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Abstract

Contrastively trained vision-language mod-
els such as CLIP have achieved remarkable
progress in vision and language representation
learning. Despite the promising progress, their
proficiency in compositional reasoning over at-
tributes and relations (e.g., distinguishing be-
tween “the car is underneath the person” and
“the person is underneath the car’”’) remains no-
tably inadequate. We investigate the cause for
this deficient behavior is the composition attri-
bution issue, where the attribution scores (e.g.,
attention scores or GradCAM scores) for rela-
tions (e.g., underneath) or attributes (e.g., red)
in text are substantially lower than those for
object terms. In this work, we show such is-
sue is mitigated via a novel framework called
CAE (Composition Attribution Enhancement).
This generic framework incorporates various
interpretable attribution methods to encourages
the model to pay greater attention on composi-
tion words denoting relationships and attributes
within the text. Detailed analysis shows that
our approach enables the models to adjust and
rectify the attribution on the texts. Extensive
experiments across seven benchmarks reveal
that our framework significantly enhances the
ability to discern intricate details and construct
more sophisticated interpretations of combined
visual and linguistic elements.

1 Introduction

The field of vision-language research has made
great advancements in recent years (Radford et al.,
2021; Jia et al., 2021b; Rombach et al., 2022;
Alayrac et al., 2022). Vision-Language founda-
tion models, such as CLIP, have exhibited remark-
able performance across a broad range of well-
established evaluation tasks (Deng et al., 2009;
Agrawal et al., 2019; Lin et al., 2014; Ramesh et al.,
2021), directly or indirectly fostering progress in
numerous areas, such as text-to-image generation
(Ramesh et al., 2022), video recognition (Ni et al.,
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Figure 1: (Left) a) An illustrative example from the
Winoground benchmark for assessing relation under-
standing of VLMs. VLMs exhibit difficulty in accu-
rately matching the image with the correct caption (de-
noted in green). (Right) b) The issue of composition
attribution deficiency. The distribution of GradCAM-
based attribution scores for object tokens is significantly
lower than which of the composition tokens (relation
and attribute).

2022) and multi-modal large language models (Zhu
et al., 2023; Liu et al., 2024).

Despite these advances, a notable limitation still
persists: VLMs such as CLIP exhibit significant
challenges in understanding visio-linguistic con-
cepts beyond object nouns, in particular relations
and attributes (Thrush et al., 2022; Yuksekgonul
et al., 2022; Zhao et al., 2022). Specifically, they
struggle with understanding relations between ob-
jects, binding correct attributes to the correct ob-
jects. For example, as illustrated in Fig. 1 (Left),
given an image and two similar textual descriptions
(containing the same set of words but composed dif-
ferently), such as “the car is underneath the person”
and “the person is underneath the car”, humans
can effortlessly discern the contextual differences
between the two sentences. However, VLMs tend
to struggle, highlighting a significant challenge in
compositional reasoning (Thrush et al., 2022; Yuk-
sekgonul et al., 2022).

To further investigate the factors impeding the
compositional understanding capabilities of VLMs
such as CLIP, we employ various model attribution



techniques, such as attention-based and GradCAM-
based methods (Chefer et al., 2021), to analyze the
attribution scores assigned by the model to object
and non-object words when performing image-text
matching. As show in Fig. 1 (Right), our investiga-
tion reveal a consistent pattern across four different
attribution scores: the attribution scores for object
words are significantly higher than those for rela-
tion and attribute words. For example, the mean
attribution score of object tokens is 0.244, which
is two times than the relation tokens (0.111). This
indicates that the model disproportionately empha-
sizes object words, neglecting fine-grained details
such as relations and attributes in the text. This
phenomenon aligns with the recent studies (Yuk-
sekgonul et al., 2022; Kamath et al., 2023) which ar-
gued the presence of shortcuts in contrastive learn-
ing pretraining. Specifically, the models distinguish
the correct image-text pairs from distinctly incor-
rect ones through simple object recognition, with-
out need to comprehend finer-grained details such
as relations and attributes in the texts. In this work,
we further identify that the primary issue for com-
positional understanding is the unfair attribution
for relation and attribute words. We refer to this as
the issue of composition attribution deficiency.

However, the existing methods to improve visio-
linguistic compositional understanding are not de-
signed to adjust the attribution for different texts.
(Yuksekgonul et al., 2022) introduces captions with
perturbed word order and nearest neighboring im-
ages into each batch, to force models to distin-
guish correct and hard negative samples. (Doveh
et al., 2024) use LLMs for hard negative mining
and (Cascante-Bonilla et al., 2023) explore using
synthetic datasets to compose hard negative sam-
ples. Regardless of the methods of hard negative
mining, existing methods do not endow the models
with proportionate attribution across different texts,
neglecting the attribution issues.

Inspired by our observation, we propose a novel
framework, named CAE (Composition Attribution
Enhancement), to enhance the compositional un-
derstanding of VLMs without constructing any
hard negative samples explicitly. Specifically, in
addition to a task-specific loss, CAE adds a new
loss that aligns the attribution scores distribution
of different types of text tokens during the training
process. This encourages the model to pay more
attention on fine-grained details (relations or at-
tributes) within the text beyond object nouns. We
propose four instances of our framework: attention-

based, GradCAM-based, perturbation-based and
gradient-based attribution. In each instance, the
model’s compositional understanding abilities is
naturally improved. Furthermore, our approach
can be easily integrated with hard negative sam-
ples, leading to additional performance gains.

We summarize our contributions as follows:

1. We introduce a simple yet effective novel
method to enhance the VLMs’ compositional
understanding without introducing any hard
negative samples explicitly.

2. Extensive experiments across four attribu-
tion methods and seven widely-used vision-
language compositional benchmarks demon-
strate the effectiveness of our method.

3. Our proposed method can be seamlessly inte-
grated with hard-sample mining, thereby fur-
ther boosting the model’s capability of com-
positional understanding.

2 Related Works

Contrastive Vision-Language Models. Modern
VLMs undergo pre-training on large-scale and
noisy multimodal datasets (Radford et al., 2021;
Jia et al., 2021b; Alayrac et al., 2022; Singh et al.,
2022; Li et al., 2022), and then are applied to down-
stream tasks in a zero-shot manner, achieving re-
markable success. Among these models, CLIP
(Radford et al., 2021) stands out, which utilizes a
contrastive learning method for pretraining. Our
focus on CLIP is motivated by two primary fac-
tors. Firstly, image-text contrastive learning has
become a prevalent and highly successful strategy
for VLM pretraining (Jia et al., 2021a; Sun et al.,
2023), catalyzing a series of subsequent CLIP-like
models. Secondly, CLIP demonstrates extensive
applicability across various domains. Therefore,
enhancing CLIP can effectively extend its benefits
to a wider range of vision-language applications.

Vision-Language Compositionality. Despite
the impressive advancements achieved in VLMs,
recent studies (Zhao et al., 2022; Yuksekgonul
et al., 2022; Thrush et al., 2022) show that existing
VL models exhibit limited compositional reasoning
abilities. Yuksekgonul et al. (Yuksekgonul et al.,
2022) argue that image-text contrastive learning
learns shortcuts and does not learn enough composi-
tional information such as relation and attribute. To
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Figure 2: Overview of our method.

address this limitation, exisiting approaches mostly
investigate how to augment the text captions or
images in contrastive learning to enhance the abil-
ity of compositional understanding (Yuksekgonul
et al., 2022; Singh et al., 2023; Doveh et al., 2024;
Zhang et al., 2024; Doveh et al., 2023; Sahin et al.,
2024; Cascante-Bonilla et al., 2023). Yuksekgonul
et al. (Yuksekgonul et al., 2022) firstly proposed a
simple and straightforward fix: mining hard nega-
tives, which can improves the model’s performance.
Smith et al. (Basu et al., 2023) enhances CLIP’s
visio-linguistic reasoning via introducing a distilla-
tion objective from text-to image generative models
such as Stable-Diffusion.

Enhance Models with Interpretation Methods.
In both natural language processing and computer
vision community, some previous works have been
proposed to use interpretation methods to augment
model. For instance, (Ghaeini et al., 2019) intro-
duces an loss function that encourages the gradient
of the input to positively influence the ground truth.
(Huang et al., 2021) designs a method that con-
strains the model to focus more on rationales than
non-rationales. (Ebrahimi et al., 2021) addresses
the issue of catastrophic forgetting in continual
learning by encouraging the model to concentrate
on its initial decision-making explanations. In the
realm of medical imaging, (Simpson et al., 2019)
proposes a regularization method that penalizes
visual saliency maps derived from classifier gra-
dients when these maps are inconsistent with le-
sion segmentation, thereby mitigating overfitting
issues. Furthermore, (Yang et al., 2023) enhances

the model’s visual grounding capability by con-
straining visual gradient-based explanations to be
consistent with region-level annotations provided
by humans.

3 Method

Our approach employs an attribution method to de-
rive attribution scores on the text, subsequently
optimizing these attribution scores to enhance
model’s capability for compositional reasoning.
Preliminary: Consider a training example consist-
ing of an image I and its corresponding caption 7.
Contrastive Loss CLIP consists of a text encoder
f; : T — R%and an image encoder f; : I — R?
to encode image and text into embedding space R?
separately. The image-text similaity score are com-
puted as:

fill) - (1)
A (DI - (D]
where temperature 7 is a learnable parameter. Con-
sider a batch B consisting of N pairs of images
and texts sampled from the training dataset. The
Image-Text Contrastive (ITC) loss L;7¢ contains
an image-to-text constrastive loss L;; and a text-
to-image contrastive loss L;o; that

Lrrc = (Liot + Liot) /2. 2

The image-to-text contrastive loss L;9; and text-
to-image contrastive loss L;9; are formulated as
follows:

Lio = Z —log

(I,T)eB

S(I,T) = /T, (D)

expSUT)

S~ expSUT)’
T;eB

3)
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Formulation Firstly, we utilize a widely-used text
scene graph parser (Wu et al., 2019) to parse the
caption T, extracting the relations, attributes and
objects present within the text. Which little cost,
this process effectively categorizes which tokens
in T pertain to relations or attributes, and which
pertain to objects. Note the parsing process is only
applied to the training samples. The trained CLIP
is used in the same way as the original one.

For an VLM such as CLIP, the attribution score
a; for each token 7T; in the caption indicates the
contribution or importance of each token to the
output image-text similarity. A higher magni-
tude of a; signifies a greater importance of 7;
to the final output. Given our knowledge of the
positions of object tokens and relation/attribute
tokens in the text, we can obtain the attribution
scores for these tokens. For each sample, we de-
rive the object attribution score a,; by averaging
the attribution scores of all object tokens. Simi-
larly, we obtain the compositional attribution score
acomyp for each sample by averaging the attribution
scores of all relation/attribute tokens. For the entire
batch, we define Agpj = [agy;, abyis oy s Ays)s
Acomp = [a’(c]omp’ aiompv acomp? Ty a?omp]’ n is the
batch size. The proposed CAE introduces an extra
learning objective L 44, that optimize the text attri-
bution score to encourage the model to pay more
attention on relation or attribute tokens. An intu-
itive approach is to make the two items as close
as possible, a idea that is also reflected in (Huang
et al., 2021). Therefore, we define the attribution
loss as follows:

Loatr = maf(Aobj - Acomp + €, 0)7 &)

where € denotes the margin hyper-parameter, and is
set to 0 default for all our experiments. The overall
objective function is formulated as follows:

Liotal = Lrrc + X - LAter, (6)

where A is a hyper-parameter balancing the two
objectives.

In the following subsections, we introduce four
instances with different attribution types.

3.1 Attention-Based Attribution

In this method, for a given batch of data, we ini-
tially extract the attention matrices from each layer

of the text encoder (averaging across all heads).
Subsequently, we isolate the attention scores of the
CLS token with respect to the other tokens within
these matrices, designating them as the attribution
scores for the current layer. Then, we average of
the attribution scores across all layers to obtain the
final attribution a; for each token in the sentence.
Finally, we compute the average attribution score
for all object tokens to get a,,; and similarly for all
relation and attribute tokens to get acomp-

3.2 GradCAM-Based Attribution

In this method, we follow the attribution approach
proposed in (Chefer et al., 2021) to obtain a attribu-
tion score for each text token, given the calculated
image-text similarity score.

Firstly, we initialize the text attribution map R
as an identity matrix, the dimensions of which
correspond to the size of the attention matrix at
each layer of the text encoder. Subsequently, we
compute the gradients of the attention weights by
leveraging the image-text similarity computed from
paired image-text inputs and average them across
all attention heads. This procedure yields an ex-
plainability map E; for each layer i.

h
=Y (VAio Ah? @)
7j=1

where ® is the Hadamard product, A} denote the
attention matrix of the head j in layer 1, VAJi. =

856(5 ) for S(I,T) which is the the similarity

score computed for the text 7" with the image 1.

Finally, we aggregate the explainability maps of
all layers using the propagation rule as presented
in (Chefer et al., 2021) to derive the final text attri-
bution map.

R+~ R+E; R. (8)

Then, we use the row of R that corresponds to
the CLS token to get the object attribution score
Aoy and compositional attribution score Aoy of
each sample similar to Attention-Based method.

3.3 Perturbation-Based Attribution

Consider a paired image 7T and text I, CLIP can
computes their similarity score S(I,T"). To ob-
tain attribution scores for each token in 7', inspired
by the "Input Marginalization" methodology (Kim
et al., 2020), we perturb the input text while keep-
ing the image fixed. Specifically, we replace a



‘ ARO ‘ Sugar-Crepe

VL-Checklist | VALSE | SVO-Probes | ComVG |  Winoground

Model ‘Relation Attribute‘Relation Attribute‘Relation Attribute‘Relation‘ Relation ‘Relation‘Text Image Group
Random Chance | 500 500 | 500 500 | 500 500 | 500 | 500 | 500 [250 250 167
CLIP (Radford et al., 2021) 58.7 62.7 68.8 70.8 63.6 67.7 66.1 79.5 66.7 |31.6 11.1 94
SDS-CLIP (Basu et al., 2023) 53.0 62.0 - - - - - - - - -

CLIP-FT 64.9 66.3 70.8 71.5 60.8 67.5 67.2 84.1 70.8 (339 82 53
CLIP-CAE (Attention-Based) 69.7 65.3 72.0 79.2 65.4 68.4 69.1 84.5 72.5 [339 135 82
CLIP-CAE (GradCAM-Based) 70.9 65.2 73.0 77.9 66.8 68.3 67.6 83.7 727 (298 99 7.0
CLIP-CAE (Perturbation-Based) | 69.8 65.3 74.3 79.7 67.8 69.8 68.9 84.0 732 |28.7 82 53
CLIP-CAE (Gradient-Based) 68.1 65.8 73.7 79.0 61.7 67.9 69.2 83.6 724 (298 88 5.9

Table 1: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground.
Highlighted in bold denote an improvement over CLIP-FT, while the underlined ones indicate a performance
degradation compared to CLIP-FT. Empty scores mean that the model’s code has not been released.

current token with another distinct token. Given
characteristic of our task, we further constrain the
perturbation range. For tokens representing objects,
relations, or attributes, we randomly select an al-
ternative concept from a corresponding candidate
set as the replacement token. The attribution score
for the current token is then defined as the aver-
age drop in similarity score S(I,T') resulting from
multiple perturbation:

a; = E,[S(T, (stopgrad(I)) — S(T}, (stopgrad(I))] (9)

where [, is the mean across multiple perturbation.
This approach allows us to calculate attribution
scores for each object, relation, or attribute token
within the sentence. Then, we compute the average
attribution score for all object tokens to get a,p; and
for all relation and attribute tokens to get acomp-

3.4 Gradient-Based Attribution

The attribution score a; is defined as a function
of the gradient of the input text token x;. Specifi-
cally, we sum the absolute values of the gradients
across the input embedding dimensions to obtain
the gradient for each input text token:

d

ey OSU.T)

1
8Xi 7 ( O)
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where x;; represents the j-th dimension of token x;,
S(I,T) denote the image-text similarity computed
by the model for a paired text T and image I.
Subsequently, a softmax function is applied to
normalize all token gradient values. The attribution
score for each token is thus defined as the normal-
ized gradient value.

4 Experiments

Datasets. For training, we use the approximately
110k image-text pairs from MSCOCO (Lin et al.,

2014) given that its captions are less noisy and
provide a richer description of the relation and
attribute content in the images. For evaluation,
we use ARO (Yuksekgonul et al., 2022), Sugar-
Crepe (Hsieh et al., 2024), VL-Checklist (Zhao
et al., 2022), Winoground (Thrush et al., 2022),
VALSE (Parcalabescu et al., 2021), SVO-Probes
(Hendricks and Nematzadeh, 2021) and ComVG
(Jiang et al., 2022). The details of these seven
datasets are in the Appendix B.

Implementation Detail. We used the popular
ViT-B/32 OpenAl CLIP (Radford et al., 2021) as
our model in all the experiments using the Open-
CLIP repository (Ilharco et al., 2021). We finetune
it for 5 epochs with a batch size of 256. We use a
cosine schedule with an initial learning rate of Se-7
and use 50 steps for warm up. AdamW (Kingma
and Ba, 2014) optimizer is used with a weight de-
cay of 0.2. All the experiments are conducted on a
NVIDIA Tesla V100 GPU.

Baseline. Our approach is mainly compared
against two distinct baselines: (i) a pre-trained
CLIP model; (ii) a CLIP model fine-tuned on
MSCOCO utilizing only the contrastive loss, de-
void of our proposed attribution optimization loss.
It is imperative to emphasize that the second base-
line, (ii), plays a critical role in mitigating the influ-
ence of image-text pairs derived from MSCOCO
during the finetuning process.

4.1 Main Results

Table 1 presents the comparative performance of
our proposed method against the baseline across
seven evaluation benchmarks comprehensively de-
signed for compositional understanding. All our
CLIP-CAE models are trained on the same dataset
and with the same training hyperparameters as
CLIP-FT. Without bells and whistles, our method,



| ARO | Sugar-Crepe | VL-Checklist | VALSE | SVO-Probes |ComVG|  Winoground
Model ‘Relation Attribute‘Relation Attribute‘Relation Attribute‘Relation‘ Relation ‘Relation‘Text Image Group
Random Chance | 500 500 | 500 500 | 500 500 | 500 | 500 | 500 [250 250 167
CLIP 587 627 | 688 708 | 636 677 | 66.1 79.5 66.7 [316 111 94
CLIP-FT with HN 80.5 714 | 733 798 | 7.9 700 | 755 83.7 702 [292 88 53
CLIP-CAE (Attention-Based) 779 697 | 744 816 | 730 699 | 745 844 714 (339 129 82
CLIP-CAE (GradCAM-Based) | 80.0 ~ 689 | 748  80.8 | 740  70.1 | 743 84.1 730 [263 99 59
CLIP-CAE (Perturbation-Based)| 798 ~ 699 | 742 834 | 751  7L1 | 729 84.7 739 (269 99 7.0
CLIP-CAE (Gradient-Based) 808 716 | 741 807 | 730 698 | 754 84.1 710 275 88 59

Table 2: Results on ARO, Sugar-Crepe, VL-Checklist, VALSE, SVO-Probes, ComVG and Winoground when
combined with hard negative samples. Highlighted in bold denote an improvement over CLIP-FT with HN, while
the underlined ones indicate a performance degradation compared to CLIP-FT with HN.

incorporating four distinct attribution variants, con-
sistently demonstrates significant improvements
over CLIP-FT across nearly all seven benchmarks.
Notably, on the highly challenging visio-linguistic
reasoning benchmark, Winoground, our method
exhibits superior performance. For instance, the
CLIP-CAE (Attention-Based) model achieves an
average absolute improvement of 5.3% on the
Winoground image score and an average absolute
improvement of 2.9% on the Winoground group
score (most difficult average metric). Addition-
ally, our method demonstrates a slight performance
decline on ARO-Attribute compared to CLIP-FT
(though still better than pretrained CLIP). Upon
meticulous examination of certain failure cases
within the dataset, we observed that the alignment
between images and corresponding true caption in
this dataset is subtly ambiguous.

These alignments necessitate meticulous discern-
ment even for human, thereby indicating a higher
level of difficulty and the presence of noise within
the dataset. This observation is consistent with
related works (Cascante-Bonilla et al., 2023) that
utilize hard-negative samples, also exhibiting negli-
gible performance fluctuations on ARO-Attribute.

4.2 Combined with Hard-Negative samples

Given that our method is orthogonal to hard-sample
mining, we sought to further verify the general-
ity and efficacy of our approach by integrating it
with hard negative samples. The experiment re-
sults are presented in Table 2. Compared to the
pretrained model, utilizing hard negative samples
substantially improves model performance across
most datasets. However, performance also exhibit
considerable decline on the out-of-domain and chal-
lenging Winoground. When compared to using
hard negative samples alone, the combination of
our method and hard negative samples yield su-

perior performance improvements. For instance,
CLIP-Neg obtain a remarkable 71.9% accuracy on
VL-Checklist-Relation, which is further elevated
to 75.1% with our combined approach, surpassing
CLIP-Neg by 3.2%. Notably, on the Winoground,
the integration of our method significantly enhance
performance over CLIP-Neg, with absolute im-
provements up to 4.7% in text score, 4.1% in image
score, and 2.9% in group score.

This phenomenon is plausible, as our method
enables the model to pay more attention on con-
cepts beyond object words. Consequently, when
combined with hard negative samples, the model
can more effectively discern nuance semantic dif-
ferences in positive and negative text samples, es-
pecially words related to different relations and
attributes, thereby enhancing its understanding of
compositional relationship in text. These results
further validate the effectiveness and plug-and-play
nature of our method.

4.3 Results on Downstream Retrieval Tasks

In practical applications, CLIP is often utilized
for image-text retrieval. Previous study (Cascante-
Bonilla et al., 2023; Yuksekgonul et al., 2022) sug-
gest that improvement in compositional understand-
ing may negatively affect the model’s performance
on image-text retrieval. To investigate this, we
evaluate our model on the downstream image-text
retrieval task. As shown in Table 3, our approach
shows overall improvements in text-to-image re-
trieval, albeit it exhibits a minor underperformance
in image-to-text retrieval on the Flickr30K. This
discrepancy could be due to the exclusive regu-
larization imposed on text encoder in our method.
The overall improvements in test-to-image retrieval
present the potential of our plug-and-play method
in enhancing the general text embeddings models.



\ MSCOCO \ Ll Ll \ SICK-R | STSBenchmark
T2I 27 T2I 2T
Model R@l R@5 R@l R@5|R@l R@5 R@l R@5 Model ‘ spearman pearson ‘ spearman pearson
CLIP | 302 557 501 749 | 590 835 784 951 CLIP ‘ 67.9 68.6 ‘ 61.5 59.1
CLIP-CAE (AB) | 383 652 549 787 | 644 871 802 956
CLIP-CAE (GCB) | 348 619 485 748 | 59.8 842 73.5 92.5 CLIP-FT 68.0 73.5 66.3 64.0
CLIP-CAE (PB) | 365 635 527 770 | 633 871 789 947 CLIP-CAE 69.3 71.6 66.5 65.2

CLIP-CAE (GB) 388 656 544 782 | 651 87.6 80.1 949
Avg. 371 641 526 772 | 63.2 865 782 944

Table 3: Downstream results on MSCOCO and
Flickr30K. Highlighted in bold denote an improve-
ment over baseline, while the underlined ones indicate
a performance degradation compared to baseline.

4.4 Analysis
4.4.1 Analysis of text embedding

Semantic Textual Similarity We evaluate our
text encoder and text encoder of CLIP and CLIP-
FT on the task of Semantic Textual Similarity
(STS), using two widely-used benchmarks: the
STS-Benchmark (Cer et al., 2017) and SICK-R
(Marelli et al., 2014). As indicated in Table 4,
our text encoder consistently outperforms CLIP-
FT across both benchmarks, especially on SICK-R.
Our CLIP-CAE significantly surpasses both CLIP-
FT and CLIP , with CLIP-FT exhibiting only a
nominal 0.1 improvement over CLIP. A slight de-
crease compared to CLIP-FT in pearson correlation
on SICK-R may be due to the non-linear nature ex-
isting in high-dimensional embedding space. These
results demonstrate that our text encoder excels in
capturing nuanced semantic differences and com-
plex semantic relationships within texts, resulting
in embeddings with superior semantic representa-
tional properties. This indicates that our model
not only achieves superior cross-modal image-text
alignment but also enhances text representation.
Consequently, our method not only boosts multi-
modal capabilities but also shows promise for ap-
plication in uni-modal language tasks, which will
be explored in our future work.

Text Embedding Ingredients We conduct an anal-
ysis on ARO-Relation and ARO-Attribute datasets
to validate that our text encoder can capture re-
lations and attributes within captions more effec-
tively. Specifically, for each sample, we separately
encode the correct caption and the relation or at-
tribute phrase annotated within these captions to
obtain their respective text embeddings. Subse-
quently, we calculate the cosine similarity between
the embeddings derived from the full caption and
the relations or attributes phrases. As shown in Fig.
3, it can be observed that the embeddings gener-

Table 4: Semantic Textual Similarity results on SICK-
R and STSBenchmark. Highlighted in bold denote
an improvement over CLIP-FT, while the underlined
ones indicate a performance degradation compared to
CLIP-FT.

ated by the text encoder of CLIP-CAE exhibit a
significantly higher overall similarity compared to
those produced by CLIP and CLIP-FT. This find-
ing indicates that the text encoder of CLIP-CAE
places greater emphasis on relations and attributes
when encoding text, resulting in embeddings that
encapsulate more information about these semantic
elements.
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Figure 3: The similarity distribution between the text
embeddings obtained by encoding the entire text and
those derived from encoding specific relations or at-
tributes within the text.

4.4.2 Relationship Between Attribution Score
and Performance

We investigate the variations in the model’s per-
formance as a function of attribution scores for
relations or attributes. We utilize pretrained
CLIP model to conduct experiments on the ARO-
Relation. The focus level of the model on relations
is quantified by the ratio of the attribution score for
the relation tokens to that of the object tokens. Con-
currently, we assess the model’s accuracy across all
samples with ratios below current value. As illus-
trated in Fig. 4, the ratios for all samples predomi-
nantly fall within the range of 0.36 to 0.38. Within
this interval, a higher attribution score ratio corre-
sponds to a cumulative increase in accuracy. This
trend indicates that the more attention the model
allocates to the relation tokens, the better it dif-
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Figure 4: Cumulative accuracy on ARO-Reletion of
CLIP vs. the attribution score ratio between relation and
object tokens.

ferentiates the compositional nuances in correct
caption and false caption, thereby exhibiting bet-
ter compositional understanding capabilities. This
phenomenon further substantiates the reasonability
of our proposed method.

4.4.3 Ablation

We conducted ablation studies under various train-
ing configurations, with the results presented in
Table 5. It can be observed that that utilizing only
L a4 results in a performance decline across mul-
tiple benchmarks. This performance degradation
can be due to the absence of L, which serves as
a constraint to align image and text features. With-
out this constraint, features may undergo exces-
sive deviation, thereby compromising the original
alignment performance. When the £;7¢ is com-
bined with our attribution loss, the model exhibits
superior performance across all benchmarks, thus
demonstrating the effectiveness of our approach.

Model ‘ Lire  Laur ‘ ARO Sugar-Crepe VL-CheckList VALSE ComVG Avg.
CLIP 60.7 69.8 65.7 66.1 66.7 65.8
CLIP-FT v 59.5 71.5 69.6 64.3 63.0 65.6
CLIP-FT v 65.6 74.2 64.2 67.2 70.8 68.4
CLIP-CAE v v 67.5 75.6 66.9 69.1 725 70.3

Table 5: Ablation of losses. Lrrc represents image-text
contrastive loss, £ a++» denote our proposed attribution loss.

4.4.4 Case Study

In Fig. 5, we employ the GradCAM tool (Chefer
et al., 2021) to visualize a qualitative example from
the ARO-Relation, generating attribution maps for
both image and text. It is evident that the original
CLIP model excessively attends to object-specific
regions in both modalities. In contrast, our pro-
posed CLIP-CAE directs the model’s attention be-

g
i
p - 003 o022 o1 [ 0w |oos o3
the cat is touching the elephant 009 016 012 | 031 | 015 016
" y

the elephant is touching the cat

cup X CLIP-CAE +/

(2) Original image (b) Attribution map of CLIP (c) Attribution map of CLIP-CAE

Figure 5: A qualitative visualization case. Both image
and text attribution maps are displayed.

yond objects to areas representing relationship. For
instance, in this example, CLIP-CAE more effec-
tively focuses on the regions depicting the interac-
tion between the cat and the elephant, specifically
the area where they touch, as well as the word
“touch” in the text. This demonstrates that our
model is better at capturing regions in images and
text that represent compositional concepts, such as
the interaction between two objects.

5 Conclusion

In this work, we present an intuitive and novel
method to enhance the composition attribution and
the compositional reasoning ability of contrastive
vision-language models such as CLIP. Extensive
experiments across variant attribution method and
seven benchmarks show the effectiveness of our
method. Our method can be easily integrated with
existing hard negative mining techniques to further
boost the performance. We hope our methods can
provide useful insights to solve the compositional
understanding dilemma of VLMs and improves the
semantic representations of texts.

6 Limitation

Despite our approach effectively enhances the
model’s compositional understanding ability across
various attribution methods without employing
hard negative samples, our method does not im-
pose explicit constraints or enhancements on the
visual component of VLMs. Analyzing and explic-
itly enhancing the visual model through diverse
attribution and interpretation methods will be a
focus of our future work. Furthermore, we also
intend to employ our approach to further interpret
and analyze existing model deficiencies, thereby
enabling precise optimization and enhancement.
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A Composition Attribution Deficiency

Fig. 6 illustrates the distribution of attribution
scores for object tokens and composition tokens
derived from three distinct attribution methods. A
consistent pattern emerges across these distinct at-
tribution methods: the attribution scores for object
words are markedly higher compared to those for
relation and attribute words.

B Appendix: Datasets

(1) ARO (Yuksekgonul et al., 2022) is a large
dataset designed to evaluate the compositional un-
derstanding ability of VL models. It encompasses
two distinct datasets to evaluate relation and at-
tribute understanding respectively: Visual Genome
Relation (VG-Relation) and Visual Genome At-
tribution (VG-Attribution). VG-Relation incorpo-
rates 48 distinct relation categories, featuring a total
of 23,937 test cases, whereas VG-Attribution com-
prises 117 unique attribute pairs, with a total of
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28, 748 test cases. Each case within these datasets
is accompanied by an image, paired with a matched
caption and a swapped mismatched caption.

(2) VL-CheckKlist (Zhao et al., 2022) is a large-
scale dataset containing around 410k images that
combines the following four datasets: Visual
Genome (Krishna et al., 2017), SWiG (Pratt et al.,
2020), VAW (Pham et al., 2021), and HAKE (Li
et al., 2019). Each image of these datasets is asso-
ciated with two captions, a positive and a negative.
The positive caption corresponds to the image and
is taken from the source dataset. The negative cap-
tion is made from the positive caption by changing
one word. We report average results for each of
the main (Relation and Attribute) groups on VL-
Checklist.

(3) Sugar-Crepe (Hsieh et al., 2024) is a re-
cent benchmark designed to avoids ungrammatical
and nonsensical negative captions, and generates
hard negative captions by swapping, replacing, or
adding linguistic elements. In this work, we cal-
culate the accuracy for subsets belonging to the
categories of relation and attribute within Sugar-
Crepe respectively.

(4) Winoground (Thrush et al., 2022) is a
modestly-sized dataset containing 400 samples de-
signed to assess the compositional reasoning ca-
pabilities of VL models. Each sample within the
dataset consists of two image-text pairs, charac-
terized by overlapping lexical content but distin-
guished by the alteration of an object, a relation,
or both. For every sample, two text-retrieval tasks
(text score) and two image-retrieval tasks (image
score) are defined, with a combined group score
representing overall performance. Recent study
(Diwan et al., 2022) has analyzed that successful
performance on Winoground necessitates compe-
tencies beyond simple compositionality. The study
identified a subset of 171 out of the total 400 sam-
ples that reliably probe compositional reasoning.
In contrast, other samples within the dataset were
found to be non-compositional, ambiguous, predi-
cated on invisible details, or associated with highly
uncommon images or text, thus requiring more
complex reasoning beyond compositionality. Con-
sequently, we report our results on this “clean” sub-
set following (Cascante-Bonilla et al., 2023).

(5) VALSE is a benchmark specifically designed
to evaluate the capabilities of VL models across
six distinct linguistic phenomena. Each sample
within this benchmark comprises an image paired
with both a correct caption and a false caption. The
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Figure 6: The attribution score distribution of object and composition token using attention-based, perturbation-

based and gradient-Based attribution method.

false caption is generated by modifying a word
or phrase within the original caption, targeting a
particular linguistic phenomenon—such as verb ar-
gument structure, spatial relation, or coreference.
Three subsets within the benchmark focus on ac-
tion and spatial relations, aligning closely with our
task of compositional understanding. In this study,
we report the average accuracy across these three
pertinent subsets.

(6) SVO-Probes (Hendricks and Nematzadeh,
2021) and ComVG (Jiang et al., 2022) assess
VLMs on verb (relation) understanding.
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