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Abstract

Contrastively trained vision-language mod-001
els such as CLIP have achieved remarkable002
progress in vision and language representation003
learning. Despite the promising progress, their004
proficiency in compositional reasoning over at-005
tributes and relations (e.g., distinguishing be-006
tween “the car is underneath the person” and007
“the person is underneath the car”) remains no-008
tably inadequate. We investigate the cause for009
this deficient behavior is the composition attri-010
bution issue, where the attribution scores (e.g.,011
attention scores or GradCAM scores) for rela-012
tions (e.g., underneath) or attributes (e.g., red)013
in text are substantially lower than those for014
object terms. In this work, we show such is-015
sue is mitigated via a novel framework called016
CAE (Composition Attribution Enhancement).017
This generic framework incorporates various018
interpretable attribution methods to encourages019
the model to pay greater attention on composi-020
tion words denoting relationships and attributes021
within the text. Detailed analysis shows that022
our approach enables the models to adjust and023
rectify the attribution on the texts. Extensive024
experiments across seven benchmarks reveal025
that our framework significantly enhances the026
ability to discern intricate details and construct027
more sophisticated interpretations of combined028
visual and linguistic elements.029

1 Introduction030

The field of vision-language research has made031

great advancements in recent years (Radford et al.,032

2021; Jia et al., 2021b; Rombach et al., 2022;033

Alayrac et al., 2022). Vision-Language founda-034

tion models, such as CLIP, have exhibited remark-035

able performance across a broad range of well-036

established evaluation tasks (Deng et al., 2009;037

Agrawal et al., 2019; Lin et al., 2014; Ramesh et al.,038

2021), directly or indirectly fostering progress in039

numerous areas, such as text-to-image generation040

(Ramesh et al., 2022), video recognition (Ni et al.,041
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Figure 1: (Left) a) An illustrative example from the
Winoground benchmark for assessing relation under-
standing of VLMs. VLMs exhibit difficulty in accu-
rately matching the image with the correct caption (de-
noted in green). (Right) b) The issue of composition
attribution deficiency. The distribution of GradCAM-
based attribution scores for object tokens is significantly
lower than which of the composition tokens (relation
and attribute).

2022) and multi-modal large language models (Zhu 042

et al., 2023; Liu et al., 2024). 043

Despite these advances, a notable limitation still 044

persists: VLMs such as CLIP exhibit significant 045

challenges in understanding visio-linguistic con- 046

cepts beyond object nouns, in particular relations 047

and attributes (Thrush et al., 2022; Yuksekgonul 048

et al., 2022; Zhao et al., 2022). Specifically, they 049

struggle with understanding relations between ob- 050

jects, binding correct attributes to the correct ob- 051

jects. For example, as illustrated in Fig. 1 (Left), 052

given an image and two similar textual descriptions 053

(containing the same set of words but composed dif- 054

ferently), such as “the car is underneath the person” 055

and “the person is underneath the car”, humans 056

can effortlessly discern the contextual differences 057

between the two sentences. However, VLMs tend 058

to struggle, highlighting a significant challenge in 059

compositional reasoning (Thrush et al., 2022; Yuk- 060

sekgonul et al., 2022). 061

To further investigate the factors impeding the 062

compositional understanding capabilities of VLMs 063

such as CLIP, we employ various model attribution 064
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techniques, such as attention-based and GradCAM-065

based methods (Chefer et al., 2021), to analyze the066

attribution scores assigned by the model to object067

and non-object words when performing image-text068

matching. As show in Fig. 1 (Right), our investiga-069

tion reveal a consistent pattern across four different070

attribution scores: the attribution scores for object071

words are significantly higher than those for rela-072

tion and attribute words. For example, the mean073

attribution score of object tokens is 0.244, which074

is two times than the relation tokens (0.111). This075

indicates that the model disproportionately empha-076

sizes object words, neglecting fine-grained details077

such as relations and attributes in the text. This078

phenomenon aligns with the recent studies (Yuk-079

sekgonul et al., 2022; Kamath et al., 2023) which ar-080

gued the presence of shortcuts in contrastive learn-081

ing pretraining. Specifically, the models distinguish082

the correct image-text pairs from distinctly incor-083

rect ones through simple object recognition, with-084

out need to comprehend finer-grained details such085

as relations and attributes in the texts. In this work,086

we further identify that the primary issue for com-087

positional understanding is the unfair attribution088

for relation and attribute words. We refer to this as089

the issue of composition attribution deficiency.090

However, the existing methods to improve visio-091

linguistic compositional understanding are not de-092

signed to adjust the attribution for different texts.093

(Yuksekgonul et al., 2022) introduces captions with094

perturbed word order and nearest neighboring im-095

ages into each batch, to force models to distin-096

guish correct and hard negative samples. (Doveh097

et al., 2024) use LLMs for hard negative mining098

and (Cascante-Bonilla et al., 2023) explore using099

synthetic datasets to compose hard negative sam-100

ples. Regardless of the methods of hard negative101

mining, existing methods do not endow the models102

with proportionate attribution across different texts,103

neglecting the attribution issues.104

Inspired by our observation, we propose a novel105

framework, named CAE (Composition Attribution106

Enhancement), to enhance the compositional un-107

derstanding of VLMs without constructing any108

hard negative samples explicitly. Specifically, in109

addition to a task-specific loss, CAE adds a new110

loss that aligns the attribution scores distribution111

of different types of text tokens during the training112

process. This encourages the model to pay more113

attention on fine-grained details (relations or at-114

tributes) within the text beyond object nouns. We115

propose four instances of our framework: attention-116

based, GradCAM-based, perturbation-based and 117

gradient-based attribution. In each instance, the 118

model’s compositional understanding abilities is 119

naturally improved. Furthermore, our approach 120

can be easily integrated with hard negative sam- 121

ples, leading to additional performance gains. 122

We summarize our contributions as follows: 123

1. We introduce a simple yet effective novel 124

method to enhance the VLMs’ compositional 125

understanding without introducing any hard 126

negative samples explicitly. 127

2. Extensive experiments across four attribu- 128

tion methods and seven widely-used vision- 129

language compositional benchmarks demon- 130

strate the effectiveness of our method. 131

3. Our proposed method can be seamlessly inte- 132

grated with hard-sample mining, thereby fur- 133

ther boosting the model’s capability of com- 134

positional understanding. 135

2 Related Works 136

Contrastive Vision-Language Models. Modern 137

VLMs undergo pre-training on large-scale and 138

noisy multimodal datasets (Radford et al., 2021; 139

Jia et al., 2021b; Alayrac et al., 2022; Singh et al., 140

2022; Li et al., 2022), and then are applied to down- 141

stream tasks in a zero-shot manner, achieving re- 142

markable success. Among these models, CLIP 143

(Radford et al., 2021) stands out, which utilizes a 144

contrastive learning method for pretraining. Our 145

focus on CLIP is motivated by two primary fac- 146

tors. Firstly, image-text contrastive learning has 147

become a prevalent and highly successful strategy 148

for VLM pretraining (Jia et al., 2021a; Sun et al., 149

2023), catalyzing a series of subsequent CLIP-like 150

models. Secondly, CLIP demonstrates extensive 151

applicability across various domains. Therefore, 152

enhancing CLIP can effectively extend its benefits 153

to a wider range of vision-language applications. 154

Vision-Language Compositionality. Despite 155

the impressive advancements achieved in VLMs, 156

recent studies (Zhao et al., 2022; Yuksekgonul 157

et al., 2022; Thrush et al., 2022) show that existing 158

VL models exhibit limited compositional reasoning 159

abilities. Yuksekgonul et al. (Yuksekgonul et al., 160

2022) argue that image-text contrastive learning 161

learns shortcuts and does not learn enough composi- 162

tional information such as relation and attribute. To 163
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Figure 2: Overview of our method.

address this limitation, exisiting approaches mostly164

investigate how to augment the text captions or165

images in contrastive learning to enhance the abil-166

ity of compositional understanding (Yuksekgonul167

et al., 2022; Singh et al., 2023; Doveh et al., 2024;168

Zhang et al., 2024; Doveh et al., 2023; Sahin et al.,169

2024; Cascante-Bonilla et al., 2023). Yuksekgonul170

et al. (Yuksekgonul et al., 2022) firstly proposed a171

simple and straightforward fix: mining hard nega-172

tives, which can improves the model’s performance.173

Smith et al. (Basu et al., 2023) enhances CLIP’s174

visio-linguistic reasoning via introducing a distilla-175

tion objective from text-to image generative models176

such as Stable-Diffusion.177

Enhance Models with Interpretation Methods.178

In both natural language processing and computer179

vision community, some previous works have been180

proposed to use interpretation methods to augment181

model. For instance, (Ghaeini et al., 2019) intro-182

duces an loss function that encourages the gradient183

of the input to positively influence the ground truth.184

(Huang et al., 2021) designs a method that con-185

strains the model to focus more on rationales than186

non-rationales. (Ebrahimi et al., 2021) addresses187

the issue of catastrophic forgetting in continual188

learning by encouraging the model to concentrate189

on its initial decision-making explanations. In the190

realm of medical imaging, (Simpson et al., 2019)191

proposes a regularization method that penalizes192

visual saliency maps derived from classifier gra-193

dients when these maps are inconsistent with le-194

sion segmentation, thereby mitigating overfitting195

issues. Furthermore, (Yang et al., 2023) enhances196

the model’s visual grounding capability by con- 197

straining visual gradient-based explanations to be 198

consistent with region-level annotations provided 199

by humans. 200

3 Method 201

Our approach employs an attribution method to de- 202

rive attribution scores on the text, subsequently 203

optimizing these attribution scores to enhance 204

model’s capability for compositional reasoning. 205

Preliminary: Consider a training example consist- 206

ing of an image I and its corresponding caption T. 207

Contrastive Loss CLIP consists of a text encoder 208

ft : T −→ Rd and an image encoder fi : I −→ Rd 209

to encode image and text into embedding space Rd 210

separately. The image-text similaity score are com- 211

puted as: 212

S(I, T ) =
fi(I) · ft(T )

||fi(I)|| · ||ft(T )||
/τ, (1) 213

where temperature τ is a learnable parameter. Con- 214

sider a batch B consisting of N pairs of images 215

and texts sampled from the training dataset. The 216

Image-Text Contrastive (ITC) loss LITC contains 217

an image-to-text constrastive loss Li2t and a text- 218

to-image contrastive loss Li2t that 219

LITC = (Li2t + Li2t)/2. (2) 220

The image-to-text contrastive loss Li2t and text- 221

to-image contrastive loss Lt2i are formulated as 222

follows: 223

Li2t =
∑

(I,T )∈B

− log
expS(I,T )∑

Ti∈B
expS(I,Ti)

, (3) 224
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Lt2i =
∑

(I,T )∈B

− log
expS(I,T )∑

Ij∈B
expS(Ij ,T )

. (4)225

Formulation Firstly, we utilize a widely-used text226

scene graph parser (Wu et al., 2019) to parse the227

caption T, extracting the relations, attributes and228

objects present within the text. Which little cost,229

this process effectively categorizes which tokens230

in T pertain to relations or attributes, and which231

pertain to objects. Note the parsing process is only232

applied to the training samples. The trained CLIP233

is used in the same way as the original one.234

For an VLM such as CLIP, the attribution score235

ai for each token Ti in the caption indicates the236

contribution or importance of each token to the237

output image-text similarity. A higher magni-238

tude of ai signifies a greater importance of Ti239

to the final output. Given our knowledge of the240

positions of object tokens and relation/attribute241

tokens in the text, we can obtain the attribution242

scores for these tokens. For each sample, we de-243

rive the object attribution score aobj by averaging244

the attribution scores of all object tokens. Simi-245

larly, we obtain the compositional attribution score246

acomp for each sample by averaging the attribution247

scores of all relation/attribute tokens. For the entire248

batch, we define Aobj = [a0obj , a
1
obj , a

2
obj , ..., a

n
obj ],249

Acomp = [a0comp, a
1
comp, a

2
comp, ..., a

n
comp], n is the250

batch size. The proposed CAE introduces an extra251

learning objective LAttr that optimize the text attri-252

bution score to encourage the model to pay more253

attention on relation or attribute tokens. An intu-254

itive approach is to make the two items as close255

as possible, a idea that is also reflected in (Huang256

et al., 2021). Therefore, we define the attribution257

loss as follows:258

LAttr = max(Aobj −Acomp + ϵ, 0), (5)259

where ϵ denotes the margin hyper-parameter, and is260

set to 0 default for all our experiments. The overall261

objective function is formulated as follows:262

Ltotal = LITC + λ · LAttr, (6)263

where λ is a hyper-parameter balancing the two264

objectives.265

In the following subsections, we introduce four266

instances with different attribution types.267

3.1 Attention-Based Attribution268

In this method, for a given batch of data, we ini-269

tially extract the attention matrices from each layer270

of the text encoder (averaging across all heads). 271

Subsequently, we isolate the attention scores of the 272

CLS token with respect to the other tokens within 273

these matrices, designating them as the attribution 274

scores for the current layer. Then, we average of 275

the attribution scores across all layers to obtain the 276

final attribution ai for each token in the sentence. 277

Finally, we compute the average attribution score 278

for all object tokens to get aobj and similarly for all 279

relation and attribute tokens to get acomp. 280

3.2 GradCAM-Based Attribution 281

In this method, we follow the attribution approach 282

proposed in (Chefer et al., 2021) to obtain a attribu- 283

tion score for each text token, given the calculated 284

image-text similarity score. 285

Firstly, we initialize the text attribution map R 286

as an identity matrix, the dimensions of which 287

correspond to the size of the attention matrix at 288

each layer of the text encoder. Subsequently, we 289

compute the gradients of the attention weights by 290

leveraging the image-text similarity computed from 291

paired image-text inputs and average them across 292

all attention heads. This procedure yields an ex- 293

plainability map Ēi for each layer i. 294

Ēi =

h∑
j=1

(∇Ai
j ⊙Ai

j)
+, (7) 295

where ⊙ is the Hadamard product, Ai
j denote the 296

attention matrix of the head j in layer i, ∇Ai
j := 297

∂S(I,T )

∂Ai
j

for S(I, T ) which is the the similarity 298

score computed for the text T with the image I . 299

Finally, we aggregate the explainability maps of 300

all layers using the propagation rule as presented 301

in (Chefer et al., 2021) to derive the final text attri- 302

bution map. 303

R← R+ Ēi ·R. (8) 304

Then, we use the row of R that corresponds to 305

the CLS token to get the object attribution score 306

Aobj and compositional attribution score Acomp of 307

each sample similar to Attention-Based method. 308

3.3 Perturbation-Based Attribution 309

Consider a paired image T and text I, CLIP can 310

computes their similarity score S(I, T ). To ob- 311

tain attribution scores for each token in T, inspired 312

by the "Input Marginalization" methodology (Kim 313

et al., 2020), we perturb the input text while keep- 314

ing the image fixed. Specifically, we replace a 315
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ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

Random Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 25.0 16.7

CLIP (Radford et al., 2021) 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 31.6 11.1 9.4
SDS-CLIP (Basu et al., 2023) 53.0 62.0 - - - - - - - - -
CLIP-FT 64.9 66.3 70.8 77.5 60.8 67.5 67.2 84.1 70.8 33.9 8.2 5.3

CLIP-CAE (Attention-Based) 69.7 65.3 72.0 79.2 65.4 68.4 69.1 84.5 72.5 33.9 13.5 8.2
CLIP-CAE (GradCAM-Based) 70.9 65.2 73.0 77.9 66.8 68.3 67.6 83.7 72.7 29.8 9.9 7.0
CLIP-CAE (Perturbation-Based) 69.8 65.3 74.3 79.7 67.8 69.8 68.9 84.0 73.2 28.7 8.2 5.3
CLIP-CAE (Gradient-Based) 68.1 65.8 73.7 79.0 61.7 67.9 69.2 83.6 72.4 29.8 8.8 5.9

Table 1: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground.
Highlighted in bold denote an improvement over CLIP-FT, while the underlined ones indicate a performance
degradation compared to CLIP-FT. Empty scores mean that the model’s code has not been released.

current token with another distinct token. Given316

characteristic of our task, we further constrain the317

perturbation range. For tokens representing objects,318

relations, or attributes, we randomly select an al-319

ternative concept from a corresponding candidate320

set as the replacement token. The attribution score321

for the current token is then defined as the aver-322

age drop in similarity score S(I, T ) resulting from323

multiple perturbation:324

ai = Ep[S(T, (stopgrad(I))−S(Tp, (stopgrad(I))] (9)325

where Ep is the mean across multiple perturbation.326

This approach allows us to calculate attribution327

scores for each object, relation, or attribute token328

within the sentence. Then, we compute the average329

attribution score for all object tokens to get aobj and330

for all relation and attribute tokens to get acomp.331

3.4 Gradient-Based Attribution332

The attribution score ai is defined as a function333

of the gradient of the input text token xi. Specifi-334

cally, we sum the absolute values of the gradients335

across the input embedding dimensions to obtain336

the gradient for each input text token:337

ai =
d∑

j=1

∥∂S(I, T )
∂xij

∥1 (10)338

where xij represents the j-th dimension of token xi,339

S(I, T ) denote the image-text similarity computed340

by the model for a paired text T and image I.341

Subsequently, a softmax function is applied to342

normalize all token gradient values. The attribution343

score for each token is thus defined as the normal-344

ized gradient value.345

4 Experiments346

Datasets. For training, we use the approximately347

110k image-text pairs from MSCOCO (Lin et al.,348

2014) given that its captions are less noisy and 349

provide a richer description of the relation and 350

attribute content in the images. For evaluation, 351

we use ARO (Yuksekgonul et al., 2022), Sugar- 352

Crepe (Hsieh et al., 2024), VL-Checklist (Zhao 353

et al., 2022), Winoground (Thrush et al., 2022), 354

VALSE (Parcalabescu et al., 2021), SVO-Probes 355

(Hendricks and Nematzadeh, 2021) and ComVG 356

(Jiang et al., 2022). The details of these seven 357

datasets are in the Appendix B. 358

Implementation Detail. We used the popular 359

ViT-B/32 OpenAI CLIP (Radford et al., 2021) as 360

our model in all the experiments using the Open- 361

CLIP repository (Ilharco et al., 2021). We finetune 362

it for 5 epochs with a batch size of 256. We use a 363

cosine schedule with an initial learning rate of 5e-7 364

and use 50 steps for warm up. AdamW (Kingma 365

and Ba, 2014) optimizer is used with a weight de- 366

cay of 0.2. All the experiments are conducted on a 367

NVIDIA Tesla V100 GPU. 368

Baseline. Our approach is mainly compared 369

against two distinct baselines: (i) a pre-trained 370

CLIP model; (ii) a CLIP model fine-tuned on 371

MSCOCO utilizing only the contrastive loss, de- 372

void of our proposed attribution optimization loss. 373

It is imperative to emphasize that the second base- 374

line, (ii), plays a critical role in mitigating the influ- 375

ence of image-text pairs derived from MSCOCO 376

during the finetuning process. 377

4.1 Main Results 378

Table 1 presents the comparative performance of 379

our proposed method against the baseline across 380

seven evaluation benchmarks comprehensively de- 381

signed for compositional understanding. All our 382

CLIP-CAE models are trained on the same dataset 383

and with the same training hyperparameters as 384

CLIP-FT. Without bells and whistles, our method, 385
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ARO Sugar-Crepe VL-Checklist VALSE SVO-Probes ComVG Winoground

Model Relation Attribute Relation Attribute Relation Attribute Relation Relation Relation Text Image Group

Random Chance 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 25.0 25.0 16.7

CLIP 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 31.6 11.1 9.4
CLIP-FT with HN 80.5 71.4 73.3 79.8 71.9 70.0 75.5 83.7 70.2 29.2 8.8 5.3

CLIP-CAE (Attention-Based) 77.9 69.7 74.4 81.6 73.0 69.9 74.5 84.4 71.4 33.9 12.9 8.2
CLIP-CAE (GradCAM-Based) 80.0 68.9 74.8 80.8 74.0 70.1 74.3 84.1 73.0 26.3 9.9 5.9
CLIP-CAE (Perturbation-Based) 79.8 69.9 74.2 83.4 75.1 71.1 72.9 84.7 73.9 26.9 9.9 7.0
CLIP-CAE (Gradient-Based) 80.8 71.6 74.1 80.7 73.0 69.8 75.4 84.1 71.0 27.5 8.8 5.9

Table 2: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground when
combined with hard negative samples. Highlighted in bold denote an improvement over CLIP-FT with HN, while
the underlined ones indicate a performance degradation compared to CLIP-FT with HN.

incorporating four distinct attribution variants, con-386

sistently demonstrates significant improvements387

over CLIP-FT across nearly all seven benchmarks.388

Notably, on the highly challenging visio-linguistic389

reasoning benchmark, Winoground, our method390

exhibits superior performance. For instance, the391

CLIP-CAE (Attention-Based) model achieves an392

average absolute improvement of 5.3% on the393

Winoground image score and an average absolute394

improvement of 2.9% on the Winoground group395

score (most difficult average metric). Addition-396

ally, our method demonstrates a slight performance397

decline on ARO-Attribute compared to CLIP-FT398

(though still better than pretrained CLIP). Upon399

meticulous examination of certain failure cases400

within the dataset, we observed that the alignment401

between images and corresponding true caption in402

this dataset is subtly ambiguous.403

These alignments necessitate meticulous discern-404

ment even for human, thereby indicating a higher405

level of difficulty and the presence of noise within406

the dataset. This observation is consistent with407

related works (Cascante-Bonilla et al., 2023) that408

utilize hard-negative samples, also exhibiting negli-409

gible performance fluctuations on ARO-Attribute.410

4.2 Combined with Hard-Negative samples411

Given that our method is orthogonal to hard-sample412

mining, we sought to further verify the general-413

ity and efficacy of our approach by integrating it414

with hard negative samples. The experiment re-415

sults are presented in Table 2. Compared to the416

pretrained model, utilizing hard negative samples417

substantially improves model performance across418

most datasets. However, performance also exhibit419

considerable decline on the out-of-domain and chal-420

lenging Winoground. When compared to using421

hard negative samples alone, the combination of422

our method and hard negative samples yield su-423

perior performance improvements. For instance, 424

CLIP-Neg obtain a remarkable 71.9% accuracy on 425

VL-Checklist-Relation, which is further elevated 426

to 75.1% with our combined approach, surpassing 427

CLIP-Neg by 3.2%. Notably, on the Winoground, 428

the integration of our method significantly enhance 429

performance over CLIP-Neg, with absolute im- 430

provements up to 4.7% in text score, 4.1% in image 431

score, and 2.9% in group score. 432

This phenomenon is plausible, as our method 433

enables the model to pay more attention on con- 434

cepts beyond object words. Consequently, when 435

combined with hard negative samples, the model 436

can more effectively discern nuance semantic dif- 437

ferences in positive and negative text samples, es- 438

pecially words related to different relations and 439

attributes, thereby enhancing its understanding of 440

compositional relationship in text. These results 441

further validate the effectiveness and plug-and-play 442

nature of our method. 443

4.3 Results on Downstream Retrieval Tasks 444

In practical applications, CLIP is often utilized 445

for image-text retrieval. Previous study (Cascante- 446

Bonilla et al., 2023; Yuksekgonul et al., 2022) sug- 447

gest that improvement in compositional understand- 448

ing may negatively affect the model’s performance 449

on image-text retrieval. To investigate this, we 450

evaluate our model on the downstream image-text 451

retrieval task. As shown in Table 3, our approach 452

shows overall improvements in text-to-image re- 453

trieval, albeit it exhibits a minor underperformance 454

in image-to-text retrieval on the Flickr30K. This 455

discrepancy could be due to the exclusive regu- 456

larization imposed on text encoder in our method. 457

The overall improvements in test-to-image retrieval 458

present the potential of our plug-and-play method 459

in enhancing the general text embeddings models. 460
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MSCOCO Flickr30K

Model T2I I2T T2I I2T
R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

CLIP 30.2 55.7 50.1 74.9 59.0 83.5 78.4 95.1

CLIP-CAE (AB) 38.3 65.2 54.9 78.7 64.4 87.1 80.2 95.6
CLIP-CAE (GCB) 34.8 61.9 48.5 74.8 59.8 84.2 73.5 92.5
CLIP-CAE (PB) 36.5 63.5 52.7 77.0 63.3 87.1 78.9 94.7
CLIP-CAE (GB) 38.8 65.6 54.4 78.2 65.1 87.6 80.1 94.9
Avg. 37.1 64.1 52.6 77.2 63.2 86.5 78.2 94.4

Table 3: Downstream results on MSCOCO and
Flickr30K. Highlighted in bold denote an improve-
ment over baseline, while the underlined ones indicate
a performance degradation compared to baseline.

4.4 Analysis461

4.4.1 Analysis of text embedding462

Semantic Textual Similarity We evaluate our463

text encoder and text encoder of CLIP and CLIP-464

FT on the task of Semantic Textual Similarity465

(STS), using two widely-used benchmarks: the466

STS-Benchmark (Cer et al., 2017) and SICK-R467

(Marelli et al., 2014). As indicated in Table 4,468

our text encoder consistently outperforms CLIP-469

FT across both benchmarks, especially on SICK-R.470

Our CLIP-CAE significantly surpasses both CLIP-471

FT and CLIP , with CLIP-FT exhibiting only a472

nominal 0.1 improvement over CLIP. A slight de-473

crease compared to CLIP-FT in pearson correlation474

on SICK-R may be due to the non-linear nature ex-475

isting in high-dimensional embedding space. These476

results demonstrate that our text encoder excels in477

capturing nuanced semantic differences and com-478

plex semantic relationships within texts, resulting479

in embeddings with superior semantic representa-480

tional properties. This indicates that our model481

not only achieves superior cross-modal image-text482

alignment but also enhances text representation.483

Consequently, our method not only boosts multi-484

modal capabilities but also shows promise for ap-485

plication in uni-modal language tasks, which will486

be explored in our future work.487

Text Embedding Ingredients We conduct an anal-488

ysis on ARO-Relation and ARO-Attribute datasets489

to validate that our text encoder can capture re-490

lations and attributes within captions more effec-491

tively. Specifically, for each sample, we separately492

encode the correct caption and the relation or at-493

tribute phrase annotated within these captions to494

obtain their respective text embeddings. Subse-495

quently, we calculate the cosine similarity between496

the embeddings derived from the full caption and497

the relations or attributes phrases. As shown in Fig.498

3, it can be observed that the embeddings gener-499

SICK-R STSBenchmark

Model spearman pearson spearman pearson

CLIP 67.9 68.6 61.5 59.1

CLIP-FT 68.0 73.5 66.3 64.0
CLIP-CAE 69.3 71.6 66.5 65.2

Table 4: Semantic Textual Similarity results on SICK-
R and STSBenchmark. Highlighted in bold denote
an improvement over CLIP-FT, while the underlined
ones indicate a performance degradation compared to
CLIP-FT.

ated by the text encoder of CLIP-CAE exhibit a 500

significantly higher overall similarity compared to 501

those produced by CLIP and CLIP-FT. This find- 502

ing indicates that the text encoder of CLIP-CAE 503

places greater emphasis on relations and attributes 504

when encoding text, resulting in embeddings that 505

encapsulate more information about these semantic 506

elements. 507

(a) relation (b) attribute

Figure 3: The similarity distribution between the text
embeddings obtained by encoding the entire text and
those derived from encoding specific relations or at-
tributes within the text.

4.4.2 Relationship Between Attribution Score 508

and Performance 509

We investigate the variations in the model’s per- 510

formance as a function of attribution scores for 511

relations or attributes. We utilize pretrained 512

CLIP model to conduct experiments on the ARO- 513

Relation. The focus level of the model on relations 514

is quantified by the ratio of the attribution score for 515

the relation tokens to that of the object tokens. Con- 516

currently, we assess the model’s accuracy across all 517

samples with ratios below current value. As illus- 518

trated in Fig. 4, the ratios for all samples predomi- 519

nantly fall within the range of 0.36 to 0.38. Within 520

this interval, a higher attribution score ratio corre- 521

sponds to a cumulative increase in accuracy. This 522

trend indicates that the more attention the model 523

allocates to the relation tokens, the better it dif- 524
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Figure 4: Cumulative accuracy on ARO-Reletion of
CLIP vs. the attribution score ratio between relation and
object tokens.

ferentiates the compositional nuances in correct525

caption and false caption, thereby exhibiting bet-526

ter compositional understanding capabilities. This527

phenomenon further substantiates the reasonability528

of our proposed method.529

4.4.3 Ablation530

We conducted ablation studies under various train-531

ing configurations, with the results presented in532

Table 5. It can be observed that that utilizing only533

LAttr results in a performance decline across mul-534

tiple benchmarks. This performance degradation535

can be due to the absence of LITC , which serves as536

a constraint to align image and text features. With-537

out this constraint, features may undergo exces-538

sive deviation, thereby compromising the original539

alignment performance. When the LITC is com-540

bined with our attribution loss, the model exhibits541

superior performance across all benchmarks, thus542

demonstrating the effectiveness of our approach.

Model LITC LAttr ARO Sugar-Crepe VL-CheckList VALSE ComVG Avg.

CLIP 60.7 69.8 65.7 66.1 66.7 65.8
CLIP-FT ✓ 59.5 71.5 69.6 64.3 63.0 65.6
CLIP-FT ✓ 65.6 74.2 64.2 67.2 70.8 68.4
CLIP-CAE ✓ ✓ 67.5 75.6 66.9 69.1 72.5 70.3

Table 5: Ablation of losses. LITC represents image-text
contrastive loss, LAttr denote our proposed attribution loss.

543

4.4.4 Case Study544

In Fig. 5, we employ the GradCAM tool (Chefer545

et al., 2021) to visualize a qualitative example from546

the ARO-Relation, generating attribution maps for547

both image and text. It is evident that the original548

CLIP model excessively attends to object-specific549

regions in both modalities. In contrast, our pro-550

posed CLIP-CAE directs the model’s attention be-551

(a) Original image (b) Attribution map of CLIP (c) Attribution map of CLIP-CAE

the cat is touching the elephant

the elephant is touching the cat

CLIP CLIP-CAE

Figure 5: A qualitative visualization case. Both image
and text attribution maps are displayed.

yond objects to areas representing relationship. For 552

instance, in this example, CLIP-CAE more effec- 553

tively focuses on the regions depicting the interac- 554

tion between the cat and the elephant, specifically 555

the area where they touch, as well as the word 556

“touch” in the text. This demonstrates that our 557

model is better at capturing regions in images and 558

text that represent compositional concepts, such as 559

the interaction between two objects. 560

5 Conclusion 561

In this work, we present an intuitive and novel 562

method to enhance the composition attribution and 563

the compositional reasoning ability of contrastive 564

vision-language models such as CLIP. Extensive 565

experiments across variant attribution method and 566

seven benchmarks show the effectiveness of our 567

method. Our method can be easily integrated with 568

existing hard negative mining techniques to further 569

boost the performance. We hope our methods can 570

provide useful insights to solve the compositional 571

understanding dilemma of VLMs and improves the 572

semantic representations of texts. 573

6 Limitation 574

Despite our approach effectively enhances the 575

model’s compositional understanding ability across 576

various attribution methods without employing 577

hard negative samples, our method does not im- 578

pose explicit constraints or enhancements on the 579

visual component of VLMs. Analyzing and explic- 580

itly enhancing the visual model through diverse 581

attribution and interpretation methods will be a 582

focus of our future work. Furthermore, we also 583

intend to employ our approach to further interpret 584

and analyze existing model deficiencies, thereby 585

enabling precise optimization and enhancement. 586
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A Composition Attribution Deficiency838

Fig. 6 illustrates the distribution of attribution839

scores for object tokens and composition tokens840

derived from three distinct attribution methods. A841

consistent pattern emerges across these distinct at-842

tribution methods: the attribution scores for object843

words are markedly higher compared to those for844

relation and attribute words.845

B Appendix: Datasets846

(1) ARO (Yuksekgonul et al., 2022) is a large847

dataset designed to evaluate the compositional un-848

derstanding ability of VL models. It encompasses849

two distinct datasets to evaluate relation and at-850

tribute understanding respectively: Visual Genome851

Relation (VG-Relation) and Visual Genome At-852

tribution (VG-Attribution). VG-Relation incorpo-853

rates 48 distinct relation categories, featuring a total854

of 23, 937 test cases, whereas VG-Attribution com-855

prises 117 unique attribute pairs, with a total of856

28, 748 test cases. Each case within these datasets 857

is accompanied by an image, paired with a matched 858

caption and a swapped mismatched caption. 859

(2) VL-Checklist (Zhao et al., 2022) is a large- 860

scale dataset containing around 410k images that 861

combines the following four datasets: Visual 862

Genome (Krishna et al., 2017), SWiG (Pratt et al., 863

2020), VAW (Pham et al., 2021), and HAKE (Li 864

et al., 2019). Each image of these datasets is asso- 865

ciated with two captions, a positive and a negative. 866

The positive caption corresponds to the image and 867

is taken from the source dataset. The negative cap- 868

tion is made from the positive caption by changing 869

one word. We report average results for each of 870

the main (Relation and Attribute) groups on VL- 871

Checklist. 872

(3) Sugar-Crepe (Hsieh et al., 2024) is a re- 873

cent benchmark designed to avoids ungrammatical 874

and nonsensical negative captions, and generates 875

hard negative captions by swapping, replacing, or 876

adding linguistic elements. In this work, we cal- 877

culate the accuracy for subsets belonging to the 878

categories of relation and attribute within Sugar- 879

Crepe respectively. 880

(4) Winoground (Thrush et al., 2022) is a 881

modestly-sized dataset containing 400 samples de- 882

signed to assess the compositional reasoning ca- 883

pabilities of VL models. Each sample within the 884

dataset consists of two image-text pairs, charac- 885

terized by overlapping lexical content but distin- 886

guished by the alteration of an object, a relation, 887

or both. For every sample, two text-retrieval tasks 888

(text score) and two image-retrieval tasks (image 889

score) are defined, with a combined group score 890

representing overall performance. Recent study 891

(Diwan et al., 2022) has analyzed that successful 892

performance on Winoground necessitates compe- 893

tencies beyond simple compositionality. The study 894

identified a subset of 171 out of the total 400 sam- 895

ples that reliably probe compositional reasoning. 896

In contrast, other samples within the dataset were 897

found to be non-compositional, ambiguous, predi- 898

cated on invisible details, or associated with highly 899

uncommon images or text, thus requiring more 900

complex reasoning beyond compositionality. Con- 901

sequently, we report our results on this “clean” sub- 902

set following (Cascante-Bonilla et al., 2023). 903

(5) VALSE is a benchmark specifically designed 904

to evaluate the capabilities of VL models across 905

six distinct linguistic phenomena. Each sample 906

within this benchmark comprises an image paired 907

with both a correct caption and a false caption. The 908

11



Attention-Base Attribution

VG-Relation VG-Attribute

Perturbation-Base Attribution

VG-Relation VG-Attribute

Gradient-Base Attribution

VG-Relation VG-Attribute

Figure 6: The attribution score distribution of object and composition token using attention-based, perturbation-
based and gradient-Based attribution method.

false caption is generated by modifying a word909

or phrase within the original caption, targeting a910

particular linguistic phenomenon—such as verb ar-911

gument structure, spatial relation, or coreference.912

Three subsets within the benchmark focus on ac-913

tion and spatial relations, aligning closely with our914

task of compositional understanding. In this study,915

we report the average accuracy across these three916

pertinent subsets.917

(6) SVO-Probes (Hendricks and Nematzadeh,918

2021) and ComVG (Jiang et al., 2022) assess919

VLMs on verb (relation) understanding.920
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