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Abstract

Handwriting remains an essential skill, particu-001
larly in education. Therefore, providing visual002
feedback on handwritten documents is an im-003
portant but understudied area. We outline the004
many challenges when going from an image of005
handwritten input to correctly placed informa-006
tive error feedback. We empirically compare007
modular and end-to-end systems and find that008
both approaches currently do not achieve ac-009
ceptable overall quality. We identify the major010
challenges and outline an agenda for future re-011
search.012

1 Motivation013

Even in the digital age, handwriting is still the014

primary writing method used in schools worldwide015

(Freedman et al., 2016). It remains an important016

skill e.g. in early language acquisition (Ray et al.,017

2022), writing development (Feng et al., 2019) or018

for note taking (Mueller and Oppenheimer, 2014).019

Therefore, the ability to provide digital feedback020

on handwritten work is essential for bridging the021

gap between physical documents and current AI022

technology. The bottom image in Figure 1 shows023

an example of such feedback. However, significant024

challenges remain in word detection, recognition,025

ordering, and feedback generation, all of which are026

crucial for providing feedback in handwriting.027

Traditional handwriting recognition (HWR) typi-028

cally tackle these steps in a modular fashion, where029

detection, ordering, and recognition are treated as030

independent, sequential steps (Coquenet, 2022).031

While this approach allows for flexible optimiza-032

tion of state-of-the-art text components, it also033

leads to error accumulation as mistakes propagate034

between steps (Liu et al., 2022). Figure 2 illustrates035

this by showing how erroneous detection influences036

recognition. If a bounding box (BB) is incorrectly037

positioned, recognition is likely to fail as the cor-038

rect word cannot be extracted from a truncated BB.039

Despite this limitation, modular systems continue040

Figure 1: Key processing steps in providing visual error
feedback for handwriting.

to dominate HWR (Coquenet, 2022). Moreover, 041

previous works on feedback systems (Karlsson and 042

Åkerman, 2022; Imasha et al., 2023) insufficiently 043

analyze the challenges in detection, ordering, and 044

recognition. 045

To bridge this gap, we provide a systematic anal- 046

ysis of each necessary step and its associated chal- 047

lenges in mapping error feedback onto handwritten 048

text, along with an empirical comparison of modu- 049

lar and end-to-end systems. These insights are es- 050

sential for developing applications that enable error 051
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Figure 2: Four scenarios in modular word detection and recognition impacting feedback accuracy

annotation on handwriting in educational settings.052

To validate this and assess practical challenges, we053

also develop a prototype using a document camera.054

We make the source code for the prototype publicly055

available to foster future research in that area.1056

2 Feedback on Handwritten Input057

As we have discussed in the introduction, providing058

visual feedback on handwritten documents requires059

a series of steps to be performed (word detection,060

word ordering, word recognition, and feedback gen-061

eration) that all come with their own challenges. In062

this section, we now discuss each step in more063

detail.2064

2.1 Word Detection065

Accurate word detection, i.e. putting a well-fitting066

BB around a word in an image, is the essential067

first step for providing feedback on handwritten068

documents (see top image in Figure 1).069

Word detection is evaluated using the Intersec-070

tion over Union (IoU) metric, which quantifies the071

overlap between two BBs by computing the ratio of072

their area of intersection to the area of their union:073

IoU =
Area of Intersection

Area of Union
(1)074

IoU values may range from 0 to 1, where a higher075

value indicates greater overlap (Lucas et al., 2005).076

Using a threshold θ, which defines the minimum077

overlap between detected and correct BBs, a sys-078

tem’s accuracy can be evaluated. To illustrate the079

impact of different θ values on feedback placement,080

we plotted 100 random BBs for IoUs between 0.5081

and 1 on an image snippet from the IAM dataset082

(see Figure 3). With decreasing IoU thresholds,083

1Link omitted for anonymous review
2Note that, depending on the method used, these steps can

occur in a different order. An end-to-end system might directly
output correctly ordered text from an image, but still needs
to detect where to place the feedback. In a modular system,
detected words are ordered based on the visual layout before
word recognition, or words are recognized in isolation and
then ordered using lexical information.

Figure 3: Placement of 100 random BBs with specific
IoU values.

BBs deviate markedly from their original positions. 084

The deviation is more pronounced horizontally due 085

to the rectangular shape of BBs. In light of these 086

results, the commonly used IoU threshold of 0.5 for 087

word detection should be reconsidered, as it may 088

lead to inaccurate feedback placement. However, 089

maintaining this threshold ensures comparability 090

with other studies (Abdo et al., 2024; Hossen and 091

Hossain, 2024; Karlsson and Åkerman, 2022), but 092

it may lead to an overestimation of accuracy. For 093

example, Karlsson and Åkerman (2022) report a 094

detection accuracy of over 95 % based on an IoU 095

threshold of 0.5. In contrast, Abdo et al. (2024) 096

show that while similarly high accuracy can be 097

achieved at this threshold, performance drops sig- 098

nificantly when stricter IoU thresholds up to 0.95 099

are applied. 100

2.2 Word Ordering 101

Once words are detected, the next step is to cor- 102

rectly order them to preserve context. In modular 103

approaches, text ordering is determined indepen- 104

dently of detection and extraction, while in end-to- 105
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(a) Correct sequencing: “The quick brown fox jumps over the
lazy dog”

(b) Horizontal sequencing: “The quick brown over fox jumps
dog the lazy”

Figure 4: Influence of line recognition on word ordering.

end systems, it is learned in conjunction with these106

processes.107

Ordering can either be learned or performed108

based on heuristics. In the feedback system by109

Karlsson and Åkerman (2022), word ordering was110

achieved using a heuristic algorithm that first cal-111

culates the average box height, groups boxes based112

on their proximity along the y-axis, and then sorts113

them by their x-coordinate. In contrast, Coquenet114

(2022) introduced an end-to-end system that di-115

rectly learns text ordering using a Vertical Atten-116

tion Network, demonstrating that it outperforms a117

traditional modular approach.118

Rule-based ordering becomes tedious for com-119

plex documents and requires prior knowledge of120

reading order, such as whether it is column-based121

or row-based (Coquenet, 2022). Additionally, left-122

to-right heuristics struggle with skewed handwrit-123

ten text, as illustrated in Figures 4a and 4b.124

Word ordering can be evaluated using the Nor-125

malized Spearman’s Footrule Distance (NSFD),126

which measures the normalized sum of absolute127

positional differences (Vidal et al., 2023), or in-128

directly via the Bilingual Evaluation Understudy129

(BLEU) score, which compares n-grams between130

predicted and reference text (Birch et al., 2010).131

2.3 Word Recognition132

In this step, the handwritten word within the BB133

is sent to a recognition system that returns the rec-134

ognized text string. Performance of this step is135

usually measured by Character Error Rate (CER),136

which quantifies the number of incorrectly recog-137

nized characters (Neudecker et al., 2021).138

Figure 5: HWR output variants from Gold et al. (2023)

Karlsson and Åkerman (2022) review 31 studies 139

on HWR systems using the IAM dataset, report- 140

ing CER values ranging from 17% to 2.9%, with 141

the TrOCR model from Li et al. (2021) achieving 142

the lowest error rate. In light of these results, cur- 143

rent feedback systems for real-time spelling error 144

detection demonstrated competitive CERs, with 145

Karlsson and Åkerman (2022) achieving 3.4% us- 146

ing TrOCR on IAM test data and Imasha et al. 147

(2023) reporting 3.4% on the IAM and SROIE 148

datasets through a Transformer-based extraction 149

approach. In comparison, the end-to-end HWR 150

system based on a Vertical Attention Network (Co- 151

quenet, 2022) capable of processing entire docu- 152

ments while simultaneously recognizing both text 153

and layout, achieved a CER of 3.6% on the READ 154

2016 dataset. 155

While low single digit CER values seem low, 156

this performance level might still severely impact 157

error feedback. For example, a CER of 5% means 158

that every 20th character is incorrectly recognized, 159

which might lead to spurious errors being flagged. 160

However, CER values alone do not tell us whether 161

we are dealing with false positives (spurious errors) 162

or false negatives (missing actual errors). For exam- 163

ple, Gold et al. (2023) point out that HWR systems 164

either tend to under-correct or over-correct ortho- 165

graphic errors as shown in Figure 5. In the exam- 166

ple, a student wanted to write the word donut, but 167

spelled it dounut. Due to the shape of the d letter, 168

character-based models would recognize clounut 169

and add spurious error feedback (as one could ar- 170

gue that the letter looks somewhat like cl but is 171

still recognizable as d and should not count as a 172

spelling error). Word-based HWR systems on the 173

other hand over-correct and would recognize donut 174

making it impossible to provide error feedback in 175

that case. The ideal output would be dounut, but 176

current HWR systems are not trained to work on 177

this pedagogically useful level. 178
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Figure 6: Feedback placement with insufficient space
between handwritten lines

2.4 Feedback Generation179

In this study, we focus on error feedback, which180

involves identifying and marking mistakes in the181

extracted text, such as spelling and grammatical er-182

rors, as well as segmentation errors like split com-183

pounds and merged words (Stymne et al., 2013).184

While spelling and segmentation errors are easier to185

highlight because they affect only individual words186

or characters, grammar mistakes are more challeng-187

ing as they often would require showing structural188

modifications.189

A major challenge for visual feedback is place-190

ment, i.e. we need to position the feedback in phys-191

ical space in a way that minimizes distractions. For192

example, if there is not enough space between two193

handwritten lines, the feedback might overlap with194

the handwriting leading to readability issues, as195

shown in Figure 6. One possible solution, inspired196

by language learning support (Rzayev et al., 2020),197

is to overlay feedback directly on the text. How-198

ever, this hides the original text making it hard for199

learners to understand the nature of their mistake.200

Another approach from language learning support201

(Mosa and Katsuhiko, 2014) is to color-highlight202

individual letters of the original word, enabling de-203

tailed annotation of errors. However, this would204

require locating single characters within a word,205

while detection approaches rely on word-level BBs.206

Also most handwritten datasets are annotated at207

the word or line level (Marti and Bunke, 2002;208

Kleber et al., 2013; Krishnan et al., 2021) making209

it challenging to handle character-level feedback210

placement. However, note that (as is shown in211

the bottom image in Figure 1) we can still provide212

character-level feedback in form of highlighting the213

misspelled characters in the word. What we cur-214

rently cannot do is directly showing the feedback215

at the correct character position.216

3 Experimental Setup 217

To address the challenges of providing feedback on 218

handwritten documents, as discussed in the previ- 219

ous section, we empirically examine the effective- 220

ness of modular and end-to-end approaches. 221

3.1 Data 222

We use two datasets: IAM and Imgur5K. 223

The IAM dataset (Marti and Bunke, 2002) is 224

derived from the Lancaster-Oslo-Bergen Corpus 225

and consists of 1,539 scanned handwritten English 226

forms, penned by 657 different writers, with a total 227

of 13,353 isolated text lines and 115,320 words.3 228

The dataset includes metadata stored in an XML 229

file containing the BB positions and the transcrip- 230

tions of the handwritten words, which are arranged 231

according to the reading direction, while the entire 232

text is also displayed as printed text in the header 233

of each image. 234

The Imgur5K dataset (Krishnan et al., 2021) 235

comprises 8,177 image pages containing 230,570 236

words from a diverse range of real-world hand- 237

written samples by nearly 5,300 writers, originally 238

sourced from public posts on Imgur.com.4 These 239

samples include items such as notes, logos, and var- 240

ious other objects, unlike the form-based samples 241

in the IAM dataset, making Imgur5K particularly 242

challenging. The dataset also includes metadata 243

in the form of a JSON file, which contains BB 244

positions, transcribed words, and angle informa- 245

tion because of variable text orientation. However, 246

since the words are annotated at the word level 247

and arranged in various layouts, the metadata does 248

not contain explicit ordering information. In the 249

Appendix (see Figure 11) we provide an example 250

image from each dataset. 251

3.2 Approaches 252

In this study, we compare the performance of 253

PGNet, Tesseract, EasyOCR, and the Handprint 254

library (using Google Cloud Vision API). We limit 255

ourselves to systems capable of generating BBs, 256

a feature lacking in many deep learning systems 257

(Wigington, 2023) and crucial for feedback place- 258

ment. 259

End-to-end system We selected PGNet (Wang 260

et al., 2021), an end-to-end OCR system from 261

3https://fki.tic.heia-fr.ch/databases/
iam-handwriting-database

4https://github.com/facebookresearch/
IMGUR5K-Handwriting-Dataset

4

https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
https://fki.tic.heia-fr.ch/databases/iam-handwriting-database
https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset
https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset


PaddleOCR, due to the limited availability of262

research and open-source end-to-end HWR sys-263

tems (Coquenet, 2022), as well as its efficiency264

in avoiding complex, time-consuming steps like265

non-maximum suppression and region of interest.266

The basic idea of PGNet5 is to combine text267

detection and recognition by sharing CNN features268

and training both components simultaneously. The269

system learns text ordering by organizing center270

points via directional offsets, enabling recognition271

in non-traditional reading directions.272

Modular systems We selected Tesseract and273

EasyOCR for their notable performance in compar-274

ative studies (Hamidullah Ehsani Qurban, 2024).275

Tesseract6 detects text using a binarization algo-276

rithm, followed by Convolutional Neural Networks277

(CNNs) for character recognition and Recurrent278

Neural Networks with Long Short-Term Memory279

for sequence processing (Thammarak et al., 2022).280

EasyOCR7 detects text using Character Region281

Awareness for Text Detection (CRAFT) (Baek282

et al., 2019), which relies on CNNs, and utilizes a283

Convolutional Recurrent Neural Network (CRNN)284

(Shi et al., 2015) for extraction.285

Handprint library We use the Handprint8 li-286

brary with Google service for its advanced HWR287

capabilities. The Handprint library is a command-288

line tool that integrates HWR services to generate289

annotated images. In this study, we selected the290

Google Cloud Vision API, whose specific methods291

remain undisclosed (Thammarak et al., 2022).292

Resizing All images are resized to 800×800 pix-293

els, as our experiment showed that this leads to294

improved results (see Appendix B for details).295

No further preprocessing is applied, as tests with296

OpenCV9 processing methods showed no signifi-297

cant overall benefit.298

3.3 Evaluation299

Word Detection We evaluate word detection us-300

ing precision, recall, and F1 score, considering a301

BB correctly placed if IoU ≥ 0.5 to ensure com-302

parability with related work. To account for the303

5https://github.com/PaddlePaddle/
PaddleOCR/blob/main/doc/doc_en/
algorithm_e2e_pgnet_en.md

6https://github.com/tesseract-ocr/
tesseract/

7https://github.com/JaidedAI/EasyOCR
8https://pypi.org/project/handprint/
9https://docs.opencv.org/4.x/d7/dbd/

group__imgproc.html

Type Model IAM Imgur5k
P R F P R F

E2E PGNet .83 .60 .70 .62 .46 .53
Modular EasyOCR .74 .58 .65 .58 .41 .48
Modular Tesseract .78 .74 .76 .30 .28 .29
- Handprint .65 .65 .65 .67 .67 .67

Table 1: Word detection results

limitations of this threshold (see Section 2.1), we 304

also plot the distribution of all IoU values. 305

Word Recognition We evaluate word recogni- 306

tion using the CER. Only successfully detected 307

words are considered, ensuring that undetected 308

words do not contribute a CER of 1.0, 309

Word Ordering We evaluate word ordering us- 310

ing the BLEU score and NSFD metrics. To exclude 311

recognition errors, we use the system’s proposed 312

order and replace predicted words with the ground 313

truth. 314

4 Empirical Analysis 315

This section presents and analyzes the performance 316

of modular and end-to-end systems to understand 317

how their detection and extraction capabilities vary 318

across different datasets. This comparison identi- 319

fies the strengths and weaknesses of each architec- 320

ture, providing valuable insights for developing an 321

effective feedback system. 322

4.1 Word Detection 323

Table 1 shows the results based on an IoU threshold 324

of 0.5, while Figure 7 illustrates the distribution of 325

all calculated IoUs. The end-to-end (E2E) system 326

PGNet and Handprint achieve good overall perfor- 327

mance, while Tesseract performs well on IAM but 328

poorly on Imgur5k. However, the IoU histogram 329

for IAM (see Figure 7a) reveals unexpectedly high 330

IoUs for Tesseract, possibly indicating data con- 331

tamination due to undocumented training on the 332

IAM dataset. 333

The IoU histogram of Imgur5k (see Figure 7b) 334

shows that PGNet and the Handprint library 335

achieve the highest IoUs with similar distributions. 336

Notably, the Handprint library with Google service 337

exhibits a high frequency of lower IoUs, likely due 338

to its detailed detection of BBs absent from the 339

Ground Truth (see Figure 8). 340

Compared to the YOLOv5l detection system 341

trained on the IAM, which achieved 96.1% recall 342

and 96.2% mAP with the same IoU threshold of 343

5

https://github.com/PaddlePaddle/PaddleOCR/blob/main/doc/doc_en/algorithm_e2e_pgnet_en.md
https://github.com/PaddlePaddle/PaddleOCR/blob/main/doc/doc_en/algorithm_e2e_pgnet_en.md
https://github.com/PaddlePaddle/PaddleOCR/blob/main/doc/doc_en/algorithm_e2e_pgnet_en.md
https://github.com/tesseract-ocr/tesseract/
https://github.com/tesseract-ocr/tesseract/
https://github.com/JaidedAI/EasyOCR
https://pypi.org/project/handprint/
https://docs.opencv.org/4.x/d7/dbd/group__imgproc.html
https://docs.opencv.org/4.x/d7/dbd/group__imgproc.html


(a) IAM

(b) Imgur5k

Figure 7: IoU histograms

(a) Parentheses and commas (b) Periods

Figure 8: Detection error due to overly detailed BBs
illustrated on an IAM snippet (Ground Truth: Blue,
Google Cloud Vision API: Green)

0.5 (Karlsson and Åkerman, 2022), our systems344

achieves worse results. However, their model was345

trained and tested on IAM (in-distribution), while346

our evaluation includes out-of-distribution scenar-347

ios.348

4.2 Word Ordering349

Since the IAM dataset provides a predefined read-350

ing order, we evaluated the models’ ordering per-351

formance using the NSFD and BLEU metrics (see352

Table 2). The modular system Tesseract achieves353

the best ordering score, likely influenced by its354

higher recall (see Table 1), which allowed more355

words to be considered in the evaluation. However,356

this may also be partly due to data contamination357

as described above.358

Type Model IAM
NSFD ↓ BLEU ↑

E2E PGNet .21 .18
Modular EasyOCR .23 .24
Modular Tesseract .17 .50
- Handprint .21 .32

Table 2: Word ordering results

CER values ↓
Type Model IAM Imgur5k

E2E PGNet 37 50
Modular EasyOCR 63 54
Modular Tesseract 43 54
- Handprint 3 8

Table 3: Word recognition results

We provide some example system outputs in Ta- 359

ble 5 in the Appendix. The examples demonstrate 360

that the word ordering accuracy of all systems is 361

insufficient for generating meaningful feedback. 362

4.3 Word Recognition 363

Table 3 gives an overview of the recognition re- 364

sults. Our evaluation of extraction performance 365

revealed that the Handprint library with Google 366

service achieved the lowest CERs by a significant 367

margin, which is unsurprising given that the other 368

systems are OCR-specific models. When focusing 369

solely on the OCR systems, E2E PGNet achieved 370

the lowest CERs, although its IoU distribution on 371

IAM (see Figure 7a) closely resembles EasyOCR’s, 372

suggesting improved error propagation handling. 373

However, specific errors contributed to higher 374

CER values across systems. In modular OCR sys- 375

tems, two words were occasionally merged into a 376

single BB, overlapping with the ground truth BB 377

for one word due to the 0.5 IoU threshold (see Fig- 378

ure 9a). This mismatch raised the CER, as only 379

one word per BB was expected. Similarly, in the 380

E2E system PGNet, large letter spacing caused a 381

comparable issue, where single words were split 382

into two predictions (see Figure 9b). 383

Compared to advanced HWR systems, which 384

achieve a word-level CER of 4.9% on IAM and 385

9.3% on Imgur5k (Kass and Vats, 2022), the Hand- 386

print library with Google service achieves slightly 387

better performance. 388

4.4 Summary of Empirical Findings 389

Our experiments indicate that neither modular nor 390

end-to-end systems provide sufficient quality for 391
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(a) Detection error due to large BBs
(EasyOCR)

(b) Detection error due to large letter
spacing (PGNet)

(c) Recognition error caused by unclear
handwriting (EasyOCR)

Figure 9: Error analysis using Imgur5k snippets (Ground Truth: Blue, Predictions: Green)

visual feedback on handwriting in classroom set-392

tings. While some systems excel in specific cat-393

egories, their overall performance remains inade-394

quate. Achieving high accuracy across detection,395

ordering, and extraction requires further research396

on HWR systems, independent of their architec-397

tural approach.398

5 Prototype399

Even if we have concluded from our empirical eval-400

uation that current system performance is probably401

not ready for classroom use, we still wanted to cre-402

ate a proof of concept where we can experience the403

feedback quality firsthand. It is well known that404

HWR results vary considerably with handwriting405

style (Gold et al., 2021), so for clearly written block406

letters performance might already be sufficient.407

We implemented a real-time Python applica-408

tion that uses a document camera to capture hand-409

written text and display error feedback on the410

screen. Initial tests confirm reliable BB detection411

on document camera images, even adapting to sheet412

movements within milliseconds (see Figure 10a).413

HWR and subsequent error identification using a414

spellchecker are also fast with GPU acceleration, al-415

lowing near real-time feedback. The feedback map-416

ping also works well when there is sufficient space417

between lines (see Figure 10b). When space is in-418

sufficient, character-level BBs could help through419

direct error annotations, particularly for spelling420

and segmentation errors. We also observed chal-421

lenges when the correction differed in length from422

the original word, making it not always clear which423

letters to highlight automatically.424

A prototype like this might already be useful425

for in-class usage, where students could have their426

writing samples automatically checked at a docu-427

ment camera station within the classroom. In later428

iterations of the prototype, we want to replace the429

screen with augmented reality devices. Of course,430

(a) Word Detection and Recognition

(b) Feedback Generation

Figure 10: Prototype setup

as incorrect feedback might impede learning, the 431

many challenges in improving the overall perfor- 432

mance of word detection, ordering and recognition 433

highlighted in this paper, first need to be addressed. 434

6 Conclusion & Future Work 435

This study examined key factors in visualizing error 436

feedback for handwritten documents and compared 437

end-to-end with modular systems. 438

Our analysis indicates that the current state is 439

inadequate for providing digital feedback on hand- 440

writing in classroom settings, due to limited sys- 441

tem accuracy and many challenges in word detec- 442

tion, ordering, recognition, and feedback gener- 443

ation. Key issues include the overcorrection by 444
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HWR systems and the limited space between hand-445

written lines.446

Despite this limitation, we developed a proof447

of concept to assess the feedback quality firsthand.448

We observed that the prototype was capable of map-449

ping feedback in near real time and, under simpli-450

fied conditions such as sufficient spacing between451

lines, placing useful and clearly readable feedback.452

Nevertheless, further research is needed to ensure453

that the prototype can handle the variability in hand-454

writing styles in classroom settings.455

Future Work Future work should explore meth-456

ods for determining character-level BBs in hand-457

writing, especially in cursive script, to enable direct458

error annotation on the original text. Additionally,459

further research is needed to mitigate overcorrec-460

tion in HWR systems to ensure that errors are pre-461

served while achieving a low CER for reliable feed-462

back generation.463

Beyond these theoretical considerations, future464

work should also address practical implementation.465

While our prototype used a document camera with466

feedback displayed on a screen, the next step is to467

advance towards augmented reality solutions that468

utilize a head-mounted display for direct feedback469

mapping onto handwritten text.470

Limitations471

A key limitation of our approach is that feedback472

errors are mapped at the word level, which poses473

challenges when line spacing is tight. Character-474

level BBs could mitigate this issue by enabling475

annotations directly on the text. However, to the476

best of our knowledge, no large-scale public hand-477

writing dataset provides character-level annotations478

for word images, which are essential for training a479

detection model capable of handling cursive hand-480

writing.481

Another limitation is that both CER and the or-482

dering metrics were computed only for detected483

BBs, likely underestimating the recognition error484

rate by ignoring undetected words and overestimat-485

ing ordering accuracy, especially when detection486

outperforms comparable systems.487

Experiments were only carried out with En-488

glish datasets. Results for other languages are489

likely worse due to the lower availability of well-490

performing pre-trained models.491

Ethical Considerations 492

Due to variations in handwriting styles and legibil- 493

ity, feedback systems may perform well with some 494

styles but struggle with others, potentially leading 495

to biases and unfair outcomes for individuals whose 496

handwriting is less accurately extracted. To ensure 497

fairness, these systems must accommodate a wide 498

range of styles and serve as supportive tools for 499

learning, not penalizing users for handwriting dif- 500

ferences. Another key consideration is data privacy. 501

Handwritten data should avoid personal identifiers 502

to prevent exposure of sensitive information. Be- 503

yond direct identifiers, handwriting style itself can 504

also be considered personal data, as it can reveal 505

an individual’s identity if replicated (Bhunia et al., 506

2021). 507

Like all automated feedback systems, there is 508

the risk of providing inaccurate feedback due to 509

system errors which could lead to confusion and 510

worse learning outcomes. Thus, special care has to 511

be taken to only use such system when a sufficient 512

level of feedback quality can be ensured. 513
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A Examples from IAM and Imgur5k 659

(a) IAM

(b) Imgur5K

Figure 11: Sample images from the utilized datasets
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B Resizing660

Type Model IAM Imgur5k
w/o resizing w resizing w/o resizing w resizing

E2E PGNet .68 .70 .52 .53
Modular EasyOCR .60 .65 .47 .48
Modular Tesseract .69 .76 .29 .29
- Handprint .63 .65 .66 .67

Table 4: Influence of image resizing on word detection results (in terms of F1)

Figure 12: Influence of image resizing on word detection results (in terms of F1)
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C Analysis: Word detection and ordering 661

Recall NSFD ↓ BLEU ↑ Text

Original - - - “You can’t very well stop me.” “I can do better
than that. If we were to get married now I
could come with you.” I looked down at my
plate, not daring to let him see how much the
idea appealed to me, reminding myself that he
could only have said such a thing because he
did not know the whole truth.

EasyOCR .69 .32 .43 You can’t very well me do better than that If
we married could come with looked down plate
not daring to let him see how much the idea
appealed to reminding myself that he could
only have said such a thing because he did the
whole truth stop get not

Tesseract .79 .26 .65 You can’t stop do better than that If we were
to get married now I could come with you I
looked down at my plate not daring to let him
see how much the idea appealed to me remind-
ing myself that he could only have said such a
thing because he did not know the whole truth

PGNet .69 .25 .26 You can’t well stop me can very do better
than that If were get married could come with
looked down at my plate not to daring let him
see how much the idea appealed myself that
could said only have such thing did he not know
the because whole truth

Handprint (Google) .76 .23 .54 You can’t very well stop I can do better than
that If were to get married I could with you
I looked down at plate not daring to let him
see how much the idea appealed to reminding
myself that he could only have said such thing
because he did not know the whole truth

Table 5: Example system outputs (detected and ordered words) from an IAM sample (see Figure 11a)
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