ring attractor (figure 1D). This
circuit is inspired from models of familiarity discrimination that occur in the Perirhinal Cortex for
processing information as a downstream task (Bogacz R (2001)). This model is used for creating
a reference signal for representation perception neurons (figure 1B) from a cumulation of ring at-
tractor neurons’ responses. This usually involves three layer of neurons: representation neurons,
implemented by the neurons in the ring attractor, familiarity discrimination neurons, referred to as
the number discrimination neurons in our model; and decision neurons, implemented by the repre-
sentation perception neuron in the Hammel Model (sensitive neurons) (figure 1D). These decision
neurons project downstream specific rate encodings based on representations from the ring attractor.
The external output that drives the changing threshold in the Hammel model as a function of the
input works as an accumulation of responses from the environment (figure 1D). A use case for these
mechanisms in our model will be presented later.

2 CONTROLLING THE BUMP

The allostatic control of the bump in the ring attractor is achieved in two stages, which can be
fine-tuned depending on the application. In the first stage, we determine the parameters of the
homeostasis model such that the effector neurons vary (almost) linearly as function of the difference
in input rate between sensitive and insensitive neurons (figure 2A). In this figure, we have isolated
the homeostasis model and replaced the inputs with Isyn = Ipoisson+Ibg , where Ipoisson represents
the simulated Poisson spike train with a given rate, and Ibg is the background noise. This background
noise helps linearize the firing rate of inputs to the homeostasis model.

In the second stage, we tune the gain modulation neurons so that they can shift the position of the
bump (figure 2B). To achieve this, we first note that the architecture shown in figure 1C implies that
the input to the ith LGM neuron has two terms:

Iisyn = Ii−1
ring + IHL, (2)

where IHL is the output from the “Low” effector of the homeostasis model, and Ii−1
ring is the output

from the ring attractor. Similarly, the input ith HGM neuron is given by

Iisyn = Ii+1
ring + IHH , (3)

where IHH is the output from the “High” effector of the homeostasis model. Since i represents
the neuron index of N in the ring attractor, we consider the i for IHL and IHH to their respective
positions in the ring attractor.
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Figure 2: Overview the fine-tuning stages for the model. Each time-step used by the simulator is
equivalent to an interval of 1ms. A. Heat map for the firing rate in ratio to the two inputs to the
Hammel model, simulated by a Poisson generator. Left. Activity (Firing rate) in lower neuron
for different input frequencies. Right. Activity of higher neuron. The model is simulated for 10000
time-steps for each combination of input frequencies. B. Setup for the fine-tuning process of the gain
modulation neurons as described in the text. A similar setup from diagram A. Poisson generators
are then used for simulating the bump of the ring attractor and the Hammel model effector output.
The colors represent firing rates in response to different combinations of firing. C. Response of the
bump for two different frequencies of the external input (50000 time-steps). Left. Raster plot. Right.
Average firing rate of the readout neurons. The colors represent the ranges for different numbers (see
below).

Each of these neurons, in turn, inhibits the next (or previous) ring attractor neuron. Consequently,
whenever the ring and the Hammel effector neurons are co-active, they will unbalance the activity in
the ring attractor. Moreover, we need to guarantee that when only one of the two (either the neuron
in the ring attractor or the corresponding output of the homeostasis model) is active, the LGM or
HGM neuron is close to the threshold and do not fire:

Vm(Ii±1
ring) ≈ Vm(IHH) = Vth − h < V (Ii±1

ring + IHH), (4)
where Vm is the membrane potential of the LGM or HGM neurons, Vth is the firing threshold and
h is a small arbitrary constant (figure 2B). With these considerations, we can move the bump so
that it matches internal and external representations (figure 2C). All the simulations are performed
using NEST simulator (Gewaltig & Diesmann (2007)) in a standard Laptop computer (13th Gen
Intel® Core™ i7-13700HX, 16GB Ram, Nvidia RTX4060). The parameters of the Hammel and
Gain modulation networks are given in table 1.

3 SUBITIZING AS AN ALLOSTATIC PROCESS: BEHAVIORAL RESPONSES

As an example, we introduce the AlloNet as a model of subitizing. Subitizing can be seen as a
“number sense” that we define, in this paper, as an allostatic match between external inputs and
internal representations (figure 3A).

To set up our model to subitize, we define the ring attractor as a putative number line representation
(Hamdan & Gunderson (2017); Revkin (2008)). The input to the network is represented as four
Poisson spike train generators which feeds onto the insensitive neurons (here renamed as external
perception neurons) and tuned to generate firing rates in the range [0 − 200]Hz depending on the
number of co-activated inputs. Note that this guarantees permutation invariance of the inputs (i.e.,
activation sequences {1, 0, 1, 0} generate the same input as {0, 1, 0, 1} and so on).

We define the number representations by the bijection:
{[0Hz, 50Hz], [51Hz, 100Hz], [101Hz, 150Hz], [151Hz, 200Hz]} 7→ {1, 2, 3, 4}. (5)

As seen in figure 2C, once the input is given, the model adjusts its internal representation to match to
the corresponding numerosity. Similarly, we set up four readout neurons to match the corresponding
frequencies as those of the input.
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Figure 3: Simulated behavioral responses for a subitizing task. A. We use the AlloNet model to
define a homeostatic match between the internal representation of numbers and stimuli in the en-
vironment (dots). B. Reaction times in association to number representation defined as the time of
first spike in the correct representation. Responses in S2 neurons are used for determining reaction
time. The experiments are repeated for different synaptic time constants of the HGM and LGM. C.
Error percentage based on the responses at different stopping time-steps in 20 trials (see text) D. Bar
plot to define quality score for different excitatory synaptic time constants and different numbers.
The different bar represents the number being represented (color-coded) and the groupings of these
bars are reported based on their synaptic time constants.

3.1 THE ALLONET MODEL COMPARISON TO BEHAVIORALLY PLAUSIBLE REACTIONS TIMES
AND ERROR RATES

To investigate the relevance of our model as a model of subitizing, we simulated two common
subitizing experiments in humans. In the first experiment, we tested whether the network reproduces
relevant reaction times as those observed in humans. To do so, we define reaction time as the time
of the first spike from the readout neuron corresponding to the input numerosity. The results are
shown in figure 3B. We parameterize the experiment further by changing the excitatory synaptic
time constant of the gain modulation network.

The model reproduces behavioral responses in two significant ways and fails in one crucial aspect.
For longer synaptic time constants (1000ms), the reaction time increases as a function of numerosity
and also becomes more variable. However, with shorter synaptic time constants (900ms), the model
presents paradoxical behavior: smaller numerosities (numbers less than 3) are noticeably slower
than higher numerosities, while this behavior reverses for numerosities higher than 3. In the case of
human data, it takes less than half a second to perceive the presence of one, two, or three objects,
but the speed and accuracy fall dramatically beyond this limit (Dehaene (2011)). This human data
showcases two aspects of the model, where longer synaptic time constants (1000ms) aligned to
human responses for numbers less than 3, while short synaptic time constants (900ms) aligned with
the sudden increase in reaction time for humans on numbers greater than 3. However, the model
fails on the aspects of the dynamics being much slower than human reaction times.

An additional experiment evaluated the error rate of the model (figure 3c). To do so, we fixed a
specific time during the run iteration in which the model should report the perceived numerosity and
tested the error rate for four different ranges of response timesteps. Here, we define error rate as
(number of misfired timestep ÷ total timestep). For early response times, error rate increases with
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numerosity as observed in experiments (Dehaene & Cohen (1994)). However, for longer waiting
times, responses become inconsistent. We investigate this in the following section.

Lastly, we design an experiment to evaluate the performance of the ring attractor network by analyz-
ing the representation quality over time within defined spatial intervals. Specifically, this analysis
investigates a measure on reaching the desired state quickly while remaining stable within that pre-
defined desired region. To calculate the quality score, we use the centroid calculation of the network,
P (t). These are then classified as right or wrong time based on whether the centroid is in the desired
region of bump activity. Thus, we define the quality score as follows:

Quality =
Number of right times

Number of right times + Number of wrong times
(6)

The analysis shows that longer synaptic time constant performs better. Thus, we will discuss how
different synaptic time constants affect the persistent states in the following section.

4 SUBITIZING AS AN ALLOSTATIC PROCESS: NEURAL DYNAMICS

To understand the responses for different excitatory synaptic time constants, we investigate through
a heat-map that visualizes the activity of neurons across different time windows (figure 4). The
excitatory synaptic time constant may affect the reaction time of the network due to two possible
outcomes: the slow angular speed of the shifting cues in the ring attractor network or instability of
persistent states in the network. Although the first outcome can be directly inferred as time taken
to be inversely proportional to the angular speed (Seen in τ = 900 in comparison to τ = 1000
(figure 4)), the second outcome deters that high angular speed can also affect the network to have
slow response time. In the case that the network has excessive angular speed (greater than 0.018
rad/ms), this may diminish the ring attractor’s capability to track towards the desired persistent state
and oscillate between different signals (Chen (2024)) (Seen in τ = 1250 in comparison to τ = 1000
(figure 4)).

As a further investigation of the network, we start by studying the responses of a single neuron to
different numerosities over different trials. As an example, we show neuron number 63 in the ring
attractor which is tuned to respond to number 3 (figure 3A).

The response of a given neuron is composed of transients for higher numerosities (as the bump
transits its neighborhood) and persistent activity for the numerosity it is tuned to. Note however
that for later times the bump becomes unstable and starts a new wander due to the noise of in the
network. This explains the inconsistent error rates for higher response times in figure 3C.

We also studied the gain field in the vicinity of neuron 63, composed of only transient responses for
numerosities greater than or equal to the tuned numerosity (figure 5A). These two profiles of activity
resemble the responses of the Entorhinal Cortex, the Parahipocampal Cortex and the Hippocampus
in humans (Kutter et al. (2023)).

To understand a bit better the dynamics of the bump, we studied the position coordinate (Hopfield
(2015)) of the bump and its speed. The position coordinate consistently represents the numerosity
across trials (figure 5B) and the velocity shows evidence of a constant acceleration towards the
corresponding numerosity. Furthermore, by investigating the scaling of the speed with the synaptic
time constant we discover the reason for the difference in reaction times for slower time constants:
the bump movement profile becomes shallower for lower numerosities due to lack of excitation from
the input (figure 5C, dotted line).

5 CONCLUSIONS AND FUTURE WORK

We have proposed a model of allostatic control of persistent states in spiking neural networks, named
the AlloNet. Additionally, we propose it as a computation model of subitizing in animals, defining
the number sense as a homeostatic alignment of internal representations and external inputs. Our
model reproduces qualitatively important behavioral aspects of subitizing in humans as well as ob-
served neural dynamics of the regions known to be involved in number perception.
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Figure 4: Heat-map to plot the network persistent state over time. The y-axis of the plot is the
number representation index, and the y-axis of the sub-plot is the neuron index of the ring attractor
network. The x-axis of the plot is the column for different synaptic time constant runs and the x-axis
of the sub-plot is the time of the run iteration. The white lines in the sub-plots define the different
numerosities, i.e., [starting point,1,2,3,4] from bottom to top.

The model is able “track” a static property of the environment by dynamically adjusting an space-
like internal model to match a function of the input which, due to the simplicity of the input network
and the properties of neural integration, is numerosity. That is, this model follows the premise of
perception as active process (Parr et al. (2022)), moreover, that perception is self-regulatory in that
the internal and external models need to find a match through the lens of a shared interface (Parr
et al. (2022)). This interface is instantiated in the Hammel model.

8
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Figure 5: Neural dynamics and dynamics of the bump. The color is encoded to the location of the
bump activity (shown by the number represented on the left of the plots in figure 5A) A. Responses
of a single neuron of the ring attractor (63) sensitive to number 3. Top. Raster plot for 20 trials
of each numerosity. Bottom. Corresponding firing rates. Right. Responses of the gain field in
the vicinity of the ring (±10 neurons). B. Centroid of the bump computed as the expected value
of position (neuron) with respect to the normalized firing rate. The spike trains are also plotted
in the background for each numerosity. C. Speed of the bump smoothed with 5 samples sliding
window for each numerosity. Dotted line is the corresponding step for lower synaptic time constant
(τex = 900ms).

The Hammel model is involved in self-regulation. It works by minimizing the error between a given
input and a fixed set value. By setting variability and abstraction to the threshold (as numerosity is
not a one-dimensional signal), we allowed the model to handle more general representations. We
think that this idea can be extended further to solve more general computational problems (Hopfield
(2015)).

The self-regulatory aspect of the model implies that there is an autonomic response (internal or
covert change) and a behavioral response (external or cover). This is analogous to the duality be-
tween subitizing or approximating, counting (Dehaene & Cohen (1994)), both involve different
systems and one of them is behavioral (Pecyna et al. (2022)) while the latter is purely autonomic or
spontaneous (Castaldi et al. (2021)) and is modality independent (Togoli & Arrighi (2021)).

The self-regulatory aspect of subitizing is thus the main contribution of this work. This change
of perspective has the potential to unify different systems that share the same properties of the
current model under a common view that could be considered as a neuromorphic version of active
inference (Parr et al. (2022)). Indeed, similar models have been described in insects for controlling
head direction (Pisokas et al. (2020)) which have inspired computational (Stentiford et al. (2024))
and robotic models (Robinson et al. (2022)). However, in contrast with many existing models, our
current model does not include any sort of learning but adaptation, a property that is key not only
for subitizing (Togoli & Arrighi (2021)) but for general perception and control as well. We think
learning will add degrees of freedom to the model like the possibility of building a full Approximate
Number System.

There are still many challenges to overcome, and they are the focus of current computational and
theoretical work. One of them is the fact that the model has to be slow to be stable (i.e. the difference
between the fast time scales of spiking and the slow dynamics of the bump) needs to be significant.
Furthermore, the qualitative descriptions here need to be validated against actual data that not only
approaches the difference in age when subitizing but, perhaps more importantly, the dysfunction
of such systems. We think our overall approach is productive in investigating numbers and similar
abstract senses in animals as well as in robots.
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