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Providing Visual Error Feedback for Handwritten Documents
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Abstract

Handwriting remains an essential skill, particu-
larly in education. Therefore, providing visual
feedback on handwritten documents is an im-
portant but understudied area. We outline the
many challenges when going from an image of
handwritten input to correctly placed informa-
tive error feedback. We empirically compare
modular and end-to-end systems and find that
both approaches currently do not achieve ac-
ceptable overall quality. We identify the major
challenges and outline an agenda for future re-
search.

1 Motivation

Even in the digital age, handwriting is still the
primary writing method used in schools worldwide
(Freedman et al., 2016). It remains an important
skill e.g. in early language acquisition (Ray et al.,
2022), writing development (Feng et al., 2019) or
for note taking (Mueller and Oppenheimer, 2014).
Therefore, the ability to provide digital feedback
on handwritten work is essential for bridging the
gap between physical documents and current Al
technology. The bottom image in Figure 1 shows
an example of such feedback. However, significant
challenges remain in word detection, recognition,
ordering, and feedback generation, all of which are
crucial for providing feedback in handwriting.
Traditional handwriting recognition (HWR) typi-
cally tackle these steps in a modular fashion, where
detection, ordering, and recognition are treated as
independent, sequential steps (Coquenet, 2022).
While this approach allows for flexible optimiza-
tion of state-of-the-art text components, it also
leads to error accumulation as mistakes propagate
between steps (Liu et al., 2022). Figure 2 illustrates
this by showing how erroneous detection influences
recognition. If a bounding box (BB) is incorrectly
positioned, recognition is likely to fail as the cor-
rect word cannot be extracted from a truncated BB.
Despite this limitation, modular systems continue
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Figure 1: Key processing steps in providing visual error
feedback for handwriting.

to dominate HWR (Coquenet, 2022). Moreover,
previous works on feedback systems (Karlsson and
Akerman, 2022; Imasha et al., 2023) insufficiently
analyze the challenges in detection, ordering, and
recognition.

To bridge this gap, we provide a systematic anal-
ysis of each necessary step and its associated chal-
lenges in mapping error feedback onto handwritten
text, along with an empirical comparison of modu-
lar and end-to-end systems. These insights are es-
sential for developing applications that enable error
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Figure 2: Four scenarios in modular word detection and recognition impacting feedback accuracy

annotation on handwriting in educational settings.
To validate this and assess practical challenges, we
also develop a prototype using a document camera.
We make the source code for the prototype publicly
available to foster future research in that area.’

2 Feedback on Handwritten Input

As we have discussed in the introduction, providing
visual feedback on handwritten documents requires
a series of steps to be performed (word detection,
word ordering, word recognition, and feedback gen-
eration) that all come with their own challenges. In
this section, we now discuss each step in more
detail.?

2.1 Word Detection

Accurate word detection, i.e. putting a well-fitting
BB around a word in an image, is the essential
first step for providing feedback on handwritten
documents (see top image in Figure 1).

Word detection is evaluated using the Intersec-
tion over Union (IoU) metric, which quantifies the
overlap between two BBs by computing the ratio of
their area of intersection to the area of their union:

Area of Intersection

IoU = 1
oUu Area of Union M

IoU values may range from O to 1, where a higher
value indicates greater overlap (Lucas et al., 2005).
Using a threshold ¢, which defines the minimum
overlap between detected and correct BBs, a sys-
tem’s accuracy can be evaluated. To illustrate the
impact of different § values on feedback placement,
we plotted 100 random BBs for IoUs between 0.5
and 1 on an image snippet from the IAM dataset
(see Figure 3). With decreasing IoU thresholds,
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Note that, depending on the method used, these steps can
occur in a different order. An end-to-end system might directly
output correctly ordered text from an image, but still needs
to detect where to place the feedback. In a modular system,
detected words are ordered based on the visual layout before
word recognition, or words are recognized in isolation and
then ordered using lexical information.
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Figure 3: Placement of 100 random BBs with specific
IoU values.

BBs deviate markedly from their original positions.
The deviation is more pronounced horizontally due
to the rectangular shape of BBs. In light of these
results, the commonly used IoU threshold of 0.5 for
word detection should be reconsidered, as it may
lead to inaccurate feedback placement. However,
maintaining this threshold ensures comparability
with other studies (Abdo et al., 2024; Hossen and
Hossain, 2024; Karlsson and Akerman, 2022), but
it may lead to an overestimation of accuracy. For
example, Karlsson and Akerman (2022) report a
detection accuracy of over 95 % based on an IoU
threshold of 0.5. In contrast, Abdo et al. (2024)
show that while similarly high accuracy can be
achieved at this threshold, performance drops sig-
nificantly when stricter loU thresholds up to 0.95
are applied.

2.2 Word Ordering

Once words are detected, the next step is to cor-
rectly order them to preserve context. In modular
approaches, text ordering is determined indepen-
dently of detection and extraction, while in end-to-
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Figure 4: Influence of line recognition on word ordering.

end systems, it is learned in conjunction with these
processes.

Ordering can either be learned or performed
based on heuristics. In the feedback system by
Karlsson and Akerman (2022), word ordering was
achieved using a heuristic algorithm that first cal-
culates the average box height, groups boxes based
on their proximity along the y-axis, and then sorts
them by their x-coordinate. In contrast, Coquenet
(2022) introduced an end-to-end system that di-
rectly learns text ordering using a Vertical Atten-
tion Network, demonstrating that it outperforms a
traditional modular approach.

Rule-based ordering becomes tedious for com-
plex documents and requires prior knowledge of
reading order, such as whether it is column-based
or row-based (Coquenet, 2022). Additionally, left-
to-right heuristics struggle with skewed handwrit-
ten text, as illustrated in Figures 4a and 4b.

Word ordering can be evaluated using the Nor-
malized Spearman’s Footrule Distance (NSFD),
which measures the normalized sum of absolute
positional differences (Vidal et al., 2023), or in-
directly via the Bilingual Evaluation Understudy
(BLEU) score, which compares n-grams between
predicted and reference text (Birch et al., 2010).

2.3 Word Recognition

In this step, the handwritten word within the BB
is sent to a recognition system that returns the rec-
ognized text string. Performance of this step is
usually measured by Character Error Rate (CER),
which quantifies the number of incorrectly recog-
nized characters (Neudecker et al., 2021).
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Figure 5: HWR output variants from Gold et al. (2023)

Karlsson and Akerman (2022) review 31 studies
on HWR systems using the IAM dataset, report-
ing CER values ranging from 17% to 2.9%, with
the TrOCR model from Li et al. (2021) achieving
the lowest error rate. In light of these results, cur-
rent feedback systems for real-time spelling error
detection demonstrated competitive CERs, with
Karlsson and Akerman (2022) achieving 3.4% us-
ing TrOCR on IAM test data and Imasha et al.
(2023) reporting 3.4% on the IAM and SROIE
datasets through a Transformer-based extraction
approach. In comparison, the end-to-end HWR
system based on a Vertical Attention Network (Co-
quenet, 2022) capable of processing entire docu-
ments while simultaneously recognizing both text
and layout, achieved a CER of 3.6% on the READ
2016 dataset.

While low single digit CER values seem low,
this performance level might still severely impact
error feedback. For example, a CER of 5% means
that every 20th character is incorrectly recognized,
which might lead to spurious errors being flagged.
However, CER values alone do not tell us whether
we are dealing with false positives (spurious errors)
or false negatives (missing actual errors). For exam-
ple, Gold et al. (2023) point out that HWR systems
either tend to under-correct or over-correct ortho-
graphic errors as shown in Figure 5. In the exam-
ple, a student wanted to write the word donut, but
spelled it dounut. Due to the shape of the d letter,
character-based models would recognize clounut
and add spurious error feedback (as one could ar-
gue that the letter looks somewhat like ¢/ but is
still recognizable as d and should not count as a
spelling error). Word-based HWR systems on the
other hand over-correct and would recognize donut
making it impossible to provide error feedback in
that case. The ideal output would be dounut, but
current HWR systems are not trained to work on
this pedagogically useful level.
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Figure 6: Feedback placement with insufficient space
between handwritten lines

2.4 Feedback Generation

In this study, we focus on error feedback, which
involves identifying and marking mistakes in the
extracted text, such as spelling and grammatical er-
rors, as well as segmentation errors like split com-
pounds and merged words (Stymne et al., 2013).
While spelling and segmentation errors are easier to
highlight because they affect only individual words
or characters, grammar mistakes are more challeng-
ing as they often would require showing structural
modifications.

A major challenge for visual feedback is place-
ment, i.e. we need to position the feedback in phys-
ical space in a way that minimizes distractions. For
example, if there is not enough space between two
handwritten lines, the feedback might overlap with
the handwriting leading to readability issues, as
shown in Figure 6. One possible solution, inspired
by language learning support (Rzayev et al., 2020),
is to overlay feedback directly on the text. How-
ever, this hides the original text making it hard for
learners to understand the nature of their mistake.
Another approach from language learning support
(Mosa and Katsuhiko, 2014) is to color-highlight
individual letters of the original word, enabling de-
tailed annotation of errors. However, this would
require locating single characters within a word,
while detection approaches rely on word-level BBs.
Also most handwritten datasets are annotated at
the word or line level (Marti and Bunke, 2002;
Kleber et al., 2013; Krishnan et al., 2021) making
it challenging to handle character-level feedback
placement. However, note that (as is shown in
the bottom image in Figure 1) we can still provide
character-level feedback in form of highlighting the
misspelled characters in the word. What we cur-
rently cannot do is directly showing the feedback
at the correct character position.

3 Experimental Setup

To address the challenges of providing feedback on
handwritten documents, as discussed in the previ-
ous section, we empirically examine the effective-
ness of modular and end-to-end approaches.

3.1 Data

We use two datasets: IAM and Imgur5K.

The TAM dataset (Marti and Bunke, 2002) is
derived from the Lancaster-Oslo-Bergen Corpus
and consists of 1,539 scanned handwritten English
forms, penned by 657 different writers, with a total
of 13,353 isolated text lines and 115,320 words.3
The dataset includes metadata stored in an XML
file containing the BB positions and the transcrip-
tions of the handwritten words, which are arranged
according to the reading direction, while the entire
text is also displayed as printed text in the header
of each image.

The Imgur5K dataset (Krishnan et al., 2021)
comprises 8,177 image pages containing 230,570
words from a diverse range of real-world hand-
written samples by nearly 5,300 writers, originally
sourced from public posts on Imgur.com.* These
samples include items such as notes, logos, and var-
ious other objects, unlike the form-based samples
in the IAM dataset, making Imgur5K particularly
challenging. The dataset also includes metadata
in the form of a JSON file, which contains BB
positions, transcribed words, and angle informa-
tion because of variable text orientation. However,
since the words are annotated at the word level
and arranged in various layouts, the metadata does
not contain explicit ordering information. In the
Appendix (see Figure 11) we provide an example
image from each dataset.

3.2 Approaches

In this study, we compare the performance of
PGNet, Tesseract, EasyOCR, and the Handprint
library (using Google Cloud Vision API). We limit
ourselves to systems capable of generating BBs,
a feature lacking in many deep learning systems
(Wigington, 2023) and crucial for feedback place-
ment.

End-to-end system We selected PGNet (Wang
et al., 2021), an end-to-end OCR system from

Shttps://fki.tic.heia-fr.ch/databases/
iam—-handwriting—-database

*nttps://github.com/facebookresearch/
IMGURSK-Handwriting-Dataset
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PaddleOCR, due to the limited availability of
research and open-source end-to-end HWR sys-
tems (Coquenet, 2022), as well as its efficiency
in avoiding complex, time-consuming steps like
non-maximum suppression and region of interest.

The basic idea of PGNet’ is to combine text
detection and recognition by sharing CNN features
and training both components simultaneously. The
system learns text ordering by organizing center
points via directional offsets, enabling recognition
in non-traditional reading directions.

Modular systems We selected Tesseract and
EasyOCR for their notable performance in compar-
ative studies (Hamidullah Ehsani Qurban, 2024).

Tesseract® detects text using a binarization algo-
rithm, followed by Convolutional Neural Networks
(CNNps) for character recognition and Recurrent
Neural Networks with Long Short-Term Memory
for sequence processing (Thammarak et al., 2022).

EasyOCR detects text using Character Region
Awareness for Text Detection (CRAFT) (Baek
et al., 2019), which relies on CNNs, and utilizes a
Convolutional Recurrent Neural Network (CRNN)
(Shi et al., 2015) for extraction.

Handprint library We use the Handprint® li-
brary with Google service for its advanced HWR
capabilities. The Handprint library is a command-
line tool that integrates HWR services to generate
annotated images. In this study, we selected the
Google Cloud Vision API, whose specific methods
remain undisclosed (Thammarak et al., 2022).

Resizing All images are resized to 800x800 pix-
els, as our experiment showed that this leads to
improved results (see Appendix B for details).
No further preprocessing is applied, as tests with
OpenCV? processing methods showed no signifi-
cant overall benefit.

3.3 Evaluation

Word Detection We evaluate word detection us-
ing precision, recall, and F1 score, considering a
BB correctly placed if IoU > 0.5 to ensure com-
parability with related work. To account for the

Shttps://github.com/PaddlePaddle/
PaddleOCR/blob/main/doc/doc_en/
algorithm_e2e_pgnet_en.md

*https://github.com/tesseract-ocr/
tesseract/

"https://github.com/JaidedAI/EasyOCR

$https://pypi.org/project /handprint/

‘https://docs.opencv.org/4.x/d7/dbd/
group___imgproc.html

Type Model IAM ImgurSk

P R F P R F
E2E PGNet 83 60 .70 .62 .46 .53
Modular EasyOCR .74 .58 .65 .58 .41 .48
Modular Tesseract .78 .74 .76 .30 .28 .29

- Handprint .65 .65 .65 .67 .67 .67

Table 1: Word detection results

limitations of this threshold (see Section 2.1), we
also plot the distribution of all IoU values.

Word Recognition We evaluate word recogni-
tion using the CER. Only successfully detected
words are considered, ensuring that undetected
words do not contribute a CER of 1.0,

Word Ordering We evaluate word ordering us-
ing the BLEU score and NSFD metrics. To exclude
recognition errors, we use the system’s proposed
order and replace predicted words with the ground
truth.

4 Empirical Analysis

This section presents and analyzes the performance
of modular and end-to-end systems to understand
how their detection and extraction capabilities vary
across different datasets. This comparison identi-
fies the strengths and weaknesses of each architec-
ture, providing valuable insights for developing an
effective feedback system.

4.1 Word Detection

Table 1 shows the results based on an IoU threshold
of 0.5, while Figure 7 illustrates the distribution of
all calculated IoUs. The end-to-end (E2E) system
PGNet and Handprint achieve good overall perfor-
mance, while Tesseract performs well on IAM but
poorly on Imgur5k. However, the IoU histogram
for IAM (see Figure 7a) reveals unexpectedly high
IoUs for Tesseract, possibly indicating data con-
tamination due to undocumented training on the
IAM dataset.

The IoU histogram of Imgur5Sk (see Figure 7b)
shows that PGNet and the Handprint library
achieve the highest IoUs with similar distributions.
Notably, the Handprint library with Google service
exhibits a high frequency of lower IoUs, likely due
to its detailed detection of BBs absent from the
Ground Truth (see Figure 8).

Compared to the YOLOVSI detection system
trained on the IAM, which achieved 96.1% recall
and 96.2% mAP with the same IoU threshold of
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Google Cloud Vision API: Green)

0.5 (Karlsson and Akerman, 2022), our systems
achieves worse results. However, their model was
trained and tested on IAM (in-distribution), while
our evaluation includes out-of-distribution scenar-
i0s.

4.2 Word Ordering

Since the IAM dataset provides a predefined read-
ing order, we evaluated the models’ ordering per-
formance using the NSFD and BLEU metrics (see
Table 2). The modular system Tesseract achieves
the best ordering score, likely influenced by its
higher recall (see Table 1), which allowed more
words to be considered in the evaluation. However,
this may also be partly due to data contamination
as described above.

Type Model IAM

NSFD | BLEU
E2E PGNet 21 18
Modular  EasyOCR 23 24
Modular  Tesseract 17 50
- Handprint 21 32

Table 2: Word ordering results

CER values |
Type Model IAM Imgursk
E2E PGNet 37 50
Modular  EasyOCR 63 54
Modular  Tesseract 43 54
- Handprint 3 8

Table 3: Word recognition results

We provide some example system outputs in Ta-
ble 5 in the Appendix. The examples demonstrate
that the word ordering accuracy of all systems is
insufficient for generating meaningful feedback.

4.3 Word Recognition

Table 3 gives an overview of the recognition re-
sults. Our evaluation of extraction performance
revealed that the Handprint library with Google
service achieved the lowest CERs by a significant
margin, which is unsurprising given that the other
systems are OCR-specific models. When focusing
solely on the OCR systems, E2E PGNet achieved
the lowest CERs, although its IoU distribution on
IAM (see Figure 7a) closely resembles EasyOCR’s,
suggesting improved error propagation handling.

However, specific errors contributed to higher
CER values across systems. In modular OCR sys-
tems, two words were occasionally merged into a
single BB, overlapping with the ground truth BB
for one word due to the 0.5 IoU threshold (see Fig-
ure 9a). This mismatch raised the CER, as only
one word per BB was expected. Similarly, in the
E2E system PGNet, large letter spacing caused a
comparable issue, where single words were split
into two predictions (see Figure 9b).

Compared to advanced HWR systems, which
achieve a word-level CER of 4.9% on IAM and
9.3% on ImgurSk (Kass and Vats, 2022), the Hand-
print library with Google service achieves slightly
better performance.

4.4 Summary of Empirical Findings

Our experiments indicate that neither modular nor
end-to-end systems provide sufficient quality for
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visual feedback on handwriting in classroom set-
tings. While some systems excel in specific cat-
egories, their overall performance remains inade-
quate. Achieving high accuracy across detection,
ordering, and extraction requires further research
on HWR systems, independent of their architec-
tural approach.

5 Prototype

Even if we have concluded from our empirical eval-
uation that current system performance is probably
not ready for classroom use, we still wanted to cre-
ate a proof of concept where we can experience the
feedback quality firsthand. It is well known that
HWR results vary considerably with handwriting
style (Gold et al., 2021), so for clearly written block
letters performance might already be sufficient.

We implemented a real-time Python applica-
tion that uses a document camera to capture hand-
written text and display error feedback on the
screen. Initial tests confirm reliable BB detection
on document camera images, even adapting to sheet
movements within milliseconds (see Figure 10a).
HWR and subsequent error identification using a
spellchecker are also fast with GPU acceleration, al-
lowing near real-time feedback. The feedback map-
ping also works well when there is sufficient space
between lines (see Figure 10b). When space is in-
sufficient, character-level BBs could help through
direct error annotations, particularly for spelling
and segmentation errors. We also observed chal-
lenges when the correction differed in length from
the original word, making it not always clear which
letters to highlight automatically.

A prototype like this might already be useful
for in-class usage, where students could have their
writing samples automatically checked at a docu-
ment camera station within the classroom. In later
iterations of the prototype, we want to replace the
screen with augmented reality devices. Of course,
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Figure 10: Prototype setup

as incorrect feedback might impede learning, the
many challenges in improving the overall perfor-
mance of word detection, ordering and recognition
highlighted in this paper, first need to be addressed.

6 Conclusion & Future Work

This study examined key factors in visualizing error
feedback for handwritten documents and compared
end-to-end with modular systems.

Our analysis indicates that the current state is
inadequate for providing digital feedback on hand-
writing in classroom settings, due to limited sys-
tem accuracy and many challenges in word detec-
tion, ordering, recognition, and feedback gener-
ation. Key issues include the overcorrection by



HWR systems and the limited space between hand-
written lines.

Despite this limitation, we developed a proof
of concept to assess the feedback quality firsthand.
We observed that the prototype was capable of map-
ping feedback in near real time and, under simpli-
fied conditions such as sufficient spacing between
lines, placing useful and clearly readable feedback.
Nevertheless, further research is needed to ensure
that the prototype can handle the variability in hand-
writing styles in classroom settings.

Future Work Future work should explore meth-
ods for determining character-level BBs in hand-
writing, especially in cursive script, to enable direct
error annotation on the original text. Additionally,
further research is needed to mitigate overcorrec-
tion in HWR systems to ensure that errors are pre-
served while achieving a low CER for reliable feed-
back generation.

Beyond these theoretical considerations, future
work should also address practical implementation.
While our prototype used a document camera with
feedback displayed on a screen, the next step is to
advance towards augmented reality solutions that
utilize a head-mounted display for direct feedback
mapping onto handwritten text.

Limitations

A key limitation of our approach is that feedback
errors are mapped at the word level, which poses
challenges when line spacing is tight. Character-
level BBs could mitigate this issue by enabling
annotations directly on the text. However, to the
best of our knowledge, no large-scale public hand-
writing dataset provides character-level annotations
for word images, which are essential for training a
detection model capable of handling cursive hand-
writing.

Another limitation is that both CER and the or-
dering metrics were computed only for detected
BBs, likely underestimating the recognition error
rate by ignoring undetected words and overestimat-
ing ordering accuracy, especially when detection
outperforms comparable systems.

Experiments were only carried out with En-
glish datasets. Results for other languages are
likely worse due to the lower availability of well-
performing pre-trained models.

Ethical Considerations

Due to variations in handwriting styles and legibil-
ity, feedback systems may perform well with some
styles but struggle with others, potentially leading
to biases and unfair outcomes for individuals whose
handwriting is less accurately extracted. To ensure
fairness, these systems must accommodate a wide
range of styles and serve as supportive tools for
learning, not penalizing users for handwriting dif-
ferences. Another key consideration is data privacy.
Handwritten data should avoid personal identifiers
to prevent exposure of sensitive information. Be-
yond direct identifiers, handwriting style itself can
also be considered personal data, as it can reveal
an individual’s identity if replicated (Bhunia et al.,
2021).

Like all automated feedback systems, there is
the risk of providing inaccurate feedback due to
system errors which could lead to confusion and
worse learning outcomes. Thus, special care has to
be taken to only use such system when a sufficient
level of feedback quality can be ensured.
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A Examples from IAM and Imgur5k
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Figure 11: Sample images from the utilized datasets
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B Resizing

Type Model IAM ImgurSk

w/o resizing  w resizing w/o resizing w resizing
E2E PGNet .68 .70 52 .53
Modular  EasyOCR .60 .65 A7 48
Modular  Tesseract .69 .76 .29 .29
- Handprint .63 .65 .66 .67

Table 4: Influence of image resizing on word detection results (in terms of F1)
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Figure 12: Influence of image resizing on word detection results (in terms of F1)
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C Analysis: Word detection and ordering

Recall NSFD| BLEU 1 Text

Original - - - “You can’t very well stop me.” “I can do better
than that. If we were to get married now I
could come with you.” I looked down at my
plate, not daring to let him see how much the
idea appealed to me, reminding myself that he
could only have said such a thing because he
did not know the whole truth.

EasyOCR .69 32 43 You can’t very well me do better than that If
we married could come with looked down plate
not daring to let him see how much the idea
appealed to reminding myself that he could
only have said such a thing because he did the
whole truth stop get not

Tesseract .79 .26 .65 You can’t stop do better than that If we were
to get married now I could come with you I
looked down at my plate not daring to let him
see how much the idea appealed to me remind-
ing myself that he could only have said such a
thing because he did not know the whole truth

PGNet .69 .25 .26 You can’t well stop me can very do better
than that If were get married could come with
looked down at my plate not to daring let him
see how much the idea appealed myself that
could said only have such thing did he not know
the because whole truth

Handprint (Google) 76 23 54 You can’t very well stop I can do better than
that If were to get married I could with you
I looked down at plate not daring to let him
see how much the idea appealed to reminding
myself that he could only have said such thing
because he did not know the whole truth

Table 5: Example system outputs (detected and ordered words) from an IAM sample (see Figure 11a)

13



