
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EFFICIENTLLM: UNIFIED PRUNING-AWARE
PRETRAINING FOR AUTO-DESIGNED
EDGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern large language models (LLMs) driven by scaling laws achieve emergent
intelligence in large model sizes. Recently, the increasing concerns about cloud
costs, latency and privacy make it an urgent requirement to develop compact edge
language models. Distinguished from direct pretraining that bounded by the scal-
ing law, this work proposes the pruning-aware pretraining, focusing on retaining
performance of much larger optimized models. It features following characteristics:
1) Data-Scalable Pruning: we introduce minimal parameter groups in LLM and
continuously optimize structural pruning, extending post-training pruning methods
like LLM-Pruner and SparseGPT into the pretraining phase. 2) Auto-Designed
Architecture: the LLM architecture is auto-designed using saliency-driven prun-
ing, which is the first time to exceed SoTA human-designed LLMs in modern
pretraining. We reveal that it achieves top-quality edge language models, termed
EfficientLLM, by scaling up LLM compression and extending its boundary. Effi-
cientLLM significantly outperforms SoTA baselines with 100M ∼ 1B parameters,
such as MobileLLM, SmolLM, Qwen2.5-0.5B, OLMo-1B, Llama3.2-1B in com-
men sense benchmarks. As the first attempt, EfficientLLM bridges the performance
gap between traditional LLM compression and direct pretraining methods, and we
fully open source EfficientLLM for future advancements.

1 INTRODUCTION

Large Language Models (LLMs) have become a central component of modern AI systems (Achiam
et al., 2023; Guo et al., 2025) and are increasingly transforming daily life, particularly in mobile
edge applications. However, typical LLMs (Touvron et al., 2023a), with 7 billion to 1 trillion
parameters, require on-cloud deployment and continuous internet connectivity for interface. This
places significant challenges in terms of latency, data-security and cloud-costs. In fact, fully relying
on LLMs for mobile edge applications can be impractical — serving all mobile applications with
GPT-4 (Achiam et al., 2023) would require approximately one million H100 GPUs (Liu et al., 2024b).
As a result, developing edge language models on resource-constrained devices becomes a recent
tendency. For instance, MobileLLM (Liu et al., 2024b) focuses on sub-one billion model sizes, which
would fit in the DRAM of smartphones without excessive consumption.

Direct pretraining is dominant in recent tiny language model pretraining. Some practices such as
MobileLLM and PanGu-π-Pro (Tang et al., 2024) design deep-and-thin architectures for model
efficiency. Other practices such as TinyLlama (Zhang et al., 2024a) and Qwen2.5-0.5B (Yang et al.,
2024b) focus on scaling up pretraining data to 3T and 17T tokens. Based on best architectures and
sufficient data, modern tiny models (Yang et al., 2024b; Groeneveld et al., 2024) are showing promise
in reaching performance boundary. However, their overall performance appears to be somewhat
locked by the parameter scaling law (Kaplan et al., 2020): given limited model size, simply scaling
up pretraining data is inefficient. More importantly, the emergent intelligence (Brown et al., 2020) is
only observed on larger model sizes, meaning tiny models may never acheve this by direct pretraining
alone. What is the next to train more efficient edge models remains an open challenge.

In parallel, LLM compression (Ashkboos et al., 2024; Gu et al., 2024; Han et al., 2015) focus on
retaining the performance of larger and stronger models while reducing computational cost. Despite

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Optimization

Embed
-ding

LM Head

Up, Gate
Proj

K, Q,
V Proj

Pruning Type I: Self-Attention

Pruning Type II: FFN

×L

Pruning Type III: Transformer Stem

Out Proj

Down Proj

K, Q, V
Up, Gate Out,

Down

×L

Joint Saliency Detection & Optimization

Embed
-ding

Local
Hession

Local
Hession

Second-Order Weight Update (Optional)

Pruning One Channel in a Step

Fordward

Backward

Saliency

Pruning Space Saliency-Driven
Pruning Type and
Channel Selection

W

Out-Channel

In-Channel
Sample One or N
Batches of Data

Optimize weights One or N Steps

W W

Step+1

W W

×L

(b) Performance in Large Pruning Ratio

(a)

LM Head

N=2N=1

(c) Continuous Parameter Dropping

Unified Pruning-Aware Pretrain

Post-Training LLM-Pruner

Figure 1: An overview of unified pruning-aware pretraining. (a) Towards unified pruning, pre-
training, and architecture design, the training loop includes: joint saliency detection and weight
optimizing, pruning type selection from pruning space, and weight updating. (b) Improve post-training
pruning by pruning-aware pretraining. (c) Continuous model compression during pretraining.

its potential efficiency, existing methods (Sreenivas et al., 2024; Frantar & Alistarh, 2023; Xiao et al.,
2023) compress LLM only using a small calibration dataset in post-training, which often results in
significant performance degradation, making them unsuitable for top-quality edge language models.
Recently, ShearedLlama (Xia et al., 2023) initializes from an optimized LLM, improving training
efficiency. However, the constrained optimization (Platt & Barr, 1987) hinders scaling up pruning
stage and the performance gap to direct pretraining still remains. This work extends the performance
boundary of traditional LLM compression by scaling up training data, a crucial but underexplored
approach in the LLM compression field.

This work proposes the unified pruning-aware pretraining to extend the efficiency boundary of
edge language models. A family of top-efficiency edge language models in 100M ∼ 1B sizes are
pretrained, named EfficientLLM. As shown in Fig. 1, we formulate pruning-aware pretraining as a
unified framework for weight pruning, pretraining, and architecture design: 1) Compared with direct
pretraining, pruning-aware pretraining leverages the performance of much larger optimized models,
which direct pretraining smaller models never achieves. 2) Compared with post-training pruning, it
scales up the pruning stage with pretraining data. As shown in Fig. 1 (b), pruning-aware pretraining
scales up vanilla LLM-Pruner, achieving more than a 10% increase in accuracy. 3) Driven by saliency,
the overall architecture can be auto-designed (Yu et al., 2020; Zoph et al., 2018) according to a
predefined pruning space step by step.

This work advances both edge language models and LLM compression:

• We propose a family of SoTA edge language models in 100M ∼ 1B sizes, named EfficientLLM.
EfficientLLM significantly exceeds direct pretrained tiny models by unified and scalable pruning.

• We propose the unified pruning-aware pretraining, promoting LLM compression to the era of
pretraining. General post-training methods like LLM-Pruner (Ma et al., 2023), SparseGPT (Frantar
& Alistarh, 2023), and Wanda (Sun et al., 2023) could be embedded. By scaling up the pruning
stage, vanilla LLM-Pruner significantly exceeds SoTA methods without bells and whistles.

• We explore the auto-designed architectures in modern pretraining for the first time. Saliency-driven
architectures are auto-searched via unified pruning and competitive with human practices.

2 PRELIMINARY AND RELATED WORKS

Edge Language Models. Modern large language models follow the scaling law (Kaplan et al.,
2020): larger models achieve higher data efficiency, making optimal training favor large models with
moderate data. Towards accurate compact models, a lot of efforts explore the optimal training recipes:
1) data scale. OLMo-1B (Groeneveld et al., 2024), TinyLlama-1.1B (Zhang et al., 2024a), Qwen2.5-
0.5B (Yang et al., 2024b) pretrain on 2T, 3T, and 17T tokens respectively, which is significantly
larger than the optimal data sizes according to scaling law. 2) Architectures. MobileLLM (Liu et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024b) shows that the deep-and-thin network and layer sharing achieve additional performance gains.
However, direct pretraining is bounded by the scaling law, and can be data-inefficient. More recently,
Llama3.2 (Dubey et al., 2024) and MiniTron (Sreenivas et al., 2024) introduce distillation and pruning
for data-efficient training. There are mainly 2 drawbacks which addressed in this work: 1) The LLM
pruning itself does not scale up. MiniTron only uses a small calibration dataset for pruning and only
scales up recovery training, while this work scales up pruning itself to retain more performance. 2)
Knowledge distillation (Gu et al., 2024; Ko et al., 2024) during pretraining is not training-efficient, as
teacher models are typically 7B-scale LLMs (Touvron et al., 2023b), consuming 7 ∼ 50× FLOPs
than sub-billion edge models, which we avoid in EfficientLLM. For deployments, quantization (Shao
et al., 2023; Xiao et al., 2023; Liu et al., 2024a) can also be adopted.

LLM Pruning (Dong et al., 2024; Zhang et al., 2024b; Zhao et al., 2024; Bhaskar et al., 2024).
We mainly focus on structural pruning to address hardware friendly edge language models. The
most widely used LLM pruning is based on the Taylor expansion (LeCun et al., 1989; Hassibi et al.,
1993; van der Ouderaa et al., 2023). By calibration, typical SparseGPT (Frantar & Alistarh, 2023)
and Wanda (Sun et al., 2023) can only applied in semi-structured pruning; LLM-Pruner (Ma et al.,
2023) only achieves 20% pruning ratio with reasonable accuracy. Even if pruning with finetuning,
LoraPrune (Zhang et al., 2023a) can only prune in 50% ratio. So there is an urgent requirement to
scale up LLM pruning in pretraining. Another line of works learn to initialize from source model
such as ShearedLlama (Xia et al., 2023) and NutePrune (Li et al., 2024) with less than 0.5B tokens.
However, ShearedLlama needs human-designed target and does not explore scalability in large scale
data; and this work explore unified pruning-aware pretraining with Taylor expansion.

3 UNIFIED PRUNING-AWARE PRETRAINING

According to scaling laws, both the scale of training data and the number of parameters are funda-
mental to the emergence of intelligence in modern LLMs. Direct pretraining of smaller models is
inefficient and lacks generalization ability. Model compression methods, although based on pretrained
large models, fail to meet the data scale requirements and suffer from significant performance drop.

The principle of this work is to bridge the gap between direct pretraining and LLM compression by
a unified training scheme. In practice, pruning-aware pretraining continuously drops parameters in
training, which integrates pruning, pretraining, and architecture design at the same time.

Problem Formulation. Finding a sub-network from a pretrained LLM is non-trivial. Given an
optimized LLM, post-training LLM pruning focuses on finding optimal channels in each layer
towards a target architecture. However, for edge language models, it is still challenging to define
the efficient target architecture from its source model. For instance, MobileLLM shows the deeper
architecture is better than the wider for sub-billion LLMs by human design and practice. However,
this best practice may be sub-optimal for a given source model, as each model may exhibit unique
saliency patterns that suggest different pruning targets. We formulate the architecture-agnostic
pruning problem as:

min
a∈A

min
c∈C

min
w
Lpretrain(a, c, w|M), (1)

where A and C are sub-architectures (Wu et al., 2019; Liu et al., 2018) and sub-channels sampled
from the source modelM. We jointly optimize pretraining loss through three factors: 1) the sub-
architecture, a, 2) the sub-channels, c, and 3) the model weights, w. We outline the pruning-aware
pretraining in Fig. 1 and detail each part in the following subsections.

3.1 DEFINING MINIMAL PRUNING GROUP

To design architectures automatically via pruning, we first define the minimal parameter groups
as the minimal unit to prune in each step, which should be flexible enough to construct any shape
transformers after pruning. Given a pretrained source modelM, the pruned modelM∗ can be:

M∗ =M−
n∑

t=1

gt, s.t. min
gt∈G
Lpretrain(M), (2)

where gt is the mini-group of parameters pruned in step t, and G is the pruning space formulated by
defined mini-groups. According to Eq. 2, the pruning can be approximately decoupled by t steps and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Up Proj Gate

Out Proj Down Proj

Down
Proj

Down
Proj

Up, Gate
ProjOut

Proj

Out
Proj

Up, Gate
Proj

Key Query Value
Key, Query,
Value Proj

K, Q,
V Proj

Embed
-ding

Embed
-ding

LM Head

Attention Head i
Activation Func.

Pruning Type I: Per Head in Self-Attention Pruning Type II: Per Channel in FFN Pruning Type III: Per Channel in Transformer Stem

×L

×L

The Pruning Space: Any Shape Transformer Pruned by Type I, II, and III

Row-wise Saliency of
the Weight Matrix

Row-wise Saliency of
the Weight Matrix

Column-wise Saliency of Weight Matrixes
from the Output Layer Group

LM Head

Figure 2: Three basic pruning types in the pruning space. We plot all the weight metrics with shape
[Dinput, Doutput]. In backpropagation (in orange), the saliency of the output layer group (in blue) is
calculated according to Eq. 9.

solved sequentially:

Mt =Mt−1 − g∗t s.t. g∗t = argmin
gt∈G

Lpretrain(gt|Mt−1). (3)

We first assume an optimal g∗t in each pruning step to minimize pretraining loss, and solve how to
acquire g∗t in the next subsection. In each pruning step, an optimal mini-group of parameters are
selected and dropped from the pretraining LLMMt−1, allowing the source modelM to adaptively
reduce the number of parameters until a specific computation budget is met.

For the fully structured pruning space, we impose two constraints in the design of mini-groups: 1)
the hidden size, attention heads and intermediate size can be pruned flexibly; 2) the shape of different
layers is the same. Unlike LLM-Pruner pruning space, which relies on manually specified pruning
targets, our approach divides the pruned parameters into different types of minimal groups that can
be adaptively combined during pretraining.

Parameter Mini-Groups. For simplify, we indicate the input layer group as the query, key, value
projections in attention blocks; or the up, gate projections in feed forward blocks. We indicate the
output layer group as the output projections in attention blocks; or the down projections in feed
forward blocks. As shown in Fig. 2, we define three basic pruning types and their mini-groups, Gattn,
Gffn, Gstem:
1) Per-head pruning in self-attention blocks: when an attention head is pruned, all the corresponding
output channels in the input layer group and input channels in the output layer group are pruned at
the same time. We select the mini-group G(`)attn with the minimal saliency in the `th layer, and merge
G(`)attn in all layers as Gattn:

Gattn = {W (k,`)
:,i:j ,W

(q,`)
:,i:j ,W

(v,`)
:,i:j ,W

(o,`)
i:j,: , ` = 1, 2, ..., n}, (4)

where W:,i:j and Wi:j,: are column-wise and row-wise pruned; i:j corresponds to channels of an
attention head; and n is the overall blocks.
2) Per-channel pruning in feed-forward blocks: when a intermediate channel is pruned, the coupled
channels include one output channel in the input layer group, and one input channel in the output
layer group in. We couple the minimal-saliency group G(`)ffn in the `th layer and merge G(`)ffn in all
layers as Gffn:

Gffn = {W (up,`)
:,i ,W

(q,`)
:,i ,W

(down,`)
i,: , ` = 1, 2, ..., n}. (5)

3) Per-channel pruning in the transformer stem: When a channel of the transformer stem is pruned,
one channel in the token embedding, one input channel in input layer group and one output channel
in output layer group for every block, one input channel of the LM head projection is correspondingly
pruned at the same time. We donate the stem mini-group as Gstem:

Gstem ={W (k,`)
i,: ,W

(q,`)
i,: ,W

(v,`)
i,: ,W

(o,`)
:,i }, ... (6)

∪ {W (up,`)
i,: ,W

(gate,`)
i,: ,W

(down,`)
:,i }, ...

∪ {w(emb)
i ,W

(head)
i,: }, ` = 1, 2, ..., n

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where i should be the same in every blocks in Eq. 6; i,j needn’t the same across blocks in Eq. 4,5.

Given a transformer with hidden sizem, head number h, intermediate size n, and l layers, the original
pruning space is h` × n` × m. In each pruning step, the mini-groups are dynamically grouped
by saliency, and we only choose among the 3 types to prune. By coupling the parameters into
mini-groups, the choice space is reduced to 3 in each step of Eq.3, and the final pruning space is 3t.

3.2 OPTIMIZING MINI-GROUPS BY SALIENCY

Based on the mini-groups, Eq.1 becomes a bi-level optimization problem of the mini-groups g and
weights w:

min
g∈G
Lpretrain(g, w

∗|M), s.t. w∗ = argmin
w

Lpretrain(w, g
∗|M), (7)

where the outer optimization could be solved by pruning a mini-group in each step as Eq.3, and
the inner optimization could be directly solved by weight pretraining. The weight pretraining step
and mini-group optimization (Eq.3) step alternate, and the model size drops continuously during
pretraining as shown in Fig. 1 (c), until the pre-defined parameter budget is achieved.

Different from vanilla iterative pruning along a predefined trajectory, unified pruning selects its
pruning trajectory based on saliency. The pruned model is automatically optimized toward the most
salient sub-architectures. Thanks to large-scale pretraining data, we find that these saliency-driven
architectures are competitive with human-designed ones, effectively eliminating the need for manual
pruning target design and repeated trial-and-error.

Mini-Group Saliency. In each mini-group selection step, Taylor expansion evaluates the optimal
mini-group g∗t in Eq.3. For an optimized source model, loss of any weight w can be approximated by
a second-order Taylor expansion around its optimal value w∗:

L(w) ' L(w∗) + δw>∇L(w∗) + 1

2
δw>HL(w

∗)δw (8)

where L, ∇L, HL is the global loss, gradient, hessian matrix; and δw = w −w∗. We substitute
Eq.8 into Eq.3:

g∗t = argmin
gt∈G

Lpretrain(gt|Mt−1) (9)

= argmin
gt∈G

g>t ∇L(Mt−1) +
1

2
g>t HL(Mt−1)gt,

where we omit the first term L(w∗) = L(Mt−1) in Eq.8, because L(Mt−1) is the same in the step t
for the 3 mini-groups, G = {Gattn,Gffn,Gstem}. And we could calculate mini-group saliency according
to Eq. 9 (Ma et al., 2023).

Efficient Calculation. In practice, we only calculate the saliency of the output layer groups for
efficiency. a neural network is a directed acyclic graph (DAG) (Liu et al., 2018). For each node in the
graph, pruning all its inputs or all of its outputs is sufficient to prune the entire network. It saves 2∼ 3
times computation with output layer group only calculation. Details are shown in Fig. 2: 1) Pruning
Type I: we only calculate element-wise saliency matrix for the weights of the output projection, and
then sum each column of the saliency matrix. We select G(`)attn based on the lowest row-wise saliency
in the output projection weights. 2) Pruning Type II: we only calculate the element-wise saliency
matrix for the down projection, and then sum each column. G(`)ffn with the lowest row-wise saliency
are selected. 3) Pruning Type III: we already have all the element-wise saliency in the output layer
group based on Type I and II. To evaluate saliency of the hidden state, we first sum each row of
saliency matrices, and then, sum the saliency in all of the output layer group.

Hessian Approximations. Existing post-training methods such as LLM-Pruner (Ma et al., 2023),
SparseGPT (Frantar & Alistarh, 2023), and Wanda (Sun et al., 2023) have proposed various Hessian
approximations to approximate hessian matrices. By substituting Eq. 9, our framework can naturally
extend these post-training pruning methods to the unified pretraining stage. Without loss of generality,
we also generalize the second-order weight updating to pretraining in the next subsection.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 SECOND-ORDER WEIGHT UPDATING

Existing second order pruning applies the same Hessian matrix for the pruning weight detection and
the remaining weight updating. However, calculating the global Hessian matrix is impossible in
modern LLMs for itsO(n4) complexity. A common approach is to use the squared error at each layer
as a proxy for the global loss: HL ' XXT , such as in SparseGPT (Frantar & Alistarh, 2023), OBC
(Frantar & Alistarh, 2022). Although achieving the O(drow × d2col) complexity, Hessian matrices
can not describe the global loss.

This work addresses this problem by decoupling the Hessian matrix in saliency detection and weight
updating. To capture global saliency, we approximate with global diagonal Hessian matrices as
LLM-Pruner for saliency detection; to reduce computational complexity, we apply the layerwise
proxy Hessian, HL ' XXT , for weight updating. In each step, we prune a mini-group including only
one column of weights in a layer, and the remaining weights are updated by δwp = − wp

[H−1]pp
·H−1:,p .

To efficiently compute the p-th column of the inverse Hessian matrix H−1:,p , it suffices to solve the
linear equation HH−1:,p = ep in a weight updating step.

4 EXPERIMENTS

Models. To compare with the most general post-training pruning, EfficientLLM-A basically approxi-
mates Eq.9 as LLM-Pruner. EfficientLLM-B additionally applies the second-order weight updating
based on EfficientLLM-A. 1) In empirical studies, we evaluate EfficientLLM with SmolLM-1.7B
(Allal et al., 2024), Llama2-7B (Touvron et al., 2023b), and Qwen2.5-7B (Yang et al., 2024b) as the
source models. 2) In main results, we prolong and pretrain EfficientLLM-134M from the source
model SmolLM-360M; EfficientLLM-457M and 1.1B from SmolLM-1.7B. 3) In comparisons with
LLM pruning, we keep the Llama-7B (Touvron et al., 2023a) source model.

Data Composition. EfficientLLM maintains a data distribution similar to the source model: 1)
in main results, our pretraining data composition is similar to SmolLM, including 220B tokens
from FineWeb-Edu (Lozhkov et al., 2024), 28B tokens from Cosmopedia v2 (Ben Allal et al.,
2024a), 4B tokens from Python-Edu (Ben Allal et al., 2024b), and 27.5B tokens randomly sampled
from OpenWebMath (Paster et al., 2023). 2) In comparisons with LLM pruning, we sample from
RedPajama-1T (Weber et al., 2024) as pretraining data with the Llama family as the source model.

Training. In main results, we use the 2 stage pretraining as ShearedLlama (Xia et al., 2023) but
explore in large scale: the large scale unified pruning followed by the continued pretraining. For
EfficientLLM-134M, 460M, and 1.1B, we pretrain 50.3B, 72.1B, and 36.7B tokens for unified
pruning followed by 500B, 500B, and 320B tokens continued pretraining. Note that the large-scale
continued pretraining is not necessary, and 50B tokens also achieve competitive performance. Note
also that the number of tokens used for unified pruning is determined by the number of iterations
required to reach the target parameter count. All the training details are shown in Appendix B.1.

Evaluations. For pretrained base models, we follow Llama, MobileLLM, and ShearedLlama to
evaluate Common Sense Reasoning tasks: ARC (Clark et al., 2018), BoolQ (Clark et al., 2019),
HellaSwag (Zellers et al., 2019), OBQA (Mihaylov et al., 2018), PIQA (Bisk et al., 2020), and
WinoGrande (Sakaguchi et al., 2021). The MMLU (Hendrycks et al., 2020) for Word Knowledge
evaluation is also applied. For instruct finetuned model, we use the standard Alpaca-Eval (Li et al.,
2023) with GPT-4o as the judge model.

4.1 EMPIRICAL STUDIES

As shown in Table 1, 2, 3, we train around 450M target models from the source model SmolLM-1.7B.

Training Schemes. We first compare the efficiency of different training schemes under the same 5B
token budget: 1) Direct Pretraining: three architectures are pretrained from scratch using 5B tokens:
(i) Direct-hidden: Prunes the hidden size of the source architecture. (ii) Direct-source: Uniformly
scales down the source model. (iii) Searched architecture: Uses the architecture searched by Unified
Pruning. 2) ShearedLlama: Requires manually specified pruning targets. We consider two variants:
pruning hidden size or uniformly scaling the source model. 3) Unified Few-shot Pruning: Applies

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of different training schemes under the same token budget. 1) Direct pretrain-
ing: "hidden" or "source" indicates target architectures from the source model. 2) Comparison with
ShearedLlama in >70% pruning ratio. 3) Comparison with LLM-Pruner with continued pretraining in
smaller pruning ratios. We prune both LlaMA2-7B and Qwen2.5-7B for 4000 steps to 3.3B and 5.2B.

Model Source ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
Direct-hidden – 26.88 55.85 52.39 37.10 30.20 66.65 50.51 45.65
Direct-source – 28.67 59.68 56.30 38.41 32.00 65.67 49.96 47.24
Searched Arch. (Ours) – 29.10 59.30 61.38 37.74 32.80 66.76 51.07 48.30
ShearedLlama-hidden SmolLM-1.7B 28.41 57.41 60.98 39.79 30.80 66.81 54.06 48.32
ShearedLlama-source SmolLM-1.7B 30.89 62.08 61.07 44.29 32.60 68.39 52.25 50.22
Unified FewShot Prun. SmolLM-1.7B 30.63 62.67 61.22 44.31 34.00 68.66 53.43 50.25
EfficientLLM-A SmolLM-1.7B 30.46 64.06 61.99 45.98 34.00 69.91 53.91 51.47
EfficientLLM-B SmolLM-1.7B 30.97 63.22 60.86 46.51 35.00 69.64 55.09 51.61
LLM-Pruner LLaMA2-7B 27.30 43.52 61.10 38.15 29.40 63.11 51.14 44.82
EfficientLLM-A LLaMA2-7B 32.76 57.53 65.96 53.07 33.80 69.42 58.09 52.95
LLM-Pruner Qwen2.5-7B 38.40 66.67 70.58 57.97 38.40 72.52 60.62 57.88
EfficientLLM-A Qwen2.5-7B 40.10 70.50 76.79 61.26 40.80 73.34 61.72 60.64

Table 2: Generalization to various pruning metrics. LLM-Pruner (Ma et al., 2023), OBC (Frantar
& Alistarh, 2022), Diag-Hessian (Sun et al., 2023; LeCun et al., 1989) metrics are embedded in the
unified pruning. All results are without continued pretraining.

Model ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
LLM-Pruner 22.18 26.64 49.63 25.62 27.80 51.20 50.59 36.24
+Unified Pruning 29.18 57.79 59.57 41.93 34.40 66.97 52.88 48.96
OBC (SparseGPT) 25.51 25.88 37.86 26.81 29.20 51.41 50.51 35.31
+Unified Pruning 29.44 60.02 62.02 42.27 33.40 67.41 53.35 49.70
Diag-Hess (Wanda, OBD) 25.85 25.88 50.80 26.06 30.40 51.69 48.22 36.99
+Unified Pruning 29.95 60.14 60.83 41.68 32.80 66.38 52.88 49.24

Tokens (B)

A
cc

ur
ac

y
(%

)

Figure 3: Scalability of unified pruning-aware pretraining without continued pretraining.

Table 3: Ablation studies on the unified pruning-aware pretraining. "Direct Training" keeps the same
architecture ratio as the source model. "Pruned Arch." indicates the auto-designed architecture.

Model ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
Direct Training 28.67 59.68 56.30 38.41 32.00 65.67 49.96 47.24
+Searched Arch. 29.10 59.30 61.38 37.74 32.80 66.76 51.07 48.30
+Unified FewShot Pruning 30.63 62.67 61.22 44.31 34.00 68.66 53.43 50.25
+Prolong Pruning 34.13 66.16 60.49 49.87 35.80 70.67 54.30 53.06
+Prolong Continued Pretrain. 35.92 70.50 59.85 53.16 35.00 72.69 56.27 54.77

mini-group optimization on 128 samples using LLM-Pruner’s metric, followed by training on 5B
tokens. 4) Unified Pruning-aware Pretraining: Follows the ShearedLlama pipeline, pruning with 1B
tokens, then continuing training on the remaining 4B tokens.

We evaluate the necessity of unified architecture auto-design, pruning, and pretraining in Table 1: 1)
Architecture matters: For directly pretrained edge models, the choice of architecture significantly
impacts performance. The searched Arch. outperforms Direct-hidden by 2.7%. 2) Pruning boosts
edge models: With the same architecture, Unified Pruning-aware Pretraining surpasses Search Arch.
by 3.17%. 3) Scaling up pruning can benefit more than finetuning: Compared to Unified Few-
shot Pruning, Pruning-aware pretraining allocates more tokens to the pruning stage and improves
accuracy by 1.22%. Unlike ShearedLlama, Unified Pruning requires no manual architecture design.
For example, ShearedLlama-hidden adopts a suboptimal target, resulting in 3.15% accuracy drop.

Pruning Metrics. We embed well-studied post-training pruning metrics in our Unified Pruning-aware
Pretraining, enhancing performance of existing methods. By replacing Eq. 9, we apply LLM-Pruner

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Zero-shot performance on World Knowledge and Common Sense Reasoning tasks. “Avg.”
calculate among the 7 Common Sense Reasoning tasks. #Tokens count continued pretraining for
EfficientLLM. All the results are evaluated on the same evaluation (Appendix B.2).

Model #Tokens #Params MMLU ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
OPT-125M 180B 125M 26.02 22.87 43.31 55.44 31.37 27.80 62.62 49.80 41.89
GPT-neo-125M 300B 125M 26.89 23.29 43.22 61.77 30.49 26.00 62.62 51.93 42.76
Pythia-160M 300B 162M 26.43 22.27 37.84 43.33 29.97 26.40 58.87 49.96 38.38
Mamba-130M 1.2T 130M 27.65 24.49 47.56 54.68 35.11 29.00 64.69 53.35 44.13
MobileLLM-125M 1T 125M 27.58 24.32 46.38 60.34 38.15 28.40 65.13 52.41 45.02
SmolLM-135M 600B 135M 30.05 29.35 61.32 59.85 42.67 34.40 68.55 52.96 49.87
EfficientLLM-A 500B 134M 30.54 30.97 62.88 60.40 43.81 33.60 68.82 53.28 50.54
OPT-350M 180B 331M 26.96 23.98 44.02 57.80 36.63 27.80 64.91 52.96 44.01
BLOOM-560M 350B 559M 27.32 24.40 46.04 44.46 36.54 28.80 62.57 53.20 42.29
Pythia-410M 300B 405M 29.10 24.15 51.39 59.20 40.20 29.40 66.70 53.83 46.41
MobileLLM-350M 1T 345M 30.21 27.39 56.40 61.96 49.51 31.00 68.88 57.14 50.33
SmolLM-360M 600B 362M 33.89 36.26 70.16 55.23 53.51 37.60 71.38 57.22 54.48
Qwen2-0.5B 15T 494M 31.85 28.50 55.05 61.25 49.16 32.80 69.75 57.22 50.53
Qwen2.5-0.5B 17T 494M 33.37 32.17 64.44 61.99 52.09 35.20 70.29 56.20 53.20
EfficientLLM-A 50B 457M 33.09 35.92 70.50 59.85 53.16 35.00 72.69 56.27 54.77
EfficientLLM-A 500B 457M 34.54 38.40 72.10 62.42 56.84 40.40 73.83 57.46 57.35
OPT-1.3B 180B 1.3B 29.57 30.03 57.49 56.54 53.66 32.80 72.31 59.04 51.70
GPT-neo-1.3B 380B 1.3B 30.00 25.94 56.31 61.90 48.99 33.40 71.00 54.62 50.31
BLOOM-1.1B 350B 1.1B 29.16 25.77 51.73 59.51 43.11 29.60 67.30 54.62 47.38
Pythia-1B 300B 1.0B 30.14 26.96 56.86 60.04 47.15 31.20 70.29 52.88 49.34
TinyLlama-1.1B 3T 1.1B 32.30 30.29 60.40 56.85 59.13 35.80 73.07 59.04 53.51
ShearedLlama-1.3B 50B 1.3B 31.51 29.44 61.07 61.83 59.33 34.40 73.94 58.01 54.00
OLMo-1B 2T 1.2B 32.03 30.72 63.55 61.38 62.86 36.40 75.35 59.35 55.66
Llama3.2-1B – 1.2B 36.31 31.48 65.28 63.88 63.69 37.40 74.59 60.54 56.69
EfficientLLM-A 50B 1.1B 36.71 40.36 73.61 62.39 60.24 40.20 75.19 61.25 59.03
EfficientLLM-A 320B 1.1B 37.71 42.24 73.48 67.09 64.09 41.80 75.41 61.17 60.75

EfficientLLM-A-1.1B OLMo-1B

EfficientLLM-A-1.1B TinyLlama-1.1B

EfficientLLM-A-1.1B Llama3.2-1.2B

EfficientLLM-A-1.1B ShearedLlama-1.3B

Figure 4: Win rate of EfficientLLM in the instruction tuning task.

and diagonal Hessian-based metrics into Unified Pruning. We further extend this by adding second-
order weight updates (Section 3.3) to support OBC-based methods. Reaching the pruning target takes
about 4,000 steps with a batch size of 1M tokens. As shown in Table 2, LLM-Pruner, OBC, and
diagonal Hessian metrics improve accuracy by 12.72%, 14.39%, and 12.25%, respectively. According
to Appendix B.5, EfficientLLM-B performs better in small scale pretraining, and similar in large
scale. For generality, we apply the LLM-pruner metric in main results.

Ablation Studies. To evaluate each part of the unified pruning, we decouple into 3 basic designs
to improve edge language model pretraining: the auto-designed architecture, pruning, and scalable
pruning stage. As shown in Fig. 3, we scale up unified pruning according to Appendix B.3. As
shown in Table 3, the pruned architecture, unified pruning, and scaling up pruning with 78B tokens
continuously improve 5.82% accuracy. We further scale up finetuning (or continued pretraining) to
50B tokens, as in ShearedLlama, and achieve 7.53% accuracy overall.

Architecture Robustness. In Appendix A.1, architectures are stablely optimized according to
dynamic saliency. In Appendix A.2, we evaluate different pruning trajectories to reach the searched
architecture. Once we find the optimal architecture, a different trajectory can achieve the same or
better results, which we refer to the generalized Lottery Ticket Hypothesis (Frankle & Carbin, 2018).

4.2 MAIN RESULTS

Edge Language Modeling. For fair comparison, we collect main streams of edge language models
in 100M ∼ 1B sizes, evaluate in the same conditions (Appendix B.2), and make a benchmark in
Table 4. 1) Early edge models including OPT (Zhang et al., 2023b), GPT-neo (Black et al., 2022),
Pythia (Biderman et al., 2023), and BLOOM (Le Scao et al., 2023) are direct pretrained in limited
tokens and sub-optimal architectures, which largely hinder the performance. By leveraging unified
pruning, EfficientLLM achieves both architecture and data efficiency. For instance, EfficientLLM-
134M exceeds Pythia-410M by 4.13% average accuracy; EfficientLLM-1.1B with 50B tokens
exceeds OLMo-1B, TinyLlama, Llama3.2-1B in accuracy. 2) Compared with the SoTA edge model
MobileLLM (Liu et al., 2024b), EfficientLLM-134M exceeds MobileLLM-125M by 5.52% with
the large scale model compression. 3) Recent SoTA industrial models scaling up pretraining tokens

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparisons of LLM pruning in Llama-7B. We scale up pruning-aware pretraining to 5B
tokens for EfficientLLM. #Tuning donates whether to finetune after pruning. Most works report
finetuned results.

#Ratio Model #Tuning ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
50% MaP 3 30.63 49.32 39.69 42.49 31.40 66.81 50.67 44.43

MvP 3 26.79 44.07 59.94 40.98 31.80 63.06 55.64 46.04
WANDA 3 34.20 42.68 50.90 38.12 38.78 57.38 55.98 45.43
LLM-Pruner 3 28.24 46.46 61.47 47.56 35.20 68.82 55.09 48.98
LoRAPrune 3 31.62 45.13 61.88 47.86 34.98 71.53 55.01 49.72
LoRAShear 3 32.26 47.68 62.12 48.01 34.61 71.80 56.29 50.40
Compresso 3 27.82 48.82 60.09 39.31 33.40 66.70 51.93 46.87
NutePrune 7 31.74 46.59 62.20 53.87 35.80 69.91 57.77 51.13
NutePrune 3 32.17 51.68 62.26 55.88 34.40 71.00 57.54 52.13
EfficientLLM-A 7 30.80 52.15 62.29 54.70 35.20 71.33 56.75 51.89
EfficientLLM-A 3 34.04 64.81 64.83 60.12 34.60 73.88 61.48 56.25

70% LLM-Pruner 3 24.83 39.56 47.28 31.66 28.80 60.83 50.75 40.53
NutePrune 3 26.19 42.17 62.08 39.43 30.20 62.30 51.46 44.83
EfficientLLM-A 7 27.73 54.50 47.89 47.77 31.00 68.17 55.17 47.46
EfficientLLM-A 3 29.95 58.59 58.13 52.02 34.60 70.08 55.96 51.33

like Qwen (Yang et al., 2024a;b) and Llama3.2-1B, EfficientLLM-457M and 1.1B outperforms
Qwen2.5-0.5B by 4.15% and Llama3.2-1B by 4.06% respectively with limited pretraining data. As
shown in Appendix C.1, EfficientLLM-457M achieves higher accuracy while requiring 62× and 16×
fewer GPU hours than Qwen2.5-0.5B when using 50B and 500B continued pretraining tokens.

Instruction Tuning. We finetune EfficientLLM-1.1B and other top-quality open-source base models
includes OLMo-1B, ShearedLlama-1.3B, TinyLlama-1.1B and Llama3.2-1B in the same condition.
We finetune on the Alpaca dataset (Taori et al., 2023) with 52K instructions for 3 epochs. As shown
in Fig. 4, EfficientLLM-1.1B significantly outperforms SoTA baselines, indicating the generalization
ability in the supervised finetuning (SFT). More case studies are shown in Appendix D.

Inference Speed & Quantization. Most edge devices are non-GPU environments. We deploy edge
models using 1, 2, 4, and 8 Intel Xeon @ 2.90GHz CPUs respectively. As shown in Appendix
C.2, when using 2 CPUs, EfficientLLM-457M speeds up ×8.7 and ×3.2 than MobileLLM-350M
and Qwen2.5-0.5B respectively; EfficientLLM-1B speeds up ×7.3 and ×1.2 than OLMo-1B and
Llama3.2-1B. In Appendix C.3, we further quantize EfficientLLM with 8 bit weights and 8 bit
activations (8W8A) using the general OmniQuant (Shao et al., 2023). After 8W8A quantization,
EfficientLLM-457M even improves 0.09% and EfficientLLM-1B only drops 0.27% average accuracy.

4.3 COMPARISONS WITH LLM PRUNING

We mainly focus on large pruning ratio because it is more practical to achieve highly efficiency
based on heavy source LLMs. In Table 5, we scale up pruning-aware pretraining to only 5B
tokens. We report both results with or without finetuning after pruning. Because previous works
finetune in different settings, we finetune additional 1B tokens if with it. Notice that, even without
finetuning, EfficientLLM exceeds all the according baselines. It is shown that existing LLM pruning
is impractical in large pruning ratio. By simply scaling up LLM-Pruner metric in pruning-aware
pretraining, EfficientLLM-A significantly exceeds SoTA NutePrune 6.5% in 70% ratio without bells
and whistles, while NutePrune integrates distillation and additional learnable masks. In 50% ratio,
EfficientLLM exceeds LoRAPrune by 2.18% and 6.54% when with and without tuning. Experiments
reveal that only scaling up the pruning stage to 5B tokens can achieve much higher performance than
previous results, highlighting the importance of scalable pruning methods.

5 CONCLUSION

This work primarily advances the edge language model pretraining to exceed the traditional LLM
scaling law. Distinguished from almost LLM compression in post-training, this work scales up
existing pruning metric in the pretraining stage, promoting LLM compression to the era of pretraining.
Technically, minimal parameter groups are defined and optimized by saliency to address scalable
target-agnostic pruning. The results reveal that even if vanilla LLM-Pruner can surpass SoTA pruning
methods by scaling up and outperform direct pretraining edge models.

Limitations. Future work will explore the reasoning and long-context capabilities of edge language
models. Since reasoning is more related to CoT data and base models, we exclude it in this work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors have read and agree to adhere to the ICLR Code of Ethics. This paper presents work
whose goal is to advance the field of Machine Learning. At present, we do not identify any specific
ethical concerns that require special attention beyond standard considerations of fairness, privacy,
security, and research integrity.

REPRODUCIBILITY STATEMENT

We release the code in supplemental materials. All of the training data and evaluation methods are
publicly available with clear source.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245, 2023.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
blazingly fast and remarkably powerful, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024a. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Smollm-corpus, 2024b. URL https://huggingface.co/datasets/
HuggingFaceTB/smollm-corpus.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and Danqi Chen. Finding transformer circuits
with edge pruning. arXiv preprint arXiv:2406.16778, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-source autoregressive
language model. arXiv preprint arXiv:2204.06745, 2022.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

10

https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, et al. Olmo: Accelerat-
ing the science of language models. arXiv preprint arXiv:2402.00838, 2024.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Minillm: Knowledge distillation of large language
models. In The Twelfth International Conference on Learning Representations, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Jongwoo Ko, Sungnyun Kim, Tianyi Chen, and Se-Young Yun. Distillm: Towards streamlined
distillation for large language models. arXiv preprint arXiv:2402.03898, 2024.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A 176b-
parameter open-access multilingual language model. 2023.

11

https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

J Li, A Fang, G Smyrnis, M Ivgi, M Jordan, S Gadre, H Bansal, E Guha, S Keh, K Arora, et al.
Datacomp-lm: In search of the next generation of training sets for language models, 2024. URL
https://arxiv. org/abs/2406.11794.

Shengrui Li, Junzhe Chen, Xueting Han, and Jing Bai. Nuteprune: Efficient progressive pruning with
numerous teachers for large language models. arXiv preprint arXiv:2402.09773, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm quantization
with learned rotations. arXiv preprint arXiv:2405.16406, 2024a.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, et al. Mobilellm: Optimizing
sub-billion parameter language models for on-device use cases. arXiv preprint arXiv:2402.14905,
2024b.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

John Platt and Alan Barr. Constrained differential optimization. In Neural Information Processing
Systems, 1987.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Sharath Turuvekere Sreenivas, Saurav Muralidharan, Raviraj Joshi, Marcin Chochowski, Mostofa
Patwary, Mohammad Shoeybi, Bryan Catanzaro, Jan Kautz, and Pavlo Molchanov. Llm pruning
and distillation in practice: The minitron approach. arXiv preprint arXiv:2408.11796, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Yehui Tang, Fangcheng Liu, Yunsheng Ni, Yuchuan Tian, Zheyuan Bai, Yi-Qi Hu, Sichao Liu,
Shangling Jui, Kai Han, and Yunhe Wang. Rethinking optimization and architecture for tiny
language models. arXiv preprint arXiv:2402.02791, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

12

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen Blankevoort.
The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Maurice Weber, Daniel Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov,
Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset
for training large language models. arXiv preprint arXiv:2411.12372, 2024.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10734–10742, 2019.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating language
model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report, 2024a. URL
https://arxiv.org/abs/2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024b.

Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender, Pieter-Jan Kindermans, Mingxing Tan,
Thomas Huang, Xiaodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling up neural archi-
tecture search with big single-stage models. In Computer Vision–ECCV 2020: 16th European
Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16, pp. 702–717. Springer,
2020.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Lo-
raprune: Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403,
2023a.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models, 2022. URL https://arxiv. org/abs/2205.01068, 3:19–0, 2023b.

Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci. Plug-
and-play: An efficient post-training pruning method for large language models. In The Twelfth
International Conference on Learning Representations, 2024b.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained
language models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

13

https://arxiv.org/abs/2407.10671

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A AUTO-DESIGNED ARCHITECTURES

A.1 VISUALIZATION

As shown in Fig.5, we visualize the pruning-aware pretraining. We prune SmolLM-1.7B to
EfficientLLM-A-457M. In Fig.5 (right), the self-attention parameter groups and FFN parameter
groups are iteratively pruned in the initial stage. After 44.49B-token pretraining, the transformer stem
parameter groups start to be pruned. This indicates that for the typical human-designed transformer
shape, there are more redundant parameters in the attention head and the intermediate size of FFN
compared with the transformer stem.

Figure 5: Visualization of pruning-aware pretraining. We plot the saliency of the three pruning types
and their pruning ratio in training.

A.2 ARCHITECTURE ROBUSTNESS

We conduct further experiments to demonstrate how different pruning paths can lead to stable (and
generally better) results. We also firstly explore the connection between the architecture robustness
and the generalized Lottery Ticket Hypothesis (Frankle & Carbin, 2018), where not only parameter
initialization but also architecture initialization satisfies the lottery ticket condition.

We began with 2000 steps of Unified Pruning to obtain an automatically designed model architecture,
denoted as A*. We then mark A* as the target and restarted training from scratch, enforcing different
pruning paths.

Specifically, we randomly sampled three pruning paths:

i) Prune in the order: Stem → Attention → FFN

ii) Prune in the order: Attention → Stem → FFN

iii) Prune in the order: FFN → Stem → Attention

Table 6: Performance of different pruning trajectories (7 zero-shot average).

Pruning Traj. stem_attn_ffn attn_stem_ffn ffn_stem_attn Unified Pruning
Avg. (7 zero-shot) 44.52% 44.11% 44.15% 43.92%

The experimental results show that, given a known target structure A*, different pruning paths
consistently lead to similar or even better performance.

In the classic Lottery Ticket Hypothesis (Frankle & Carbin, 2018), the initialization of model parame-
ters determines whether they will successfully train—winning tickets remain effective regardless of
the training process. Similarly, in our experiments, we find that once the optimal target architecture

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

has been identified, variations in training dynamics (i.e., pruning paths) do not significantly affect the
final accuracy, even without fixing specific parameters—only the architecture.

However, this does not imply that scaling up the pruning process is unimportant. On the contrary, it
plays a key role in discovering a more accurate target architecture.

A.3 ARCHITECTURE COMPARISONS

Table 7: Architecture comparisons between EfficientLLM and human-designd models.

Model Hidden Size FFN Intermediate Attention Heads Head Dim Layer
MobileLLM-125M 576 1536 9 64 30
EfficientLLM-A-134M 757 966 5 64 32

MobileLLM-350M 960 2560 15 64 32
Qwen2/2.5 896 4864 14 64 24
EfficientLLM-A-457M 1195 3006 19 64 24

MobileLLM-1B 1280 3584 20 64 54
ShearedLlama-1.3B 2048 5504 16 128 24
OLMo-1B 2048 8192 16 128 16
Llama3.2-1B 2048 8192 32 64 16
EfficientLLM-A-1.1B 2048 4870 24 64 24

Table 8: Architectures in different pruning metrics to scale up by pruning-aware pretraining. We
compare the approximate 460M model size. “x1” indicates that the number of gradient descent steps
and pruning steps in each iteration are 1:1.

Model Hidden Size FFN Intermediate Attention Heads Head Dim Layer
LLM-Pruner x1 (Ma et al., 2023) 1169 3082 19 64 24
OBC x1 (Frantar & Alistarh, 2022) 1131 3258 19 64 24
Diag-Hess x1 (LeCun et al., 1989) 1963 1542 12 64 24

As shown in Table 7, we compare the auto-designed architectures by saliency via pruning and the best
practices of human design, including MobileLLM and Qwen2/2.5-0.5B, OLMo-1B, ShearedLlama-
1.3B. In EfficientLLM, the pruning ratio of hidden-size is smaller than attention heads and FFN
intermediate channels driven by saliency.

As shown in Table 8, we compare the influence of different pruning metrics, including the classic
LLM-Pruner (Ma et al., 2023), OBC (Frantar & Alistarh, 2022), and Diag-Hess (LeCun et al., 1989).
The Diag-Hess only uses the second-order term in Eq.9, which applies the diagonal of the Hessian
matrix for approximate calculation.

A.4 CLUSTER ATTENTION

Pruning-aware pretraining could structurally prune the Group Query Attention (GQA) (Ainslie et al.,
2023), which is usually applied for KV cache compression in LLMs. When the source model applies
GQA, there are different cases in pruning:

• in all of the following cases, the query attention heads is the same in each layer, and the same
as the self-attention operation. The difference is how to share key and value for queries.

• As shown in Fig.8, if all queries corresponding to a key and value are pruned, then the key
and value are also pruned.

• If a part of the query corresponding to a key and value is pruned, then the key and value are
retained. This eventually forms cluster attention.

We plot an example of EfficientLLM-A-134M in Fig.8. And the source models of EfficientLLM-
457M and EfficientLLM-1.1B do not apply GQA.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Key

Value

Query

Group Query Attention Cluster Attention KV Cache Compression

Figure 6: Group Query Attention (GQA) pruning. In the case of GQA, cluster attention can be
obtained through pruning. After pruning, the number of query heads is the same in each layer, and
the cluster attention compresses the KV Cache.

B TRAINING AND EVALUATION DETAILS

B.1 TRAINING

Our training code and models will be fully open-sourced on GitHub and Huggingface. Detailed
hyperparameters are shown in Table 9. Note that iterations determine the number of tokens in
pruning-aware pretraining to achieve the target model size, which is not directly defined. It can be
adjusted through batch size and the pruning frequency in each iteration.

Table 9: Hyper-parameters in pruning-aware pretraining and continued pretraining stages.
Model #Tokens Learning Rate WarmUp Steps Batchsize Text Length #GPU
Pruning-134M 50.3B 2× 10−3 500 2 M 2048 32
Continued Pretrain-134M 500B 2× 10−3 10000 1 M 2048 32

Pruning-457M 72.1B 5× 10−4 500 1 M 2048 32
Continued Pretrain-457M 50B/500B 2× 10−3 10000 1 M 2048 40

Pruning-1.1B 36.7 5× 10−4 500 1 M 2048 32
Continued Pretrain-1.1B 50B/500B 5× 10−4 10000 1 M 2048 64

B.2 EVALUATION

• MMLU: According to Datacomp-lm (Li et al.) (Appendix G of Datacomp-lm) and SmolLM
(Allal et al., 2024), taking into account the log probabilities of complete answer sequences
in MMLU is more related to weaker model performance, such as edge language models.
Following SmolLM (Allal et al., 2024), we apply the Lighteval-v0.7.0 (Fourrier et al., 2023)
to evaluate MMLU zero-shot performance.

• Common Sense Reasoning: Follow most of recent works (Xia et al., 2023; Ma et al., 2023;
Li et al., 2024), we apply the widely used lm-evaluation-harness package (Gao et al., 2024)
to evaluate zero-shot common sense reasoning tasks. To avoid different results introduced
by different versions. We evaluate all the benchmarks with the 0.4.3 version. However,
some previous works evaluate in older version 0.3.0, and we evaluate with the same version
in Table 5, 50% pruning ratio. Finally, all the versions are the same.

B.3 SCALABILITY OF UNIFIED PRUNING-AWARE PRETRAINING

In Fig. 3, we evaluate the scalability of pruning-aware pretraining. According to Eq. 7, we set the
ratio of pruning steps to gradient descent steps to 4:1, 2:1, 1:1, and 1:9 in a iteration, respectively.
When the target model size is reached, the pruning-aware pretraining requires 2.5B, 4.5B, 8.4B, and
72.1B tokens of pretraining, respectively. Fig. 3 indicates that scaling up pruning-aware pretraining
continuously improves pruning performance. By scaling up LLM pruning during pretraining, the
upper boundary of LLM compression can be extended.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.4 COMPARISON WITH THE SOURCE MODEL

Table 10: Comparison between SmolLM-1.7B and EfficientLLM-A-1.1B.
Model #Params ARC-c ARC-e BoolQ HellaSwag OBQA PIQA WinoGrande Avg.
SmolLM-1.7B 1.7B 46.16 76.60 65.99 65.74 42.00 75.95 60.14 61.80
EfficientLLM-A-1.1B 1.1B 42.24 73.48 67.09 64.09 41.80 75.41 61.17 60.75

B.5 COMPARISONS BETWEEN EFFICIENTLLM-A AND B

As shown in Table 11, EfficientLLM* indicates pruning Llama2-7B to 1.3B with RedPajama dataset;
EfficientLLM indicates pruning SmolLM-1.7B to 457M in main results. EfficientLLM-B exceeds
EfficientLLM-A in small scale pretraining, while their results become similar in large scale pretraining.
We finally choose EfficientLLM-A to scale up.

Table 11: Comparisons between EfficientLLM-A and B for the second-order weight updating.
Model Tokens ARC-C ARC-E BoolQ HS OBQA PIQA WG Avg.
EfficientLLM*-A 6B 27.30 56.44 57.58 50.03 31.00 69.10 54.70 49.45
EfficientLLM*-B 6B 28.58 56.90 62.42 49.81 32.20 68.93 55.49 50.62
EfficientLLM-A 572B 38.40 72.10 62.42 56.84 40.40 73.83 57.46 57.35
EfficientLLM-B 572B 39.59 71.68 62.39 57.21 39.60 73.50 57.70 57.38

C TRAINING AND INFERENCE EFFICIENCY

C.1 TRAINING EFFICIENCY

As shown in Table 12, we evaluate pretraining speed under the same environment, as shown in the
table. With pruning-aware pretraining, training EfficientLLM-457M requires x16 to x62 times fewer
GPU hours compared to Qwen2.5-0.5B, while achieving higher accuracy.

Table 12: Comparison of pre-training and pruning costs in GPU hours. PT indicates pretraining.
Model PT Tokens GPU Hours Pruning GPU Hours Continued PT GPU Hours Total Hours Acc. (%)
Qwen2.5-0.5B 17T 199467 – – – – 199467 53.20
EfficientLLM-457M – – 72.1B 2166 50B 1018 3184 54.77
EfficientLLM-457M – – 72.1B 2166 500B 10178 12344 57.35

C.2 INFERENCE EFFICIENCY

As shown in Table 13, we deploy EfficientLLM on non-GPU devices. We deploy on 1, 2, 4, and
8 Intel Xeon @ 2.90GHz CPUs respectively. Compared with SoTA edge models, EfficientLLM
achieves both higher inference speed (ms/token) and average zero-shot accuracy.

Table 13: Inference latency (in milliseconds) and accuracy on different models.
Model (ms) 1 CPU 2 CPUs 4 CPUs 8 CPUs Acc. (%)
MobileLLM-350M 132.37 81.26 53.99 41.95 51.30
Qwen2.5-0.5B 54.51 30.08 19.87 13.54 53.20
EfficientLLM-457M 15.93 9.38 5.67 4.07 57.35
OLMo-1B 352.92 186.39 101.81 65.12 55.66
Llama3.2-1B 51.45 30.17 16.59 10.33 56.69
EfficientLLM-1B 49.77 25.52 16.00 10.32 60.75

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.3 QUANTIZATION

We applied OmniQuant to perform 8-bit weight and activation quantization (8W8A) on EfficientLLM.
The experimental results show that 8-bit quantization only causes minor disturbances to the results,
further proving the effectiveness of the model acceleration.

Table 14: Performance comparison of models with different bit-widths.
Model #Bits ARC-C ARC-E BoolQ HS OBQA PIQA WG Avg.
Qwen2.5-0.5B bf16 32.17 64.44 61.99 52.09 35.20 70.29 56.20 53.20
EfficientLLM-A-457M bf16 38.40 72.10 62.42 56.84 40.40 73.83 57.46 57.35
EfficientLLM-A-457M-Quant 8W8A 38.23 72.14 63.18 56.90 40.00 73.67 57.93 57.44
Llama3.2-1B bf16 31.48 65.28 63.88 63.69 37.40 74.59 60.54 56.69
EfficientLLM-A-1B bf16 42.24 73.48 67.09 64.09 41.80 75.41 61.17 60.75
EfficientLLM-A-1B-Quant 8W8A 41.64 73.32 66.51 63.98 42.40 75.24 60.30 60.48

D CASE STUDY IN ALPACA FINETUNING

In the instruction finetuning task, we finetune EfficientLLM-A-1.1B, OLMo-1B, ShearedLlama-1.3B,
and Llama3.2-1B in the Alpaca dataset. And then, we evaluate using the Alpaca-Eval. We sample
some instructions in Alpaca-Eval and make comparisons as follows:

Input:
I want to eventually become a plant/manufacturing/production manager, and eventually a
Chief Operating Officer. What sort of experience and post-graduate education path would
you recommend? Please provide non-obvious and atypical career paths leading to such
positions, on top of the classic ones.

Output (EfficientLLM-A-1.1B):
To become a plant/manufacturing/production manager and eventually a Chief Operating
Officer, you will need to have a combination of experience and post-graduate education.
For experience, you can start by working in a production or manufacturing role. This
will give you the opportunity to gain hands-on experience in the industry and learn about
the day-to-day operations of a production or manufacturing facility. You can also gain
experience by working in a related field, such as engineering, logistics, or supply chain
management.
For post-graduate education, you can pursue a degree in a related field, such as industrial
engineering, operations management, or supply chain management. You can also pursue
a master’s degree in a related field, such as operations management or supply chain man-
agement. Additionally, you can pursue professional certifications, such as the Certified
Production and Inventory Management Professional (CPIMP) or the Certified Supply Chain
Professional (CSCP).
In addition to experience and post-graduate education, you will also need to have excellent
communication, organizational, and problem-solving skills. You will also need to be able
to lead and motivate a team, as well as be able to think strategically and make decisions
quickly.
Overall, to become a plant/manufacturing/production manager and eventually a Chief
Operating Officer, you will need to have a combination of experience and post-graduate
education, as well as excellent communication, organizational, and problem-solving skills.
Additionally, you will need to be able to lead and motivate a team, as well as be able to
think strategically and make decisions quickly.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Output (OLMo-1B):
To become a plant/manufacturing/production manager, you will need at least a Bachelor’s
degree in a relevant field, such as industrial engineering, manufacturing engineering, or
production management. To become a Chief Operating Officer, you will need at least a
Master’s degree in a relevant field, such as business administration, management, or mar-
keting. To become a plant/manufacturing/production manager, you will need at least a PhD
in a relevant field, such as industrial engineering, manufacturing engineering, or production
management. Additionally, to become a plant/manufacturing/production manager, you
may also want to obtain a certification such as the Certified Production Manager (CPM) or
Certified Quality Manager (CQM) to demonstrate your expertise in the field.

Output (ShearedLlama-1.3B):
To become a plant/manufacturing/production manager, you will need to have a bachelor’s
degree in a relevant field such as engineering, business, or manufacturing. After that, you can
pursue a master’s degree in a related field such as operations management, manufacturing
engineering, or production and operations management. Additionally, you may want to
pursue post-graduate education in areas such as project management, lean manufacturing,
or supply chain management.
For a Chief Operating Officer position, you will need to have a bachelor’s degree in
a relevant field such as engineering, business, or manufacturing. After that, you can
pursue a master’s degree in a related field such as operations management, manufacturing
engineering, or production and operations management. Additionally, you may want to
pursue post-graduate education in areas such as project management, lean manufacturing,
or supply chain management.
Overall, to become a plant/manufacturing/production manager or Chief Operating Offi-
cer, you will need to have a bachelor’s degree in a relevant field such as engineering,
business, or manufacturing, and then pursue a master’s degree in a related field such as
operations management, manufacturing engineering, or production and operations man-
agement. Additionally, you may want to pursue post-graduate education in areas such as
project management, lean manufacturing, or supply chain management.

Output (Llama3.2-1B):
To become a plant/manufacturing/production manager and eventually a Chief Operating
Officer, it is recommended to have a degree in engineering, business, or a related field,
as well as relevant post-graduate education and experience. Examples of post-graduate
education include an MBA, a Master’s degree in engineering, or even a PhD in a related
field. Relevant experience could include working in a manufacturing or production role,
managing a team of engineers, or leading a plant or production department.

Input:
Why so many people like film photography when digital camera and mobile phone are more
convenient and generate higher quality of photos?

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Output (EfficientLLM-A-1.1B):
Many people still prefer film photography because of its unique aesthetic qualities. Film
photography allows for more creative control, as the photographer can adjust the ISO,
shutter speed, and aperture to achieve the desired effect. Additionally, film photography
produces a unique look and feel that cannot be replicated with digital cameras and mobile
phones. Film photography also allows for more experimentation, as the photographer
can adjust the ISO, shutter speed, and aperture to achieve the desired effect. Finally, film
photography can be a more personal and intimate experience, as it allows the photographer
to capture moments in a way that digital cameras and mobile phones cannot.

Output (OLMo-1B):
Film photography has many advantages compared to digital camera and mobile phone,
such as higher quality of photos, more creative control, and the ability to capture moments
that would otherwise go unnoticed. Additionally, film photography requires more time
and patience to develop the film, which adds an element of adventure and creativity to the
process. Finally, many people find the physical process of developing film to be aesthetically
pleasing, while digital camera and mobile phone processing can often produce photos with
a less-than-desirable outcome.

Output (ShearedLlama-1.3B):
People like film photography because it allows for more creative control. With film
photography, the photographer has the ability to adjust the exposure, focus, and other
settings to create the desired effect. Digital cameras and mobile phones do not offer this
level of creative control, making it difficult to achieve the desired effect. Additionally, film
photography requires more thought and preparation than digital camera and mobile phone
photography, making it more enjoyable and rewarding.

Output (Llama3.2-1B):
People like film photography because it produces higher quality of photos than digital
cameras and mobile phones. Film photography is more expensive than digital cameras
and mobile phones, but the quality of photos produced by film is much better than those
produced by digital cameras and mobile phones. Additionally, film photography requires
more skill and patience to take good photos, which many people enjoy.

20

	Introduction
	Preliminary and Related Works
	Unified Pruning-Aware Pretraining
	Defining Minimal Pruning Group
	Optimizing Mini-Groups by Saliency
	Second-Order Weight Updating

	Experiments
	Empirical Studies
	Main Results
	Comparisons with LLM Pruning

	Conclusion
	Auto-Designed Architectures
	Visualization
	Architecture Robustness
	Architecture Comparisons
	Cluster Attention

	Training and Evaluation Details
	Training
	Evaluation
	Scalability of Unified Pruning-Aware Pretraining
	Comparison with the Source Model
	Comparisons between EfficientLLM-A and B

	Training and Inference Efficiency
	Training Efficiency
	Inference Efficiency
	Quantization

	Case Study in Alpaca Finetuning

