

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 OPTIMISTIC VALUE ITERATION WITH REPRESENTATION LEARNING FOR LOW-RANK POMGs

Anonymous authors

Paper under double-blind review

ABSTRACT

Partially Observable Markov Games (POMGs) pose significant challenges for multi-agent reinforcement learning due to the combination of partial observability and strategic interactions. Recent advances explore the inherent structure of the POMG dynamics and develop efficient representation methods to facilitate planning in the latent space rather than directly operating on the history trajectory. In this paper, we focus on the low-rank POMGs and propose a unified optimistic value iteration (OVI) framework that accommodates different low-rank representation learning methods. With a given representation, OVI constructs an optimistic bonus and integrates it into the value function to inspire exploration and mitigate the bias caused by the representation approximation error. When the exact value function oracle is unavailable, OVI instead utilizes the low-rank representation to construct optimistic/pessimistic estimators of the value functions via the Bellman recursion, and selects the final solution based on the optimistic-pessimistic gap. Our theoretical analysis shows that, once the representation approximation error is bounded, the OVI converges to an approximate equilibrium. We instantiate the framework with two provable representation learning methods: an MLE-based approach and a spectral decomposition representation method. Furthermore, we develop a novel representation method, L -step Latent Variable Representation (LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, and prove that OVI with LLVR also achieves approximate equilibria, with an extra L -decodability assumption. Collectively, these results establish the first systematic representation learning perspective for POMGs.

1 INTRODUCTION

Markov games (MGs) have emerged as a foundational framework for multi-agent reinforcement learning (MARL), enabling rigorous analysis of agents' performance in strategic interactions (1; 2; 3; 4). Recently, Partially Observable Markov Game (POMG) has been proposed as an extension of MG under partial observability (5; 6). Specifically, each agent in POMGs only observes its own actions and local signals, leading to incomplete information about the true state. The non-Markovian nature of the observations forces the agent to maintain memory and reason about beliefs of the system state, all while exploring to collect information about the environment. Consequently, even in cooperative settings, POMGs have been shown to be NEXP-complete (7), implying that solving them in the worst case requires super-exponential complexity.

Recent advances have sought to explore specific structured subclasses of POMGs that admit tractable solutions. For instance, (8; 9) investigated POMGs with γ -observability where observations probabilistically reveal state information, enabling hierarchical state estimation via information-sharing mechanisms. (10) studied weakly revealing POMGs where observations are sufficiently informative to infer state properties. More recently, other structured subclasses, such as POMGs with low generalized eluder coefficient (11) have also been investigated. However, these methods either focus on tabular state spaces or are restricted to two-player zero-sum games, which limits their applicability to general POMGs. To the best of our knowledge, the only prior work addressing general POMGs is (12). However, their approach employs a computationally inefficient representation learning method and relies on access to an exact value function oracle.

054
 055 Table 1: Sample complexity of different representation learning methods under our OVI framework.
 056 For the same representation method, value function oracle-free setting(OVI-OF) require more samples
 057 than oracle-based setting(OVI-OB). The additional complexity is highlighted in **blue**.

Representation Method	058 OVI-OB	059 OVI-OF
MLE	$\tilde{\mathcal{O}}(\varepsilon^{-2} \log(H \mathcal{M} /\delta\varepsilon))$	$\tilde{\mathcal{O}}(\textcolor{blue}{H^6 d^4 \mathcal{A} ^2} \cdot \varepsilon^{-2} \log(\textcolor{blue}{d \mathcal{A} H \mathcal{M} /\delta\varepsilon}))$
SDR	$\tilde{\mathcal{O}}(d^2 \varepsilon^{-2} \log(H \mathcal{M} /\delta\varepsilon))$	$\tilde{\mathcal{O}}(\textcolor{blue}{H^6 d^2 \mathcal{A} ^2} \cdot d^2 \varepsilon^{-2} \log(\textcolor{blue}{d \mathcal{A} H \mathcal{M} /\delta\varepsilon}))$
LLVR	$\tilde{\mathcal{O}}(\varepsilon^{-2} \log(H \mathcal{M} /\delta\varepsilon))$	$\tilde{\mathcal{O}}\left(\textcolor{blue}{H^6 \mathcal{A} ^L C \log(H \mathcal{A} ^{L/2} \mathcal{M} /\delta\varepsilon)} \cdot \varepsilon^{-2} \log(\textcolor{blue}{ \mathcal{A} ^{L/2} H \mathcal{M} /\delta\varepsilon})\right)$

064
 065 In this work, we propose a unified optimistic value iteration (OVI) framework that accommodates
 066 different low-rank representation learning method. With a given representation, it constructs an optimis-
 067 tic bonus to encourage exploration, and then performs value iteration based on the representation
 068 and bonus. The framework is compatible with two distinct settings; one that assumes access to an ex-
 069 act value function oracle and another that operates without it. In the oracle-free setting, OVI bypasses
 070 the need of the value function oracle by using the representation and bonus to construct optimistic and
 071 pessimistic value function estimators via Bellman recursion. We show that if the representation error
 072 is bounded, the framework provides sample-efficient guarantees for learning approximate equilibria.
 073 We instantiate OVI with two concrete representation learning algorithms, one based on Maximum
 074 Likelihood Estimation (MLE) and another on Spectral Decomposition Representation (SDR), and
 075 demonstrate that both converge to approximate equilibria. Furthermore, we develop a novel L -step
 076 latent variable representation (LLVR) method for POMGs with infinite-dimensional latent space,
 077 i.e., infinite rank. Specifically, LLVR utilizes a computationally tractable ELBO to learn an effective
 078 representation with only the recent L -step trajectory. We make the following contributions:
 079

- 080 • We propose a unified OVI framework for low-rank POMGs that accommodates various
 081 low-rank representation learning methods. Given a representation, OVI augments rewards
 082 with an optimistic bonus to both encourage exploration and compensate for approximation
 083 error. Notably, this framework is compatible with two distinct settings, supporting scenarios
 084 that assumes access to an exact value function oracle and those that operates without it. In
 085 particular, in the oracle-free setting, OVI constructs optimistic/pessimistic estimators of the
 086 value function based on the representation and bonus, then performs the value iteration with
 087 the constructed estimators, and selects the final solution by minimizing the gap between
 088 these estimators. For both settings of OVI, we show that they converge to an approximate
 089 Nash, Correlated, or Coarse Correlated Equilibrium if the representation error is bounded.
 090
- 091 • We instantiate the framework with two concrete representation learning algorithms: MLE
 092 and SDR. We characterize the corresponding approximation error of both representations and
 093 derive the sample complexities of OVI-MLE and OVI-SDR to reach approximate equilibria.
 094 While MLE achieves tighter approximation guarantees, SDR offers a more computationally
 095 efficient alternative by reparameterizing an l_2 norm objective.
 096
- 097 • We develop a novel representation method, LLVR, for POMGs with infinite-dimensional
 098 latent spaces, i.e., infinite rank. LLVR learns the latent representation of the transition
 099 kernel by optimizing a computationally friendly ELBO, and yields an exact and tractable
 100 linear form of the value function over the latent space. Our theoretical results establish
 101 that OVI-LLVR retains provable convergence to approximate equilibria under an extra
 102 L -decodability assumption. Note that LLVR only needs to access the recent L -step history
 103 instead of the full history information. Our empirical study in Appendix I also shows the
 104 efficiency of LLVR.

103 1.1 RELATED WORK

104
 105 **Theoretical guaranteed methods in POMGs.** Structural information has been extensively lever-
 106 aged to develop theoretically guaranteed methods for POMGs. A rich body of work has investi-
 107 gated structured subclasses of single-agent POMGs, i.e. POMDPs, such as L -decodable POMDPs
 108 (13; 14; 15), weakly revealing POMDPs (16; 17), observable POMDPs (18) and low-rank POMDPs

(19; 20). In the multi-agent setting, solving POMGs is significant challenging: it is NEXP-complete even under cooperative objectives (7). As a result, while there has been substantial progress on fully observable MGs (21; 22; 23; 24; 25; 26; 27; 28; 29; 30), research on POMGs remains relatively scarce. Motivated by the POMDP literature, recent works have explored structural subclasses of POMGs that admit tractable solutions. For instance, (8; 9) investigated information-sharing mechanisms for POMGs with proposed γ -observability, where agents' observations contain probabilistic information about the underlying state, enabling hierarchical state estimation and efficient coordination. (10) proposed a sample-efficient approach for weakly revealing POMGs by assuming informative observations, while (31) studied two-player competitive and tree-structured transition POMGs that permit game-theoretic planning via backward induction. More recently, (11) developed posterior sampling methods for two-player zero-sum games with low generalized eluder coefficients, extending applicability to continuous state spaces. However, these methods either focus on tabular state spaces (8; 9; 10; 31) or are restricted to two-player zero-sum games (31; 11), which limits their applicability to general POMGs. To the best of our knowledge, the only prior work addressing general POMGs is (12), which analyzed POMGs under information rank structure assumptions, characterizing how partial observability interacts with agent interactions. However, their approach employs a computationally inefficient representation learning method and relies on access to an exact value function oracle.

Representation learning in RL. A growing body of research has focused on representation learning in RL, i.e. learning latent representations to capture the underlying dynamics. For instance, (13; 32; 33) investigated representation learning in block MDPs, which is a special case of low-rank MDPs. (34) studied representation for MDPs with the structure of Gaussian noise. Several recent papers studied low-rank MDPs via MLE and facilitating sample-efficient RL (35; 36; 37). Model-free representation learning methods in Low-Rank MDPs have also been studied (38; 39). Meanwhile, several methods extracted computationally efficient spectral representations from the low-rank MDPs (40; 41). Recently, (42; 17) considered POMDPs and constructed the MLE confidence set for low-rank structured models. (16) explored POMDPs within an spectral estimation set. (15) studied latent variable spectral representation for L -decodable POMDPs. In the multi-agent setting, (21) represented the environment linearly for two-player zero-sum MGs with the structure of Gaussian noise. (43) and (30) explored representation learning in low-rank fully observable MGs via contrastive self-supervised learning and MLE, respectively. For the more difficult POMG tasks, (12) constructed a generalized PSR representation under γ -well-conditioned assumption. Note that there is still a lack of research on comprehensive representation learning for general low-rank POMGs.

2 BACKGROUND

In a POMG, each player does not have complete information about the current state of the game. Instead, players only have access to partial observations of the state. This partial observability introduces additional challenges to the design and analysis of policies, as players must make decisions based on these noisy or incomplete observations.

A POMG is defined by a tuple: $(\mathcal{S}, \{\mathcal{A}_i\}_{i=1}^M, \mathcal{P}, \{r_i\}_{i=1}^M, H, \mu_0, \{\mathcal{O}_i\}_{i=1}^M, \mathbb{O})$, where H denotes the length of each episode, \mathcal{S} is the state space with $|\mathcal{S}| = S$, \mathcal{A}_i denotes the action space for the i^{th} player with $|\mathcal{A}_i| = A_i$, $\mathcal{P} = \{\mathcal{P}_h\}_{h=0}^H$ is the collection of transition probabilities, μ_0 is the initial state distribution, $\mathcal{O}_i = \{\mathcal{O}_{h,i}\}_{h=0}^H$ denotes the observation space for the i^{th} player with $|\mathcal{O}_i| = O_i$, $r_i = \{r_{h,i} : \mathcal{O}_i \times \mathcal{A}_i \rightarrow [0, 1]\}_{h=0}^H$ is the reward function for player i . We denote by $\mathbf{o} := (o_1, \dots, o_M) \in \mathcal{O} := \mathcal{O}_1 \times \dots \times \mathcal{O}_M$ the joint observations of all m players and $\mathbf{a} := (a_1, \dots, a_M) \in \mathcal{A} := \mathcal{A}_1 \times \dots \times \mathcal{A}_M$ the joint observations of all M players, respectively. $\mathbb{O}(\cdot|s) : \mathcal{S} \rightarrow \Delta(\mathcal{O})$ is the emission kernel so that $\mathbb{O}_h(\mathbf{o}|s)$ is the probability of having a partial observation $\mathbf{o} \in \mathcal{O}$ at state s .

At each time step h , each player i receives an observation $o_{h,i}$ and a reward $r_{h,i}$ based on the true state $s_h \in \mathcal{S}$. A key feature of POMGs is that the observation does not fully reveal the true state. Observing o_i instead of the true state s leads to a non-Markovian transition between observations, which means each player needs to consider policies $\pi_i := \{\pi_{h,i} : ((\mathcal{O}_i \times \mathcal{A}_i)^{h-1} \times \mathcal{O}_i) \rightarrow \Delta_{\mathcal{A}_i}\}_{h \in [H]}$ that depend on the entire history, denoted by $\tau_h = \{\mathbf{o}_0, \mathbf{a}_0, \dots, \mathbf{o}_h\}$. We denote the joint policy of all players as $\pi := \pi_1 \times \dots \times \pi_M$, the action of each player is sampled independently according to their own policy. We denote the space of τ_h as \mathcal{T}_h and the policy of all the players except player i as π_{-i} .

For a given joint policy π , we can define the state value function $V_{h,i}^\pi(s_h) = \mathbb{E} \left[\sum_{t=h}^H r_{t,i}(o_t, \mathbf{a}_t) | s_h \right]$ and state-action value function $Q_{h,i}^\pi(s_h, \mathbf{a}_h) = \mathbb{E} \left[\sum_{t=h}^H r_{t,i}(o_t, \mathbf{a}_t) | s_h, \mathbf{a}_h \right]$ for each player i at step h , respectively, for the POMG. Therefore, the Bellman equation can be expressed as $V_{h,i}^\pi(s_h) = \mathbb{E}_\pi \left[Q_{h,i}^\pi(s_h, \mathbf{a}_h) \right]$, $Q_{h,i}^\pi(s_h, \mathbf{a}_h) = r_{h,i}(o_h, \mathbf{a}_h) + \mathbb{E}_\mathbb{P} \left[V_{h+1,i}^\pi(s_{h+1}) \right]$. For the convenience of notation, we denote $v_i^\pi := \mathbb{E}_{s \sim \mu_0} [V_{0,i}^\pi(s)]$.

For any policy π_{-i} , there exists a best response policy of player i , which is a policy $\mu^\dagger(\pi_{-i})$ satisfying $V_{h,i}^{\mu^\dagger(\pi_{-i}), \pi_{-i}}(s) = \max_{\pi_i} V_{h,i}^{\pi_i, \pi_{-i}}(s)$ for any $(s, h) \in \mathcal{S} \times [H]$. We denote $V_{h,i}^{\dagger, \pi_{-i}} := V_{h,i}^{\mu^\dagger(\pi_{-i}), \pi_{-i}}$ and let $v_i^{\dagger, \pi_{-i}} := \mathbb{E}_{s \sim \mu_0} [V_{0,i}^{\dagger, \pi_{-i}}(s)]$.

We focus on three classic equilibrium concepts in game theory—Nash Equilibrium, Correlated Equilibrium (CE) and Coarse Correlated Equilibrium (CCE) (30). First, a NE is defined as a product policy in which no player can increase her value by changing only her own policy. Formally,

Definition 1 (NE). *A joint policy π is a Nash equilibrium (NE) if $v_i^\pi = v_i^{\dagger, \pi_{-i}}, \forall i \in [M]$. And we call π an ε -approximate NE if $\max_{i \in [M]} \{v_i^{\dagger, \pi_{-i}} - v_i^\pi\} < \varepsilon$.*

Second, a CCE is a relaxed version of Nash equilibrium in which we consider general correlated policies instead of joint policies.

Definition 2 (CCE). *A correlated policy π is a CCE if $V_{h,i}^{\dagger, \pi_{-i}}(s) \leq V_{h,i}^\pi(s)$ for all $s \in \mathcal{S}, h \in [H], i \in [M]$. And we call π an ε -approximate CCE if $\max_{i \in [M]} \{v_i^{\dagger, \pi_{-i}} - v_i^\pi\} < \varepsilon$.*

Finally, a CE is defined as a joint policy where no player can increase her value by unilaterally applying any strategy modification. To define CE, we first introduce the concept of policy modification: A policy modification $\omega_i := \{\omega_{h,i}\}_{h \in [H]}$ for player i is a set of H functions from $\mathcal{S} \times \mathcal{A}_i$ to \mathcal{A}_i . Let $\Omega_i := \{\Omega_{h,i}\}_{h \in [H]}$ denote the set of all possible policy modifications for player i . One can compose a policy modification ω_i with any Markov policy π and obtain a new policy $\omega_i \circ \pi$ such that when policy π chooses to play $\mathbf{a} := (a_1, \dots, a_M)$ at state s and step h , policy $\omega_i \circ \pi$ will play $(a_1, \dots, a_{i-1}, \omega_{h,i}(s, a_i), a_{i+1}, \dots, a_M)$ instead.

Definition 3 (CE). *A correlated policy π is a CE if $\max_{\omega_i \in \Omega_i} V_{h,i}^{\omega_i \circ \pi}(s) \leq V_{h,i}^\pi(s)$ for all $(s, h) \in \mathcal{S} \times [H], i \in [M]$. And we call π an ε -approximate CE if $\max_{i \in [M]} \{\max_{\omega_i \in \Omega_i} v_i^{\omega_i \circ \pi} - v_i^\pi\} < \varepsilon$.*

Solving general POMGs is notoriously hard due to their inherent complexity, which is known to be NEXP-complete. To overcome this, prior works has focused on structured subclasses that allow for more tractable solutions. Examples include weakly revealing POMGs (10), γ -observable POMGs (8; 9). In this paper, we focus on POMGs with low-rank dynamics, a structure widely used in the RL literature (36; 37; 40). A POMG is called low-rank if its transition function factorizes through a pair of low-dimensional embeddings. This structural assumption applies only to valid history triplets $(\tau, \mathbf{a}, \tau')$, so the rank d does not scale with $(|\mathcal{O}||\mathcal{A}|)^h$ and can remain small in practice.

Definition 4 (low-rank POMG). *A POMG is low-rank if, there exist embeddings: $\phi_h : \mathcal{T}_h \times \mathcal{A} \rightarrow \mathbb{R}^d$ and $\mu_h : \mathcal{T}_{h+1} \rightarrow \mathbb{R}^d$ for all $h \in [H]$ such that*

$$\forall \tau \in \mathcal{T}_h, \tau' \in \mathcal{T}_{h+1}, \mathbf{a} \in \mathcal{A} : \mathcal{P}_h(\tau' | \tau, \mathbf{a}) = \langle \phi_h(\tau, \mathbf{a}), \mu_h(\tau') \rangle \text{ if } (\tau, \mathbf{a}) \text{ forms the history of } \tau'.$$

For normalization, we assume that $\|\phi(\tau_h, \mathbf{a})\| \leq 1$ for all τ_h, \mathbf{a} and for any function $g : \mathcal{T}_h \rightarrow [0, 1]$, $\|\int \mu(\tau_h) g(\tau_h) d\tau_h\| \leq \sqrt{d}$.

3 REPRESENTATION LEARNING BASED OPTIMISTIC VALUE ITERATION

We propose a unified optimistic value iteration (OVI) framework that accommodates various low-rank representation learning method. The central idea is to use a given latent representation of the dynamics to construct an optimistic bonus, and then perform value iteration based on the representation and bonus. Notably, this framework is compatible with two distinct settings, supporting scenarios both with and without an exact value function oracle. We prove that when the representation error is upper bounded by ζ , our framework provides sample-efficient guarantees for learning approximate equilibria, with detailed proof provided in Appendix B.

216 3.1 REPRESENTATION LEARNING FOR POMGS
217

218 If the transition and reward functions of a POMG are known, planning-based approaches like heuristic
219 search value iteration (44) and linear programming (45) can be used to compute the solution.

220 However, in practice the transition function is typically unknown. In such cases, it is common
221 to employ representation learning to construct a latent representation of the transition dynamics.
222 Formally, this is captured by considering a model class $\mathcal{M} = \{(\hat{\phi}_h, \hat{\mu}_h) : \hat{\phi}_h \in \Phi_h, \hat{\mu}_h \in \Phi_h\}_{h=0}^H$,
223 with the assumptions that $|\mathcal{M}| < \infty$ and the true transition is included in the class, i.e., $\phi_h \in \Phi_h, \mu_h \in \Psi_h, \forall h \in [H]$. The representation quality can be measured by
224

$$226 \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|^2 \leq \zeta_n, \\ 227$$

228 where $\mathcal{D}_{h,n}$ denotes the empirical dataset. A smaller representation error ζ_n indicates higher-quality
229 representations, which in turn yield stronger performance guarantees for subsequent value-iteration
230 based planning procedure.

231 3.2 OVI BASED ON REPRESENTATION
232

233 With a learned representation, oracle-based and oracle-free value-iteration based planning procedure
234 can be conducted. Suppose we have access to an oracle that computes the exact value function $V_{P,r}^{\pi,i}$
235 for a policy π and player i with transition P and reward r in a POMG for all $i \in [M]$. In this setting,
236 we can apply OVI by augmenting rewards with a confidence bonus \hat{b}_n derived from the representation.
237 Specifically, The oracle-based OVI, denoted as OVI-OB, maintains an estimate $\hat{\mathcal{P}}_n$ of the transition
238 and defines an augmented reward $r_n^+ = r + \hat{b}_n$. The policy is then updated via $\pi = \arg \max_{\pi'} V_{\hat{\mathcal{P}}_n, r_n^+}^{\pi'}$.
239

240 In most realistic POMGs, value-function oracles are often unavailable (46; 18). To handle this,
241 we propose oracle-free OVI, denoted as OVI-OF, that maintains both optimistic and pessimistic
242 estimates of the value function, updated recursively with confidence intervals derived from the
243 bonus $\hat{b}_{n,h}$. Based on the bonus term, we construct both optimistic and pessimistic estimators
244 ($\bar{V}_{h,i}^n, \underline{V}_{h,i}^n, \bar{Q}_{h,i}^n, \underline{Q}_{h,i}^n$) according to the Bellman recursion (Line 10 of Algorithm 1). Depending on
245 the problem's solution requirement, the policy π_h^n can be updated as follows,
246

$$247 NE : \pi_{h,i}^n(\cdot | \tau_h) = \arg \max_{\pi_{h,i}} \left(\mathbb{D}_{\pi_{h,i}, \pi_{h,-i}^n} \bar{Q}_{h,i}^n \right) (\tau_h), \quad \forall \tau_h \in \mathcal{T}_h, i \in [M]. \quad (1)$$

$$249 CCE : \max_{\pi_{h,i}} \left(\mathbb{D}_{\pi_{h,i}, \pi_{h,-i}^n} \bar{Q}_{h,i}^n \right) (\tau_h) \leq \left(\mathbb{D}_{\pi^n} \bar{Q}_{h,i}^n \right) (\tau_h), \quad \forall \tau_h \in \mathcal{T}_h, i \in [M]. \quad (2)$$

$$251 CE : \max_{\omega_{h,i} \in \Omega_{h,i}} \left(\mathbb{D}_{\omega_{h,i} \circ \pi_h^n} \bar{Q}_{h,i}^n \right) (\tau_h) \leq \left(\mathbb{D}_{\pi^n} \bar{Q}_{h,i}^n \right) (\tau_h), \quad \forall \tau_h \in \mathcal{T}_h, i \in [M]. \quad (3)$$

252 Here, $(\mathbb{D}_{\pi} f)(\tau) := \mathbb{E}_{\mathbf{a} \sim \pi(\cdot | \tau)} [f(\tau, \mathbf{a})]$, $\forall f : \mathcal{T} \times \mathcal{A} \rightarrow \mathbb{R}$. Without loss of generality, we assume that
253 the solution to each formulation is unique; if not, a deterministic selection rule can be applied so that
254 the same input yields the same policy. Note that although the policy update relies only on the optimistic
255 estimator, we still maintain the pessimistic estimator to compute the gap $\Delta^n = \max_{i \in [M]} \{\bar{v}_i^n - \underline{v}_i^n\}$,
256 with $\bar{v}_i^n = \int_{\mathcal{T}} \bar{V}_{0,i}^n(\tau) \mu_0(\tau) d\tau$ and $\underline{v}_i^n = \int_{\mathcal{T}} \underline{V}_{0,i}^n(\tau) \mu_0(\tau) d\tau$. Finally, the algorithm selects the
257 policy $\hat{\pi}$ that achieves the smallest estimated gap.

258 Algorithm 1 summarizes OVI-OB and OVI-OF. Under bounded representation error, the output policy
259 is guaranteed to be an approximate NE/CE/CCE.

260 **Lemma 5.** *Assume that the representation error of RepLearn in Alg.1 is bounded as*

$$264 \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|^2 \leq \zeta_n, \\ 265$$

266 and set $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$ and suitable bonus. With probability $1 - \delta$, the output policy
267 $\hat{\pi}$ of OVI-OB and OVI-OF is an ε -approximate $\{\text{NE, CCE, CE}\}$ with $\varepsilon = \tilde{O}(\|V^\pi\| \sqrt{\zeta_n})$ and
268 $\varepsilon = \tilde{O}\left(H^2 d \sqrt{N|\mathcal{A}| \alpha_N^2 \log(1 + \frac{N}{d\lambda})}\right)$, respectively, where $\|V^\pi\|$ is the upper bound of the norm of
269 value function for any policy π , $i \in [N], h \in [H]$.

Algorithm 1 Optimistic Value Iteration framework with Oracle Based/Oracle Free value functions (OVI-OB/OF)

```

270 1: Input: Regularizer  $\lambda$ , iteration  $N$ , parameter  $\{\alpha_n\}_{n=1}^N$ , value function oracle  $V$ .
271 2: Initialize  $\pi^0$  to be uniform; set dataset  $\mathcal{D}_h^0 = \emptyset, \hat{\mathcal{D}}_h^0 = \emptyset, \forall h \in [H]$ .
272 3: for episode  $n = 1, 2, \dots, N$  do
273 4:   if oracle-free: Set  $\bar{V}_{H+1,i}^n = 0, \underline{V}_{H+1,i}^n = 0$  for all  $i \in [M]$ .
274 5:   Sample data with policy  $\pi_n: \tau_H = (\mathbf{o}_0, \mathbf{a}_0, \dots, \mathbf{o}_{H-1}, \mathbf{a}_{H-1}, \mathbf{o}_H)$ .
275 6:   Update dataset:  $\mathcal{D}_h^n = \mathcal{D}_h^{n-1} \cup \{\tau_h, \mathbf{a}_h, \mathbf{o}_{h+1}\}, \hat{\mathcal{D}}_h^n = \hat{\mathcal{D}}_h^{n-1} \cup \{\tau_{h+1}, \mathbf{a}_{h+1}, \mathbf{o}_{h+2}\}$  for all  $h \in [H]$ .
276 7:   for step  $h = H, H-1, \dots, 1$  do
277 8:     Learning representation and compute bonus:  $(\hat{\phi}_n, \hat{\mathcal{P}}_n, \hat{b}_{n,h}) = RepLearn(\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n)$ .
278 9:     if oracle free then
279 10:      Update  $\bar{Q}, \underline{Q}$  as following:
280
281 
$$\bar{Q}_{h,i}^n(\tau_h, \mathbf{a}) = r_{h,i}(\tau_h, \mathbf{a}) + \mathbb{E}_{\hat{\mathcal{P}}_h^n} [\bar{V}_{h+1,i}^n(\tau_{h+1}) | \tau_h, \mathbf{a}] + \hat{b}_{n,h}(\tau_h, \mathbf{a})$$

282 
$$\underline{Q}_{h,i}^n(\tau_h, \mathbf{a}) = r_{h,i}(\tau_h, \mathbf{a}) + \mathbb{E}_{\hat{\mathcal{P}}_h^n} [\underline{V}_{h+1,i}^n(\tau_{h+1}) | \tau_h, \mathbf{a}] - \hat{b}_{n,h}(\tau_h, \mathbf{a})$$

283
284 11:      Compute the NE/CE/CCE solution  $\pi_h^n$  according to equation 1/equation 2/equation 3 and update value function as following:
285
286 
$$\bar{V}_{h,i}^n(\tau_h) = \mathbb{E}_{\mathbf{a} \sim \pi_h^n(\cdot | \tau_h)} [\bar{Q}_{h,i}^n(\tau_h, \mathbf{a})], \quad \underline{V}_{h,i}^n(\tau_h) = \mathbb{E}_{\mathbf{a} \sim \pi_h^n(\cdot | \tau_h)} [\underline{Q}_{h,i}^n(\tau_h, \mathbf{a})].$$

287
288 12:    end if
289 13:  end for
290 14:  if oracle based: Compute  $\pi^n = \arg \max_{\pi} V_{\hat{\mathcal{P}}_n, r + \hat{b}_n}^{\pi}(\tau)$ .
291 15:  if oracle free: Compute  $\Delta^n = \max_{i \in [M]} \{\bar{v}_i^n - \underline{v}_i^n\}$  with  $\bar{v}_i^n = \int_{\mathcal{T}} \bar{V}_{0,i}^n(\tau) \mu_0(\tau) d\tau, \underline{v}_i^n = \int_{\mathcal{T}} \underline{V}_{0,i}^n(\tau) \mu_0(\tau) d\tau$ .
292 16: end for
293 17: if oracle based: Return  $\hat{\pi} = \text{NE/CE/CCE solution with } V_{\hat{\mathcal{P}}_n, r}^{\hat{\pi}, i}$  for all  $i \in [M]$ .
294 18: if oracle free: Return  $\hat{\pi} = \pi^{n^*}$  where  $n^* = \arg \min_{n \in [N]} \Delta^n$ .
295

```

Algorithm 2 MLE Representation Learning and Bonus Computation

```

304 1: Input: Dataset  $\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n$ .
305 2: Compute  $(\hat{\phi}_{n,h}, \hat{\mu}_{n,h}) = \arg \max_{(\phi, \mu) \in \mathcal{M}} \mathbb{E}_{\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n} [\log \mu(\tau_h)^\top \phi(\tau_{h-1}, \mathbf{a}_{h-1})]$  for all  $h \in [H]$ ,
306 3: and obtain  $\hat{\mathcal{P}}_n = \{\hat{\mu}_{n,h}(\tau_h)^\top \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1})\}_{h \in [H]}$ .
307 4: Compute  $\hat{b}_{n,h}$  from equation 4 for all  $h \in [H]$ .
308 5: Return  $\hat{\phi}_n = \{\hat{\phi}_{n,h}\}_{h \in [H]}, \hat{\mathcal{P}}_n$  and  $\hat{b}_n = \{\hat{b}_{n,h}\}_{h \in [H]}$ .
309

```

4 INSTANTIATIONS OF REPRESENTATION LEARNING FOR LOW-RANK POMGS

In this section, we instantiate the general framework from Section 3 with concrete representation learning algorithms, i.e. Maximum Likelihood Estimation (MLE), Spectral Decomposition Representation (SDR). We then analyze their representation errors and resulting sample complexities when combined with OVI. The full proof is provided in Appendix B.

4.1 MLE-BASED REPRESENTATION LEARNING

As shown in Alg. 2, with the latent low-rank structure, MLE estimates the transition kernel by maximizing the log-likelihood of observed trajectories. The bonus term is computed as

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \|\hat{\phi}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{\phi}_n}^{-1}}, H \right\}, \quad (4)$$

324 **Algorithm 3** SDR Representation Learning and Bonus Computation

325 1: **Input:** Dataset $\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n$.
 326 2: Learning $(\hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}), \mu'_{n,h}(\tau_h))$ with $\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n$ via Equation 5, and obtain $\hat{\mathcal{P}}_n =$
 327 $\{(p'(\tau_h)\mu'_{n,h}(\tau_h))^\top \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1})\}_{h \in [H]}$.
 328 3: Compute $\hat{b}_{n,h}$ from equation 4 for all $h \in [H]$.
 329 4: **Return** $\hat{\phi}_n = \{\hat{\phi}_{n,h}\}_{h \in [H]}, \hat{\mathcal{P}}_n$ and $\hat{b}_n = \{\hat{b}_{n,h}\}_{h \in [H]}$.

332
 333 where $\hat{\Sigma}_{n,h,\phi} := \sum_{(\tau_{h-1}, \mathbf{a}_{h-1}) \in \mathcal{D}_h^n} \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \phi_h(\tau_{h-1}, \mathbf{a}_{h-1})^\top + \lambda I_d$.
 334

335 The representation error of Algorithm 2 can be characterized by Lemma 51. We refer to OVI-
 336 OB and OVI-OF with Alg. 2 as OVI-OB-MLE and OVI-OF-MLE, respectively. Based on the
 337 representation error, we can derive a PAC guarantee of OVI-OB-MLE and OVI-OF-MLE, which
 338 exploit the low-dimensional latent representation learned by MLE.

339 **Theorem 6** (PAC guarantee of OVI-OB-MLE and OVI-OF-MLE). *Assume OVI-OB-MLE and OVI-
 340 OF-MLE are applied with parameters $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\lambda = \Theta(d \log(NH|\mathcal{M}|/\delta))$, and
 341 $\alpha_n = \Theta(\sqrt{\lambda d} + n|\mathcal{A}|\zeta_n)$. By setting the number of episodes N to be $N = \tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$
 342 and $N = \tilde{O}(H^6 d^4 |\mathcal{A}|^2 \varepsilon^{-2} \log(Hd|\mathcal{A}||\mathcal{M}|/\delta\varepsilon))$, respectively, the output policy $\hat{\pi}$ is an ε -
 343 approximate $\{\text{NE, CCE, CE}\}$ with probability $1 - \delta$.*

344 Thus, we obtain sample complexities that are independent of $|\mathcal{S}|$, while exhibit polynomial dependency
 345 $|\mathcal{A}|, H, d, \varepsilon$ and $\log |\mathcal{M}|$. Notably, OVI-OF-MLE incurs an additional $H^6 d^4 |\mathcal{A}|^2$ complexity
 346 to circumvent the need for a value oracle.
 347

348 4.2 SDR REPRESENTATION LEARNING

350 While the MLE oracle offers strong theoretical guarantees, computing it is computationally difficult
 351 (40). Inspired by spectral representation in MDPs (40), we adopt the Spectral Decomposition Re-
 352 presentation (SDR) approach for low-rank POMGs. As outlined in Algorithm 3, SDR reparameterizes
 353 an l_2 norm objective, leading to the computationally friendly objective in Equation 5.
 354

355
$$\min_{\phi, \mu'} -\mathbb{E}_{(\tau, \mathbf{a}, \tau') \sim d_0 \times \mathcal{P}} [\phi(\tau, \mathbf{a})^\top \mu'(\tau') p(\tau')] + (\mathbb{E}_{p(\tau')} [p(\tau') \mu'(\tau')^\top \mu'(\tau')])/(2d) \quad (5)$$

 356
 357 s.t.
$$\mathbb{E}_{(\tau, \mathbf{a}) \sim d_0} [\phi(\tau, \mathbf{a}) \phi(\tau, \mathbf{a})^\top] = I_d/d,$$

 358

359 where we use reparameterization $\mu(\tau') = p(\tau')\mu'(\tau')$. Generally, solving SDR is easier than
 360 solving MLE since SDR bypasses the difficult integral calculation in MLE with an easy-to-compute
 361 expectation (40).

362 Similarly, we refer to OVI-OB and OVI-OF with Alg. 3 as OVI-OB-SDR and OVI-OF-SDR,
 363 respectively. We have the representation error of Algorithm 3 in Lemma 52 and we can derive
 364 a PAC guarantee of OVI-OB-SDR and OVI-OF-SDR, which exploit the low-dimensional latent
 365 representation learned by SDR.

366 **Theorem 7** (PAC guarantee of OVI-OB-SDR and OVI-OF-SDR). *Assume Assumption 1 in Appendix
 367 B holds. Consider running OVI-OB-SDR and OVI-OF-SDR with parameters $\zeta_n = \Theta\left(\frac{\log(Hn|\mathcal{M}|/\delta)}{n}\right)$,
 368 $\lambda = \Theta(d \log(NH|\mathcal{M}|/\delta))$, and $\alpha_n = \Theta\left(Hd\sqrt{\lambda d + n|\mathcal{A}|\zeta_n}\right)$. If the number of episodes is set to
 369 $N = \tilde{O}(\varepsilon^{-2} d^2 \log(H|\mathcal{M}|/\delta\varepsilon))$ and $N = \tilde{O}(H^6 d^4 |\mathcal{A}|^2 \varepsilon^{-2} \log(Hd|\mathcal{A}||\mathcal{M}|/\delta\varepsilon))$, respectively,
 370 then the output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE, CCE, CE}\}$ with probability at least $1 - \delta$.*

372
 373 Compared to MLE, SDR generally yields larger representation error but remains polynomially
 374 bounded, and provides a more computationally tractable approach. When combined with OVI, SDR
 375 achieves efficient sample complexity guarantees while being implementable at scale.

376 **Remark 8** (Comparison with (12)). (12) construct a generalized PSR representation for γ -well-
 377 conditioned POMGs with an exact value function oracle. Note that if the rank of the core test set is
 378 uniform across all time steps h , i.e. $d_h = d$ for all h , the POMG satisfies the additional assumptions

378 in (12) is a special subclass of low-rank POMGs and this representation can be integrated into our
 379 framework. We extend their method to the oracle-free setting in Appendix G.
 380

381 5 LLVR INFINITE-DIMENSIONAL LATENT SPACE

382 In this section, we develop a novel representation method, L -step Latent Variable Representation
 383 (LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, with an extra L -
 384 decodability assumption. When incorporated into the OVI framework, it yields provable convergence
 385 to approximate equilibria. Notably, LLVR requires access only to the most recent $2L$ steps of history
 386 rather than the entire trajectory.

387 5.1 L -DECODABILITY

388 We now introduce the L -decodability assumption, which relies on the belief function. $f_{\text{belief}}(\cdot) : \mathcal{O} \times (\mathcal{A} \times \mathcal{O})^h \rightarrow \Delta(\mathcal{S})$. This function represents the distribution over the underlying state
 389 given the history of observations and actions. It is initialized as $f_{\text{belief}}(s_0 | \mathbf{o}_0) = \mathbb{P}(s_0 | \mathbf{o}_0)$ and
 390 updated recursively as: $f_{\text{belief}}(s_{h+1} | \tau_{h+1}) \propto \int_{\mathcal{S}} f_{\text{belief}}(s_h | \tau_h) \mathcal{P}(s_{h+1} | s_h, \mathbf{a}_h) \mathbb{O}(\mathbf{o}_{h+1} | s_{h+1}) ds_h$.
 391 See Appendix C for a detailed explanation of the belief function and the L -decodability assumption.
 392

393 **Definition 9** (L -decodability (11)). $\forall h \in [H]$, define $\tau_h^L \in \mathcal{T}^L := (\mathcal{O} \times \mathcal{A})^{L-1} \times \mathcal{O}$, $\tau_h^L =$
 394 $(\mathbf{o}_{h-L+1}, \mathbf{a}_{h-L+1}, \dots, \mathbf{o}_h)$. A POMG is L -decodable if there exists a decoder $p^* : \mathcal{T}^L \rightarrow \Delta(\mathcal{S})$
 395 such that $p^*(\tau_h^L) = f_{\text{belief}}(\tau_h)$.
 396

397 Note that under the L -decodability assumption, there exists an L -step joint policy that constitutes
 398 a Nash equilibrium. Therefore, it suffices to restrict our analysis to L -step policy in the discussion
 399 under the L -decodability assumption.

400 5.2 LLVR REPRESENTATION LEARNING

401 We now propose LLVR under the L -decodability assumption. LLVR leverages the underlying L -
 402 decodability structure to enable an exact and tractable linear representation of the value functions
 403 over the latent space. Due to space limitations, we have deferred the detailed derivation to Appendix
 404 C. The ultimate objective of the LLVR is to provide a computationally tractable ELBO objective:

$$405 \max_{q \in \Delta(\mathcal{Z})} \mathbb{E}_{q(\cdot | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})} [\log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)] - KL(q(\cdot | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) || p(z_h | \tau_h^L, \mathbf{a}_h)). \quad (6)$$

406 where χ_π is the moment-matching policy for π (defined in Appendix F), $\mathbb{P}^\pi(\cdot)$ denotes the probability
 407 distribution under policy π , $z_h \in \mathcal{Z}$ is the latent variable, and l is a fixed constant with $l < L$. Note
 408 that LLVR only requires sampling the past L steps and the future l steps, where $L + l < 2L$, rather
 409 than the entire trajectory.

410 The solution of ELBO can be parameterized with a variational distribution class $\mathcal{Q} = \{ \{q_h(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})\}_{h \in [H]} \}$ and model class $\mathcal{M} = \{ \{(p_h(z | \tau_h^L, \mathbf{a}_h), p_h(\mathbf{o}_{h+1:h+l} | z))\}_{h \in [H]} \}$.
 411 Practically, both \mathcal{Q} and \mathcal{M} can be implemented as neural networks, yielding approximate solutions
 412 $\hat{q}(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})$, $\hat{p}_{h,n}(\mathbf{o}_{h+1:h+l} | z_h)$ and $\hat{p}_{n,h}(z_h | \tau_h^L, \mathbf{a}_h)$ and approximated transition
 413 $\hat{\mathcal{P}}_n = \{(\hat{p}_{h,n}(z_h | \tau_h^L, \mathbf{a}_h), \hat{p}_{h,n}(\mathbf{o}_{h+1} | z_h))\}_{h \in [H]}$.

414 Once $\hat{p}_{n,h}(z | \tau_h^L, \mathbf{a}_h)$ is obtained, the Q-function can be approximated as $Q_h^\pi(\tau_h^L, \mathbf{a}_h) =$
 415 $\langle \hat{p}(z | \tau_h^L, \mathbf{a}), \omega(z) \rangle$ and can be obtained by a least square regression (18). However, if z is
 416 continuous, then $\omega(z)$ is infinite-dimensional. To deal with the infinite-dimensional $\omega(z)$, we follow
 417 the trick in (41) that forms $Q^\pi(\tau_h^L, \mathbf{a}_h)$ as an expectation $Q^\pi(\tau_h^L, \mathbf{a}_h) = \langle p(z | \tau_h^L, \mathbf{a}_h), w^\pi(z) \rangle =$
 418 $\mathbb{E}_{p(z | \tau_h^L, \mathbf{a}_h)} [w^\pi(z)]$ and then approximate it with random feature quadrature. Specifically, we con-
 419 sider $\omega(z)$ lying in certain RKHS with φ as its random feature basis, i.e., $\omega(z) = \mathbb{E}_{P(\xi)} [\varphi(\xi, z)]$. As
 420 a result, $Q^\pi(\tau_h^L, \mathbf{a}_h) \approx \frac{1}{K} \sum_{i=1}^K \omega^\pi(\xi_i) \varphi(z_i, \xi_i)$ where the latent variables $z_i \sim \hat{p}(z | \tau_h^L, \mathbf{a}_h)$ and
 421 random features $\xi_i \sim P(\xi)$. If the random feature φ is specified, then ω can be implemented by a
 422 neural network ω_θ . Due to space limitation, we defer the detailed derivation to Appendix E.1.

423 5.3 OVI BASED ON LLVR

424 Based on the learned representation, we construct the following ellipsoid bonus term \hat{b}_h^n to get both
 425 optimistic and pessimistic estimation of the value function,

$$426 \hat{b}_{n,h}(\tau^L, \mathbf{a}) = \min\{\alpha_n \left\| \hat{\psi}_{n,h}(\cdot | \tau_{h-L}^L, \mathbf{a}_{h-L}) \right\|_{\Sigma_{n,h}^{-1}}, H\}, \quad (7)$$

432 **Algorithm 4** LLVR Representation Learning and Bonus Computation

433 1: **Input:** Dataset $\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n$.
 434 2: Learn $\hat{p}_n(z|\tau_h^L, \mathbf{a}_h)$ with $\mathcal{D}_h^n \cup \hat{\mathcal{D}}_h^n$ via maximizing the ELBO objective, i.e. equation 6, and
 435 obtain $\hat{\mathcal{P}}_n = \{(\hat{p}_{n,h}(z|\tau_h^L, \mathbf{a}_h), \hat{p}_{n,h}(\mathbf{o}_{h+1}|z))\}_{h \in [H]}$.
 436 3: Compute $\hat{b}_{n,h}$ from equation 7 for all $h \in [H]$.
 437 4: **Return** $\hat{p}_n = \{\hat{p}_{n,h}\}_{h \in [H]}$, $\hat{\mathcal{P}}_n$ and $\hat{b}_n = \{\hat{b}_{n,h}\}_{h \in [H]}$.
 438

440
 441 where $\hat{\psi}_{n,h}(\tau_h^L, \mathbf{a}_h) = [\varphi(z_1; \xi_1), \dots, \varphi(z_K; \xi_K)]$ denotes the random feature sampled from the
 442 RKHS and the covariance matrix is defined as $\sum_{n,h}^{-1} = \sum_{(\tau_h^L, \mathbf{a}_h) \in \mathcal{D}_h^n} \hat{\psi}_{n,h}(\tau_h^L, \mathbf{a}_h) \hat{\psi}_{n,h}(\tau_h^L, \mathbf{a}_h)^\top + \lambda I$.
 443

444 Optimistic and pessimistic estimators are constructed using the bonus as in Alg. 1. These estimators
 445 can also be approximated by neural networks and computed using least-squares regression. Crucially,
 446 as shown in Appendix C, since all terms in the least-squares formulation are derived from the feature
 447 space spanned by $\hat{p}(z|\tau_h^L, \mathbf{a}_h)$, parameterizing them enables highly efficient computation.

448 The theoretical guarantees for OVI-OB-LLVR and OVI-OF-LLVR are proven in Appendix E.
 449

450 **Theorem 10** (PAC guarantee of OVI-OB-LLVR and OVI-OF-LLVR). *Assume Assumption 4,5 in*
 451 *Appendix E.4 hold and the kernel K satisfies the regularity conditions in Appendix E.2. Consider*
 452 *running OVI-OB-LLVR and OVI-OF-LLVR with proper parameters $\zeta_n, \hat{b}_{n,h}, \alpha_n$ and λ . By setting the*
 453 *number of episodes N to be $N = \tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$ and $N = \text{poly}(C, H, |\mathcal{A}|^L, \epsilon, \log \frac{H|\mathcal{M}|}{\delta})$,*
 454 *respectively, the output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$ with probability $1 - \delta$.*

455 Notably, the complexity is also independent of $|\mathcal{Z}|$, implying that z can be a continuous variable.
 456

457 **Remark 11** (Comparison of MLE, SDR, and LLVR). *The three instantiations of our framework*
 458 *exhibit complementary strengths. MLE achieves the tightest theoretical guarantees, but solving*
 459 *the MLE problem is computationally demanding in practice. SDR yields looser bounds due to a*
 460 *larger representation error, yet it offers a more computationally tractable approach. Finally, LLVR*
 461 *extends our framework to POMGs with infinite-dimensional latent spaces. Under the additional*
 462 *L-decodability assumption, LLVR preserves approximate equilibrium guarantees while only requiring*
 463 *access to short $2L$ -step histories, thereby broadening the applicability of our framework.*

464 5.3.1 OFFLINE POLICY OPTIMIZATION.

465 We also propose an offline OVI-OF-LLVR algorithm for sample-efficient policy optimization using
 466 only a static dataset of size n , which is assumed to be drawn from the stationary distribution ρ of a
 467 fixed behavior policy π_b . Consequently, unlike the online setting where new data can be collected to
 468 explore unseen state-action pairs, the offline scenario precludes further exploration beyond what is in
 469 the static dataset. Despite this limitation, our offline algorithm retains the core structure of its online
 470 counterpart, differing only in the absence of new data from the environment. A detailed description
 471 of the offline algorithm and PAC analysis for it is provided in Appendix E.5.
 472

473 6 CONCLUSION

474 In this paper, we present a unified optimistic value iteration (OVI) framework for POMGs. OVI
 475 integrates an optimism bonus derived from suitable representations into the value function and
 476 provably converges to approximate equilibria under bounded representation error, in both oracle-based
 477 and oracle-free settings. We instantiate OVI with two concrete representation learners: an MLE-based
 478 method offering the tightest guarantees but higher computational cost, and an SDR-based method
 479 yielding looser bounds but better tractability. We further proposed a novel LLVR representation that
 480 extends OVI to infinite-dimensional latent spaces under an additional L -decodability assumption and
 481 show that OVI with LLVR also achieves approximate equilibria while relying only on short histories.
 482 Overall, our results establish the first systematic representation learning view for low-rank POMGs.
 483

484
 485

486 REFERENCES
487

488 [1] M. L. Littman, “Markov games as a framework for multi-agent reinforcement learning,” in *Machine*
489 *learning proceedings 1994*. Elsevier, 1994, pp. 157–163.

490 [2] P. Vrancx, K. Verbeeck, and A. Nowé, “Decentralized learning in markov games,” *IEEE Transactions on*
491 *Systems, Man, and Cybernetics, Part B (Cybernetics)*, vol. 38, no. 4, pp. 976–981, 2008.

492 [3] X. Wang and T. Sandholm, “Reinforcement learning to play an optimal nash equilibrium in team markov
493 games,” *Advances in neural information processing systems*, vol. 15, 2002.

494 [4] M. L. Littman, “Value-function reinforcement learning in markov games,” *Cognitive systems research*,
495 vol. 2, no. 1, pp. 55–66, 2001.

496 [5] H. Ryu, H. Shin, and J. Park, “Multi-agent actor-critic with generative cooperative policy network,” *arXiv*
497 *preprint arXiv:1810.09206*, 2018.

498 [6] L. Sun, Y.-C. Chang, C. Lyu, Y. Shi, Y. Shi, and C.-T. Lin, “Toward multi-target self-organizing pursuit in
499 a partially observable markov game,” *Information Sciences*, vol. 648, p. 119475, 2023.

500 [7] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberman, “The complexity of decentralized control of
501 markov decision processes,” *Mathematics of operations research*, vol. 27, no. 4, pp. 819–840, 2002.

502 [8] X. Liu and K. Zhang, “Partially observable multi-agent rl with (quasi-) efficiency: the blessing of informa-
503 tion sharing,” in *International Conference on Machine Learning*. PMLR, 2023, pp. 22 370–22 419.

504 [9] ———, “Partially observable multi-agent reinforcement learning with information sharing,” *arXiv preprint*
505 *arXiv:2308.08705*, 2023.

506 [10] Q. Liu, C. Szepesvári, and C. Jin, “Sample-efficient reinforcement learning of partially observable markov
507 games,” *Advances in Neural Information Processing Systems*, vol. 35, pp. 18 296–18 308, 2022.

508 [11] S. Qiu, Z. Dai, H. Zhong, Z. Wang, Z. Yang, and T. Zhang, “Posterior sampling for competitive rl: function
509 approximation and partial observation,” *Advances in Neural Information Processing Systems*, vol. 36,
510 2024.

511 [12] A. Altabaa and Z. Yang, “On the role of information structure in reinforcement learning for partially-
512 observable sequential teams and games,” *arXiv preprint arXiv:2403.00993*, 2024.

513 [13] S. Du, A. Krishnamurthy, N. Jiang, A. Agarwal, M. Dudik, and J. Langford, “Provably efficient rl with rich
514 observations via latent state decoding,” in *International Conference on Machine Learning*. PMLR, 2019,
515 pp. 1665–1674.

516 [14] Y. Efroni, C. Jin, A. Krishnamurthy, and S. Miryoosefi, “Provable reinforcement learning with a short-term
517 memory,” in *International Conference on Machine Learning*. PMLR, 2022, pp. 5832–5850.

518 [15] H. Zhang, T. Ren, C. Xiao, D. Schuurmans, and B. Dai, “Provable representation with efficient planning for
519 partially observable reinforcement learning,” in *Forty-first International Conference on Machine Learning*.

520 [16] C. Jin, S. Kakade, A. Krishnamurthy, and Q. Liu, “Sample-efficient reinforcement learning of under-
521 complete pomdps,” *Advances in Neural Information Processing Systems*, vol. 33, pp. 18 530–18 539,
522 2020.

523 [17] Q. Liu, A. Chung, C. Szepesvári, and C. Jin, “When is partially observable reinforcement learning not
524 scary?” in *Conference on Learning Theory*. PMLR, 2022, pp. 5175–5220.

525 [18] N. Golowich, A. Moitra, and D. Rohatgi, “Learning in observable pomdps, without computationally
526 intractable oracles,” *Advances in neural information processing systems*, vol. 35, pp. 1458–1473, 2022.

527 [19] L. Wang, Q. Cai, Z. Yang, and Z. Wang, “Represent to control partially observed systems: Representa-
528 tion learning with provable sample efficiency,” in *The Eleventh International Conference on Learning*
529 *Representations*, 2023.

530 [20] J. Guo, Z. Li, H. Wang, M. Wang, Z. Yang, and X. Zhang, “Provably efficient representation learning with
531 tractable planning in low-rank pomdp,” in *International Conference on Machine Learning*. PMLR, 2023,
532 pp. 11 967–11 997.

533 [21] C. Zhou, Z. Shen, C. Zhang, H. Zhao, and H. Qian, “Solving zero-sum markov games with continous
534 state via spectral dynamic embedding,” in *The Thirty-eighth Annual Conference on Neural Information*
535 *Processing Systems*.

540 [22] Q. Xie, Y. Chen, Z. Wang, and Z. Yang, “Learning zero-sum simultaneous-move markov games using
541 function approximation and correlated equilibrium,” in *Conference on learning theory*. PMLR, 2020, pp.
542 3674–3682.

543 [23] Z. Chen, D. Zhou, and Q. Gu, “Almost optimal algorithms for two-player zero-sum linear mixture markov
544 games,” in *International Conference on Algorithmic Learning Theory*. PMLR, 2022, pp. 227–261.

545 [24] A. Alacaoglu, L. Viano, N. He, and V. Cevher, “A natural actor-critic framework for zero-sum markov
546 games,” in *International Conference on Machine Learning*. PMLR, 2022, pp. 307–366.

548 [25] C. Daskalakis, D. J. Foster, and N. Golowich, “Independent policy gradient methods for competitive
549 reinforcement learning,” *Advances in neural information processing systems*, vol. 33, pp. 5527–5540, 2020.

550 [26] Y. Bai and C. Jin, “Provable self-play algorithms for competitive reinforcement learning,” in *International
551 conference on machine learning*. PMLR, 2020, pp. 551–560.

553 [27] C. Jin, Q. Liu, and T. Yu, “The power of exploiter: Provable multi-agent rl in large state spaces,” in
554 *International Conference on Machine Learning*. PMLR, 2022, pp. 10251–10279.

555 [28] S. Qiu, J. Ye, Z. Wang, and Z. Yang, “On reward-free rl with kernel and neural function approximations:
556 Single-agent mdp and markov game,” in *International Conference on Machine Learning*. PMLR, 2021,
557 pp. 8737–8747.

558 [29] C. Junchi Li, D. Zhou, Q. Gu, and M. I. Jordan, “Learning two-player mixture markov games: Kernel
559 function approximation and correlated equilibrium,” *arXiv e-prints*, pp. arXiv–2208, 2022.

561 [30] C. Ni, Y. Song, X. Zhang, C. Jin, and M. Wang, “Representation learning for general-sum low-rank markov
562 games,” *arXiv preprint arXiv:2210.16976*, 2022.

563 [31] T. Kozuno, P. Ménard, R. Munos, and M. Valko, “Learning in two-player zero-sum partially observable
564 markov games with perfect recall,” *Advances in Neural Information Processing Systems*, vol. 34, pp.
565 11987–11998, 2021.

566 [32] D. Misra, M. Henaff, A. Krishnamurthy, and J. Langford, “Kinematic state abstraction and provably efficient
567 rich-observation reinforcement learning,” in *International conference on machine learning*. PMLR, 2020,
568 pp. 6961–6971.

569 [33] X. Zhang, Y. Song, M. Uehara, M. Wang, A. Agarwal, and W. Sun, “Efficient reinforcement learning in
570 block mdps: A model-free representation learning approach,” in *International Conference on Machine
571 Learning*. PMLR, 2022, pp. 26517–26547.

572 [34] T. Ren, T. Zhang, C. Szepesvári, and B. Dai, “A free lunch from the noise: Provable and practical
573 exploration for representation learning,” in *Uncertainty in Artificial Intelligence*. PMLR, 2022, pp.
574 1686–1696.

576 [35] C. Jin, Z. Yang, Z. Wang, and M. I. Jordan, “Provably efficient reinforcement learning with linear function
577 approximation,” in *Conference on learning theory*. PMLR, 2020, pp. 2137–2143.

578 [36] A. Agarwal, S. Kakade, A. Krishnamurthy, and W. Sun, “Flambe: Structural complexity and representation
579 learning of low rank mdps,” *Advances in neural information processing systems*, vol. 33, pp. 20095–20107,
580 2020.

581 [37] M. Uehara, X. Zhang, and W. Sun, “Representation learning for online and offline rl in low-rank mdps,”
582 *arXiv preprint arXiv:2110.04652*, 2021.

584 [38] A. Modi, J. Chen, A. Krishnamurthy, N. Jiang, and A. Agarwal, “Model-free representation learning and
585 exploration in low-rank mdps,” *Journal of Machine Learning Research*, vol. 25, no. 6, pp. 1–76, 2024.

586 [39] A. Huang, J. Chen, and N. Jiang, “Reinforcement learning in low-rank mdps with density features,” in
587 *International Conference on Machine Learning*. PMLR, 2023, pp. 13710–13752.

588 [40] T. Ren, T. Zhang, L. Lee, J. E. Gonzalez, D. Schuurmans, and B. Dai, “Spectral decomposition representa-
589 tion for reinforcement learning,” in *ICLR*, 2023.

591 [41] T. Ren, C. Xiao, T. Zhang, N. Li, Z. Wang, S. Sanghavi, D. Schuurmans, and B. Dai, “Latent variable
592 representation for reinforcement learning,” *arXiv preprint arXiv:2212.08765*, 2022.

593 [42] W. Zhan, M. Uehara, W. Sun, and J. D. Lee, “Pac reinforcement learning for predictive state representations,”
594 *arXiv preprint arXiv:2207.05738*, 2022.

594 [43] S. Qiu, L. Wang, C. Bai, Z. Yang, and Z. Wang, “Contrastive ucb: Provably efficient contrastive self-
 595 supervised learning in online reinforcement learning,” in *International Conference on Machine Learning*.
 596 PMLR, 2022, pp. 18 168–18 210.

597 [44] A. Delage, “Theoretical foundations for planning in partially observable stochastic games,” Ph.D. disserta-
 598 tion, INSA de Lyon, 2024.

599 [45] S. McAleer, J. B. Lanier, K. A. Wang, P. Baldi, and R. Fox, “Xdo: A double oracle algorithm for
 600 extensive-form games,” *Advances in Neural Information Processing Systems*, vol. 34, pp. 23 128–23 139,
 601 2021.

602 [46] M. Hauskrecht, “Value-function approximations for partially observable markov decision processes,”
 603 *Journal of artificial intelligence research*, vol. 13, pp. 33–94, 2000.

604 [47] M. D. Hoffman and M. J. Johnson, “Elbo surgery: yet another way to carve up the variational evidence
 605 lower bound,” in *Workshop in Advances in Approximate Bayesian Inference, NIPS*, vol. 1, no. 2, 2016.

606 [48] R. Ranganath, S. Gerrish, and D. Blei, “Black box variational inference,” in *Artificial intelligence and*
 607 *statistics*. PMLR, 2014, pp. 814–822.

608 [49] M. Mohri, “Foundations of machine learning,” 2018.

609 [50] J. Mercer, “Functions of positive and negative type, and their connection with the theory of integral
 610 equations,” *Philos. Trinsdictionis Rognal Soc*, vol. 209, pp. 415–446, 1909.

611 [51] J. Chang, M. Uehara, D. Sreenivas, R. Kidambi, and W. Sun, “Mitigating covariate shift in imitation
 612 learning via offline data with partial coverage,” *Advances in Neural Information Processing Systems*,
 613 vol. 34, pp. 965–979, 2021.

614 [52] A. Agarwal, M. Henaff, S. Kakade, and W. Sun, “Pc-pg: Policy cover directed exploration for provable
 615 policy gradient learning,” *Advances in Neural Information Processing Systems*, vol. 33, pp. 13 399–13 412,
 616 2020.

617 [53] M. Samvelyan, T. Rashid, C. S. De Witt, G. Farquhar, N. Nardelli, T. G. Rudner, C.-M. Hung, P. H. Torr,
 618 J. Foerster, and S. Whiteson, “The starcraft multi-agent challenge,” *arXiv preprint arXiv:1902.04043*, 2019.

619 [54] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
 620 I. Antonoglou, V. Panneershelvam, M. Lanctot *et al.*, “Mastering the game of go with deep neural
 621 networks and tree search,” *nature*, vol. 529, no. 7587, pp. 484–489, 2016.

622 [55] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in extensive-form games,” in *International*
 623 *conference on machine learning*. PMLR, 2015, pp. 805–813.

624 [56] C. Yu, A. Velu, E. Vinitksy, J. Gao, Y. Wang, A. Bayen, and Y. Wu, “The surprising effectiveness of
 625 ppo in cooperative multi-agent games,” *Advances in Neural Information Processing Systems*, vol. 35, pp.
 626 24 611–24 624, 2022.

627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 **A ADDITIONAL NOTATIONS**
649650 This section collects additional notations and technical definitions used throughout our analysis.
651652 Given a (possibly not normalized) transition probability P and a policy π , we define the density
653 function of (x, \mathbf{a}) at step h under P and π by

654
$$d_{P,0}^\pi(x, \mathbf{a}) := \mu_0(x)\pi_0(\mathbf{a}|x), \quad d_{P,h+1}^\pi(x, \mathbf{a}) := \sum_{\tilde{x} \in \mathcal{X}, \tilde{\mathbf{a}} \in \mathcal{A}} d_{P,h}^\pi(\tilde{x}, \tilde{\mathbf{a}})P_h(x|\tilde{x}, \tilde{\mathbf{a}})\pi_{h+1}(\mathbf{a}|x), \quad \forall h \geq 0.$$

655
656

657 We abuse the notations a bit and denote $d_{P,h}^\pi(x)$ as the marginalized state distribution, i.e., $d_{P,h}^\pi(x) =$
658 $\sum_{\mathbf{a} \in \mathcal{A}} d_{P,h}^\pi(x, \mathbf{a})$.659 We then define
660

661
$$\rho_{n,h}(x, \mathbf{a}) = \frac{1}{n} \sum_{i \in [n]} d_{P,h}^{\pi_i}(x, \mathbf{a}),$$

662
663
$$\hat{\rho}_{n,h}(x, \mathbf{a}) = \frac{1}{n} \sum d_{P,h}^{\pi_i}(x)u_{\mathcal{A}}(\mathbf{a}),$$

664
665
$$\tilde{\rho}_{n,h}(x, \mathbf{a}) = \frac{1}{n} \sum \mathbb{E}_{\tilde{x} \sim d_{P,h-1}^{\pi_i}, \tilde{\mathbf{a}} \sim \mathcal{U}(\mathcal{A})} [P(x|\tilde{x}, \tilde{\mathbf{a}})u_{\mathcal{A}}(\mathbf{a})],$$

666
667
668

669 and $\circ^L \mathcal{U}(\mathcal{A})$ means uniformly taking actions in the consecutive L steps.
670671 When we use the expectation $\mathbb{E}_{(x, \mathbf{a}) \sim \rho}[f(x, \mathbf{a})]$ (or $\mathbb{E}_{x \sim \rho}[f(x)]$) for some (possibly not normalized)
672 distribution ρ and function f , we simply mean $\sum_{x \in \mathcal{X}, \mathbf{a} \in \mathcal{A}} \rho(x, \mathbf{a})f(x, \mathbf{a})$ (or $\sum_{x \in \mathcal{X}} \rho(x)f(x)$) so
673 that the expectation can be naturally extended to the unnormalized distributions. For an iteration n , a
674 distribution ρ and a feature ϕ , we denote the expected feature covariance as
675

676
$$\Sigma_{n,\rho,\phi} = n\mathbb{E}_{(x, \mathbf{a}) \sim \rho} [\phi(x, \mathbf{a})\phi(x, \mathbf{a})^\top] + \lambda I_d.$$

677 Meanwhile, define the empirical covariance by
678

679
$$\hat{\Sigma}_{n,h,\phi} := \sum_{(x, \mathbf{a}) \in \mathcal{D}_h^n} \phi(x, \mathbf{a})\phi(x, \mathbf{a})^\top + \lambda I_d.$$

680
681

682 Finally, we define the following operators in the space of $L_2(\mu) \rightarrow L_2(\mu)$:
683

684
$$\Sigma_{\rho_n \times \mathcal{U}(\mathcal{A}), \phi} = n\mathbb{E}_{x \sim \rho_n, \mathbf{a} \sim \mathcal{U}(\mathcal{A})} [\phi(x, \mathbf{a})\phi^\top(x, \mathbf{a})] + \lambda T_n^{-1}$$

685
$$\Sigma_{\rho_n, \phi} = n\mathbb{E}_{(x, \mathbf{a}) \sim \rho_n} [\phi(x, \mathbf{a})\phi^\top(x, \mathbf{a})] + \lambda T_n^{-1}$$

686
687

688 **B THEORETICAL ANALYSIS FOR METHODS FOR LOW-RANK POMGs**
689690 This section presents the theoretical guarantees for our algorithms for low-rank POMGs.
691692 **B.1 PROOF OF SEC. 3**
693694 We will provide the proof of Section 3 in this subsection.
695696 **Lemma 12.** *If the representation error in Alg. 1 is bounded*

697
$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|^2 \leq \zeta_n,$$

698
699

700 with probability $1 - \delta$, the output policy $\hat{\pi}$ of OBOVI is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$ with
701 $\varepsilon = \tilde{O}(\|V^\pi\| \sqrt{\zeta_n})$, where $\|V^\pi\|$ is the upper bound of the norm of value function for any policy π ,
702 $i \in [N], h \in [H]$.

702 *Proof.* Denote by $V_P^i(\pi)$ the value function of player i under policy π and transition P . Since
703 the returned policy $\hat{\pi}$ is an equilibrium with respect to $\hat{\mathcal{P}}$, we have for all $i \in [N]$: $V_{\hat{\mathcal{P}}}^i(\hat{\pi}) =$
704 $\max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) := V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)$.
705

706 Note that

$$\begin{aligned} |V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i) - V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)| &= |\max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i})| \\ &\leq \max_{\tilde{\pi}^i} |V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i})| \\ &\leq \|V^\pi\| \sqrt{\zeta_n} \end{aligned}$$

712 Thus, we have

$$\begin{aligned} V_{\hat{\mathcal{P}}}^i(\hat{\pi}) &\geq V_{\hat{\mathcal{P}}}^i(\hat{\pi}) - \|V^\pi\| \sqrt{\zeta_n} \\ &= V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - \|V^\pi\| \sqrt{\zeta_n} \\ &\geq V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - 2\|V^\pi\| \sqrt{\zeta_n} \end{aligned}$$

718 Hence, $\hat{\pi}$ is an $2\|V^\pi\| \sqrt{\zeta_n}$ -approximate equilibrium. \square

719 **Lemma 13.** *If the representation error in Alg. 1 is bounded as*

$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|^2 \leq \zeta_n,$$

720 with $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$ and properly chosen bonus, with probability $1 - \delta$, the output policy
721 $\hat{\pi}$ of OVI-OF is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$ with $\varepsilon = \tilde{O}\left(H^2 d \sqrt{N|\mathcal{A}|\alpha_N^2 \log(1 + \frac{N}{d\lambda})}\right)$,
722 where $\alpha_N = \Theta(\sqrt{\lambda d + N|\mathcal{A}|\zeta_n})$ and $\|V^\pi\|$ is the upper bound of the norm of value function for
723 any policy π , $i \in [N], h \in [H]$.
724

725 The proof of 13 is included in the proof of Theorem 21.

730 B.2 PROOF OF SEC. 4.1

731 We will provide the proof of Theorem 6 in this subsection.

732 **Theorem 14** (PAC guarantee of OBOVI-MLE). *When OBOVI-MLE is applied with parameters*
733 $\zeta^n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\lambda = \Theta(d \log(NH|\mathcal{M}|/\delta))$, and $\alpha_n = \Theta(\sqrt{\lambda d + n|\mathcal{A}|\zeta_n})$ by setting
734 the number of episodes N to be at most $N = \tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$ with probability $1 - \delta$, the
735 output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$.
736

737 *Proof.* Recall that the estimated transition satisfies

$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|_1^2 \leq \zeta_n.$$

738 Denote by $V_P^i(\pi)$ the value function of player i under policy π and transition P . Since the returned policy
739 $\hat{\pi}$ is an equilibrium with respect to $\hat{\mathcal{P}}$, we have for all $i \in [N]$: $V_{\hat{\mathcal{P}}}^i(\hat{\pi}) = \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) :=$
740 $V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)$.
741

742 Note that

$$\begin{aligned} |V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i) - V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)| &= |\max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i})| \\ &\leq \max_{\tilde{\pi}^i} |V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i})| \\ &\leq \sqrt{\zeta_n} \end{aligned}$$

743 Thus, we have

$$\begin{aligned} V_{\hat{\mathcal{P}}}^i(\hat{\pi}) &\geq V_{\hat{\mathcal{P}}}^i(\hat{\pi}) - \sqrt{\zeta_n} \\ &= V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - \sqrt{\zeta_n} \\ &\geq V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - 2\sqrt{\zeta_n} \end{aligned}$$

756 Hence, $\hat{\pi}$ is an $2\sqrt{\zeta_n}$ -approximate equilibrium.
 757

758 To guarantee an ε -approximate equilibrium, we require $2\sqrt{\zeta_n} \leq \varepsilon$, which leads to $N =$
 759 $\tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$. \square

760
 761 Then, we prove the PAC guarantee for OFOVI-MLE, establishing key technical lemmas that culminate
 762 in the finite-sample convergence theorem.

764 **Lemma 15** (one-step back inequality for the true model). *Given a set of functions $[g_h]_{h \in [H]}$, where
 765 $g_h : \mathcal{T}_h \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$, we have that $\forall \pi$,*

$$\sum_{h \in [H]} \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{n,h}} [g_h(\tau_h, \mathbf{a}_h)] \leq \sum_{h \in [H]} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left[\|\phi_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \mathcal{P}}^{-1}} \right. \\ \left. \cdot \sqrt{n|\mathcal{A}| \cdot \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1} \circ \mathcal{U}(\mathcal{A})} [g_h(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)^2]} + \lambda B^2 d \right]$$

774 *Proof.* The proof can be adapted from the proof of Lemma B.4 in (30), and we include it for the
 775 completeness. We observe the following one-step-back decomposition:

$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{n,h}} [g_h(\tau_h, \mathbf{a}_h)] \\ = \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left[\int_{\mathcal{O}_h} \langle \phi_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1}), \mu_{h-1}(\tau_h) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{o}_h \right] \\ \leq \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \|\phi_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \phi}^{-1}} \\ \cdot \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \mu_{h-1}(\tau_h) \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{o}_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \phi}}.$$

785 Direct computation shows that for all
 786

$$\mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \mu_{h-1}(\tau_h) \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{o}_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \phi}}^2 \\ = n \mathbb{E}_{(\tilde{\tau}_{h-1}, \tilde{\mathbf{a}}_{h-1}) \sim \rho_{n,h-1}} \left[\mathbb{E}_{\tau_h \sim \mathbb{P}^\pi(\cdot | \tau_{h-1}, \mathbf{a}_{h-1}), \mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] \right]^2 \\ + \lambda \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \mu_{h-1}(\tau_h) \cdot \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{o}_h \right\|_{\mathcal{H}}^2 \\ \leq n \mathbb{E}_{(\tilde{\tau}_{h-1}, \tilde{\mathbf{a}}_{h-1}) \sim \rho_{n,h-1}} \mathbb{E}_{\tau_h \sim \mathbb{P}^\pi(\cdot | \tau_{h-1}, \mathbf{a}_{h-1}), \mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)]^2 + \lambda B^2 d \\ \leq n|\mathcal{A}| \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1} \circ \mathcal{U}(\mathcal{A})} [g_h(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)]^2 + \lambda B^2 d,$$

797 which finishes the proof. \square
 798

800 **Lemma 16** (one-step back inequality for the learned model). *Assume we have a set of functions
 801 $[g_h]_{h \in [H]}$, where $g_h : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$. Given Lemma 51, we have that $\forall \pi$,*

$$\sum_{h \in [H]} \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{n,h}} [g_h(\tau_h, \mathbf{a}_h)] \\ \leq \sum_{h \in [H]} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left[\|\hat{\phi}_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \hat{\phi}}^{-1}} \right] \\ \cdot \sqrt{n|\mathcal{A}| \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1} \circ \mathcal{U}(\mathcal{A})} [g_h(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)]^2 + nB^2 \zeta_n + B^2 \lambda d}$$

810 *Proof.* The proof can be adapted from the proof of Lemma B.3 in (30), and we include it for the
811 completeness. We make the following one-step-back decomposition:

$$\begin{aligned}
& \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{n,h}} [g_h(\tau_h, \mathbf{a}_h)] \\
&= \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left[\int_{\mathcal{O}_h} \langle \hat{\phi}_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1}), \hat{\mu}_{h-1}(\tau_h) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{a}_h \right] \\
&\leq \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \hat{\phi}_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \hat{\phi}}^{-1}} \\
&\quad \cdot \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \hat{\mu}_{h-1}(\tau_h) \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{a}_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \hat{\phi}}}.
\end{aligned}$$

812 Direct computation shows that
813

$$\begin{aligned}
& \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \hat{\mu}_{h-1}(\tau_h) \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{a}_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-1}, \hat{\phi}}}^2 \\
&= n \mathbb{E}_{(\tilde{\phi}_{h-1}, \tilde{\mathbf{a}}_{h-1}) \sim \rho_{n,h-1}} \left[\mathbb{E}_{\tau_h \sim \hat{\mathcal{P}}_n(\cdot | \tilde{\tau}_{h-1}, \tilde{\mathbf{a}}_{h-1}), \mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] \right]^2 \\
&\quad + \lambda \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{n,h-1}} \left\| \int_{\mathcal{O}_h} \hat{\mu}_{h-1}(\tau_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)] d\mathbf{a}_h \right\|_{\mathcal{H}}^2 \\
&\leq n \mathbb{E}_{(\tilde{\tau}_{h-1}, \tilde{\mathbf{a}}_{h-1}) \sim \rho_{n,h-1}} \mathbb{E}_{\tau_h \sim \hat{\mathcal{P}}_n(\cdot | \tilde{\tau}_{h-1}, \tilde{\mathbf{a}}_{h-1}), \mathbf{a}_h \sim \pi_h(\cdot | \tau_h)} [g_h(\tau_h, \mathbf{a}_h)]^2 + B^2 \lambda d \\
&\leq n |\mathcal{A}| \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1} \circ \mathcal{U}(\mathcal{A})} [g_h(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)]^2 + n B^2 \zeta_n + B^2 \lambda d,
\end{aligned}$$

814 where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
815 the proof. \square

816 **Lemma 17** (Optimism for NE and CCE). *For episode $n \in [N]$, set*

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{L_2(\mu), \hat{\Sigma}_{n,h,\hat{\phi}_n}^{-1}}, H \right\},$$

817 with $\alpha_n = \Theta(H \sqrt{\lambda d + n A \zeta_n})$, $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$,

$$\hat{\Sigma}_{n,h,\hat{\phi}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h,\hat{\phi}_n} := \sum_{(\tau_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} \left[\hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h) \hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h)^\top \right] + \lambda I_d.$$

818 π^n is computed by solving NE or CCE. Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we
819 have

$$\bar{v}_i^n - v_i^{\dagger, \pi_{-i}^n} \geq 0.$$

820 *Proof.* Define $\tilde{\mu}_{h,i}^n(\cdot | \tau) := \arg \max_{\mu} \left(\mathbb{D}_{\mu, \pi_{h,-i}^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (\tau)$ as the best response policy for player i
821 at step h , and let $\tilde{\pi}_h^n = \tilde{\mu}_{h,i}^n \times \pi_{h,-i}^n$. Let $f_h^n(\tau, \mathbf{a}) = \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - P_h(\cdot | \tau, \mathbf{a}) \right\|_1$, then according
822 to lemma 51 and lemma 56, we have that using the chosen λ , with probability at least $1 - \delta$,
823 $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,

$$\begin{aligned}
& \mathbb{E}_{(\tau, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n, \quad \mathbb{E}_{(\tau, \mathbf{a}) \sim \tilde{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n, \\
& \left\| \phi_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\hat{\Sigma}_{n,h-1,\hat{\phi}}^{-1}} = \Theta \left(\left\| \phi_{h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{n,h-1}, \hat{\phi}}^{-1}} \right).
\end{aligned}$$

824 A direct conclusion is we can find an absolute constant c , such that

$$\begin{aligned}
& \hat{b}_{n,h}(\tau_h, \mathbf{a}_h) = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\} \\
&\geq \min \left\{ c \alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H].
\end{aligned}$$

864 Next, we prove by induction that $\forall h \in [H]$,
865

$$866 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{V}_{h,i}^n(\tau) - V_{h,i}^{\dagger, \pi_{-i}^n}(\tau) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(\tau_{h'}, \mathbf{a}_{h'}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\hat{b}_{n,h'}(\tau_{h'}, \mathbf{a}_{h'}) - H \min\{f_{h'}^n(\tau_{h'}, \mathbf{a}_{h'}), 1\} \right]. \\ 867 \\ 868 \\ 869 \quad (8)$$

870 First, notice that $\forall h \in [H]$,
871

$$872 \mathbb{E}_{x \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{V}_{h,i}^n(\tau) - V_{h,i}^{\dagger, \pi_{-i}^n}(\tau) \right] = \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right) (\tau) - \left(\mathbb{D}_{\tilde{\pi}_h^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (\tau) \right] \\ 873 \\ 874 \geq \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\pi^n}} \left[\left(\mathbb{D}_{\tilde{\pi}_h^n} \bar{Q}_{h,i}^n \right) (\tau) - \left(\mathbb{D}_{\tilde{\pi}_h^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (\tau) \right] \\ 875 \\ 876 = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(\tau, \mathbf{a}) - Q_{h,i}^{\dagger, \pi_{-i}^n}(\tau, \mathbf{a}) \right], \\ 877$$

878 where the inequality uses the fact that π_h^n is the NE (or CCE) solution for $\left\{ \bar{Q}_{h,i}^n \right\}_{i=1}^M$. Now we are
879 ready to prove equation 8:
880

- 882 • When $h = H$, we have

$$884 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{V}_{H,i}^n(\tau) - V_{H,i}^{\dagger, \pi_{-i}^n}(\tau) \right] \geq \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{Q}_{H,i}^n(\tau, \mathbf{a}) - Q_{H,i}^{\dagger, \pi_{-i}^n}(\tau, \mathbf{a}) \right] \\ 885 \\ 886 = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\hat{b}_{n,H}(\tau, \mathbf{a}) - H \min\{f_H^n(\tau, \mathbf{a}), 1\} \right]. \\ 887$$

- 888 • Suppose the statement is true for step $h+1$, then for step h , we have

$$890 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{V}_{h,i}^n(\tau) - V_{h,i}^{\dagger, \pi_{-i}^n}(\tau) \right] \\ 891 \\ 892 \geq \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(\tau, \mathbf{a}) - Q_{h,i}^{\dagger, \pi_{-i}^n}(\tau, \mathbf{a}) \right] \\ 893 \\ 894 = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) + \left(\hat{\mathcal{P}}_h \bar{V}_{h+1,i}^n \right) (\tau, \mathbf{a}) - \left(\mathcal{P}_h V_{h+1,i}^{\dagger, \pi_{-i}^n} \right) (\tau, \mathbf{a}) \right] \\ 895 \\ 896 = \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) \right. \\ 897 \\ 898 \quad \left. + \left(\hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - V_{h+1,i}^{\dagger, \pi_{-i}^n} \right) \right) (\tau_h, \mathbf{a}_h) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right) (\tau_h, \mathbf{a}_h) \right] \\ 899 \\ 900 = \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right) (\tau_h, \mathbf{a}_h) \right] \\ 901 \\ 902 \quad + \mathbb{E}_{\tau_{h+1} \sim d_{\hat{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\dagger, \pi_{-i}^n}(\tau_{h+1}) \right] \\ 903 \\ 904 \geq \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) - H \min\{f_h^n(\tau_h, \mathbf{a}_h), 1\} \right] \\ 905 \\ 906 \quad + \mathbb{E}_{\tau_{h+1} \sim d_{\hat{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\dagger, \pi_{-i}^n}(\tau_{h+1}) \right] \\ 907 \\ 908 \geq \sum_{h'=h}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n,h'}}^{\pi^n}} \left[\hat{b}_{n,h'}(\tau_h, \mathbf{a}_h) - H \min\{f_{h'}^n(\tau_h, \mathbf{a}_h), 1\} \right], \\ 909 \\ 910$$

911 where we use the fact

$$912 \left| \left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right| (\tau, \mathbf{a}) \leq \min \left\{ H, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \left\| V_{h+1,i}^{\dagger, \pi_{-i}^n} \right\|_{\infty} \right\} \\ 913 \\ 914 \leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \right\} \\ 915 \\ 916 = H \min \{1, f_{h'}^n(\tau, \mathbf{a})\} \\ 917$$

and the last row uses the induction assumption.

918 Therefore, we have proved equation 8. We then apply $h = 0$ to equation 8, and get
919

$$\begin{aligned}
920 \quad & \mathbb{E}_{\tau \sim d_0} \left[\bar{V}_{0,i}^n(\tau) - V_{0,i}^{\dagger, \pi_{-i}^n}(\tau) \right] \\
921 \quad &= \mathbb{E}_{\tau \sim d_{\hat{\mathcal{P}}_{n,0}}^n} \left[\bar{V}_{0,i}^n(\tau) - V_{0,i}^{\dagger, \pi_{-i}^n}(\tau) \right] \\
922 \quad &\geq \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^n} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) - H \min \{f_h^n(\tau, \mathbf{a}), 1\} \right] \\
923 \quad &= \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^n} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^n} \left[\min \{f_h^n(\tau, \mathbf{a}), 1\} \right].
\end{aligned}$$

930 Next we are going to bound the second term. Applying Lemma 35 to $g_h(x, \mathbf{a}) = \min \{f_h^n(x, \mathbf{a}), 1\}$,
931 we have

$$\begin{aligned}
932 \quad & \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} \left[\min \{f_h^k(\tau_h, \mathbf{a}_h), 1\} \right] \\
933 \quad &\leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \hat{\phi}_{k,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \hat{\phi}}^{-1}} \right] \\
934 \quad &\quad \cdot \sqrt{n|\mathcal{A}| \cdot \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{k,h-1}} \left[\min \{f_h^k(\tilde{\tau}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] + \lambda d + n\zeta_n} \\
935 \quad &\leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \alpha_k \hat{\phi}_{k,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \hat{\phi}}^{-1}} \right]
\end{aligned}$$

945 Note that we here use the fact $\min \{f_h^n(\tau, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1}} \left[\min \{f_h^n(\tilde{\tau}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta_n$ and our choice of α_n .
946

947 Combining all things together,

$$\begin{aligned}
948 \quad & \sum_{k \in [n]} \bar{v}_i^k - v_i^{\dagger, \pi_{-i}^k} = \sum_{k \in [n]} \mathbb{E}_{\tau \sim d_0} \left[\bar{V}_{0,i}^k(\tau) - V_{0,i}^{\dagger, \pi_{-i}^k}(\tau) \right] \\
949 \quad &\geq \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim \rho_{k,h}} \left[\hat{b}_h^k(\tau, \mathbf{a}) \right] - H \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim \rho_{k,h}} \left[\min \{f_h^k(\tau, \mathbf{a}), 1\} \right] \\
950 \quad &\geq 0.
\end{aligned}$$

951 Since the inequality holds for all n , we have that $\bar{v}_i^n - v_i^{\dagger, \pi_{-i}^n}$ for all n .
952

□

953 **Lemma 18** (Optimism for CE). *For episode $n \in [N]$, set*

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{\phi}_n}^{-1}}, H \right\},$$

954 with $\alpha_n = \Theta(H\sqrt{\lambda d + nA\zeta_n})$, $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$,
955

$$\hat{\Sigma}_{n,h, \hat{\phi}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h, \hat{\phi}_n} := \sum_{(\tau_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} \left[\hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h) \hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h)^\top \right] + \lambda I_d.$$

956 π^n is computed by solving CE. Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we have
957

$$\bar{v}_i^n - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n} \geq 0, \quad \forall n \in [N], i \in [M].$$

972 *Proof.* Denote $\tilde{\omega}_{h,i}^{(n)} = \arg \max_{\omega \in \Omega_{h,i}} \left(\mathbb{D}_{\omega_h \circ \pi_h^{(n)}} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^{(n)}} \right) (\tau)$ and let $\tilde{\pi}_h^{(n)} = \tilde{\omega}_{h,i} \circ \pi_h^{(n)}$.
 973 Let $f_h^n(\tau, \mathbf{a}) = \left\| \widehat{\mathcal{P}}_{n,h}(\cdot|\tau, \mathbf{a}) - P_h(\cdot|\tau, \mathbf{a}) \right\|_1$, then according to lemma 51 and lemma 56, we
 974 we
 975 have that using the chosen λ , with probability at least $1 - \delta$, $\forall n \in [N], h \in [H], \widehat{\mathcal{P}} \in \mathcal{M}$,
 976

977

978

$$979 \mathbb{E}_{(\tau, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n, \quad \mathbb{E}_{(\tau, \mathbf{a}) \sim \tilde{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n,$$

$$980 \|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\hat{\Sigma}_{n,h-1,\phi}^{-1}} = \Theta \left(\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\hat{\Sigma}_{\rho_{n,h-1},\phi}^{-1}} \right).$$

$$981$$

$$982$$

$$983$$

984

985 A direct conclusion is we can find an absolute constant c , such that

986

$$987 \hat{b}_{n,h}(\tau_h, \mathbf{a}_h) = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\}$$

$$988 \geq \min \left\{ c \alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H].$$

$$989$$

$$990$$

$$991$$

$$992$$

993

994 Next, we prove by induction that $\forall h \in [H]$,

995

$$996 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\bar{V}_{h,i}^n(\tau) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(\tau) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(\tau_{h'}, \mathbf{a}_{h'}) \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h'}(\tau_{h'}, \mathbf{a}_{h'}) - H \min\{f_{h'}^n(\tau_{h'}, \mathbf{a}_{h'}), 1\} \right].$$

$$997$$

$$998$$

$$999 \quad (9)$$

$$1000$$

1001

1002

1003

$$1004 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\bar{V}_{h,i}^n(\tau) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(\tau) \right] = \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right) (\tau) - \left(\mathbb{D}_{\tilde{\pi}_h^n} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n} \right) (\tau) \right]$$

$$1005 \geq \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\left(\mathbb{D}_{\tilde{\pi}_h^n} \bar{Q}_{h,i}^n \right) (\tau) - \left(\mathbb{D}_{\tilde{\pi}_h^n} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n} \right) (\tau) \right]$$

$$1006 = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\bar{Q}_{h,i}^n(\tau, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n}(\tau, \mathbf{a}) \right],$$

$$1007$$

$$1008$$

$$1009$$

$$1010$$

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

First, notice that $\forall h \in [H]$,

where the inequality uses the fact that π_h^n is the CE solution for $\left\{ \bar{Q}_{h,i}^n \right\}_{i=1}^M$. Now we are ready to prove equation 9:

- When $h = H$, we have

$$1021 \mathbb{E}_{\tau \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\bar{V}_{H,i}^n(\tau) - \max_{\omega \in \Omega_i} V_{H,i}^{\omega \circ \pi^n}(\tau) \right]$$

$$1022 \geq \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\bar{Q}_{H,i}^n(\tau, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{H,i}^{\omega \circ \pi^n}(\tau, \mathbf{a}) \right]$$

$$1023 = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,H}(\tau, \mathbf{a}) - H \min\{f_H^n(\tau, \mathbf{a}), 1\} \right].$$

$$1024$$

$$1025$$

1026 • Suppose the statement is true for step $h + 1$, then for step h , we have
 1027
 1028

$$\begin{aligned}
 & \mathbb{E}_{\tau \sim d_{\bar{\mathcal{P}}}^{\pi^n}} \left[\bar{V}_{h,i}^n(\tau) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(\tau) \right] \\
 & \geq \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\bar{\mathcal{P}}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(\tau, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n}(\tau, \mathbf{a}) \right] \\
 & = \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\bar{\mathcal{P}}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) + \left(\hat{\mathcal{P}}_h \bar{V}_{h+1,i}^n \right) (\tau, \mathbf{a}) - \left(\mathcal{P}_h \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right) (\tau, \mathbf{a}) \right] \\
 & = \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) \right. \\
 & \quad \left. + \left(\hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - V_{h+1,i}^{\omega \circ \pi^n} \right) \right) (\tau_h, \mathbf{a}_h) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\omega \circ \pi^n} \right) (\tau_h, \mathbf{a}_h) \right] \\
 & = \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\omega \circ \pi^n} \right) (\tau_h, \mathbf{a}_h) \right] \\
 & \quad + \mathbb{E}_{\tau_{h+1} \sim d_{\bar{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\omega \circ \pi^n}(\tau_{h+1}) \right] \\
 & \geq \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) - H \min \{ f_h^n(\tau_h, \mathbf{a}_h), 1 \} \right] \\
 & \quad + \mathbb{E}_{\tau_{h+1} \sim d_{\bar{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\omega \circ \pi^n}(\tau_{h+1}) \right] \\
 & \geq \sum_{h'=h}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\bar{\mathcal{P}}_{n,h'}}^{\pi^n}} \left[\hat{b}_{n,h'}(\tau_h, \mathbf{a}_h) - H \min \{ f_{h'}^n(\tau_h, \mathbf{a}_h), 1 \} \right],
 \end{aligned}$$

1053 where we use the fact

$$\begin{aligned}
 \left| \left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\omega \circ \pi^n} \right| (\tau, \mathbf{a}) & \leq \min \left\{ H, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \left\| V_{h+1,i}^{\omega \circ \pi^n} \right\|_\infty \right\} \\
 & \leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \right\} \\
 & = H \min \{ 1, f_{h'}^n(\tau, \mathbf{a}) \}
 \end{aligned}$$

1062 and the last row uses the induction assumption.

1068 Therefore, we have proved equation 9. We then apply $h = 0$ to equation 9, and get

$$\begin{aligned}
 & \mathbb{E}_{\tau \sim d_0} \left[\bar{V}_{0,i}^n(\tau) - V_{0,i}^{\omega \circ \pi^n}(\tau) \right] \\
 & = \mathbb{E}_{\tau \sim d_{\bar{\mathcal{P}}_{n,0}}^{\pi^n}} \left[\bar{V}_{0,i}^n(\tau) - V_{0,i}^{\omega \circ \pi^n}(\tau) \right] \\
 & \geq \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) - H \min \{ f_h^n(\tau, \mathbf{a}), 1 \} \right] \\
 & = \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(\tau, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\bar{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{ f_h^n(\tau, \mathbf{a}), 1 \} \right].
 \end{aligned}$$

1080 Next we are going to bound the second term. Applying Lemma 16 to $g_h(\tau, \mathbf{a}) = \min \{f_h^n(\tau, \mathbf{a}), 1\}$,
1081 we have

$$\begin{aligned}
& \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [\min \{f_h^k(\tau_h, \mathbf{a}_h), 1\}] \\
& \leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \hat{\phi}_{k,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \hat{\phi}}^{-1}} \right] \\
& \quad \cdot \sqrt{n|\mathcal{A}| \cdot \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{k,h-1}} [\min \{f_h^k(\tilde{\tau}_h, \tilde{\mathbf{a}}_h), 1\}^2]} + \lambda d + n\zeta_n \\
& \leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \alpha_k \hat{\phi}_{k,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \hat{\phi}}^{-1}} \right].
\end{aligned}$$

1095 Note that we here use the fact $\min \{f_h^n(\tau, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-1}} [\min \{f_h^n(\tilde{\tau}_h, \tilde{\mathbf{a}}_h), 1\}^2] \leq$
1096 ζ_n and our choice of α_n .

1097 Combining all things together,

$$\begin{aligned}
& \sum_{k \in [n]} \bar{v}_i^k - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^k} = \sum_{k \in [n]} \mathbb{E}_{\tau \sim \rho_{k,h}} \left[\bar{V}_{0,i}^k(\tau) - \max_{\omega \in \Omega_i} V_{0,i}^{\omega \circ \pi^k}(\tau) \right] \\
& \geq \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [\hat{b}_{k,h}(\tau_h, \mathbf{a}_h)] - H \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [\min \{f_h^k(\tau_h, \mathbf{a}_h), 1\}] \\
& \geq 0,
\end{aligned}$$

1106 Since the inequality holds for all n , we have that $\bar{v}_i^n - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n}$ for all n . \square

1108 **Lemma 19** (Pessimism). *For episode $n \in [N]$, set*

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h-1}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{L_2(\mu), \hat{\Sigma}_{n,h,\hat{\phi}_n}^{-1}}, H \right\},$$

1112 with $\alpha_n = \Theta(H\sqrt{\lambda d + nA\zeta_n})$, $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$,

$$\hat{\Sigma}_{n,h,\hat{\phi}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h,\hat{\phi}_n} := \sum_{(\tau_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} \left[\hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h) \hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h)^\top \right] + \lambda I_d.$$

1116 Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we have

$$\underline{v}_i^n - v_i^{\pi^n} \leq 0, \quad \forall n \in [N], i \in [M].$$

1119 *Proof.* Let $f_h^n(\tau, \mathbf{a}) = \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - P_h(\cdot | \tau, \mathbf{a}) \right\|_1$, then according to lemma 51 and lemma 56,
1120 we have that using the chosen λ , with probability at least $1 - \delta$, $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,

$$\begin{aligned}
& \mathbb{E}_{(\tau, \mathbf{a}) \sim \hat{\rho}_{n,h}} [(f_h^n(\tau, \mathbf{a}))^2] \leq \zeta_n, \quad \mathbb{E}_{(\tau, \mathbf{a}) \sim \hat{\rho}_{n,h}} [(f_h^n(\tau, \mathbf{a}))^2] \leq \zeta_n, \\
& \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\hat{\Sigma}_{n,h-1,\hat{\phi}}^{-1}} = \Theta \left(\left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\hat{\Sigma}_{\rho_{n,h-1}, \hat{\phi}}^{-1}} \right).
\end{aligned}$$

1128 A direct conclusion is we can find an absolute constant c , such that

$$\begin{aligned}
& \hat{b}_{n,h}(\tau_h, \mathbf{a}_h) = \min \left\{ \alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\} \\
& \geq \min \left\{ c\alpha_n \left\| \hat{\phi}_{n,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{n,h-1,\hat{\phi}}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H].
\end{aligned}$$

1134 Again, we prove by induction that $\forall h \in [H]$,
 1135

$$\mathbb{E}_{\tau \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[\underline{V}_{h,i}^n(\tau) - V_{h,i}^{\pi^n}(\tau) \right] \leq \sum_{h'=h}^H \mathbb{E}_{(\tau_{h'}, \mathbf{a}_{h'}) \sim d_{\widehat{\mathcal{P}}_{n,h'}^{\pi^n}}^{\pi^n}} \left[-\hat{b}_{n,h'}(\tau_{h'}, \mathbf{a}_{h'}) + H \min\{f_{h'}^n(\tau_{h'}, \mathbf{a}_{h'}), 1\} \right]. \quad (10)$$

1139
 1140

1141 • When $h = H$, we have

1142

$$\begin{aligned} \mathbb{E}_{\tau \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[\underline{V}_{H,i}^n(\tau) - V_{H,i}^{\pi^n}(\tau) \right] &= \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[\underline{Q}_{H,i}^n(\tau, \mathbf{a}) - Q_{H,i}^{\pi^n}(\tau, \mathbf{a}) \right] \\ &= \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[-\hat{b}_{n,H}(\tau, \mathbf{a}) + H \min\{f_H^n(\tau, \mathbf{a}), 1\} \right]. \end{aligned}$$

1143
 1144
 1145
 1146

1147 • Suppose the statement is true for step $h + 1$, then for step h , we have

1148

$$\begin{aligned} &\mathbb{E}_{\tau \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[\underline{V}_{h,i}^n(\tau) - V_{h,i}^{\pi^n}(\tau) \right] \\ &= \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_n}^{\pi^n}} \left[\underline{Q}_{h,i}^n(\tau, \mathbf{a}) - Q_{h,i}^{\pi^n}(\tau, \mathbf{a}) \right] \\ &= \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\widehat{\mathcal{P}}_{n,h}^{\pi^n}}^{\pi^n}} \left[-\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \left(\widehat{\mathcal{P}}_{n,h} \underline{V}_{h+1,i}^n \right) (\tau_h, \mathbf{a}_h) - \left(\mathcal{P}_h V_{h+1,i}^{\pi^n} \right) (\tau_h, \mathbf{a}_h) \right] \\ &= \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\widehat{\mathcal{P}}_{n,h}^{\pi^n}}^{\pi^n}} \left[-\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) \right. \\ &\quad \left. + \left(\widehat{\mathcal{P}}_{n,h} \left(\underline{V}_{h+1,i}^n - V_{h+1,i}^{\pi^n} \right) \right) (\tau_h, \mathbf{a}_h) + \left(\left(\widehat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right) (\tau_h, \mathbf{a}_h) \right] \\ &= \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\widehat{\mathcal{P}}_{n,h}^{\pi^n}}^{\pi^n}} \left[-\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \left(\left(\widehat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right) (\tau_h, \mathbf{a}_h) \right] \\ &\quad + \mathbb{E}_{\tau_{h+1} \sim d_{\widehat{\mathcal{P}}_{n,h+1}^{\pi^n}}^{\pi^n}} \left[\underline{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\pi^n}(\tau_{h+1}) \right] \\ &\leq \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\widehat{\mathcal{P}}_{n,h}^{\pi^n}}^{\pi^n}} \left[-\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + H \min\{f_h^n(\tau_h, \mathbf{a}_h), 1\} \right] \\ &\quad + \mathbb{E}_{\tau_{h+1} \sim d_{\widehat{\mathcal{P}}_{n,h+1}^{\pi^n}}^{\pi^n}} \left[\underline{V}_{h+1,i}^n(\tau_{h+1}) - V_{h+1,i}^{\pi^n}(\tau_{h+1}) \right] \\ &\leq \sum_{h'=h}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\widehat{\mathcal{P}}_{n,h'}^{\pi^n}}^{\pi^n}} \left[\hat{b}_{n,h'}(\tau_h, \mathbf{a}_h) - H \min\{f_{h'}^n(\tau_h, \mathbf{a}_h), 1\} \right], \end{aligned}$$

1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169

1170 where we use the fact

1171

$$\begin{aligned} \left| \left(\widehat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right| (\tau, \mathbf{a}) &\leq \min \left\{ H, \left\| \widehat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \left\| V_{h+1,i}^{\pi^n} \right\|_{\infty} \right\} \\ &\leq H \min \left\{ 1, \left\| \widehat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - \mathcal{P}_h(\cdot | \tau, \mathbf{a}) \right\|_1 \right\} \\ &= H \min \{1, f_{h'}^n(\tau, \mathbf{a})\} \end{aligned}$$

1172
 1173
 1174
 1175
 1176

1177 and the last row uses the induction assumption.

1178
 1179 The remaining steps are exactly the same as the proof in Lemma 17 or Lemma 18, we get

1180
 1181
 1182

$$\begin{aligned} &\sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} \left[\min\{f_h^k(\tau_h, \mathbf{a}_h), 1\} \right] \\ &\leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \alpha_k \hat{\phi}_{k,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \hat{\phi}}^{-1}} \right] \end{aligned}$$

1183
 1184
 1185
 1186
 1187

1188 Combining all things together, We have
1189
1190
$$\sum_{k \in [n]} \underline{v}_i^k - v_i^{\pi^k} = \sum_{k \in [n]} \mathbb{E}_{\tau \sim d_0} \left[\bar{V}_{0,i}^k(\tau) - V_{0,i}^{\dagger, \pi^k}(\tau) \right]$$

1191
1192
$$\leq \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} \left[-\hat{b}_{k,h}(\tau_h, \mathbf{a}_h) \right] + H \sum_{k \in [n]} \sum_{h=1}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} \left[\min \{f_h^k(\tau_h, \mathbf{a}_h), 1\} \right]$$

1193
1194
1195
1196
$$\leq 0,$$

1197 which has finished the proof. \square
1198

1199 **Lemma 20.** For episode $n \in [N]$, set

1200
1201
$$\hat{b}_{n,h} = \min \left\{ \alpha_n \|\hat{\phi}_{n,h-1}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{\phi}_n}^{-1}}, H \right\},$$

1202

1203 with $\alpha_n = \Theta(H\sqrt{\lambda d + nA\zeta_n})$, $\lambda = \Theta(d \log(nH|\mathcal{M}|/\delta))$,
1204

1205
$$\hat{\Sigma}_{n,h, \hat{\phi}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h, \hat{\phi}_n} := \sum_{(\tau_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} \left[\hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h) \hat{\phi}_{n,h}(\tau_h, \mathbf{a}_h)^\top \right] + \lambda I_d.$$

1206

1207 Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we have
1208

1209
1210
$$\sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 d^2 N^{\frac{1}{2}} A \log \left(\frac{HN|\mathcal{M}|}{\delta} \right) \right)$$

1211

1212 *Proof.* Let $f_h^n(\tau, \mathbf{a}) = \left\| \hat{\mathcal{P}}_{n,h}(\cdot | \tau, \mathbf{a}) - P_h(\cdot | \tau, \mathbf{a}) \right\|_1$, then according to lemma 51 and lemma 56,
1213 we have that using the chosen λ , with probability at least $1 - \delta$, $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,
1214

1215
1216
1217
$$\mathbb{E}_{(\tau, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n, \quad \mathbb{E}_{(\tau, \mathbf{a}) \sim \tilde{\rho}_{n,h}} \left[(f_h^n(\tau, \mathbf{a}))^2 \right] \leq \zeta_n,$$

1218
1219
$$\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\hat{\Sigma}_{n,h-1, \phi}^{-1}} = \Theta \left(\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\hat{\Sigma}_{\rho_{n,h-1}, \phi}^{-1}} \right).$$

1220

1221 By definition, we have
1222

1223
1224
$$\Delta^n = \max_{i \in [M]} \{ \bar{v}_i^n - \underline{v}_i^n \}.$$

1225

1226 For each fixed $i \in [M], h \in [H]$ and $n \in [N]$, we have
1227

1227
1228
$$\mathbb{E}_{\tau \sim d_{\mathcal{P}, h}^{\pi^n}} \left[\bar{V}_{h,i}^n(\tau) - \underline{V}_{h,i}^n(\tau) \right]$$

1229
$$= \mathbb{E}_{\tau \sim d_{\mathcal{P}, h}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right) (\tau) - \left(\mathbb{D}_{\pi_h^n} \underline{Q}_{h,i}^n \right) (\tau) \right]$$

1230
1231
$$= \mathbb{E}_{(\tau, \mathbf{a}) \sim d_{\mathcal{P}, h}^{\pi^n}} \left[\bar{Q}_{h,i}^n(\tau, \mathbf{a}) - \underline{Q}_{h,i}^n(\tau, \mathbf{a}) \right]$$

1232
1233
$$= \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\mathcal{P}, h}^{\pi^n}} \left[2\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - \underline{V}_{h+1,i}^n \right) (\tau_h, \mathbf{a}_h) \right]$$

1234
1235
$$= \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\mathcal{P}, h}^{\pi^n}} \left[2\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + \left((\hat{\mathcal{P}}_{n,h} - P_h) \left(\bar{V}_{h+1,i}^n - \underline{V}_{h+1,i}^n \right) \right) (\tau_h, \mathbf{a}_h) \right]$$

1236
1237
$$+ \mathbb{E}_{\tau_{h+1} \sim d_{\mathcal{P}, h+1}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - \underline{V}_{h+1,i}^n(\tau_{h+1}) \right]$$

1238
1239
$$\leq \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\mathcal{P}, h}^{\pi^n}} \left[2\hat{b}_{n,h}(\tau_h, \mathbf{a}_h) + 2H^2 f_h^n(\tau_h, \mathbf{a}_h) \right] + \mathbb{E}_{\tau_{h+1} \sim d_{\mathcal{P}, h+1}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(\tau_{h+1}) - \underline{V}_{h+1,i}^n(\tau_{h+1}) \right]$$

1240 Note that we use the fact $\bar{V}_{h+1,i}^n(\tau) - \underline{V}_{h+1,i}^n(\tau)$ is upper bounded by $2H^2$, which can be proved
1241 easily using induction using the fact that $\hat{b}_h^n(\tau, \mathbf{a}) \leq H$. Applying the above formula recursively to

1242 $\mathbb{E}_{\tau \sim d_{P,h+1}^{\pi^n}} [\bar{V}_{h+1,i}^n(\tau) - \underline{V}_{h+1,i}^n(\tau)]$, one gets the following result (or more formally, one can prove
 1243 by induction, just like what we did in Lemma 36, Lemma 37 and Lemma 38):
 1244

$$1245 \mathbb{E}_{\tau \sim d_{P,0}^{\pi^n}} [\bar{V}_{0,i}^n(\tau) - \underline{V}_{0,i}^n(\tau)] \leq 2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{P,h}^{\pi^n}} [\hat{b}_{n,h}(\tau_h, \mathbf{a}_h)]}_{(a)} + 2H^2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{P,h}^{\pi^n}} [f_h^n(\tau_h, \mathbf{a}_h)]}_{(b)}. \quad (11)$$

1250 First, we calculate the first term (a) in Inequality equation 11. Following Lemma 15 and noting the
 1251 bonus $\hat{b}_{n,h}$ is $O(H)$, we have
 1252

$$1253 \begin{aligned} 1254 & \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [\hat{b}_{k,h}(\tau_h, \mathbf{a}_h)] \\ 1255 & \lesssim \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} \left[\min \left\{ \alpha_k \left\| \hat{\phi}_{k,h}(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{k, \hat{\rho}_{k,h}, \hat{\phi}}^{-1}}, H \right\} \right] \\ 1256 & \lesssim \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{k, \hat{\rho}_{k,h}, \hat{\phi}}^{-1}} \right] \\ 1257 & \cdot \sqrt{n |\mathcal{A}| (\alpha_k)^2 \cdot \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{k,h}} \left[\left\| \hat{\phi}_{k,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \right\|_{\Sigma_{n, \hat{\rho}_{k,h}, \hat{\phi}}^{-1}}^2 \right]} + \lambda H^2 d. \end{aligned}$$

1258 Note that we use the fact that $B = H$ when applying Lemma 15. In addition, we have that for all n ,
 1259

$$1260 \begin{aligned} 1261 & n \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h}} \left[\left\| \hat{\phi}_{n,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \right\|_{\Sigma_{n, \hat{\rho}_{n,h}, \hat{\phi}}^{-1}}^2 \right] \\ 1262 & = n \text{Tr} \left(\mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h}} \left[\hat{\phi}_{n,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \hat{\phi}_{n,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)^\top \right] \left(n \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h}} \left[\hat{\phi}_{n,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \hat{\phi}_{n,h+1}(\tilde{\tau}_h, \tilde{\mathbf{a}}_h)^\top \right] + \lambda I_d \right)^{-1} \right) \\ 1263 & \leq d. \end{aligned}$$

1264 Then,

$$1265 \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [\hat{b}_{k,h}(\tau_h, \mathbf{a}_h)] \leq \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{k, \hat{\rho}_{k,h}, \hat{\phi}}^{-1}} \right] \sqrt{dA(\alpha_k)^2 + H^2 d \lambda}.$$

1266 Second, we calculate the term (b) in inequality equation 11. Following Lemma 15, we have
 1267

$$1268 \begin{aligned} 1269 & \sum_{k \in [n]} \sum_{h=0}^H \mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \rho_{k,h}} [f_h^k(\tau_h, \mathbf{a}_h)] \\ 1270 & \leq \sum_{k \in [n]} \sum_{h=0}^{H-1} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \phi}^{-1}} \right] \\ 1271 & \cdot \sqrt{n |A| \mathbb{E}_{(\tilde{\tau}_h, \tilde{\mathbf{a}}_h) \sim \rho_{k,h-1}} \left[(f_h^k(\tilde{\tau}_h, \tilde{\mathbf{a}}_h))^2 \right]} + d \lambda \\ 1272 & \leq \sum_{k \in [n]} \sum_{h=0}^{H-1} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\left\| \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \phi}^{-1}} \right] \sqrt{n |A| \zeta_k + d \lambda} \\ 1273 & \lesssim \sum_{k \in [n]} \sum_{h=0}^{H-1} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\frac{\alpha_k}{H} \left\| \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right\|_{\Sigma_{\rho_{k,h-1}, \phi}^{-1}} \right]. \end{aligned}$$

1296 Then, by combining the above calculation of the term (a) and term (b) in inequality equation 11, we
1297 have:

$$\begin{aligned}
1298 \sum_{k \in [n]} \bar{v}_i^{(k)} - \underline{v}_i^{(k)} &= \sum_{k \in [n]} \mathbb{E}_{s \sim \rho_{k,0}} \left[\bar{V}_{0,i}^{(k)}(s) - V_{0,i}^{(k)}(s) \right] \\
1299 &\lesssim \sum_{k \in [n]} \sum_{h=1}^H \left(\mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\Sigma_{k,\hat{\rho}_{k,h},\phi}^{-1}} \right] \sqrt{dA(\alpha_k)^2 + H^2 d\lambda} \right) \\
1300 &\quad + H^2 \sum_{k \in [n]} \sum_{h=0}^{H-1} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim \rho_{k,h-1}} \left[\frac{\alpha_k}{H} \|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\Sigma_{\rho_{k,h-1},\phi}^{-1}} \right].
\end{aligned}$$

1304 Note that

$$\begin{aligned}
1305 \sum_{n=1}^N \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim d_{\mathcal{P},h-1}^{\pi^n}} \left[\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\Sigma_{n,\hat{\rho}_{n,h},\phi}^{-1}} \right] \\
1306 &\leq \sqrt{N \sum_{n=1}^N \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim d_{\mathcal{P},h-1}^{\pi^n}} \left[\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})^\top \Sigma_{n,\gamma_h^{(n)},\phi_h^*}^{-1} \phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \right]} \quad (\text{CS inequality}) \\
1307 &\lesssim \sqrt{N \left(\log \det \left(\sum_{n=1}^N \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim d_{\mathcal{P},h-1}^{\pi^n}} [\phi_h(\tau_{h-1}, \mathbf{a}_{h-1}) \phi_h(\tau_{h-1}, \mathbf{a}_{h-1})^\top] \right) - \log \det(\lambda I_d) \right)} \\
1308 &\quad (\text{Lemma 53}) \\
1309 &\leq \sqrt{dN \log \left(1 + \frac{N}{d\lambda} \right)}.
\end{aligned}$$

1310 (Potential function bound, Lemma 54 noting $\|\phi_h^*(s, \mathbf{a})\|_2 \leq 1$ for any (s, \mathbf{a}) .)

1311 Taking maximum over i on both sides, we get

$$\begin{aligned}
1312 \sum_{n=1}^N \Delta^{(n)} &= \sum_{n=1}^N \max_{i \in [M]} \left\{ \bar{v}_i^{(n)} - \underline{v}_i^{(n)} \right\} \\
1313 &\lesssim H \sqrt{dN \log \left(1 + \frac{N}{d\lambda} \right)} \sqrt{dA(\alpha_N)^2 + H^2 d\lambda} \\
1314 &\quad + H^3 \left(\frac{1}{H} \alpha_N \sqrt{dN \log \left(1 + \frac{N}{d\lambda} \right)} \right) \\
1315 &\lesssim H^2 d\alpha_N \sqrt{NA \log \left(1 + \frac{N}{d\lambda} \right)} \\
1316 &\lesssim H^3 d^2 N^{\frac{1}{2}} A \log \left(\frac{HN|\mathcal{M}|}{\delta} \right)
\end{aligned}$$

1317 \square

1318 **Theorem 21** (PAC guarantee of OFOVI-MLE). *When OFOVI-MLE is applied with
1319 parameters $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\lambda = \Theta(d \log(NH|\mathcal{M}|/\delta))$, $\hat{b}_{n,h} =$
1320 $\min \left\{ \alpha_n \|\hat{\phi}_{n,h-1}(\tau_{h-1}, \mathbf{a}_{h-1})\|_{L_2(\mu, \hat{\Sigma}_{n,h,\hat{\phi}_n}^{-1})}, H \right\}$ and $\alpha_n = \Theta(\sqrt{\lambda d + n|\mathcal{A}|\zeta_n})$ by setting
1321 the number of episodes $N = \tilde{\mathcal{O}}(H^6 d^4 |\mathcal{A}|^2 \epsilon^{-2} \log(Hd|\mathcal{A}||\mathcal{M}|/\delta\epsilon))$ with probability $1 - \delta$, the
1322 output policy $\hat{\pi}$ is an ϵ -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$.*

1323

1324 *Proof.* For any fixed episode n and agent i , by Lemma 17, Lemma 18 and Lemma 19, we have

$$1325 v_i^{\dagger, \pi_{-i}^n} - v_i^{\pi^n} \left(\text{or} \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n} - v_i^{\pi^n} \right) \leq \bar{v}_i^n - \underline{v}_i^n \leq \Delta^n.$$

1350 Taking maximum over i on both sides, we have
 1351

$$1352 \max_{i \in [M]} \left\{ v_i^{\dagger, \pi^n_i} - v_i^{\pi^n} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n} - v_i^{\pi^n} \right\} \right) \leq \Delta^n. \quad (12)$$

1354 From Lemma 20, with probability $1 - \delta$, we can ensure
 1355

$$1356 \sum_{k=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 d^2 N^{\frac{1}{2}} A \log \left(\frac{HN|\mathcal{M}|}{\delta} \right) \right)$$

1359 Therefore, according to Lemma 54, when we pick N to be
 1360

$$1361 \tilde{\mathcal{O}} \left(\frac{H^6 d^4 A^2}{\varepsilon^2} \log \frac{HdA|\mathcal{M}|}{\delta\varepsilon} \right)$$

1363 we have

$$1364 \frac{1}{N} \sum_{n=1}^N \Delta^n \leq \varepsilon.$$

1367 On the other hand, we have
 1368

$$1369 \max_{i \in [M]} \left\{ v_i^{\dagger, \hat{\pi}_{-i}} - v_i^{\hat{\pi}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \hat{\pi}} - v_i^{\hat{\pi}} \right\} \right)$$

$$1370 = \max_{i \in [M]} \left\{ v_i^{\dagger, \pi^{n^*}_i} - v_i^{\pi^{n^*}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^{n^*}} - v_i^{\pi^{n^*}} \right\} \right)$$

$$1371 \leq \Delta^{n^*} = \min_{n \in [N]} \Delta^n \leq \frac{1}{N} \sum_{n=1}^N \Delta^n \leq \varepsilon,$$

1376 which has finished the proof. \square
 1377

1378 B.3 PROOF OF SEC. 4.2

1380 We will provide the proof of Theorem 7 in this subsection. We first introduce the following additional
 1381 assumptions on the representation and the reward.

1382 **Assumption 1.** $\int_{\mathcal{T}} (\int_{\mathcal{A}} \|\phi(\tau, \mathbf{a})\|_2 d\mathbf{a})^2 d\tau \leq d$ for all $\phi \in \Phi$ and $\int_{\mathcal{T}} (\int_{\mathcal{A}} r(\tau, \mathbf{a}) d\mathbf{a})^2 d\tau \leq d$.

1383 **Lemma 22** (L_2 norm of value function). $\forall i \in [N], h \in [H]$, for any policy π , we have that

$$1385 \|V_{h,i}^{\pi}\|_2 \leq 2d + 2H^2 d^2 \lesssim H^2 d^2.$$

1387 *Proof.* From the proper of low-rank POMG, we know that there exists ω^{π} , such that $\|\omega^{\pi}\|_2 \leq \sqrt{d}H$
 1388 and $Q_{h,i}^{\pi}(\tau, \mathbf{a}) = \phi(\tau, \mathbf{a})^{\top} \omega^{\pi}$ for all $h \in [H], i \in [N]$. Then, we have
 1389

$$1390 \|V_{h,i}^{\pi}\|_2^2$$

$$1391 = \int_{\mathcal{T}} V_{h,i}^{\pi}(\tau_h)^2 d\tau_h$$

$$1392 = \int_{\mathcal{T}} \left(\int_{\mathcal{A}} \pi(\mathbf{a}_h | \tau_h) (r(\tau_h, \mathbf{a}_h) + \mathcal{P}(\tau_{h+1} | \tau_h, \mathbf{a}_h) \pi(\mathbf{a}_{h+1} | \tau_{h+1}) Q_{h+1,i}^{\pi}(\tau_{h+1}, \mathbf{a}_{h+1})) d\mathbf{a}_h \right)^2 d\tau_h$$

$$1393 \leq \int_{\mathcal{T}} \left(\int_{\mathcal{A}} (r(\tau_h, \mathbf{a}_h) + \mathcal{P}(\tau_{h+1} | \tau_h, \mathbf{a}_h) \pi(\mathbf{a}_{h+1} | \tau_{h+1}) Q_{h+1,i}^{\pi}(\tau_{h+1}, \mathbf{a}_{h+1})) d\mathbf{a}_h \right)^2 d\tau_h$$

$$1394 \leq 2 \int_{\mathcal{T}} \left(\int_{\mathcal{A}} r(\tau_h, \mathbf{a}_h) d\mathbf{a}_h \right)^2 d\tau_h + 2H^2 d \int_{\mathcal{T}} \left(\int_{\mathcal{A}} \|\phi(\tau_h, \mathbf{a}_h)\|_2 d\mathbf{a}_h \right)^2 d\tau_h$$

$$1395 \leq 2d + 2H^2 d^2$$

$$1396 \lesssim H^2 d^2$$

1400

1401

1402

1403

Theorem 23 (PAC guarantee of OBOVI-SDR). *When OBOVI-SDR is applied with parameters $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\lambda = \Theta(d\log(NH|\mathcal{M}|/\delta))$, and $\alpha_n = \Theta(Hd\sqrt{\lambda d + n|\mathcal{A}|\zeta_n})$ by setting the number of episodes $N = \tilde{O}(\varepsilon^{-2}d^2\log(H|\mathcal{M}|/\delta\varepsilon))$ with probability $1 - \delta$, the output policy $\hat{\pi}$ is an ε -approximate {NE, CCE, CE}.*

Proof. Recall that the estimated transition satisfies

$$\mathbb{E}_{(x_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot|x_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot|x_h, \mathbf{a}_h) \right\|_2^2 \leq \zeta_n.$$

Denote by $V_P^i(\pi)$ the value function of player i under policy π and transition P . Since the returned policy $\hat{\pi}$ is an equilibrium with respect to $\hat{\mathcal{P}}$, we have for all $i \in [N]$: $V_{\hat{\mathcal{P}}}^i(\hat{\pi}) = \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) := V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)$.

Note that

$$\begin{aligned} |V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i) - V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)| &= \left| \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \pi^{-i}) \right| \\ &\leq \max_{\tilde{\pi}^i} |V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \pi^{-i})| \\ &\leq d\sqrt{\zeta_n} \end{aligned}$$

Thus, we have

$$\begin{aligned} V_{\hat{\mathcal{P}}}^i(\hat{\pi}) &\geq V_{\hat{\mathcal{P}}}^i(\hat{\pi}) - d\sqrt{\zeta_n} \\ &= V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - d\sqrt{\zeta_n} \\ &\geq V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - 2d\sqrt{\zeta_n} \end{aligned}$$

Hence, $\hat{\pi}$ is an $2d\sqrt{\zeta_n}$ -approximate equilibrium.

To guarantee an ε -approximate equilibrium, we require $2d\sqrt{\zeta_n} \leq \varepsilon$, which leads to $N = \tilde{O}(\varepsilon^{-2}d^2\log(H|\mathcal{M}|/\delta\varepsilon))$. \square

Theorem 24 (PAC guarantee of OFOVI-SDR). *When OFOVI-SDR is applied with parameters $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\lambda = \Theta(d\log(NH|\mathcal{M}|/\delta))$, and $\alpha_n = \Theta(Hd\sqrt{\lambda d + n|\mathcal{A}|\zeta_n})$, by setting the number of episodes $N = \tilde{O}(H^6d^4|\mathcal{A}|^2\varepsilon^{-2}\log(Hd|\mathcal{A}||\mathcal{M}|/\delta\varepsilon))$ with probability $1 - \delta$, the output policy $\hat{\pi}$ is an ε -approximate {NE, CCE, CE}.*

Proof. Similar to the proof of Theorem 21, with Lemma 22, we have that

$$\begin{aligned} \bar{v}_i^{(n)} - \underline{v}_i^{(n)} &= \sum_{h=1}^H \left(\mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim d_{\mathcal{P},h-1}^{\pi^n}} \left[\|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\Sigma_{n,\hat{\rho}_{n,h},\phi}^{-1}} \right] \sqrt{dA(\alpha_n)^2 + H^2d\lambda} \right) \\ &\quad + H^2 \sum_{h=0}^{H-1} \mathbb{E}_{(\tau_{h-1}, \mathbf{a}_{h-1}) \sim d_{\mathcal{P},h-1}^{\pi^n}} \left[\frac{\alpha_n}{H} \|\phi_h(\tau_{h-1}, \mathbf{a}_{h-1})\|_{\Sigma_{n,h-1,\phi}^{-1}} \right]. \end{aligned}$$

Taking maximum over i and taking dominating term out, we have

$$\sum_{k=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 d^2 N^{\frac{1}{2}} A \log \left(\frac{HN|\mathcal{M}|}{\delta} \right) \right)$$

The remaining steps of the proof follow similarly to the proof of Theorem 21. \square

C BELIEF-BASED MG AND DERIVATION OF LLVR

C.1 EQUIVALENT BELIEF-BASED MG CONSTRUCTION

We show that a POMG can be converted to an equivalent belief-based MG. Recall that the belief function is initialized as $f_{\text{belief}}(s_1|\mathbf{o}_0) = \mathbb{P}(s_0|\mathbf{o}_0)$, with recursive updates: $f_{\text{belief}}(s_{h+1}|\tau_{h+1}) \propto$

1458 $\int_{\mathcal{S}} f_{\text{belief}}(s_h | \tau_h) P(s_{h+1} | s_h, \mathbf{a}_h) \mathbb{O}(\mathbf{o}_{h+1} | s_{h+1}) ds_h$. This enables a transformation from a POMG
 1459 to an equivalent MG over beliefs, denoted as $\mathcal{M}_b = (\mathcal{B}, \{\mathcal{A}_i\}_{i=1}^M, \{\mathcal{R}_{i,b}\}_{i=1}^M, H, \mu_b, \mathbb{P}_b)$, where
 1460 $\mathcal{B} \subset \Delta(\mathcal{S})$ represents the set of possible beliefs, $\mu_b(\beta_1) = \int \mathbf{1}_{\beta_0=f_{\text{belief}}(\cdot|\mathbf{o}_0)} \mu_0(s_1) \mathbb{O}(\mathbf{o}_0 | s_0) ds_0$,
 1461 and $\mathbb{P}_b(\beta_{h+1} | \beta_h, \mathbf{a}_h) = \int \mathbf{1}_{\beta_{h+1}=f_{\text{belief}}(\tau_h, \mathbf{a}_h, \beta_h)} \mathbb{P}(\mathbf{o}_{h+1} | \beta_h, \mathbf{a}_h) d\mathbf{o}_{h+1}$. Any joint policy $\pi(\cdot | \tau)$
 1462 of the original POMG uniquely maps to a belief-based policy $\pi_b(\cdot | f_{\text{belief}}(\tau))$ in the associated MG.
 1463

1464 For a given belief-based policy π_b , the state value function $V_h^{\pi_b}(\beta_h)$ and state-action
 1465 value function $Q_h^{\pi_b}(\beta_h, \mathbf{a}_h)$ for the belief Markov game can be defined as: $V_h^{\pi_b}(\beta_h) =$
 1466 $\mathbb{E} \left[\sum_{t=h}^H r(\mathbf{o}_t, \mathbf{a}_t) | \beta_h \right]$, $Q_h^{\pi_b}(\beta_h, \mathbf{a}_h) = \mathbb{E} \left[\sum_{t=h}^H r(\mathbf{o}_t, \mathbf{a}_t) | \beta_h, \mathbf{a}_h \right]$. Therefore, the Bellman
 1467 equation can be expressed as

$$1469 \quad V_h^{\pi_b}(\beta_h) = \mathbb{E}_{\pi_b} [Q_h^{\pi_b}(\beta_h, \mathbf{a}_h)], \quad Q_h^{\pi_b}(\beta_h, \mathbf{a}_h) = r(\mathbf{o}_h, \mathbf{a}_h) + \mathbb{E}_{\mathbb{P}_b} [V_{h+1}^{\pi_b}(\beta_{h+1})]. \quad (13)$$

1470 Note that the equivalent MG is based on beliefs, which are not directly observed. More importantly,
 1471 these beliefs rely on the entire history, including all players' observations and actions. Consequently,
 1472 the joint distribution is supported on a space with exponentially growing dimensionality. This
 1473 exponential representation complexity leads to infeasible computational and statistical demands,
 1474 highlighting the inherent limitations of directly applying MG-based RL algorithms to POMGs.
 1475 Consequently, several special structures, such as L -decodability, have been investigated to reduce the
 1476 statistical complexity of learning in a POMG, motivating our work.
 1477

1478 C.2 DERIVATION OF LLVR

1480 We now derive LLVR that leverages the underlying structure of L -decodability to support exact and
 1481 tractable linear representation of the value functions over the latent space in POMGs without full
 1482 history dependence.

1483 As mentioned above, though an equivalent belief-based MG can provide a Markovian Bellman
 1484 recursion (cf. equation 13), operating within the belief space tends to be computationally challenging.
 1485 We derive L -step Latent Variable Representation (LLVR) for L -decodable POMGs that leverages the
 1486 underlying structure of L -decodability to remove the need for explicit belief calculations.

1487 By Definition 9, an L -step memory state τ_h^L contains sufficient information. Therefore, we obtain
 1488 the simplification $Q_h^{\pi_b}(f_{\text{belief}}(\tau_h), \mathbf{a}_h) = Q_h^{\pi_b}(p^*(\tau_h^L), \mathbf{a}_h)$. Since any belief-based policy π_b has a
 1489 corresponding joint policy π , we will henceforth make no distinction between them and uniformly
 1490 denote both as π . To simplify notation, we redefine $Q_h^{\pi}(\tau_h^L, \mathbf{a}_h) = Q_h^{\pi}(p^*(\tau_h^L), \mathbf{a}_h)$, leading to the
 1491 simplifie Bellman equation:
 1492

$$1493 \quad Q_h^{\pi}(\tau_h^L, \mathbf{a}_h) = r(\mathbf{o}_h, \mathbf{a}_h) + \mathbb{E}_{\mathbb{P}^{\pi}(\mathbf{o}_{h+1} | \tau_h^L, \mathbf{a}_h)} [V_{h+1}^{\pi}(\tau_{h+1}^L)], \quad (14)$$

1495 where $\mathbb{P}^{\pi}(\cdot)$ denotes the probability distribution under policy π .

1496 Note that in equation 14, there is an additional dependence of $V_{h+1}^{\pi}(\tau_{h+1}^L)$ on (τ_h^L, \mathbf{a}_h)
 1497 since τ_{h+1}^L shares overlapping components with (τ_h^L, \mathbf{a}_h) . Specifically, τ_{h+1}^L includes
 1498 $(\mathbf{o}_{h-L+2}, \mathbf{a}_{h-L+2}, \dots, \mathbf{o}_h, \mathbf{a}_h)$ from (τ_h^L, \mathbf{a}_h) . Consequently, we turn to the following L -step
 1499 Bellman equation to avoid this overlapping.
 1500

$$1501 \quad Q_h^{\pi}(\tau_h^L, \mathbf{a}_h) = \mathbb{E}_{\mathbb{P}^{\pi}(\mathbf{o}_{h+1:h+L-1} | \tau_h^L, \mathbf{a}_h)} \left[\left(\sum_{i=h}^{h+L-1} r(\mathbf{o}_i, \mathbf{a}_i) \right) + V_{h+L}^{\pi}(\tau_{h+L}^L) | \tau_h^L, \mathbf{a}_h \right]. \quad (15)$$

1502 We note that by L -decodability, there exists a moment-matching policy χ_{π} for arbitrary policy π ,
 1503 which is conditioned on a latent variable to generate the same expected observation dynamics while
 1504 being independent of history older than L steps (14). We defer the detailed construction of χ_{π} to
 1505 Appendix D for brevity. Using such a correspondent moment-matching policy χ_{π} of π , one can write
 1506

$$1507 \quad \mathbb{P}^{\pi}(\tau_{h+L}^L | \tau_h^L, \mathbf{a}_h) = \int p(z_{h+1} | \tau_h^L, \mathbf{a}_h) \mathbb{P}^{\chi_{\pi}}(\tau_{h+L}^L | z_{h+1}) dz_{h+1} = \langle p(\cdot | \tau_h^L, \mathbf{a}_h), \mathbb{P}^{\chi_{\pi}}(\tau_{h+L}^L | \cdot) \rangle \quad (16)$$

1508 where z denotes the latent variable and the first equality follows from the construction of χ_{π} .
 1509

Substituting equation 16 back into equation 15 enables a reformulation of $Q_h^\pi(\tau_h^L, \mathbf{a}_h)$ in linear form. Each reward and value term in equation 15 becomes an inner product of $p(z_{h+1} | \tau_h^L, \mathbf{a}_h)$ with the corresponding integrals. Specifically, for the first term in (15), for all $k \in \{0, \dots, L-1\}$, we have

$$\mathbb{E}_{\mathbf{o}_{h+k} | \tau_h^L, \mathbf{a}_h}^\pi [r(\mathbf{o}_{h+k}, \mathbf{a}_{h+k})] = \left\langle p(\cdot | \tau_h^L, \mathbf{a}_h), \underbrace{\int \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+k}, \mathbf{a}_{h+k} | \cdot) r(\mathbf{o}_{h+k}, \mathbf{a}_{h+k}) d\mathbf{o}_{h+k} d\mathbf{a}_{h+k}}_{\omega_{h+k}^\pi(\cdot)} \right\rangle$$

Similarly, for the second term in (15), we have

$$\mathbb{E}^\pi[V_{h+L}^\pi(\tau_{h+L}^L)] = \left\langle p(\cdot | \tau_h^L, \mathbf{a}_h), \underbrace{\int \mathbb{P}^{\chi_\pi}(\tau_{h+L}^L | \cdot) V(\tau_{h+L}^L) d\tau_{h+L}}_{\omega_{h+L}^\pi(\cdot)} \right\rangle \quad (17)$$

Altogether, we conclude that in an L -decodable POMG, both the reward function r and the value function $Q_h^\pi(\tau_h^L, \mathbf{a}_h)$ can be linearly represented with $p(z_{h+1} | \tau_h^L, \mathbf{a}_h)$. Specifically, defining $\tilde{\omega}_h^\pi(\cdot) = \sum_{k=0}^L \omega_{h+k}^\pi(\cdot)$, the Q-function can be represented as $Q_h^\pi(\tau_h^L, \mathbf{a}) = \langle p(\cdot | \tau_h^L, \mathbf{a}_h), \tilde{\omega}_h^\pi(\cdot) \rangle$. With this linear representation for Q_h^π , the backup step of the Bellman recursion can be replaced by a least squares regression in the space spanned by $p(\cdot | \tau_h^L, \mathbf{a})$. Specifically, at step h , the estimate of $Q_h^\pi(\tau_h, \mathbf{a}_h)$ can be obtained by the optimization:

$$\min_{\tilde{\omega}_h^\pi} \mathbb{E}_{\tau_{h:h+L}^L, \mathbf{a}_h}^\pi \left[\left(\langle p(\cdot | \tau_h^L, \mathbf{a}_h), \tilde{\omega}_h^\pi(\cdot) \rangle - \left(\left(\sum_{i=h}^{h+L-1} r(\mathbf{o}_i, \mathbf{a}_i) \right) + \langle p(\cdot | \tau_{h+L}^L, \mathbf{a}_{h+L}), \omega_{h+L}^\pi(\cdot) \rangle \right) \right)^2 \right]. \quad (18)$$

Since $p(z_{h+1} | \tau_h^L, \mathbf{a}_h)$ is typically unknown a priori that must be learned from data, we can estimate it via MLE for conditional density estimation,

$$\max_{p, \mathbb{P}^{\chi_\pi}} \log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | \tau_h^L, \mathbf{a}_h) = \log \langle p(\cdot | \tau_h^L, \mathbf{a}_h), \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | \cdot) \rangle$$

Note that solving this MLE problem is generally intractable and the following evidence lower bound (ELBO) can be constructed as a tractable surrogate objective for MLE (47):

$$\max_{q \in \Delta(\mathcal{Z})} \mathbb{E}_{q(\cdot | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})} [\log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)] - KL(q(\cdot | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) || p(z_h | \tau_h^L, \mathbf{a}_h)). \quad (19)$$

We provide the complete mathematical derivation of the ELBO in Appendix F. This derivation establishes a computational friendly variational ELBO and the methods for solving this ELBO have been extensively explored within the variational inference community (48) (see Appendix F for detailed analysis). We remark that under Assumption 4, the estimator obtained by maximizing the ELBO is identical to the estimator obtained by MLE and the ELBO can be efficiently optimized using variational inference techniques. We can parameterize the solution to the ELBO with a variational distribution class $\mathcal{Q} = \{q_h(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})\}_{h \in [H]}$ and model class $\mathcal{M} = \{(p_h(z | \tau_h^L, \mathbf{a}_h), p_h(\mathbf{o}_{h+1:h+l} | z))\}_{h \in [H]}$. Practically, both \mathcal{Q} and \mathcal{M} can be implemented as neural networks, yielding approximate solutions $\hat{q}(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})$, $\hat{p}_{h,n}(\mathbf{o}_{h+1:h+l} | z_h)$ and $\hat{p}_{n,h}(z_h | \tau_h^L, \mathbf{a}_h)$ and approximated transition $\hat{\mathcal{P}}_n = \{(\hat{p}_{h,n}(z_h | \tau_h^L, \mathbf{a}_h), \hat{p}_{h,n}(\mathbf{o}_{h+1} | z_h))\}_{h \in [H]}$.

Once $\hat{p}_{n,h}(z | \tau_h^L, \mathbf{a}_h)$ is obtained, the Q-function can be approximated as $Q_h^\pi(\tau_h^L, \mathbf{a}_h) = \langle \hat{p}(z | \tau_h^L, \mathbf{a}), \omega(z) \rangle$ and can be obtained by a least square regression (18). However, if z is continuous, then $\omega(z)$ is infinite-dimensional. To deal with the infinite-dimensional $\omega(z)$, we follow the trick in (41) that forms $Q^\pi(\tau_h^L, \mathbf{a}_h)$ as an expectation $Q^\pi(\tau_h^L, \mathbf{a}_h) = \langle p(z | \tau_h^L, \mathbf{a}_h), w^\pi(z) \rangle = \mathbb{E}_{p(z | \tau_h^L, \mathbf{a}_h)} [w^\pi(z)]$ and then approximate it with random feature quadrature. Specifically, we consider $\omega(z)$ lying in certain RKHS with φ as its random feature basis, i.e., $\omega(z) = \mathbb{E}_{P(\xi)} [\varphi(\xi, z)]$. As a result, $Q^\pi(\tau_h^L, \mathbf{a}_h) \approx \frac{1}{K} \sum_{i=1}^K \omega^\pi(\xi_i) \varphi(z_i, \xi_i)$ where the latent variables $z_i \sim \hat{p}(z | \tau_h^L, \mathbf{a}_h)$ and random features $\xi_i \sim P(\xi)$. If the random feature φ is specified, then ω can be implemented by a neural network ω_θ . We defer the detailed derivation to Appendix E.1.

1566 **D MOMENT MATCHING POLICY**
15671568 We provide a formal definition of the moment matching policy below.
15691570 **Definition 25** (Moment Matching Policy (14)). *With the L -decodability assumption, for $h \in [H]$,
1571 $h' \in [h - L + 1, h]$ and $l = h' - h + L - 1$, we can define the moment matching policy $\chi^{\pi, h} =$
1572 $\{\chi_{h'}^{h, \pi} : \mathcal{S}^l \times \mathcal{O}^l \times \mathcal{A}^{l-1} \rightarrow \Delta(\mathcal{A})\}_{h'=h-L+1}^h$ introduced by (14), such that*

1573
$$\chi_{h'}^{\pi, h}(\mathbf{a}_{h'} | (s_{h-L+1:h'}, \mathbf{o}_{h-L+1:h'}, \mathbf{a}_{h-L+1:h'-1}))$$

1574
$$:= \mathbb{E}_{\pi}^{\mathcal{P}}[\pi_{h'}(\mathbf{a}_{h'} | x_{h'}) | (s_{h-L+1:h'}, \mathbf{o}_{h-L+1:h'}, \mathbf{a}_{h-L+1:h'-1})], \quad \forall h' \leq h - 1,$$

1575 and $\chi_h^{\pi, h} = \pi_h$. We further define $\tilde{\pi}^h$, which takes first $h - L$ actions from π and the remaining L
1576 actions from $\chi^{\pi, h}$.
15771578 The primary motivation for defining the moment matching policy is to construct a policy that is
1579 conditionally independent of the past history for theoretical analysis while remaining indistinguishable
1580 from the history-dependent policy to align with practical algorithms. By Lemma B.2 in (14), under
1581 the L -decodability assumption, for a fixed $h \in [H]$, we have $d_{P, h}^{\pi}(x_h) = d_{P, h}^{\tilde{\pi}^h}(x_h)$, for all L -step
1582 policy π and $x_h \in \mathcal{X}_h$. As $\chi_h^{\pi, h} = \pi_h$, we have $d_{P, h}^{\pi}(x_h, a_h) = d_{P, h}^{\tilde{\pi}^h}(x_h, a_h)$. This enables the
1583 factorization in equation 17 without the dependency of the overlap observation trajectory.
1584
15851586 **E THEORETICAL ANALYSIS FOR METHODS FOR L -DECODABLE POMGS**
15871588 This section presents the theoretical guarantees for our algorithms for L -decodable POMGs, including
1589 key technical background and assumptions, and proof for online and offline setting. For notational
1590 simplicity, we denote x and \mathcal{X} by τ^L and \mathcal{T}^L , respectively, in this section.
15911592 **E.1 TECHNICAL BACKGROUND ABOUT KERNEL METHOD**
15931594 In this subsection, we revisit several important concepts from functional analysis that will be repeatedly
1595 used in our theoretical analysis. We start from the concept of the $L_2(\mu)$ space. For a complete
1596 introduction, we refer the reader to (41).
15971598 **Definition 26** ($L_2(\mu)$ space). *Let $(\mathcal{X}, \mathcal{A}, \mu)$ be a measure space. The $L_2(\mu)$ space is defined as the
1599 Hilbert space consists of square-integrable function with respect to μ , with inner product*

1600
$$\langle f, g \rangle_{L_2(\mu)} := \int_{\mathcal{X}} f g d\mu,$$

1601
1602

1603 and the norm

1604
$$\|f\|_{L_2(\mu)} := \left(\int_{\mathcal{X}} f^2 d\mu \right)^{1/2}.$$

1605
1606

1607 Throughout the paper, μ is specified as the Lebesgue measure for continuous \mathcal{X} and the counting
1608 measure for discrete \mathcal{X} . Specifically, when \mathcal{X} is discrete, we can represent f as a sequence $[f(x)]_{x \in \mathcal{X}}$,
1609 and the corresponding $L_2(\mu)$ inner product and $L_2(\mu)$ norm is identical to the ℓ^2 inner product and
1610 ℓ^2 norm, which is defined as

1611
$$\langle f, g \rangle_{\ell^2} = \sum_{x \in \mathcal{X}} f(x) g(x), \quad \|f\|_{\ell^2} = \left(\sum_{x \in \mathcal{X}} f^2(x) \right)^{1/2},$$

1612
1613

1614 that is closely related to the inner product and norm of the Euclidean space.
16151616 Then we introduce several concepts of the kernel and the reproducing kernel Hilbert space (RKHS).
16171618 **Definition 27** ((Positive-Definite) Kernel (21)). *A symmetric function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ is said to be
1619 a positive definite kernel if for any $\{x_1, \dots, x_m\} \subset \mathcal{X}$, the matrix $\mathbf{K} = [k(x_i, x_j)]_{ij} \in \mathbb{R}^{m \times m}$ is
symmetric positive-definite.*

1620
 1621 **Definition 28** (Reproducing Kernel Hilbert Space (RKHS) (49)). *Let $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ be a*
 1622 *Positive-Definite kernel. Then, there exists a Hilbert space \mathcal{H}_k and a mapping $\phi : \mathcal{X} \rightarrow \mathcal{H}_k$ such*
 1623 *that:*

$$1623 \quad \forall x, x' \in \mathcal{X}, \quad k(x, x') = \langle \phi(x), \phi(x') \rangle.$$

1624 *Furthermore, \mathcal{H}_k has the following property known as the reproducing property:*

$$1625 \quad \forall h \in \mathcal{H}_k, \forall x \in \mathcal{X} \quad f(x) = \langle f, k(x, \cdot) \rangle.$$

1627 *\mathcal{H}_k is called a reproducing kernel Hilbert space (RKHS) associated to k .*

1628 **Theorem 29** (Mercer’s Theorem (50)). *Let $k(x, x')$ be a bounded continuous positive definite kernel.*
 1629 *Then, $k(x, x')$ admits **Mercer decomposition**, i.e. there exists a countable orthonormal basis $\{e_i\}_{i=1}^{\infty}$*
 1630 *of $\mathcal{L}_2(\mu)$ with corresponding eigenvalues $\{\nu_i\}_{i=1}^{\infty}$, such that*

$$1632 \quad k(x, x') = \sum_{i=1}^{\infty} \nu_i e_i(x) e_i(x'), \quad (20)$$

1635 *where the convergence is absolute and uniform for all $(x, x') \in \mathcal{X} \times \mathcal{X}$. Without loss of generality,*
 1636 *we assume $\nu_1 \geq \nu_2 \geq \dots > 0$.*

1637 **Definition 30** (Random Feature). *The kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ has a random feature representation if*
 1638 *there exists a function $\psi : \mathcal{X} \times \Xi \rightarrow \mathbb{R}$ and a probability measure P over Ξ such that*

$$1640 \quad k(x, x') = \int_{\Xi} \psi(x; \xi) \psi(x'; \xi) dP(\xi).$$

1642 **Remark (random feature quadrature):** We here justify the random feature quadrature (41) for
 1643 completeness.

1644 We can represent Q_h^{π} as an expectation,

$$1646 \quad Q_h^{\pi}(x_h, a_h) = \langle p(z|x_h), w_h^{\pi}(z) \rangle = \mathbb{E}_{p(z|x_h)} [w_h^{\pi}(z)]_{L_2(\mu)}$$

1647 Under the assumption that $w_h^{\pi}(\cdot) \in \mathcal{H}_k$, where \mathcal{H}_k denoting some RKHS with some kernel $k(\cdot, \cdot)$.
 1649 When $k(\cdot, \cdot)$ can be represented through random feature, i.e.,

$$1650 \quad k(x, y) = \mathbb{E}_{P(\xi)} [\psi(x; \xi) \psi(y; \xi)],$$

1652 the $w_h^{\pi}(z)$ admits a representation as

$$1653 \quad w_h^{\pi}(z) = \mathbb{E}_{P(\xi)} [\tilde{w}_h^{\pi}(\xi) \psi(z; \xi)].$$

1655 Therefore, we plug this random feature representation of $w_h^{\pi}(z)$ to $Q_h^{\pi}(x_h, a_h)$, we obtain

$$1656 \quad Q_h^{\pi}(x_h, a_h) = \mathbb{E}_{p(z|x_h), P(\xi)} [\tilde{w}_h^{\pi}(\xi) \psi(z; \xi)]. \quad (21)$$

1657 Applying Monte-Carlo approximation to equation 21, we obtain the random feature quadrature.

1659 E.2 TECHNICAL CONDITIONS

1661 We adopt the following assumptions for the reproducing kernel, which have been previously used in
 1662 (41; 15) in the single-agent setting.

1663 **Assumption 2** (Regularity Conditions). *Let \mathcal{Z} be a compact metric space with respect to the Lebesgue*
 1664 *measure ν when \mathcal{Z} is continuous. Additionally, we assume that $\int_{\mathcal{Z}} k(z, z) d\nu \leq 1$.*

1666 **Remark 31.** *Assumption 2 is mainly for the ease of presentation. The assumption $\int_{\mathcal{Z}} k(z, z) d\nu \leq 1$*
 1667 *can be relaxed to $\int_{\mathcal{Z}} k(z, z) d\nu \leq c$ with some positive constant c , at the cost of additional terms at*
 1668 *most $\text{poly}(c)$ in the sample complexity.*

1669 **Assumption 3** (Eigendecay Conditions). *Assume that the sequence $\{\nu_i\}_{i \in I}$ defined in Theorem 29*
 1670 *satisfies one of the following conditions:*

- 1671 • β -finite spectrum: for some positive integer β , we have $\nu_i = 0, \forall i > \beta$.
- 1672 • β -polynomial decay: $\nu_i \leq C_0 i^{-\beta}$ with absolute constant C_0 and $\beta > 1$.
- 1673 • β -exponential decay: $\nu_i \leq C_1 \exp(-C_2 i^{\beta})$, with absolute constants C_1, C_2 and $\beta > 0$.

1674 We will use C_{poly} to denote constants in the analysis of β -polynomial decay, which depend only on
 1675 C_0 and β , and C_{exp} to denote constants in the analysis of β -exponential decay, which depend only
 1676 on C_1 , C_2 , and β . This simplifies the dependency on the constant terms. Both C_{poly} and C_{exp} may
 1677 vary step by step.

1678 **Remark 32.** Most existing kernels satisfy one of these eigendecay conditions. For example, the
 1679 linear kernel and the polynomial kernel satisfy the β -finite spectrum condition, the Matern kernel
 1680 satisfies the β -polynomial decay and the Gaussian kernel satisfies the β -exponential decay.
 1681

1682 **E.3 ALGORITHM AND GUARANTEE FOR LLVR WITH EXACT VALUE ORACLE**
 1683

1684 In this subsection, we provide PAC guarantee of OBOVI-LLVR.

1685 **Theorem 33 (PAC guarantee of OBOVI-LLVR).** When OBOVI-LLVR is applied with parameters
 1686 $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\hat{b}_{n,h} = \min\left\{\alpha_n \|\hat{p}_n(\cdot|x_{h-L}, a_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h,\hat{p}_n}^{-1}}, H\right\}$ with $\alpha_n =$
 1687 $\Theta\sqrt{\lambda C + nL|\mathcal{A}|^L \zeta_n}$ and

- β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(N|\mathcal{M}|/\delta))$;
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(N|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}}(\log N)^{1/\beta} + \log(N|\mathcal{M}|/\delta))$;

1688 by setting the number of episodes N to be at $N = \tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$, with probability $1 - \delta$,
 1689 the output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$.

1690 *Proof.* According to Lemma 56, the estimated transition satisfies

$$\mathbb{E}_{(x_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot|x_h, \mathbf{a}_h) - \mathbb{P}_h^{\hat{\mathcal{P}}}(\cdot|x_h, \mathbf{a}_h) \right\|_1^2 \leq \zeta_n.$$

1691 Denote by $V_P^i(\pi)$ the value function of player i under policy π and transition P . Since the returned pol-
 1692 icy $\hat{\pi}$ is an equilibrium with respect to $\hat{\mathcal{P}}$, we have for all $i \in [N]$: $V_{\hat{\mathcal{P}}}^i(\hat{\pi}) = \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) :=$
 1693 $V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i)$.

1694 Note that

$$\begin{aligned} |V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^i) - V_{\mathcal{P}}^{i,\dagger}(\hat{\pi}^i)| &= \left| \max_{\tilde{\pi}^i} V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - \max_{\tilde{\pi}^i} V_{\mathcal{P}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) \right| \\ &\leq \max_{\tilde{\pi}^i} |V_{\hat{\mathcal{P}}}^i(\tilde{\pi}^i, \hat{\pi}^{-i}) - V_{\mathcal{P}}^i(\tilde{\pi}^i, \hat{\pi}^{-i})| \\ &\leq \sqrt{\zeta_n} \end{aligned}$$

1695 Thus, we have

$$\begin{aligned} V_{\mathcal{P}}^i(\hat{\pi}) &\geq V_{\hat{\mathcal{P}}}^i(\hat{\pi}) - \sqrt{\zeta_n} \\ &= V_{\hat{\mathcal{P}}}^{i,\dagger}(\hat{\pi}^{-i}) - \sqrt{\zeta_n} \\ &\geq V_{\mathcal{P}}^{i,\dagger}(\hat{\pi}^{-i}) - 2\sqrt{\zeta_n} \end{aligned}$$

1696 Hence, $\hat{\pi}$ is an $2\sqrt{\zeta_n}$ -approximate equilibrium.

1697 To guarantee an ε -approximate equilibrium, we require $2\sqrt{\zeta_n} \leq \varepsilon$, which leads to $N =$
 1698 $\tilde{O}(\varepsilon^{-2} \log(H|\mathcal{M}|/\delta\varepsilon))$. \square

1699 **E.4 FORMAL PROOF FOR ONLINE SETTING**

1700 In this subsection, we provide analysis for OFOVI, establishing key technical lemmas that culminate
 1701 in the convergence theorem. We start from the following assumptions, that are commonly used in the
 1702 literature (15; 41; 37; 30).

1703 **Assumption 4 (Realizability).** Assume $\{(p_h(z|\tau_h^L, \mathbf{a}_h), \mathbb{P}_h^\pi(\mathbf{o}_{h+1:h+l}|z))\}_{h \in [H]} \in \mathcal{M}$ and
 1704 $p_h(z|\tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) \in \mathcal{Q}$ for all $(p_h(z|\tau_h^L, \mathbf{a}_h), p_h(\mathbf{o}_{h+1:h+l}|z)) \in \mathcal{M}$.

1728 **Assumption 5** (Normalization Conditions). $\forall \hat{\mathcal{P}} = \{(\hat{p}_h(z|\tau_h^L, \mathbf{a}_h), \hat{p}_h(\mathbf{o}_{h+1}|z))\}_{h \in [H]} \in \mathcal{M}$, $h \in [H]$, $(\tau_h^L, \mathbf{a}_h) \in \mathcal{T}^L \times \mathcal{A}$, $\|\hat{p}_h(\cdot|\tau_h^L, \mathbf{a}_h)\|_{\mathcal{H}_K} \leq 1$ for some kernel K . Furthermore, $\forall g : \mathcal{T}^L \rightarrow \mathbb{R}$ such that $\|g\|_\infty \leq 1$, we have $\|\int_{\mathcal{T}^L} p(\tau_{h+L}^L|\cdot)g(\tau_{h+L}^L)d\tau_{h+L}^L\|_{\mathcal{H}_K} \leq C$.

1732 We remark that under Assumption 4, the estimator obtained by maximizing the ELBO is identical to
1733 the estimator obtained by MLE and the ELBO can be efficiently optimized using variational inference
1734 techniques. In Appendix F, we further explain why ELBO optimization offers superior computational
1735 tractability compared to direct MLE optimization.

1736 **Lemma 34** (L -step back inequality for the true model). *Given a set of functions $[g_h]_{h \in [H]}$, where
1737 $g_h : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$, we have that $\forall \pi$,*

$$\begin{aligned} 1740 \sum_{h \in [H]} \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\mathcal{P}, h}^\pi} [g_h(x_h, \mathbf{a}_h)] &\leq \sum_{h \in [H]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^\pi} \left[\|p(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho_{n, h-L}, p}^{-1}} \right] \\ 1742 &\cdot \sqrt{n|\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-L} \circ {}^L \mathcal{U}(\mathcal{A})} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2] + \lambda B^2 C} \end{aligned}$$

1744 *Proof.* The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
1745 completeness. Recall the moment matching policy χ_π . Since $\chi_{\pi, h}$ does not depend on $(x_{h-L}, \mathbf{a}_{h-L})$,
1746 we can make the following decomposition:

$$\begin{aligned} 1749 \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\mathcal{P}, h}^\pi} g_h(x_h, \mathbf{a}_h) \\ 1750 &= \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^\pi} \left[\int_{x_h} \langle p(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbb{P}^{\chi_\pi}(x_h|\cdot) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right] \\ 1753 &\leq \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^\pi} \|p(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho_{n, h-L}, p}^{-1}} \\ 1754 &\cdot \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h|\cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho_{n, h-L}, p}}. \end{aligned}$$

1758 Direct computation shows that

$$\begin{aligned} 1760 \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h|\cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho_{n, h-L}, p}}^2 \\ 1761 &= n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho_{n, h-L}} \left[\mathbb{E}_{x_h \sim \mathbb{P}^{\chi_\pi}(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbf{a}_h \sim \chi_{\pi, h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] \right]^2 \\ 1763 &\quad + \lambda \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h|\cdot) \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{\mathcal{H}}^2 \\ 1765 &\leq n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho_{n, h-L}} \mathbb{E}_{x_h \sim \mathbb{P}^{\chi_\pi}(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbf{a}_h \sim \chi_{\pi, h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)]^2 + \lambda B^2 C \\ 1767 &\leq n |\mathcal{A}|^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-L} \circ {}^L \mathcal{U}(\mathcal{A})} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)]^2 + \lambda B^2 C, \end{aligned}$$

1770 which finishes the proof. \square

1772 **Lemma 35** (L -step back inequality for the learned model). *Assume we have a set of functions
1773 $[g_h]_{h \in [H]}$, where $g_h : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$. Given Lemma 51, we have that $\forall \pi$,*

$$\begin{aligned} 1776 \sum_{h \in [H]} \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n, h}}^\pi} [g_h(x_h, \mathbf{a}_h)] \\ 1777 &\leq \sum_{h \in [H]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{n, h-L}}^\pi} \left[\|\hat{p}(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho_{n, h-2L}, p}^{-1}} \right] \\ 1778 &\cdot \sqrt{n |\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-2L} \circ {}^{2L} \mathcal{U}(\mathcal{A})} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)]^2 + \lambda B^2 C + nL |\mathcal{A}|^{L-1} B^2 \zeta_n} \end{aligned}$$

1782 *Proof.* The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
1783 completeness. We define a similar moment matching policy and make the following decomposition:
1784

$$\begin{aligned}
& \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}_{n,h}}^\pi} [g_h(x_h, \mathbf{a}_h)] \\
&= \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{n,h-L}}^\pi} \left[\int_{x_h} \langle \hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L}), \hat{p}(x_h | \cdot) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right] \\
&\leq \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{n,h-L}}^\pi} \|\hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \\
&\quad \cdot \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}}.
\end{aligned}$$

1794 Direct computation shows that
1795

$$\begin{aligned}
& \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}}^2 \\
&= n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A})} \left[\mathbb{E}_{x_h \sim \hat{\mathcal{P}}_n(\cdot | \tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}), \mathbf{a}_h \sim \chi_{\pi,h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] \right]^2 \\
&\quad + \lambda \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{\mathcal{H}}^2 \\
&\leq n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A})} \mathbb{E}_{x_h \sim \hat{\mathcal{P}}_n(\cdot | \tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}), \mathbf{a}_h \sim \chi_{\pi,h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)]^2 + \lambda B^2 C \\
&\leq n |\mathcal{A}|^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A})} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)]^2 + n L |\mathcal{A}|^{L-1} B^2 \zeta_n + \lambda B^2 C,
\end{aligned}$$

1807 where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
1808 the proof. \square

1809 **Lemma 36** (Optimism for NE and CCE). *For episode $n \in [N]$, set*

$$\hat{\Sigma}_{n,h} = \min \left\{ \alpha_n \|\hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{p}_n}^{-1}}, H \right\},$$

1813 with $\alpha_n = \Theta(\sqrt{\lambda C + n L |\mathcal{A}|^L \zeta_n})$,

$$\hat{\Sigma}_{n,h, \hat{p}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h, \hat{p}_n} := \sum_{(x_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} [\hat{p}_n(z | x_h, \mathbf{a}_h) \hat{p}_n(z | x_h, \mathbf{a}_h)^\top] + \lambda T_K^{-1}$$

1818 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
1819 different eigendecay of K as follows:

- β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(N|\mathcal{M}|/\delta))$;
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(N|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log N)^{1/\beta} + \log(N|\mathcal{M}|/\delta))$;

1826 c is an absolute constant. π^n is computed by solving NE or CCE. Then with probability at least $1 - \delta$,
1827 $\forall n \in [N], i \in [M]$ we have

$$\bar{v}_i^n(x) - v_i^{\dagger, \pi_{-i}^n}(x) \geq 0.$$

1831 *Proof.* Define $\tilde{\mu}_{h,i}^n(\cdot | x) := \arg \max_{\mu} \left(\mathbb{D}_{\mu, \pi_{h,-i}^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (x)$ as the best response policy for player i
1832 at step h , and let $\tilde{\pi}_h^n = \tilde{\mu}_{h,i}^n \times \pi_{h,-i}^n$. Let $f_h^n(x, \mathbf{a}) = \left\| \hat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - P_h(\cdot | x, \mathbf{a}) \right\|_1$, then according
1833 to lemma 51 and lemma 56, we have that using the chosen λ , with probability at least $1 - \delta$,
1834 $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,

1836

1837

1838

$$\mathbb{E}_{(x, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(x, \mathbf{a}))^2 \right] \leq \zeta_n, \quad \mathbb{E}_{(x, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(x, \mathbf{a}))^2 \right] \leq \zeta_n,$$

$$\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{n,h-L, \hat{\rho}_n}^{-1}} = \Theta \left(\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{\rho_{n,h-L}, \hat{\rho}_n}^{-1}} \right).$$

1843

1844

1845 A direct conclusion is we can find an absolute constant c , such that

1846

1847

$$\hat{b}_{n,h}(x_h, \mathbf{a}_h) = \min \left\{ \alpha_n \|\hat{p}_{n,h}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{\rho}_n}^{-1}}, H \right\}$$

$$\geq \min \left\{ c \alpha_n \|\hat{p}_{n,h}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{\rho}_n}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H].$$

1852

1853

1854 Next, we prove by induction that $\forall h \in [H]$,

1855

1856

$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - V_{h,i}^{\dagger, \pi_{-i}^n}(x) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h'}}^{\pi^n}} \left[\hat{b}_{n,h'}(x, \mathbf{a}) - H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right]. \quad (22)$$

1860

1861

1862

1863 First, notice that $\forall h \in [H]$,

1864

1865

$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - V_{h,i}^{\dagger, \pi_{-i}^n}(x) \right] = \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right) (x) - \left(\mathbb{D}_{\pi_h^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (x) \right]$$

$$\geq \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right) (x) - \left(\mathbb{D}_{\pi_h^n} Q_{h,i}^{\dagger, \pi_{-i}^n} \right) (x) \right]$$

$$= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(x, \mathbf{a}) - Q_{h,i}^{\dagger, \pi_{-i}^n}(x, \mathbf{a}) \right],$$

1872

1873

1874 where the inequality uses the fact that π_h^n is the NE (or CCE) solution for $\{\bar{Q}_{h,i}^n\}_{i=1}^M$. Now we are
1875 ready to prove equation 22:
1876

1877

1878

1879

1880

1881

1882

- When $h = H$, we have

1883

1884

$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\bar{V}_{H,i}^n(x) - V_{H,i}^{\dagger, \pi_{-i}^n}(x) \right] \geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\bar{Q}_{H,i}^n(x, \mathbf{a}) - Q_{H,i}^{\dagger, \pi_{-i}^n}(x, \mathbf{a}) \right]$$

1885

1886

$$= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\hat{b}_{n,H}(x, \mathbf{a}) \right]$$

1887

1888

1889

$$\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\hat{b}_{n,H}(x, \mathbf{a}) - H \min \{f_H^n(x, \mathbf{a}), 1\} \right].$$

1890 • Suppose the statement is true for step $h + 1$, then for step h , we have

$$\begin{aligned}
& \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\bar{V}_{h,i}^n(x) - V_{h,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
& \geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\bar{Q}_{h,i}^n(x, \mathbf{a}) - Q_{h,i}^{\dagger, \pi_{-i}^n}(x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) + \left(\hat{\mathcal{P}}_{n,h} \bar{V}_{h+1,i}^n \right)(x, \mathbf{a}) - \left(P_h V_{h+1,i}^{\dagger, \pi_{-i}^n} \right)(x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right. \\
& \quad \left. + \left(\hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - V_{h+1,i}^{\dagger, \pi_{-i}^n} \right) \right)(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_{n,h} - P_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right)(x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_{n,h} - P_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right)(x, \mathbf{a}) \right] \\
& \quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\tilde{\pi}^n}} \left[\bar{V}_{h+1,i}^n(x) - V_{h+1,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
& \geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
& \quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\tilde{\pi}^n}} \left[\bar{V}_{h+1,i}^n(x) - V_{h+1,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
& \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h'}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h'}(x, \mathbf{a}) - H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right],
\end{aligned}$$

1913 where we use the fact

$$\begin{aligned}
& \left| \left(\hat{\mathcal{P}}_{n,h} - P_h \right) V_{h+1,i}^{\dagger, \pi_{-i}^n} \right| (x, \mathbf{a}) \leq \min \left\{ H, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - P_h(\cdot | x, \mathbf{a}) \right\|_1 \left\| V_{h+1,i}^{\dagger, \pi_{-i}^n} \right\|_\infty \right\} \\
& \leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - P_h(\cdot | x, \mathbf{a}) \right\|_1 \right\} \\
& = H \min \{1, f_{h'}^n(x, \mathbf{a})\}
\end{aligned}$$

1919 and the last row uses the induction assumption.

1920 Therefore, we have proved equation 22. We then apply $h = 0$ to equation 22, and get

$$\begin{aligned}
& \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
& = \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,0}}^{\tilde{\pi}^n}} \left[\bar{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
& \geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
& = \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\min \{f_h^n(x, \mathbf{a}), 1\} \right].
\end{aligned}$$

1931 Next we are going to bound the second term. Applying Lemma 35 to $g_h(x, \mathbf{a}) = \min \{f_h^n(x, \mathbf{a}), 1\}$,
1932 we have

$$\begin{aligned}
& \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\tilde{\pi}^n}} \left[\min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
& \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\tilde{\mathcal{P}}_{n,h-L}}^{\tilde{\pi}^n}} \left[\left\| \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right] \\
& \quad \cdot \sqrt{n |\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A})} \left[\min \{f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\} \right]^2} + \lambda C + nL|\mathcal{A}|^{L-1}\zeta_n \\
& \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\tilde{\mathcal{P}}_{n,h-L}}^{\tilde{\pi}^n}} \left[\left\| \alpha_n \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right]
\end{aligned}$$

1944 Note that we here use the fact $\min \{f_h^n(x, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ 2^L \mathcal{U}(\mathcal{A})} \left[\min \{f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta_n$ and our choice of α_n .

1947 Combining all things together,

$$\begin{aligned} 1949 \quad \bar{v}_i^n - v_i^{\dagger, \pi_{-i}^n} &= \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi_{-i}^n}(x) \right] \\ 1950 \quad &\geq \sum_{h=1}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] - H \sum_{h=1}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{f_h^n(x, \mathbf{a}), 1\} \right] \\ 1953 \quad &\geq 0, \end{aligned}$$

1955 which proves the inequality. \square

1956 **Lemma 37** (Optimism for CE). *For episode $n \in [N]$, set*

$$1958 \quad \hat{b}_{n,h} = \min \left\{ \alpha_n \|\hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{p}_n}^{-1}}, H \right\},$$

1960 with $\alpha_n = \Theta(\sqrt{\lambda C + nL|\mathcal{A}|^L \zeta_n})$,

$$1962 \quad \hat{\Sigma}_{n,h, \hat{p}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h, \hat{p}_n} := \sum_{(x_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} \left[\hat{p}_n(z | x_h, \mathbf{a}_h) \hat{p}_n(z | x_h, \mathbf{a}_h)^\top \right] + \lambda T_K^{-1}$$

1964 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
1965 different eigendecay of K as follows:

- 1967 • β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(N|\mathcal{M}|/\delta))$
- 1968 • β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(N|\mathcal{M}|/\delta))$;
- 1969 • β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log N)^{1/\beta} + \log(N|\mathcal{M}|/\delta))$;

1972 c is an absolute constant. π^n is computed by solving CE. Then with probability at least $1 - \delta$,
1973 $\forall n \in [N], i \in [M]$ we have

$$1975 \quad \bar{v}_i^n(x) - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n}(x) \geq 0, \quad \forall n \in [N], i \in [M].$$

1977 *Proof.* Denote $\tilde{\omega}_{h,i}^{(n)} = \arg \max_{\omega_h \in \Omega_{h,i}} \left(\mathbb{D}_{\omega_h \circ \pi_h^{(n)}} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^{(n)}} \right) (s)$ and let $\tilde{\pi}_h^{(n)} = \tilde{\omega}_{h,i} \circ \pi_h^{(n)}$.

1979 Let $f_h^n(x, \mathbf{a}) = \left\| \hat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - P_h(\cdot | x, \mathbf{a}) \right\|_1$, then according to lemma 51 and lemma 56, we have
1980 that using the chosen λ , with probability at least $1 - \delta$, $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,

$$\begin{aligned} 1984 \quad \mathbb{E}_{(x, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(x, \mathbf{a}))^2 \right] &\leq \zeta_n, \quad \mathbb{E}_{(x, \mathbf{a}) \sim \hat{\rho}_{n,h}} \left[(f_h^n(x, \mathbf{a}))^2 \right] \leq \zeta_n, \\ 1986 \quad \|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{n,h-L, \hat{p}_n}^{-1}} &= \Theta \left(\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{\rho_{n,h-L}, \hat{p}_n}^{-1}} \right). \end{aligned}$$

1988 A direct conclusion is we can find an absolute constant c , such that

$$\begin{aligned} 1990 \quad \hat{b}_{n,h}(x_h, \mathbf{a}_h) &= \min \left\{ \alpha_n \|\hat{p}_{n,h}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{p}_n}^{-1}}, H \right\} \\ 1992 \quad &\geq \min \left\{ c \alpha_n \|\hat{p}_{n,h}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{p}_n}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H]. \end{aligned}$$

1993 Next, we prove by induction that $\forall h \in [H]$,

$$1995 \quad \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(x) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h'}^{\pi^n}}^{\pi^n}} \left[\hat{b}_{n,h'}(x, \mathbf{a}) - H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right].$$

(23)

1998
1999First, notice that $\forall h \in [H]$,2000
2001
2002
2003
2004
2005
2006
2007

$$\begin{aligned} \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(x) \right] &= \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right)(x) - \left(\mathbb{D}_{\tilde{\pi}_h^n} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n} \right)(x) \right] \\ &\geq \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\left(\mathbb{D}_{\tilde{\pi}_h^n} \bar{Q}_{h,i}^n \right)(x) - \left(\mathbb{D}_{\tilde{\pi}_h^n} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n} \right)(x) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n}(x, \mathbf{a}) \right], \end{aligned}$$

2008
2009
2010
2011where the inequality uses the fact that π_h^n is the CE solution for $\{\bar{Q}_{h,i}^n\}_{i=1}^M$. Now we are ready to prove equation 23:

2012

2013

2014

2015

- When $h = H$, we have

2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

$$\begin{aligned} \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\bar{V}_{H,i}^n(x) - \max_{\omega \in \Omega_i} V_{H,i}^{\omega \circ \pi^n}(x) \right] &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\bar{Q}_{H,i}^n(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{H,i}^{\omega \circ \pi^n}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\hat{b}_{n,H}(x, \mathbf{a}) \right] \\ &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\hat{b}_{n,H}(x, \mathbf{a}) - H \min \{f_H^n(x, \mathbf{a}), 1\} \right]. \end{aligned}$$

2026
2027
2028

- Suppose the statement is true for step $h + 1$, then for step h , we have

2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

$$\begin{aligned} \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi^n}(x) \right] &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\bar{Q}_{h,i}^n(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi^n}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) + \left(\hat{\mathcal{P}}_{n,h} \bar{V}_{h+1,i}^n \right)(x, \mathbf{a}) - \left(\mathcal{P}_h \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right)(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right. \\ &\quad \left. + \left(\hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right) \right)(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right)(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right)(x, \mathbf{a}) \right] \\ &\quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(x) - \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n}(x) \right] \\ &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{f_h^n(x, \mathbf{a}), 1\} \right] \\ &\quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(x) - \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n}(x) \right] \\ &\geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h'}}^{\pi^n}} \left[\hat{b}_{n,h'}(x, \mathbf{a}) - H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right], \end{aligned}$$

2052 where we use the fact
 2053

$$\begin{aligned}
 & \left| \left(\widehat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right| (x, \mathbf{a}) \\
 & \leq \min \left\{ H, \left\| \widehat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \left\| \max_{\omega \in \Omega_i} V_{h+1,i}^{\omega \circ \pi^n} \right\|_\infty \right\} \\
 & \leq H \min \left\{ 1, \left\| \widehat{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \right\} \\
 & = H \min \{ 1, f_h^n(x, \mathbf{a}) \}
 \end{aligned}$$

2061 and the last row uses the induction assumption.
 2062

2063 Therefore, we have proved equation 23. We then apply $h = 0$ to equation 23, and get
 2064

$$\begin{aligned}
 & \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}^n(x) - \max_{\omega \in \Omega_i} V_{0,i}^{\omega \circ \pi^n}(x) \right] \\
 & = \mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}_{n,0}}^{\pi^n}} \left[\bar{V}_{0,i}^n(x) - \max_{\omega \in \Omega_i} V_{0,i}^{\omega \circ \pi^n}(x) \right] \\
 & \geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{ f_h^n(x, \mathbf{a}), 1 \} \right] \\
 & = \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{ f_h^n(x, \mathbf{a}), 1 \} \right].
 \end{aligned}$$

2065 Next we are going to bound the second term. Applying Lemma 35 to $g_h(x, \mathbf{a}) = \min \{ f_h^n(x, \mathbf{a}), 1 \}$,
 2066 we have
 2067

$$\begin{aligned}
 & \sum_{h=0}^H \mathbb{E}_{(s, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{ f_h^n(s, \mathbf{a}), 1 \} \right] \\
 & \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\widehat{\mathcal{P}}_{n,h-L}}^{\pi^n}} \left[\left\| \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right] \\
 & \quad \cdot \sqrt{n |\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ 2^L \mathcal{U}(\mathcal{A})} \left[\min \{ f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1 \}^2 \right] + \lambda C + n L |\mathcal{A}|^{L-1} \zeta_n} \\
 & \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\widehat{\mathcal{P}}_{n,h-L}}^{\pi^n}} \left[\left\| \alpha_n \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right]
 \end{aligned}$$

2068 Note that we here use the fact $\min \{ f_h^n(x, \mathbf{a}), 1 \} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ 2^L \mathcal{U}(\mathcal{A})} \left[\min \{ f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1 \}^2 \right] \leq \zeta_n$ and our choice of α_n .
 2069

2070 Combining all things together,
 2071

$$\begin{aligned}
 \bar{v}_i^n(x) - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n}(x) & = \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}^n(x) - \max_{\omega \in \Omega_i} V_{0,i}^{\omega \circ \pi^n}(x) \right] \\
 & \geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{ f_h^n(x, \mathbf{a}), 1 \} \right] \\
 & \geq 0,
 \end{aligned}$$

2072 which proves the inequality. \square
 2073

2074 **Lemma 38** (Pessimism). *For episode $n \in [N]$, set*
 2075

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \left\| \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{p}_n}^{-1}}, H \right\},$$

2106 with $\alpha_n = \Theta(\sqrt{\lambda C + nL|\mathcal{A}|^L \zeta_n})$,
 2107

2108 $\hat{\Sigma}_{n,h,\hat{p}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h,\hat{p}_n} := \sum_{(x_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} [\hat{p}_n(z|x_h, \mathbf{a}_{h,i}) \hat{p}_n(z|x_h, \mathbf{a}_{h,i})^\top] + \lambda T_K^{-1}$
 2109
 2110
 2111

2112 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
 2113 different eigendecay of K as follows:
 2114

- β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(N|\mathcal{M}|/\delta))$
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(N|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log N)^{1/\beta} + \log(N|\mathcal{M}|/\delta))$;

2115 c is an absolute constant. Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we have
 2116

2117 $\underline{v}_i^n(x) - v_i^{\pi^n}(x) \leq 0, \quad \forall n \in [N], i \in [M].$
 2118
 2119
 2120

2121 *Proof.* Let $f_h^n(x, \mathbf{a}) = \|\widehat{\mathcal{P}}_{n,h}(\cdot|x, \mathbf{a}) - \mathcal{P}_h(\cdot|x, \mathbf{a})\|_1$, then according to lemma 51 and lemma 56,
 2122 we have that using the chosen λ , with probability at least $1 - \delta$,
 2123

2124 $\mathbb{E}_{(x, \mathbf{a}) \sim \hat{p}_{n,h}} [(f_h^n(x, \mathbf{a}))^2] \leq \zeta_n, \quad \mathbb{E}_{(x, \mathbf{a}) \sim \tilde{p}_{n,h}} [(f_h^n(x, \mathbf{a}))^2] \leq \zeta_n, \quad \forall n \in [N], h \in [H],$
 2125
 2126
 2127

$$\|p_h(\cdot|x, \mathbf{a})\|_{\hat{\Sigma}_{n,h-L, \hat{p}_n}^{-1}} = \Theta\left(\|p_h(\cdot|x, \mathbf{a})\|_{\hat{\Sigma}_{\rho_{n,h-L}, \hat{p}_n}^{-1}}\right), \quad \forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}.$$

2128 A direct conclusion is we can find an absolute constant c , such that
 2129

2130
$$\begin{aligned} \hat{b}_{n,h}(x_h, \mathbf{a}_h) &= \min \left\{ \alpha_n \|\hat{p}_{n,h-1}(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{p}_n}^{-1}}, H \right\} \\ &\geq \min \left\{ c \alpha_n \|\hat{p}_{n,h-1}(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n,h-L, \hat{p}_n}^{-1}}, H \right\}, \quad \forall n \in [N], h \in [H]. \end{aligned}$$

2131 Again, we prove by induction that $\forall h \in [H]$,
 2132

2133
$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\underline{V}_{h,i}^n(x) - V_{h,i}^{\pi^n}(x) \right] \leq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}'}^{\pi^n}} \left[-\hat{b}_{n,h'}(x, \mathbf{a}) + H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right]. \quad (24)$$

 2134
 2135
 2136

- When $h = H$, we have

2137
$$\begin{aligned} \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[\underline{V}_{H,i}^n(x) - V_{H,i}^{\pi^n}(x) \right] &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[Q_{H,i}^n(x, \mathbf{a}) - Q_{H,i}^{\pi^n}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) \right] \\ &\leq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,H}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) + H \min \{f_H^n(x, \mathbf{a}), 1\} \right]. \end{aligned}$$

2160 • Suppose the statement is true for step $h + 1$, then for step h , we have

$$\begin{aligned}
 & \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\underline{V}_{h,i}^n(x) - V_{h,i}^{\pi^n}(x) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\underline{Q}_{h,i}^n(x, \mathbf{a}) - Q_{h,i}^{\pi^n}(x, \mathbf{a}) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) + \left(\tilde{\mathcal{P}}_{n,h} \underline{V}_{h+1,i}^n \right)(x, \mathbf{a}) - \left(\mathcal{P}_h V_{h+1,i}^{\pi^n} \right)(x, \mathbf{a}) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) \right. \\
 &\quad \left. + \left(\tilde{\mathcal{P}}_{n,h} \left(\underline{V}_{h+1,i}^n - V_{h+1,i}^{\pi^n} \right) \right)(x, \mathbf{a}) + \left(\left(\tilde{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right)(x, \mathbf{a}) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) + \left(\left(\tilde{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right)(x, \mathbf{a}) \right] \\
 &\quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\underline{V}_{h+1,i}^n(x) - V_{h+1,i}^{\pi^n}(x) \right] \\
 &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
 &\quad + \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,h+1}}^{\pi^n}} \left[\underline{V}_{h+1,i}^n(x) - V_{h+1,i}^{\pi^n}(x) \right] \\
 &\geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h'}}^{\pi^n}} \left[-\hat{b}_{n,h'}(x, \mathbf{a}) + H \min \{f_{h'}^n(x, \mathbf{a}), 1\} \right],
 \end{aligned}$$

2183 where we use the fact

$$\begin{aligned}
 & \left| \left(\tilde{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) V_{h+1,i}^{\pi^n} \right| (x, \mathbf{a}) \leq \min \left\{ H, \left\| \tilde{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \left\| V_{h+1,i}^{\pi^n} \right\|_{\infty} \right\} \\
 &\leq H \min \left\{ 1, \left\| \tilde{\mathcal{P}}_{n,h}(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \right\} \\
 &= H \min \{1, f_{h'}^n(x, \mathbf{a})\}
 \end{aligned}$$

2189 and the last row uses the induction assumption.

2190 Therefore, we have proved equation 24. We then apply $h = 0$ to equation 24, and get

$$\begin{aligned}
 & \mathbb{E}_{x \sim d_0} \left[\overline{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
 &= \mathbb{E}_{x \sim d_{\tilde{\mathcal{P}}_{n,0}}^{\pi^n}} \left[\overline{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi_{-i}^n}(x) \right] \\
 &\geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) - H \min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
 &= \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{f_h^n(x, \mathbf{a}), 1\} \right].
 \end{aligned}$$

2201 Next we are going to bound the second term. Applying Lemma 35 to $g_h(x, \mathbf{a}) = \min \{f_h^n(x, \mathbf{a}), 1\}$,
2202 we have

$$\begin{aligned}
 & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\tilde{\mathcal{P}}_{n,h}}^{\pi^n}} \left[\min \{f_h^n(x, \mathbf{a}), 1\} \right] \\
 &\leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\tilde{\mathcal{P}}_{n,h-L}}^{\pi^n}} \left[\left\| \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right] \\
 &\quad \cdot \sqrt{n |\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A})} \left[\min \{f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] + \lambda C + nL|\mathcal{A}|^{L-1}\zeta_n} \\
 &\leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\tilde{\mathcal{P}}_{n,h-L}}^{\pi^n}} \left[\left\| \alpha_n \hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-2L} \circ L \mathcal{U}(\mathcal{A}), \hat{p}}^{-1}} \right]
 \end{aligned}$$

2214 Note that we here use the fact $\min \{f_h^n(x, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-2L} \circ 2^L \mathcal{U}(\mathcal{A})} \left[\min \{f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta_n$ and our choice of α_n .

2217 Combining all things together,

$$\begin{aligned} \underline{v}_i^n - v_i^{\pi^n} &= \mathbb{E}_{x \sim d_0} \left[V_{0,i}^n(x) - V_{0,i}^{\pi^n}(x) \right] \\ &\leq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} \left[-\hat{b}_{n,h}(x, \mathbf{a}) \right] + H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_{n,h}}^{\pi^n}} [\min \{f_h^n(x, \mathbf{a}), 1\}] \\ &\leq 0, \end{aligned}$$

2224 which has finished the proof. \square

2226 **Lemma 39.** For episode $n \in [N]$, set

$$\hat{b}_{n,h} = \min \left\{ \alpha_n \|\hat{p}_{n,h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{p}_n}^{-1}}, H \right\},$$

2230 with $\alpha_n = \Theta \sqrt{\lambda C + nL|\mathcal{A}|^L \zeta_n}$,

$$\hat{\Sigma}_{n,h, \hat{p}_n} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,h, \hat{p}_n} := \sum_{(x_h, \mathbf{a}_h) \in \mathcal{D}_{n,h}} [\hat{p}_{n,h}(z | x_h, \mathbf{a}_h) \hat{p}_{n,h}(z | x_h, \mathbf{a}_h)^\top] + \lambda T_K^{-1}$$

2234 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
2235 different eigendecay of K as follows:

- β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(NH|\mathcal{M}|/\delta))$
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(NH|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log N)^{1/\beta} + \log(NH|\mathcal{M}|/\delta))$;

2242 c is an absolute constant. Then with probability at least $1 - \delta$, $\forall n \in [N], i \in [M]$ we have

- for β -finite spectrum,

$$\sum_{k=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 \beta \log N \sqrt{N|\mathcal{A}|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

- for β -polynomial decay,

$$\sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N \sqrt{N|\mathcal{A}|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

- for β -exponential decay,

$$\sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\text{exp}} (\log N)^{1+1/\beta} \sqrt{N|\mathcal{A}|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2258 *Proof.* Let $f_h^n(x, \mathbf{a}) = \left\| \hat{P}_{n,h}(\cdot | s, \mathbf{a}) - P_h(\cdot | x, \mathbf{a}) \right\|_1$. With our choice of λ and ζ_n , according to
2259 Lemma 56, we have $\forall n \in [N], h \in [H], \hat{\mathcal{P}} \in \mathcal{M}$,

$$\mathbb{E}_{x \sim \hat{\rho}_{n,h}} \left[(f_h^n(x, \mathbf{a}))^2 \right] \leq \zeta_n, \|p_h(\cdot | x, \mathbf{a})\|_{(\hat{\Sigma}_{n,h, \phi_h}^n)^{-1}} = \Theta \left(\|p_h(\cdot | x, \mathbf{a})\|_{\Sigma_{n, \hat{\rho}_{n,h}, \phi_h}^{-1}} \right). \quad (25)$$

2265 By definition, we have

$$\Delta^n = \max_{i \in [M]} \{ \bar{v}_i^n - \underline{v}_i^n \}.$$

2268 For each fixed $i \in [M], h \in [H]$ and $n \in [N]$, we have
 2269

$$\begin{aligned}
 & \mathbb{E}_{x \sim d_{\mathcal{P},h}^{\pi^n}} \left[\bar{V}_{h,i}^n(x) - \underline{V}_{h,i}^n(x) \right] \\
 &= \mathbb{E}_{x \sim d_{\mathcal{P},h}^{\pi^n}} \left[\left(\mathbb{D}_{\pi_h^n} \bar{Q}_{h,i}^n \right)(x) - \left(\mathbb{D}_{\pi_h^n} \underline{Q}_{h,i}^n \right)(x) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\bar{Q}_{h,i}^n(x, \mathbf{a}) - \underline{Q}_{h,i}^n(x, \mathbf{a}) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[2\hat{b}_{n,h}(x, \mathbf{a}) + \left(\hat{\mathcal{P}}_{n,h} \left(\bar{V}_{h+1,i}^n - \underline{V}_{h+1,i}^n \right) \right)(x, \mathbf{a}) \right] \\
 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[2\hat{b}_{n,h}(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_{n,h} - \mathcal{P}_h \right) \left(\bar{V}_{h+1,i}^n - \underline{V}_{h+1,i}^n \right) \right)(x, \mathbf{a}) \right] \\
 &\quad + \mathbb{E}_{x \sim d_{\mathcal{P},h+1}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(x) - \underline{V}_{h+1,i}^n(x) \right] \\
 &\leq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[2\hat{b}_{n,h}(x, \mathbf{a}) + 2H^2 f_h^n(x, \mathbf{a}) \right] + \mathbb{E}_{x \sim d_{\mathcal{P},h+1}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(x) - \underline{V}_{h+1,i}^n(x) \right].
 \end{aligned}$$

2283 Note that we use the fact $\bar{V}_{h+1,i}^n(x) - \underline{V}_{h+1,i}^n(x)$ is upper bounded by $2H^2$, which can be proved
 2284 easily using induction using the fact that $\hat{b}_{n,h}(x, \mathbf{a}) \leq H$. Applying the above formula recursively to
 2285 $\mathbb{E}_{x \sim d_{\mathcal{P},h+1}^{\pi^n}} \left[\bar{V}_{h+1,i}^n(x) - \underline{V}_{h+1,i}^n(x) \right]$, one gets the following result (or more formally, one can prove
 2286 by induction, just like what we did in Lemma 36, Lemma 37 and Lemma 38):
 2287

$$\mathbb{E}_{x \sim d_{\mathcal{P},0}^{\pi^n}} \left[\bar{V}_{0,i}^n(x) - \underline{V}_{0,i}^n(x) \right] \leq 2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right]}_{(a)} + 2H^2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[f_h^n(x, \mathbf{a}) \right]}_{(b)}. \quad (26)$$

2292 First, we calculate the first term (a) in Inequality equation 26. Following Lemma 34 and noting the
 2293 bonus \hat{b}_h^n is $O(H)$, we have
 2294

$$\begin{aligned}
 & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\hat{b}_{n,h}(x, \mathbf{a}) \right] \\
 & \lesssim \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\min \left\{ \alpha_n \left\| \hat{b}_{n,h}(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{n, \hat{\rho}_{n,h}, \hat{p}_n}^{-1}}, H \right\} \right] \quad (\text{From equation 25}) \\
 & \lesssim \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P},h-L}^{\pi^n}} \left[\left\| p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho_{n,h-L}, p}^{-1}} \right] \\
 & \quad \cdot \sqrt{n |\mathcal{A}|^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-L} \circ \mathcal{U}(\mathcal{A})} \left[(\hat{b}_{n,h}(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right] + \lambda H^2 C}.
 \end{aligned}$$

2308 Note that we use the fact that $B = H$ when applying Lemma 34. In addition, following the proof of
 2309 Lemma 8 in (41), we have that
 2310

- for β -finite spectrum,

$$n \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-L} \circ \mathcal{U}(\mathcal{A})} \left[\hat{b}_{n,h}(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O(\beta \log N);$$

$$\sum_{n \in [N]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\left\| p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-L}, p}^{-1}}^2 \right] = O(\beta \log N);$$

- for β -polynomial decay,

$$n \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n,h-L} \circ \mathcal{U}(\mathcal{A})} \left[\hat{b}_{n,h}(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O \left(C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N \right);$$

$$\sum_{n \in [N]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P},h}^{\pi^n}} \left[\left\| p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L}) \right\|_{L_2(\mu), \Sigma_{\rho_{n,h-L}, p}^{-1}}^2 \right] = O \left(C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N \right);$$

2322 • for β -exponential decay,

2324
$$n \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-L} \circ \mathcal{U}(\mathcal{A})} \left[\hat{b}_{n,h}(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O \left(C_{\exp} (\log N)^{1+1/\beta} \right).$$

2326
$$\sum_{n \in [N]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h}^{\pi_n}} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho_{n, h-L}, p}^{-1}}^2 \right] = O \left(C_{\exp} (\log N)^{1+1/\beta} \right).$$

2329 Second, we calculate the term (b) in inequality equation 26. Following Lemma 34 and noting that
2330 $f_h^n(x, \mathbf{a})$ is upper-bounded by 2 (i.e., $B = 2$ in Lemma 34), we have

2331
$$\begin{aligned} & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^{\pi_n}} [f_h^n(x, \mathbf{a})] \\ & \leq \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^{\pi_n}} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho_{n, h-L}, p}^{-1}} \right] \\ & \quad \cdot \sqrt{n|A|^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-L} \circ \mathcal{U}(\mathcal{A})} \left[(f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right] + 4C\lambda} \\ & \leq \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^{\pi_n}} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho_{n, h-L}, p}^{-1}} \right] \sqrt{n|A|^L \zeta_n + 4C\lambda}, \end{aligned}$$

2343 where in the second inequality, we use $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho_{n, h-L} \circ \mathcal{U}(\mathcal{A})} \left[(f_h^n(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right] \leq \zeta_n$.

2344 Then, by combining the above calculation of the term (a) and term (b) in inequality equation 26, we
2345 have:

2347 • for β -finite spectrum,

2349
$$\sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(\sqrt{\beta \log N} \cdot \left(H \sqrt{|\mathcal{A}|^L \beta \log N + \lambda H^2 C} + H^3 \sqrt{N |\mathcal{A}|^L \zeta_N + 4C\lambda} \right) \right)$$

2352 • for β -polynomial decay,

2354
$$\begin{aligned} \sum_{n=1}^N \Delta^n & \lesssim \mathcal{O} \left(\sqrt{C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N} \right. \\ & \quad \cdot \left. \left(H \sqrt{|\mathcal{A}|^L C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N + \lambda H^2 C} + H^3 \sqrt{N |\mathcal{A}|^L \zeta_N + 4C\lambda} \right) \right) \end{aligned}$$

2359 • for β -exponential decay,

2361
$$\begin{aligned} \sum_{n=1}^N \Delta^n & \lesssim \mathcal{O} \left(\sqrt{C_{\exp} (\log N)^{1+1/\beta}} \right. \\ & \quad \cdot \left. \left(H \sqrt{|\mathcal{A}|^L C_{\exp} (\log N)^{1+1/\beta} + \lambda H^2 C} + H^3 \sqrt{N |\mathcal{A}|^L \zeta_N + 4C\lambda} \right) \right) \end{aligned}$$

2366 By substituting λ into the results, we obtain:

2368 • for β -finite spectrum,

2370
$$\sum_{k=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 \beta \log N \sqrt{N |A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2373 • for β -polynomial decay,

2375
$$\sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N \sqrt{N |A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2376 • for β -exponential decay,

2377

$$2378 \sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\exp} (\log N)^{1+1/\beta} \sqrt{N|A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2380

2381 This concludes the proof. \square

2382 **Theorem 40** (PAC guarantee of OFOVI-LLVR). *Assume Assumption 4,5 in Appendix E.4 hold and*
 2383 *the kernel K satisfies the regularity conditions in Appendix E.2. When OFOVI-LLVR is applied with*
 2384 *parameters $\zeta_n = \Theta(\log(Hn|\mathcal{M}|/\delta)/n)$, $\hat{b}_{n,h} = \min \left\{ \alpha_n \|\hat{p}_n(\cdot|x_{h-L}, a_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h, \hat{p}_n}^{-1}}, H \right\}$*
 2385 *with $\alpha_n = \Theta(\sqrt{\lambda C + nL|\mathcal{A}|^L}\zeta_n)$ and*

2386 • β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(NH|\mathcal{M}|/\delta))$;

2387 • β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(NH|\mathcal{M}|/\delta))$;

2388 • β -exponential decay: $\lambda = \Theta(C_{\exp} (\log N)^{1/\beta} + \log(NH|\mathcal{M}|/\delta))$;

2389

2390 by setting the number of episodes N to be at most

2391 • for β -finite spectrum,

2392

2393

$$2394 \tilde{\mathcal{O}} \left(\frac{H^3 \beta |\mathcal{A}|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)$$

2395

2396 • for β -polynomial decay,

2397

2398

$$2399 \tilde{\mathcal{O}} \left(\left(\frac{H^3 C_{\text{poly}} |\mathcal{A}|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)^{2+\frac{2}{\beta}} \right)$$

2400

2401 • for β -exponential decay,

2402

2403

$$2404 \tilde{\mathcal{O}} \left(\left(\frac{H^3 C_{\exp} |\mathcal{A}|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)^2 \right)$$

2405

2406 with probability $1 - \delta$, the output policy $\hat{\pi}$ is an ϵ -approximate {NE, CCE, CE}.

2407 *Proof.* For any fixed episode n and agent i , by Lemma 36, Lemma 37 and Lemma 38, we have

2408

$$2409 v_i^{\dagger, \pi_{-i}^n} - v_i^{\pi^n} \left(\text{or} \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n} - v_i^{\pi^n} \right) \leq \bar{v}_i^n - \hat{v}_i^n \leq \Delta^n.$$

2410

2411 Taking maximum over i on both sides, we have

2412

$$2413 \max_{i \in [M]} \left\{ v_i^{\dagger, \pi_{-i}^n} - v_i^{\pi^n} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^n} - v_i^{\pi^n} \right\} \right) \leq \Delta^n. \quad (27)$$

2414

2415 From Lemma 39, with probability $1 - \delta$, we can ensure

2416 • for β -finite spectrum,

2417

2418

$$2419 \sum_{k=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 \beta \log N \sqrt{N|A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2420

2421 • for β -polynomial decay,

2422

2423

$$2424 \sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\text{poly}} N^{\frac{1}{2(1+\beta)}} \log N \sqrt{N|A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2425

2430 • for β -exponential decay,

2431

$$2432 \sum_{n=1}^N \Delta^n \lesssim \mathcal{O} \left(H^3 C_{\text{exp}} (\log N)^{1+1/\beta} \sqrt{N|A|^L C \log \frac{NH|\mathcal{M}|}{\delta}} \right)$$

2433

2434 Therefore, when we pick N to be

2435 • for β -finite spectrum,

2436

$$2437 \tilde{\mathcal{O}} \left(\frac{H^3 \beta |\mathcal{A}|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)$$

2438

2439 • for β -polynomial decay,

2440

$$2441 \tilde{\mathcal{O}} \left(\left(\frac{H^3 C_{\text{poly}} |\mathcal{A}|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)^{2+\frac{2}{\beta}} \right)$$

2442

2443 • for β -exponential decay,

2444

$$2445 \tilde{\mathcal{O}} \left(\left(\frac{H^3 C_{\text{exp}} |A|^{L/2} C^{1/2} \log \frac{H|\mathcal{A}|^{L/2} |\mathcal{M}|}{\delta \epsilon}}{\epsilon} \right)^2 \right)$$

2446

2447 we have

2448

$$2449 \frac{1}{N} \sum_{n=1}^N \Delta^n \leq \epsilon.$$

2450

2451 On the other hand, from equation 27, we have

2452

$$2453 \max_{i \in [M]} \left\{ v_i^{\dagger, \hat{\pi}_{-i}} - v_i^{\hat{\pi}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \hat{\pi}} - v_i^{\hat{\pi}} \right\} \right)$$

2454

$$2455 = \max_{i \in [M]} \left\{ v_i^{\dagger, \pi_{-i}^{n^*}} - v_i^{\pi^{n^*}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^{n^*}} - v_i^{\pi^{n^*}} \right\} \right)$$

2456

$$2457 \leq \Delta^{n^*} = \min_{n \in [N]} \Delta^n \leq \frac{1}{N} \sum_{n=1}^N \Delta^n \leq \epsilon,$$

2458

2459 which has finished the proof. \square

2460 E.5 OFFLINE SETTING

2461 In this subsection, we show the theoretical analysis for offline exploitation. For offline exploitation, we have the access to a offline dataset, which we assume is collected from the stationary distribution of the fixed behavior policy set π_b , which we will denote as ρ . And we are not allowed to interact with the environments to collect new data. The only difference between the algorithms for offline exploitation and online exploration is that, as we do not have access to the new data from the environment, we cannot further explore the state-action pair that the offline dataset do not cover. Hence, we need to penalize the visitation to the unseen state action pair to avoid the risky behavior.

2462 Similar to the online setting, we can obtain the upper bound of the statistical error for $\hat{\pi}$, which is stated in the following:

2463 **Theorem 41** (PAC Guarantee for Offline Exploitation). *Define $\omega := \max_{x,a} \pi_b^{-1}(a|x)$, and*

2464

$$2465 C_{\pi}^* := \sup_{y \in L_2(\mu)} \frac{\mathbb{E}_{(x,a) \sim d_P^{\pi}} \left[\langle p(\cdot|x, a), y \rangle_{L_2(\mu)} \right]^2}{\mathbb{E}_{(x,a) \sim \rho} \left[\langle p(\cdot|x, a), y \rangle_{L_2(\mu)} \right]^2}.$$

2466

2467 When Alg. 5 is applied with parameters $\zeta = \Theta(\log(H|\mathcal{M}|/\delta)/n)$, $\hat{b}_h = \min \left\{ \alpha \|\hat{p}(\cdot|x_{h-L}, a_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,\hat{\rho}}^{-1}}, H \right\}$ with $\alpha = \Theta(\sqrt{\lambda C + nL\omega^{L-1}\zeta})$ and

2484 **Algorithm 5** Offline OFOVI-LLVR for L -decodable POMGs

2485 1: **Input:** Variational Distribution Class $\mathcal{Q} = \{q_h(z|x_h, \mathbf{a}_h, \mathbf{o}_{h+1})\}_{h \in [H]}$, Model Class $\mathcal{M} =$
2486 $\{(p_h(z|x_h, \mathbf{a}_h), p_h(\mathbf{o}_{h+1}|z))\}_{h \in [H]}$, offline dataset $\mathcal{D} = \{\mathcal{D}_h\}_{h \in [H]}$, Regularizer λ , parameter α, ζ .

2487 2: **for** step $h = H, H-1, \dots, 1$ **do**

2488 3: Learn the latent variable model $\hat{p}(z|x_h, \mathbf{a}_h)$ with \mathcal{D}_h via maximizing the ELBO, and obtain
2489 the learned model $\hat{\mathcal{P}} = \{(\hat{p}_h(z|x_h, \mathbf{a}_h), \hat{p}_h(\mathbf{o}_{h+1}|z))\}_{h \in [H]}$.

2490 4: **end for**

2491 5: Compute \hat{b}_h from equation 7. For each $(x, \mathbf{a}) \in \mathcal{X} \times \mathcal{A}, i \in [M]$, set

2492
$$\bar{Q}_{h,i}(x, \mathbf{a}) = r_{h,i}(x, \mathbf{a}) + \left(\hat{P}_h \bar{V}_{h+1,i}\right)(x, \mathbf{a}) + \hat{b}_h(x, \mathbf{a})$$

2493
$$\underline{Q}_{h,i}(x, \mathbf{a}) = r_{h,i}(x, \mathbf{a}) + \left(\hat{P}_h \underline{V}_{h+1,i}\right)(x, \mathbf{a}) - \hat{b}_h(x, \mathbf{a})$$

2494 6: Compute $\hat{\pi}_h$ from equation 1 or equation 2 or equation 3. For each
2495 $x \in \mathcal{X}, i \in [M]$, set

2496
$$\bar{V}_{h,i} = (\mathbb{D}_{\pi_h} \bar{Q}_{h,i})(x), \quad \underline{V}_{h,i} = (\mathbb{D}_{\pi_h} \underline{Q}_{h,i})(x).$$

2497 7: Compute $\Delta = \max_{i \in [M]} \{\bar{v}_i - \underline{v}_i\}$, where $\bar{v}_i = \int_{\mathcal{X}} \bar{V}_{0,i}(x) \mu_0(x) dx$ and $\underline{v}_i =$
2498 $\int_{\mathcal{X}} \underline{V}_{0,i}(x) \mu_0(x) dx$.

2499 8: **Return** $\hat{\pi}$.

2500

2501

2502

2503

2504

2505

2506

2507

2508 • β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$;

2509

2510 • β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;

2511

2512 • β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

2513

2514 with probability $1 - \delta$, the output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$ with

2515 • for β -finite spectrum,

2516

2517

2518
$$\varepsilon = \mathcal{O}\left(H^3 \beta \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}}\right)$$

2519

2520

2521 • for β -polynomial decay,

2522

2523
$$\varepsilon = \mathcal{O}\left(H^3 C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}}\right)$$

2524

2525

2526 • for β -exponential decay,

2527

2528
$$\varepsilon = \mathcal{O}\left(H^3 C_{\text{exp}} (\log n)^{1+1/\beta} \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}}\right)$$

2529

2530

2531 We start by showing that $C_{\hat{\pi}}^*$ can be viewed as a measure of the offline data quality, which can be
2532 demonstrated by the following lemma, that was first introduced in (51):

2533 **Lemma 42** (Distribution Shift Lemma). For any positive definite operator $\Lambda : L_2(\mu) \rightarrow L_2(\mu)$, we
2534 have that

2535
$$\mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}}^{\pi}} \langle p(\cdot|x, \mathbf{a}), \Lambda p(\cdot|x, \mathbf{a}) \rangle_{L_2(\mu)} \leq C_{\pi}^* \mathbb{E}_{(x, \mathbf{a}) \sim \rho} \langle p(\cdot|x, \mathbf{a}), \Lambda p(\cdot|x, \mathbf{a}) \rangle_{L_2(\mu)}.$$

2538 *Proof.* We denote the eigendecomposition of Λ as $\Lambda = U\Sigma U$ where $\{\sigma_i, u_i\}$ is the eigensystem of
 2539 Λ . Then we have

$$\begin{aligned} & \mathbb{E}_{(x, \mathbf{a}) \sim d_P^\pi} \langle p(\cdot|x, \mathbf{a}), \Lambda p(\cdot|x, \mathbf{a}) \rangle_{L_2(\mu)} \\ &= \sum_{i \in I} \sigma_i \mathbb{E}_{(x, \mathbf{a}) \sim d_P^\pi} \langle u_i, p(\cdot|x, \mathbf{a})^\top \rangle_{L_2(\mu)}^2 \\ &\leq C_\pi \sum_{i \in I} \sigma_i \mathbb{E}_{(x, \mathbf{a}) \sim \rho} \langle u_i, p(\cdot|x, \mathbf{a})^\top \rangle_{L_2(\mu)}^2 \\ &= C_\pi \mathbb{E}_{(x, \mathbf{a}) \sim \rho} \langle p(\cdot|x, \mathbf{a}), \Lambda p(\cdot|x, \mathbf{a}) \rangle_{L_2(\mu)}, \end{aligned}$$

2548 which finishes the proof. \square

2550 We also define the $\Sigma_{\rho, \phi} : L_2(\mu) \rightarrow L_2(\mu)$:

$$\Sigma_{\rho, \phi} := n \mathbb{E}_{(x, \mathbf{a}) \sim \rho} [\phi(x, \mathbf{a}) \phi^\top(x, \mathbf{a})] + \lambda T_k^{-1},$$

2553 where ρ is the stationary distribution of π_b .

2554 **Lemma 43** (*L*-step back inequality for the true model). *Given a set of functions $[g_h]_{h \in [H]}$, where
 2555 $g_h : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$, we have that $\forall \pi$,*

$$\begin{aligned} \sum_{h \in [H]} \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{P,h}^\pi} [g_h(x_h, \mathbf{a}_h)] &\leq \sum_{h \in [H]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P_{h-L}}^\pi} \left[\|p(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}} \right] \\ &\quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho \circ \pi_b(\cdot|x)} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2] + \lambda B^2 C} \end{aligned}$$

2562 *Proof.* The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
 2563 completeness. Recall the moment matching policy χ_π . Since $\chi_{\pi,h}$ does not depend on (x_{h-L}, a_{h-L}) ,
 2564 we can make the following decomposition:

$$\begin{aligned} & \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{P,h}^\pi} [g_h(x_h, \mathbf{a}_h)] \\ &= \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P,h-L}^\pi} \left[\int_{x_h} \langle p(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbb{P}^{\chi_\pi}(x_h | \cdot) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right] \\ &\leq \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P,h-L}^\pi} \|p(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}} \\ &\quad \cdot \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho, p}}. \end{aligned}$$

2573 Direct computation shows that

$$\begin{aligned} & \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho, p}}^2 \\ &= n \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\mathbb{E}_{x_h \sim \mathbb{P}^{\chi_\pi}(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbf{a}_h \sim \chi_{\pi,h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] \right]^2 \\ &\quad + \lambda \left\| \int_{x_h} \mathbb{P}^{\chi_\pi}(x_h | \cdot) \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi,h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{\mathcal{H}}^2 \\ &\leq n \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \mathbb{E}_{x_h \sim \mathbb{P}^{\chi_\pi}(\cdot|x_{h-L}, \mathbf{a}_{h-L}), \mathbf{a}_h \sim \chi_{\pi,h}(\cdot|x_h)} [g_h(x_h, \mathbf{a}_h)]^2 + \lambda B^2 C \\ &\leq n\omega^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho \circ \pi_b(\cdot|x)} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)]^2 + \lambda B^2 C, \end{aligned}$$

2585 which finishes the proof. \square

2586 **Lemma 44** (*L*-step back inequality for the learned model). *Assume we have a set of functions
 2587 $[g_h]_{h \in [H]}$, where $g_h : \mathcal{X} \times \mathcal{A} \rightarrow \mathbb{R}$, $\|g_h\|_\infty \leq B$, $\forall h \in [H]$. Given Lemma 51, we have that $\forall \pi$,*

$$\begin{aligned} \sum_{h \in [H]} \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\hat{P}_h}^\pi} [g_h(x_h, \mathbf{a}_h)] &\leq \sum_{h \in [H]} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{P}_{h-L}}^\pi} \left[\|\hat{p}(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, \hat{p}}^{-1}} \right] \\ &\quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2] + \lambda B^2 C + nL\omega^{L-1}B^2\zeta} \end{aligned}$$

2592 *Proof.* The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
 2593 completeness. We define a similar moment matching policy and make the following decomposition:
 2594

$$\begin{aligned} & \mathbb{E}_{(x_h, \mathbf{a}_h) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [g_h(x_h, \mathbf{a}_h)] \\ &= \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}, h-L}^{\pi}} \left[\int_{x_h} \langle \hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L}), \hat{p}(x_h | \cdot) \rangle_{L_2(\mu)} \cdot \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}} [g_h(x_h, \mathbf{a}_h)] dx_h \right] \\ &\leq \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}, h-L}^{\pi}} \|\hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, \hat{p}}^{-1}} \\ &\quad \cdot \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho, \hat{p}}}. \end{aligned}$$

2603 Direct computation shows that

$$\begin{aligned} & \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{L_2(\mu), \Sigma_{\rho, \hat{p}}}^2 \\ &= n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho} \left[\mathbb{E}_{x_h \sim \hat{\mathcal{P}}(\cdot | \tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}), \mathbf{a}_h \sim \chi_{\pi, h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] \right]^2 \\ &\quad + \lambda \left\| \int_{x_h} \hat{p}(x_h | \cdot) \mathbb{E}_{\mathbf{a}_h \sim \chi_{\pi, h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)] dx_h \right\|_{\mathcal{H}}^2 \\ &\leq n \mathbb{E}_{(\tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}) \sim \rho} \mathbb{E}_{x_h \sim \hat{\mathcal{P}}(\cdot | \tilde{x}_{h-L}, \tilde{\mathbf{a}}_{h-L}), \mathbf{a}_h \sim \chi_{\pi, h}(\cdot | x_h)} [g_h(x_h, \mathbf{a}_h)]^2 + \lambda B^2 C \\ &\leq n \omega^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} [g_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)]^2 + n L \omega^{L-1} B^2 \zeta + \lambda B^2 C, \end{aligned}$$

2615 where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
 2616 the proof. \square

2617 **Lemma 45** (Optimism for NE and CCE). *Set*

$$\hat{b}_h = \min \left\{ \alpha \|\hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{h, \hat{p}}^{-1}}, H \right\},$$

2621 with $\alpha = \Theta(\sqrt{\lambda C + n L \omega^L \zeta})$, $\zeta = O(\log(H|\mathcal{M}|/\delta)/n)$

$$\hat{\Sigma}_{h, \hat{p}} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n, \hat{p}} := \sum_{(x_i, \mathbf{a}_i) \in \mathcal{D}} [\hat{p}(z | x_i, \mathbf{a}_i) \hat{p}(z | x_i, \mathbf{a}_i)^\top] + \lambda T_K^{-1}$$

2625 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
 2626 different eigendecay of K as follows:

- 2628 • β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$
- 2629 • β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;
- 2631 • β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

2632 c is an absolute constant. π is computed by solving NE or CCE. Then with probability at least $1 - \delta$,
 2633 $\forall i \in [M]$ we have

$$\bar{v}_i(x) - v_i^{\dagger, \pi_{-i}}(x) \geq 0.$$

2637 *Proof.* Define $\tilde{\mu}_{h,i}(\cdot | x) := \arg \max_{\mu} \left(\mathbb{D}_{\mu, \pi_{h,-i}} Q_{h,i}^{\dagger, \pi_{-i}} \right) (x)$ as the best response policy for player i
 2638 at step h , and let $\tilde{\pi}_h = \tilde{\mu}_{h,i} \times \pi_{h,-i}$. Let $f_h(x, \mathbf{a}) = \|\hat{\mathcal{P}}_h(\cdot | x, \mathbf{a})\|_1$, then according to
 2639 lemma 51 and lemma 56, we have that using the chosen λ , with probability at least $1 - \delta$,
 2641

$$\mathbb{E}_{(x, \mathbf{a}) \sim \rho} [(f_h(x, \mathbf{a}))^2] \leq \zeta, \quad \forall h \in [H],$$

$$\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{n, \hat{p}}^{-1}} = \Theta \left(\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{\rho, \hat{p}}^{-1}} \right), \quad \forall h \in [H], \hat{\mathcal{P}} \in \mathcal{M}.$$

2646 A direct conclusion is we can find an absolute constant c , such that
 2647

$$\begin{aligned} \hat{b}_h(x_h, \mathbf{a}_h) &= \min \left\{ \alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}}^{-1}}, H \right\} \\ &\geq \min \left\{ c\alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}_n}^{-1}}, H \right\}, \quad \forall h \in [H]. \end{aligned}$$

2651 Next, we prove by induction that
 2652

$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\bar{V}_{h, i}(x) - V_{h, i}^{\dagger, \pi_{-i}}(x) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h'}^{\hat{\pi}}} \left[\hat{b}_{h'}(x, \mathbf{a}) - H \min \{f_{h'}(x, \mathbf{a}), 1\} \right], \quad \forall h \in [H]. \quad (28)$$

2656 First, notice that $\forall h \in [H]$,
 2657

$$\begin{aligned} \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\bar{V}_{h, i}(x) - V_{h, i}^{\dagger, \pi_{-i}}(x) \right] &= \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[(\mathbb{D}_{\pi_h} \bar{Q}_{h, i})(x) - (\mathbb{D}_{\hat{\pi}_h} Q_{h, i}^{\dagger, \pi_{-i}})(x) \right] \\ &\geq \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[(\mathbb{D}_{\hat{\pi}_h} \bar{Q}_{h, i})(x) - (\mathbb{D}_{\hat{\pi}_h} Q_{h, i}^{\dagger, \pi_{-i}})(x) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\bar{Q}_{h, i}(x, \mathbf{a}) - Q_{h, i}^{\dagger, \pi_{-i}}(x, \mathbf{a}) \right], \end{aligned}$$

2664 where the inequality uses the fact that π_h is the NE (or CCE) solution for $\{\bar{Q}_{h, i}\}_{i=1}^M$. Now we are
 2665 ready to prove equation 28:

- 2666 • When $h = H$, we have

$$\begin{aligned} \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, H}^{\hat{\pi}}} \left[\bar{V}_{H, i}(x) - V_{H, i}^{\dagger, \pi_{-i}}(x) \right] &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\hat{\pi}}} \left[\bar{Q}_{H, i}(x, \mathbf{a}) - Q_{H, i}^{\dagger, \pi_{-i}}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\hat{\pi}}} \left[\hat{b}_H(x, \mathbf{a}) \right] \\ &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\hat{\pi}}} \left[\hat{b}_H(x, \mathbf{a}) - H \min \{f_H(x, \mathbf{a}), 1\} \right]. \end{aligned}$$

- 2674 • Suppose the statement is true for step $h+1$, then for step h , we have

$$\begin{aligned} \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\bar{V}_{h, i}(x) - V_{h, i}^{\dagger, \pi_{-i}}(x) \right] &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\bar{Q}_{h, i}(x, \mathbf{a}) - Q_{h, i}^{\dagger, \pi_{-i}}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\hat{b}_h(x, \mathbf{a}) + (\hat{\mathcal{P}}_h \bar{V}_{h+1, i})(x, \mathbf{a}) - (\mathcal{P}_h V_{h+1, i}^{\dagger, \pi_{-i}})(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\hat{b}_h(x, \mathbf{a}) \right. \\ &\quad \left. + (\hat{\mathcal{P}}_h (\bar{V}_{h+1, i} - V_{h+1, i}^{\dagger, \pi_{-i}}))(x, \mathbf{a}) + ((\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1, i}^{\dagger, \pi_{-i}})(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\hat{b}_h(x, \mathbf{a}) + ((\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1, i}^{\dagger, \pi_{-i}})(x, \mathbf{a}) \right] \\ &\quad + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\hat{\pi}}} \left[\bar{V}_{h+1, i}(x) - V_{h+1, i}^{\dagger, \pi_{-i}}(x) \right] \\ &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\hat{\pi}}} \left[\hat{b}_h(x, \mathbf{a}) - H \min \{f_h(x, \mathbf{a}), 1\} \right] + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\hat{\pi}}} \left[\bar{V}_{h+1, i}(x) - V_{h+1, i}^{\dagger, \pi_{-i}}(x) \right] \\ &\geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h'}^{\hat{\pi}}} \left[\hat{b}_{h'}(x, \mathbf{a}) - H \min \{f_{h'}(x, \mathbf{a}), 1\} \right], \end{aligned}$$

2693 where we use the fact

$$\begin{aligned} \left| (\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1, i}^{\dagger, \pi_{-i}} \right| (x, \mathbf{a}) &\leq \min \left\{ H, \left\| \hat{\mathcal{P}}_h(\cdot|x, \mathbf{a}) - \mathcal{P}_h(\cdot|x, \mathbf{a}) \right\|_1 \left\| V_{h+1, i}^{\dagger, \pi_{-i}} \right\|_\infty \right\} \\ &\leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_h(\cdot|x, \mathbf{a}) - \mathcal{P}_h(\cdot|x, \mathbf{a}) \right\|_1 \right\} \\ &= H \min \{1, f_{h'}(x, \mathbf{a})\} \end{aligned}$$

2699 and the last row uses the induction assumption.

2700 Therefore, we have proved equation 28. We then apply $h = 0$ to equation 28, and get
 2701

$$\begin{aligned}
 2702 & \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}(x) - V_{0,i}^{\dagger, \pi-i}(x) \right] \\
 2703 &= \mathbb{E}_{x \sim d_{\hat{\mathcal{P}},0}^{\pi}} \left[\bar{V}_{0,i}(x) - V_{0,i}^{\dagger, \pi-i}(x) \right] \\
 2704 &\geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) - H \min \{f_h(x, \mathbf{a}), 1\} \right] \\
 2705 &= \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\min \{f_h(x, \mathbf{a}), 1\} \right].
 \end{aligned}$$

2712 Next we are going to bound the second term. Applying Lemma 44 to $g_h(x, \mathbf{a}) = \min \{f_h(x, \mathbf{a}), 1\}$,
 2713 we have

$$\begin{aligned}
 2714 & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}},h}^{\pi}} \left[\min \{f_h(x, \mathbf{a}), 1\} \right] \\
 2715 &\leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right] \\
 2716 &\quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] + \lambda C + nL\omega^{L-1}\zeta} \\
 2717 &\leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\alpha \hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right]
 \end{aligned}$$

2726 Note that we here use the fact $\min \{f_h(x, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta$ and
 2727 our choice of α .

2728 Combining all things together,

$$\begin{aligned}
 2731 & \bar{v}_i - v_i^{\dagger, \pi-i} = \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}(x) - V_{0,i}^{\dagger, \pi-i}(x) \right] \\
 2732 &\geq \sum_{h=1}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}},h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) \right] - H \sum_{h=1}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\min \{f_h(x, \mathbf{a}), 1\} \right] \\
 2733 &\geq 0,
 \end{aligned}$$

2737 which proves the inequality. □

2738

2739 **Lemma 46** (Optimism for CE). Set

$$\hat{b}_h = \min \left\{ \alpha \|\hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n, \hat{\rho}}^{-1}}, H \right\},$$

2743 with $\alpha = \Theta \sqrt{\lambda C + nL\omega^L\zeta}$,

$$\hat{\Sigma}_{n, \hat{\rho}} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n, \hat{\rho}} := \sum_{(x_i, \mathbf{a}_i) \in \mathcal{D}} \left[\hat{p}_n(z | x_i, \mathbf{a}_i) \hat{p}_n(z | x_i, \mathbf{a}_i)^\top \right] + \lambda T_K^{-1}$$

2747 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
 2748 different eigendecay of K as follows:

2749

- β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

2754 c is an absolute constant. π is computed by solving CE. Then with probability at least $1 - \delta$, $\forall i \in [M]$
 2755 we have

2756

$$2757 \quad \bar{v}_i(x) - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi}(x) \geq 0, \quad \forall i \in [M].$$

2758

2759

2760

2761

2762 *Proof.* Denote $\tilde{\omega}_{h,i} = \arg \max_{\omega_h \in \Omega_{h,i}} \left(\mathbb{D}_{\omega_h \circ \pi_h} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi} \right) (s)$ and let $\tilde{\pi}_h = \tilde{\omega}_{h,i} \circ \pi_h$. Let
 2763 $f_h(x, \mathbf{a}) = \left\| \widehat{\mathcal{P}}_h(\cdot|x, \mathbf{a}) - P_h(\cdot|x, \mathbf{a}) \right\|_1$, then according to lemma 51 and lemma 56, we have that
 2764 using the chosen λ , with probability at least $1 - \delta$,

2765

2766

2767

2768

$$\mathbb{E}_{(x, \mathbf{a}) \sim \rho} \left[(f_h(x, \mathbf{a}))^2 \right] \leq \zeta, \quad \forall h \in [H],$$

2769

2770

$$\|p_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{n, \hat{p}_n}^{-1}} = \Theta \left(\|p_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\hat{\Sigma}_{\rho, \hat{p}}^{-1}} \right), \quad \forall h \in [H], \widehat{\mathcal{P}} \in \mathcal{M}.$$

2771

2772

2773

A direct conclusion is we can find an absolute constant c , such that

2774

2775

$$\begin{aligned} \hat{b}_h(x_h, \mathbf{a}_h) &= \min \left\{ \alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}}^{-1}}, H \right\} \\ &\geq \min \left\{ c\alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}}^{-1}}, H \right\}, \quad \forall h \in [H]. \end{aligned}$$

2776

2777

2778

Next, we prove by induction that $\forall h \in [H]$,

2779

2780

2781

2782

2783

$$\mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}_h}^{\tilde{\pi}}} \left[\bar{V}_{h,i}(x) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi}(x) \right] \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_{h'}}^{\tilde{\pi}}} \left[\hat{b}_{h'}(x, \mathbf{a}) - H \min \{f_{h'}(x, \mathbf{a}), 1\} \right]. \quad (29)$$

2784

2785

2786

First, notice that $\forall h \in [H]$,

2787

2788

2789

2790

2791

2792

2793

2794

2795

$$\begin{aligned} \mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}_h}^{\tilde{\pi}}} \left[\bar{V}_{h,i}(x) - \max_{\omega \in \Omega_i} V_{h,i}^{\omega \circ \pi}(x) \right] &= \mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}_h}^{\tilde{\pi}}} \left[(\mathbb{D}_{\pi_h} \bar{Q}_{h,i})(x) - \left(\mathbb{D}_{\tilde{\pi}_h} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi} \right) (x) \right] \\ &\geq \mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}_h}^{\tilde{\pi}}} \left[(\mathbb{D}_{\tilde{\pi}_h} \bar{Q}_{h,i})(x) - \left(\mathbb{D}_{\tilde{\pi}_h} \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi} \right) (x) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}_h}^{\tilde{\pi}}} \left[\bar{Q}_{h,i}(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h,i}^{\omega \circ \pi}(x, \mathbf{a}) \right], \end{aligned}$$

2796

2797

where the inequality uses the fact that π_h is the CE solution for $\{\bar{Q}_{h,i}\}_{i=1}^M$. Now we are ready to prove equation 29:

2798

2799

2800

2801

- When $h = H$, we have

2802

2803

2804

2805

2806

2807

$$\begin{aligned} \mathbb{E}_{x \sim d_{\widehat{\mathcal{P}}, H}^{\tilde{\pi}}} \left[\bar{V}_{H,i}(x) - \max_{\omega \in \Omega_i} V_{H,i}^{\omega \circ \pi}(x) \right] &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}, H}^{\tilde{\pi}}} \left[\bar{Q}_{H,i}(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{H,i}^{\omega \circ \pi}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}, H}^{\tilde{\pi}}} \left[\hat{b}_H(x, \mathbf{a}) \right] \\ &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\widehat{\mathcal{P}}, H}^{\tilde{\pi}}} \left[\hat{b}_H(x, \mathbf{a}) - H \min \{f_H(x, \mathbf{a}), 1\} \right]. \end{aligned}$$

2808 • Suppose the statement is true for step $h + 1$, then for step h , we have

$$\begin{aligned}
& \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[\bar{V}_{h, i}(x) - \max_{\omega \in \Omega_i} V_{h, i}^{\omega \circ \pi}(x) \right] \\
& \geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\bar{Q}_{h, i}(x, \mathbf{a}) - \max_{\omega \in \Omega_i} Q_{h, i}^{\omega \circ \pi}(x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) + \left(\hat{\mathcal{P}}_h \bar{V}_{h+1, i} \right) (x, \mathbf{a}) - \left(\mathcal{P}_h \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right) (x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) \right. \\
& \quad \left. + \left(\hat{\mathcal{P}}_h \left(\bar{V}_{h+1, i} - \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right) \right) (x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_h - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right) (x, \mathbf{a}) \right] \\
& = \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) + \left(\left(\hat{\mathcal{P}}_h - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right) (x, \mathbf{a}) \right] \\
& \quad + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\pi}} \left[\bar{V}_{h+1, i}(x) - \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi}(x) \right] \\
& \geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) - H \min \{ f_h(x, \mathbf{a}), 1 \} \right] \\
& \quad + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\pi}} \left[\bar{V}_{h+1, i}(x) - \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi}(x) \right] \\
& \geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h'}^{\pi}} \left[\hat{b}_{h'}(x, \mathbf{a}) - H \min \{ f_{h'}(x, \mathbf{a}), 1 \} \right],
\end{aligned}$$

2834 where we use the fact

$$\begin{aligned}
& \left| \left(\hat{\mathcal{P}}_h - \mathcal{P}_h \right) \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right| (x, \mathbf{a}) \\
& \leq \min \left\{ H, \left\| \hat{\mathcal{P}}_h(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \left\| \max_{\omega \in \Omega_i} V_{h+1, i}^{\omega \circ \pi} \right\|_{\infty} \right\} \\
& \leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_h(\cdot | x, \mathbf{a}) - \mathcal{P}_h(\cdot | x, \mathbf{a}) \right\|_1 \right\} \\
& = H \min \{ 1, f_h(x, \mathbf{a}) \}
\end{aligned}$$

2845 and the last row uses the induction assumption.

2850 Therefore, we have proved equation 29. We then apply $h = 0$ to equation 29, and get

$$\begin{aligned}
& \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0, i}(x) - \max_{\omega \in \Omega_i} V_{0, i}^{\omega \circ \pi}(x) \right] \\
& = \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, 0}^{\pi}} \left[\bar{V}_{0, i}(x) - \max_{\omega \in \Omega_i} V_{0, i}^{\omega \circ \pi}(x) \right] \\
& \geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) - H \min \{ f_h(x, \mathbf{a}), 1 \} \right] \\
& = \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} \left[\min \{ f_h(x, \mathbf{a}), 1 \} \right].
\end{aligned}$$

2862 Next we are going to bound the second term. Applying Lemma 44 to $g_h(x, \mathbf{a}) = \min \{f_h(x, \mathbf{a}), 1\}$,
2863 we have

$$\begin{aligned}
& \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} [\min \{f_h(x, \mathbf{a}), 1\}] \\
& \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right] \\
& \quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] + \lambda C + nL\omega^{L-1}\zeta} \\
& \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\alpha \hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right]
\end{aligned}$$

2871 Note that we here use the fact $\min \{f_h(x, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta$ and
2872 our choice of α .

2873 Combining all things together,

$$\begin{aligned}
\bar{v}_i(x) - \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi}(x) &= \mathbb{E}_{x \sim d_0} \left[\bar{V}_{0,i}(x) - \max_{\omega \in \Omega_i} V_{0,i}^{\omega \circ \pi}(x) \right] \\
&\geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) \right] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [\min \{f_h(x, \mathbf{a}), 1\}] \\
&\geq 0,
\end{aligned}$$

2888 which proves the inequality. \square

2889 **Lemma 47** (Pessimism). Set

$$\hat{b}_h = \min \left\{ \alpha \|\hat{p}_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n,h,\hat{\rho}}^{-1}}, H \right\},$$

2893 with $\alpha = \Theta \sqrt{\lambda C + nL\omega^L\zeta}$,

$$\hat{\Sigma}_{n,\hat{\rho}} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n,\hat{\rho}} := \sum_{(x_i, \mathbf{a}_i) \in \mathcal{D}} [\hat{p}(z|x_i, \mathbf{a}_i) \hat{p}(z|x_i, \mathbf{a}_i)^\top] + \lambda T_K^{-1}$$

2898 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x)K(x, \cdot)dx$) and λ is set for
2899 different eigendecay of K as follows:

- β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

2906 c is an absolute constant. Then with probability at least $1 - \delta$, $\forall i \in [M]$ we have

$$v_i(x) - v_i^\pi(x) \leq 0, \quad \forall i \in [M].$$

2910 *Proof.* Let $f_h(x, \mathbf{a}) = \|\hat{p}_h(\cdot | x, \mathbf{a}) - P_h(\cdot | x, \mathbf{a})\|_1$, then according to lemma 51 and lemma 56, we
2911 have that using the chosen λ , with probability at least $1 - \delta$,

$$\begin{aligned}
& \mathbb{E}_{(x, \mathbf{a}) \sim \rho} \left[(f_h(x, \mathbf{a}))^2 \right] \leq \zeta, \quad \forall h \in [H], \\
& \|p_h(\cdot | x, \mathbf{a})\|_{\hat{\Sigma}_{n,\hat{\rho}}^{-1}} = \Theta \left(\|p_h(\cdot | x, \mathbf{a})\|_{\hat{\Sigma}_{\rho, \hat{\rho}}^{-1}} \right), \quad \forall h \in [H], \hat{\mathcal{P}} \in \mathcal{M}.
\end{aligned}$$

2916 A direct conclusion is we can find an absolute constant c , such that
 2917

$$\begin{aligned} \hat{b}_h(x_h, \mathbf{a}_h) &= \min \left\{ \alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}}^{-1}}, H \right\} \\ 2919 &\geq \min \left\{ c\alpha \|\hat{p}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{n, \hat{p}}^{-1}}, H \right\}, \quad \forall h \in [H]. \end{aligned}$$

2921 Again, we prove by induction that
 2922

$$\mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [\underline{V}_{h,i}(x) - V_{h,i}^{\pi}(x)] \leq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h'}^{\pi}} \left[-\hat{b}_{h'}(x, \mathbf{a}) + H \min \{f_{h'}(x, \mathbf{a}), 1\} \right], \forall h \in [H]. \quad (30)$$

- 2927 • When $h = H$, we have

$$\begin{aligned} 2929 \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, H}^{\pi}} [\underline{V}_{H,i}(x) - V_{H,i}^{\pi}(x)] &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\pi}} \left[Q_{H,i}(x, \mathbf{a}) - Q_{H,i}^{\pi}(x, \mathbf{a}) \right] \\ 2930 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) \right] \\ 2932 &\leq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, H}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) + H \min \{f_H(x, \mathbf{a}), 1\} \right]. \end{aligned}$$

- 2935 • Suppose the statement is true for step $h + 1$, then for step h , we have

$$\begin{aligned} 2936 \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [\underline{V}_{h,i}(x) - V_{h,i}^{\pi}(x)] &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[Q_{h,i}(x, \mathbf{a}) - Q_{h,i}^{\pi}(x, \mathbf{a}) \right] \\ 2938 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) + (\hat{\mathcal{P}}_h \underline{V}_{h+1,i})(x, \mathbf{a}) - (\mathcal{P}_h V_{h+1,i}^{\pi})(x, \mathbf{a}) \right] \\ 2940 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) + (\hat{\mathcal{P}}_h (\underline{V}_{h+1,i} - V_{h+1,i}^{\pi}))(x, \mathbf{a}) + ((\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1,i}^{\pi})(x, \mathbf{a}) \right] \\ 2942 &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) + ((\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1,i}^{\pi})(x, \mathbf{a}) \right] \\ 2944 &\quad + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\pi}} [\underline{V}_{h+1,i}(x) - V_{h+1,i}^{\pi}(x)] \\ 2945 &\geq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[-\hat{b}_h(x, \mathbf{a}) - H \min \{f_h(x, \mathbf{a}), 1\} \right] + \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, h+1}^{\pi}} [\underline{V}_{h+1,i}(x) - V_{h+1,i}^{\pi}(x)] \\ 2947 &\geq \sum_{h'=h}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h'}^{\pi}} \left[-\hat{b}_{h'}(x, \mathbf{a}) + H \min \{f_{h'}(x, \mathbf{a}), 1\} \right], \end{aligned}$$

2952 where we use the fact

$$\begin{aligned} 2953 |(\hat{\mathcal{P}}_h - \mathcal{P}_h) V_{h+1,i}^{\pi}|(x, \mathbf{a}) &\leq \min \left\{ H, \left\| \hat{\mathcal{P}}_h(\cdot|x, \mathbf{a}) - \mathcal{P}_h(\cdot|x, \mathbf{a}) \right\|_1 \|V_{h+1,i}^{\pi}\|_{\infty} \right\} \\ 2954 &\leq H \min \left\{ 1, \left\| \hat{\mathcal{P}}_h(\cdot|x, \mathbf{a}) - \mathcal{P}_h(\cdot|x, \mathbf{a}) \right\|_1 \right\} \\ 2956 &= H \min \{1, f_{h'}(x, \mathbf{a})\} \end{aligned}$$

2958 and the last row uses the induction assumption.

2959 Therefore, we have proved equation 30. We then apply $h = 0$ to equation 30, and get

$$\begin{aligned} 2961 \mathbb{E}_{x \sim d_0} [\bar{V}_{0,i}^n(x) - V_{0,i}^{\dagger, \pi-i}(x)] &= \mathbb{E}_{x \sim d_{\hat{\mathcal{P}}, 0}^{\pi}} [\bar{V}_{0,i}(x) - V_{0,i}^{\dagger, \pi-i}(x)] \\ 2963 &\geq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} \left[\hat{b}_h(x, \mathbf{a}) - H \min \{f_h(x, \mathbf{a}), 1\} \right] \\ 2965 &= \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [\hat{b}_h(x, \mathbf{a})] - H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}, h}^{\pi}} [\min \{f_h(x, \mathbf{a}), 1\}]. \end{aligned}$$

2970 Next we are going to bound the second term. Applying Lemma 44 to $g_h(x, \mathbf{a}) = \min \{f_h(x, \mathbf{a}), 1\}$,
 2971 we have

$$\begin{aligned}
 & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} [\min \{f_h(x, \mathbf{a}), 1\}] \\
 & \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right] \\
 & \quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] + \lambda C + nL\omega^{L-1}\zeta} \\
 & \leq \sum_{h=0}^H \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\hat{\mathcal{P}}_{h-L}}^{\pi}} \left[\|\alpha \hat{p}_{h-1}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, \hat{\rho}}^{-1}} \right]
 \end{aligned}$$

2984 Note that we here use the fact $\min \{f_h(x, \mathbf{a}), 1\} \leq 1$, $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\min \{f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h), 1\}^2 \right] \leq \zeta$ and
 2985 our choice of α .

2986 Combining all things together,

$$\begin{aligned}
 \underline{v}_i - v_i^\pi &= \mathbb{E}_{x \sim d_0} [V_{0,i}(x) - V_{0,i}^\pi(x)] \\
 &\leq \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} [-\hat{b}_h(x, \mathbf{a})] + H \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\hat{\mathcal{P}}_h}^{\pi}} [\min \{f_h(x, \mathbf{a}), 1\}] \\
 &\leq 0,
 \end{aligned}$$

2994 which has finished the proof. \square

2995 **Lemma 48.** Set

$$\hat{b}_h = \min \left\{ \alpha \|\hat{p}(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n, \hat{\rho}}^{-1}}, H \right\},$$

2996 with $\alpha = \Theta \sqrt{\lambda C + nL\omega^L\zeta}$,

$$\hat{\Sigma}_{n, \hat{\rho}} : L_2(\mu) \rightarrow L_2(\mu), \quad \hat{\Sigma}_{n, \hat{\rho}} := \sum_{(x_i, \mathbf{a}_i) \in \mathcal{D}} [\hat{p}(z | x_i, \mathbf{a}_i) \hat{p}(z | x_i, \mathbf{a}_i)^\top] + \lambda T_K^{-1}$$

3000 where T_K is the integral operator associated with K (i.e. $T_K f = \int f(x) K(x, \cdot) dx$) and λ is set for
 3001 different eigendecay of K as follows:

- β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

3010 c is an absolute constant. Then with probability at least $1 - \delta$, $\forall i \in [M]$ we have

- for β -finite spectrum,

$$\Delta \lesssim \mathcal{O} \left(H^3 \beta \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

- for β -polynomial decay,

$$\Delta \lesssim \mathcal{O} \left(H^3 C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

- for β -exponential decay,

$$\Delta \lesssim \mathcal{O} \left(H^3 C_{\text{exp}} (\log n)^{1+1/\beta} \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3024 *Proof.* Let $f_h(x, \mathbf{a}) = \left\| \widehat{\mathcal{P}}_h(\cdot|s, \mathbf{a}) - P_h(\cdot|x, \mathbf{a}) \right\|_1$. With our choice of λ and ζ , according to Lemma
 3025 56, we have
 3026

3027
 3028
$$\mathbb{E}_{x \sim \rho} \left[(f_h(x, \mathbf{a}))^2 \right] \leq \zeta, \|p_h(\cdot|x, \mathbf{a})\|_{\widehat{\Sigma}_{n, \phi_h}^{-1}} = \Theta \left(\|p_h(\cdot|x, \mathbf{a})\|_{\Sigma_{\rho, \phi_h}^{-1}} \right), \quad \forall h \in [H], \widehat{\mathcal{P}} \in \mathcal{M}. \quad (31)$$

 3029
 3030
 3031

3032 By definition, we have

3033
$$\Delta = \max_{i \in [M]} \{ \bar{v}_i - \underline{v}_i \}.$$

 3034
 3035

3036 For each fixed $i \in [M], h \in [H]$, we have

3037
$$\begin{aligned} & \mathbb{E}_{x \sim d_{\mathcal{P}, h}^\pi} [\bar{V}_{h, i}(x) - \underline{V}_{h, i}(x)] \\ &= \mathbb{E}_{x \sim d_{\mathcal{P}, h}^\pi} \left[(\mathbb{D}_{\pi_h} \bar{Q}_{h, i})(x) - (\mathbb{D}_{\pi_h} \underline{Q}_{h, i})(x) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} \left[\bar{Q}_{h, i}(x, \mathbf{a}) - \underline{Q}_{h, i}(x, \mathbf{a}) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} \left[2\hat{b}_h(x, \mathbf{a}) + (\widehat{\mathcal{P}}_h(\bar{V}_{h+1, i} - \underline{V}_{h+1, i})(x, \mathbf{a})) \right] \\ &= \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} \left[2\hat{b}_h(x, \mathbf{a}) + ((\widehat{\mathcal{P}}_h - P_h)(\bar{V}_{h+1, i} - \underline{V}_{h+1, i})(x, \mathbf{a})) \right] \\ &+ \mathbb{E}_{x \sim d_{\mathcal{P}, h+1}^\pi} [\bar{V}_{h+1, i}(x) - \underline{V}_{h+1, i}(x)] \\ &\leq \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} \left[2\hat{b}_h(x, \mathbf{a}) + 2H^2 f_h(x, \mathbf{a}) \right] + \mathbb{E}_{x \sim d_{\mathcal{P}, h+1}^\pi} [\bar{V}_{h+1, i}(x) - \underline{V}_{h+1, i}(x)]. \end{aligned}$$

 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049

3050 Note that we use the fact $\bar{V}_{h+1, i}(x) - \underline{V}_{h+1, i}(x)$ is upper bounded by $2H^2$, which can be proved
 3051 easily using induction using the fact that $\hat{b}_h(x, \mathbf{a}) \leq H$. Applying the above formula recursively to
 3052 $\mathbb{E}_{x \sim d_{\mathcal{P}, h+1}^\pi} [\bar{V}_{h+1, i}(x) - \underline{V}_{h+1, i}(x)]$, one gets the following result (or more formally, one can prove
 3053 by induction, just like what we did in Lemma 45, Lemma 46 and Lemma 47):
 3054

3055
$$\mathbb{E}_{x \sim d_{\mathcal{P}, 0}^\pi} [\bar{V}_{0, i}(x) - \underline{V}_{0, i}(x)] \leq 2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} [\hat{b}_h(x, \mathbf{a})]}_{(a)} + 2H^2 \underbrace{\sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} [f_h(x, \mathbf{a})]}_{(b)}.$$

 3056
 3057
 3058
 3059
 3060

3061 First, we calculate the first term (a) in Inequality equation 32. Following Lemma 43 and noting the
 3062 bonus \hat{b}_h is $O(H)$, we have
 3063

3064
$$\begin{aligned} & \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} [\hat{b}_h(x, \mathbf{a})] \\ & \lesssim \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{\mathcal{P}, h}^\pi} \left[\min \left\{ \alpha \left\| \hat{b}_h(\cdot|x_{h-L}, \mathbf{a}_{h-L}) \right\|_{\Sigma_{\rho, \hat{\rho}}^{-1}}, H \right\} \right] \quad (\text{From equation 31}) \\ & \lesssim \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{\mathcal{P}, h-L}^\pi} \left[\|p_h(\cdot|x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, p}^{-1}} \right] \\ & \quad \cdot \sqrt{n\omega^L \cdot \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[(\hat{b}_h(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right]} + \lambda H^2 C. \end{aligned}$$

 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076

3077 Note that we use the fact that $B = H$ when applying Lemma 43. In addition, following the proof of
 Lemma 8 in (41), we have that

3078 • for β -finite spectrum,

3079

$$3080 n\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\widehat{b}_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O(\beta \log n);$$

3081

3082

$$3083 \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim \rho} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}}^2 \right] = O(\beta \log n);$$

3084

3085 • for β -polynomial decay,

3086

$$3087 n\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\widehat{b}_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O \left(C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \right);$$

3088

3089

$$3090 \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim \rho} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}}^2 \right] = O \left(C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \right);$$

3091

3092 • for β -exponential decay,

3093

$$3094 n\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[\widehat{b}_h(\tilde{x}_h, \tilde{\mathbf{a}}_h)^2 \right] = O \left(C_{\text{exp}} (\log n)^{1+1/\beta} \right).$$

3095

3096

$$3097 \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim \rho} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}}^2 \right] = O \left(C_{\text{exp}} (\log n)^{1+1/\beta} \right).$$

3098

Moreover, according to lemma 42, we know

3099

$$3100 \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P, h-L}^\pi} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}} \right]$$

3101

$$3102 \leq \sqrt{\mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P, h-L}^\pi} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}}^2 \right]}$$

3103

$$3104 \leq \sqrt{C_\pi^* \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim \rho} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{L_2(\mu), \Sigma_{\rho, p}^{-1}}^2 \right]}.$$

3105

3106

Second, we calculate the term (b) in inequality equation 32. Following Lemma 43 and noting that $f_h(x, \mathbf{a})$ is upper-bounded by 2 (i.e., $B = 2$ in Lemma 43), we have

3107

$$3108 \sum_{h=0}^H \mathbb{E}_{(x, \mathbf{a}) \sim d_{P, h}^\pi} [f_h(x, \mathbf{a})]$$

3109

$$3110 \leq \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P, h-L}^\pi} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, p}^{-1}} \right] \sqrt{n\omega^L \mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[(f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right] + 4C\lambda}$$

3111

$$3112 \leq \sum_{h=0}^{H-1} \mathbb{E}_{(x_{h-L}, \mathbf{a}_{h-L}) \sim d_{P, h-L}^\pi} \left[\|p_h(\cdot | x_{h-L}, \mathbf{a}_{h-L})\|_{\Sigma_{\rho, p}^{-1}} \right] \sqrt{n\omega^L \zeta + 4C\lambda},$$

3113

3114

3115

3116

3117

3118 where in the second inequality, we use $\mathbb{E}_{(\tilde{x}_h, \tilde{\mathbf{a}}_h) \sim \rho} \left[(f_h(\tilde{x}_h, \tilde{\mathbf{a}}_h))^2 \right] \leq \zeta$.

3119

3120 Then, by combining the above calculation of the term (a) and term (b) in inequality equation 32, we
3121 have:

3122

3123 • for β -finite spectrum,

3124

$$3125 \Delta \lesssim \mathcal{O} \left(\sqrt{C_{\hat{\pi}}^* \beta \log n} \cdot (H \sqrt{\omega^L \beta \log n + \lambda H^2 C} + H^3 \sqrt{n\omega^L \zeta + 4C\lambda}) \right)$$

3126

3127 • for β -polynomial decay,

3128

$$3129 \Delta \lesssim \mathcal{O} \left(\sqrt{C_{\hat{\pi}}^* C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n} \right.$$

3130

$$3131 \left. \cdot \left(H \sqrt{\omega^L C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n + \lambda H^2 C} + H^3 \sqrt{n\omega^L \zeta + 4C\lambda} \right) \right)$$

3132

3132 • for β -exponential decay,

$$3134 \Delta \lesssim \mathcal{O} \left(\sqrt{C_{\hat{\pi}}^* C_{\exp} (\log n)^{1+1/\beta}} \right. \\ 3135 \quad \left. \cdot \left(H \sqrt{\omega^L C_{\exp} (\log n)^{1+1/\beta} + \lambda H^2 C} + H^3 \sqrt{n \omega^L \zeta + 4C \lambda} \right) \right)$$

3139 By substituting λ into the results, we obtain:

3141 • for β -finite spectrum,

$$3142 \Delta \lesssim \mathcal{O} \left(H^3 \beta \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3146 • for β -polynomial decay,

$$3147 \Delta \lesssim \mathcal{O} \left(H^3 C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3151 • for β -exponential decay,

$$3152 \Delta \lesssim \mathcal{O} \left(H^3 C_{\exp} (\log n)^{1+1/\beta} \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3155 This concludes the proof. \square

3157 **Theorem 49** (PAC guarantee of Algorithm 5). *When Alg. 5 is applied with parameters $\zeta = \Theta(\log(H|\mathcal{M}|/\delta)/n)$, $\hat{b}_h = \min \left\{ \alpha \|\hat{p}(\cdot|x_{h-L}, a_{h-L})\|_{L_2(\mu), \hat{\Sigma}_{n, \hat{p}}^{-1}}, H \right\}$ with $\alpha = \Theta\sqrt{\lambda C + n L \omega^{L-1} \zeta}$ and*

- β -finite spectrum: $\lambda = \Theta(\beta \log n + \log(|\mathcal{M}|/\delta))$;
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} n^{1/(1+\beta)} + \log(|\mathcal{M}|/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\exp} (\log n)^{1/\beta} + \log(|\mathcal{M}|/\delta))$;

3166 with probability $1 - \delta$, the output policy $\hat{\pi}$ is an ε -approximate $\{\text{NE}, \text{CCE}, \text{CE}\}$ with

3168 • for β -finite spectrum,

$$3169 \varepsilon = \mathcal{O} \left(H^3 \beta \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3173 • for β -polynomial decay,

$$3175 \varepsilon = \mathcal{O} \left(H^3 C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3178 • for β -exponential decay,

$$3180 \varepsilon = \mathcal{O} \left(H^3 C_{\exp} (\log n)^{1+1/\beta} \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3183 *Proof.* For any agent i , by Lemma 45, Lemma 46 and Lemma 47, we have

$$3184 \quad 3185 v_i^{\dagger, \pi_{-i}} - v_i^{\pi} \left(\text{or} \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi} - v_i^{\pi} \right) \leq \bar{v}_i - \underline{v}_i \leq \Delta.$$

3186 Taking maximum over i on both sides, we have
 3187

$$3188 \max_{i \in [M]} \left\{ v_i^{\dagger, \pi_{-i}} - v_i^\pi \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi} - v_i^\pi \right\} \right) \leq \Delta. \quad (33)$$

3190 From Lemma 48, with probability $1 - \delta$, we can ensure the output policy $\hat{\pi}$ is an ε -approximate
 3191 $\{\text{NE}, \text{CCE}, \text{CE}\}$ with
 3192

- 3193 • for β -finite spectrum,
 3194

$$3195 \varepsilon = \mathcal{O} \left(H^3 \beta \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

- 3198 • for β -polynomial decay,
 3199

$$3200 \varepsilon = \mathcal{O} \left(H^3 C_{\text{poly}} n^{\frac{1}{2(1+\beta)}} \log n \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

- 3203 • for β -exponential decay,
 3204

$$3205 \varepsilon = \mathcal{O} \left(H^3 C_{\text{exp}} (\log n)^{1+1/\beta} \sqrt{C_{\hat{\pi}}^* n \omega^L C \zeta \log \frac{|\mathcal{M}|}{\delta}} \right)$$

3208 which has finished the proof. □
 3209

3210 F DERIVATION AND OPTIMIZATION OF ELBO

3213 This section presents the derivation of the Evidence Lower Bound (ELBO) as a tractable surrogate
 3214 objective for maximum likelihood estimation (MLE), followed by an analysis of its computational
 3215 advantages over direct MLE optimization.

3216 We begin with the ELBO derivation through variational calculus:
 3217

$$3219 \log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | \tau_h^L, \mathbf{a}_h) \\ 3220 = \log \int_{\mathcal{Z}} p(z_h | \tau_h^L, \mathbf{a}_h) \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h) dz_h \\ 3221 = \log \int_{\mathcal{Z}} \frac{p(z_h | \tau_h^L, \mathbf{a}_h) \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)}{q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})} \cdot q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) dz_h \quad (34) \\ 3222 = \max_{q \in \Delta(\mathcal{Z})} \mathbb{E}_{q(\cdot | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})} [\log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)] - KL(q(z_h | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) || p(z_h | \tau_h^L, \mathbf{a}_h))$$

3227 where the last equation comes from Jensen's inequality, with equality holding when
 3228 $q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) \propto p(z_h | \tau_h^L, \mathbf{a}_h) \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)$. Notably, under Assumption 4, the
 3229 $q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) \in \mathcal{Q}$ for all $(p(z_h | \tau_h^L, \mathbf{a}_h), \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)) \in \mathcal{M}$, so the equality
 3230 always holds and the estimator obtained by maximizing the ELBO is identical to the estimator obtained
 3231 by MLE.

3233 Compared to the standard MLE objective, maximizing the ELBO is computationally efficient because
 3234 it avoids the need to compute integrals explicitly. Instead, the ELBO only requires evaluating an
 3235 expectation and a KL divergence term, both of which can be approximated efficiently via sampling.

3236 Note that the ELBO objective
 3237

$$3238 \mathbb{E}_{q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l})} [\log \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h)] - KL((q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) || p(z_h | \tau_h^L, \mathbf{a}_h))) \\ 3239 = -KL(q(z | \tau_h^L, \mathbf{a}_h, \mathbf{o}_{h+1:h+l}) || \mathbb{P}^{\chi_\pi}(\mathbf{o}_{h+1:h+l} | z_h) p(z_h | \tau_h^L, \mathbf{a}_h)).$$

3240 **Algorithm 6** OVI-OF with Generalized PSRs

3241 1: **Input:** Regularizer λ , iteration N , parameter $\{\alpha_n\}_{n=1}^N, \{\zeta_n\}_{n=1}^N$, and model class $\mathcal{M} =$
3242 $\{(p_h(\cdot|x_h, \mathbf{a}_h), p_h(\mathbf{o}_{h+1}|\cdot))\}_{h \in [H]}$.

3243 2: Initialize π^0 to be uniform; set datasets $\mathcal{D}_h^0 = \emptyset, \tilde{\mathcal{D}}_h^0 = \emptyset, \forall h \in [H]$.

3244 3: **for** episode $n = 1, 2, \dots, N$ **do**

3245 4: Set $\bar{V}_{H+1,i}^n = 0, \underline{V}_{H+1,i}^n = 0$ for all $i \in [M]$.

3246 5: Sample trajectory and learn representation like Algorithm 2 in (12).

3247 6: **for** step $h = H, H-1, \dots, 1$ **do**

3248 7: Compute \hat{b}_h^n from equation 7 and update \bar{Q}, \underline{Q} as following:

3249

$$\bar{Q}_{h,i}^n(\tau_h, \mathbf{a}) = r_{h,i}(\tau_h, \mathbf{a}) + \mathbb{E}_{\hat{\mathcal{P}}_h^n} [\bar{V}_{h+1,i}^n(\tau_{h+1})|\tau_h, \mathbf{a}_h] + \hat{b}_h^n(\tau_h, \mathbf{a})$$

$$\underline{Q}_{h,i}^n(\tau_h, \mathbf{a}) = r_{h,i}(\tau_h, \mathbf{a}) + \mathbb{E}_{\hat{\mathcal{P}}_h^n} [\underline{V}_{h+1,i}^n(\tau_{h+1})|\tau_h, \mathbf{a}_h] - \hat{b}_h^n(\tau_h, \mathbf{a})$$

3250

3251 8: Compute the NE/CE/CCE solution π_h^n according to equation 1/equation 2/equation 3 and update value function as following:

3252

$$\bar{V}_{h,i}^n(\tau_h) = \mathbb{E}_{\mathbf{a} \sim \pi_h^n(\cdot|\tau_h)} [\bar{Q}_{h,i}^n(\tau_h, \mathbf{a})], \quad \underline{V}_{h,i}^n(\tau_h) = \mathbb{E}_{\mathbf{a} \sim \pi_h^n(\cdot|\tau_h)} [\underline{Q}_{h,i}^n(\tau_h, \mathbf{a})].$$

3253

3254 9: **end for**

3255 10: Compute $\Delta^n = \max_{i \in [M]} \{\bar{v}_i^n - \underline{v}_i^n\}$ with $\bar{v}_i^n = \int_{\mathcal{X}} \bar{V}_{0,i}^n(x) \mu_0(x) dx, \underline{v}_i^n = \int_{\mathcal{X}} \underline{V}_{0,i}^n(x) \mu_0(x) dx$.

3256 11: **end for**

3257 12: **Return** $\hat{\pi} = \pi^{n^*}$ where $n^* = \arg \min_{n \in [N]} \Delta^n$.

3264 This is a variational inference problem. When Assumption 4 holds, then $q(z|\tau_h^L, a_h, o_{h+1:h+l})$ and
3265 $\mathbb{P}^\pi(o_{h+1:h+l}|z_h)p(z_h|\tau_h^L, a_h)$ is a conjugate family and this problem admits a closed-form solution.
3266 Otherwise, we can solve this problem via black box variational inference (48). In particular, we
3267 consider a parameterized family q_θ and its derivative w.r.t. θ can be calculate as follows.

$$\nabla_\theta \mathbb{E}_{q_\theta(z|\tau_h^L, a_h, o_{h+1:h+l})} [\log \mathbb{P}^{\chi_\pi}(o_{h+1:h+l}|z_h)] - KL((q_\theta(z|\tau_h^L, a_h, o_{h+1:h+l})||p(z_h|\tau_h^L, a_h))$$

$$= \int q_\theta(z|\tau_h^L, a_h, o_{h+1:h+l}) \nabla_\theta \log q_\theta(z|\tau_h^L, a_h, o_{h+1:h+l}) \cdot$$

$$(\log q_\theta(z|\tau_h^L, a_h, o_{h+1:h+l}) - \log \mathbb{P}^{\chi_\pi}(o_{h+1:h+l}|z_h)p(z_h|\tau_h^L, a_h)) dz$$

3275 As a result, we can find an approximate solution of the ELBO maximization by stochastic gradient
3276 ascent type methods.

3278 G COMPARISON WITH (12)

3281 (12) construct a generalized PSR representation for γ -well-conditioned POMGs. Note that if the
3282 rank of the core test set is uniform across all time steps h , i.e. $d_h = d$ for all h , the POMG satisfies
3283 the assumptions in (12) is a special subclass of low-rank POMGs and this representation can be
3284 integrated into our framework.

3285 Now consider a POMG that satisfies the assumptions in (12), where the set of generalized PSR
3286 representation is \mathcal{M} and the rank of the core test set is uniform across all time steps h , i.e. $d_h = d$
3287 for all h .

3288 As shown in (12), learning generalized PSRs via MLE and conduct self-play UCB algorithm with an
3289 access to an oracle for the exact value function, the algorithm terminates with a sample complexity
3290 of $\tilde{O}((d + \frac{A^2 H}{\gamma^2}) \frac{d^2 H^3 |\mathcal{S}|^2 A^4 \log(|\mathcal{M}_\epsilon|)}{\gamma^4 \epsilon^2})$, where \mathcal{M}_ϵ is an optimistic ϵ -cover of \mathcal{M} , as defined in (12).
3291 We extend their method to oracle-free setting.

3292 **Theorem 50** (PAC guarantee of Algorithm 6). *Assume assumptions in (12) holds and the rank of
3293 the core test set is uniform across all time steps h . Suppose $\alpha_n = \max\{\frac{A\sqrt{Hd\lambda}}{\gamma^2} + \frac{|\mathcal{S}|A\sqrt{\beta}}{\gamma}, d\lambda +$*

$H\sqrt{nAt_N}\}$, $\lambda = \frac{\gamma|\mathcal{S}|^2Q\beta \max\{\sqrt{r}_{PSR}, A\sqrt{H/\gamma}\}}{\sqrt{dH}}$ and $\beta = O(\log(|\mathcal{M}_\epsilon|))$. Then, by setting the number of episodes N to be $\tilde{O}\left(\frac{H^{10}d^4A^6|\mathcal{S}|^2\log(|\mathcal{M}_\epsilon|)}{\varepsilon^2\gamma^6}\right)$, with probability at least $1 - \delta$, the returned policy $\hat{\pi}$ is an ε -approximate equilibrium.

Proof. Denote $t_N = (r + \frac{Q_A^2 H}{\gamma^2}) \frac{rdH^3 |S|^2 Q_A^4 \beta}{\gamma^4 N}$. Analogous to the previous proof, we obtain:

$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim d_{\mathcal{P}}^{\hat{\pi}}} \|\mathcal{P}(\cdot | \tau_h, \mathbf{a}_h) - \hat{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h)\|_1^2 \leq O(t_N)$$

and

$$\begin{aligned} \sum_{n=1}^N \Delta^{(n)} &\lesssim H \left(\sqrt{dN \log \left(1 + \frac{N}{d} \right)} \sqrt{dA(\alpha_N)^2 + H^2 d\lambda} + \sum_{n=1}^N \sqrt{\frac{dA(\alpha_n)^2}{n}} \right) \\ &\quad + H^3 \left(\frac{1}{H} \sqrt{dN \log \left(1 + \frac{N}{d\lambda} \right)} \alpha_N + N \sqrt{At_N} \right) \\ &\lesssim \frac{H^5 d^2 N^{\frac{1}{2}} A^3 |\mathcal{S}| \log^{1/2}(|\mathcal{M}_\epsilon|)}{\gamma^3}. \end{aligned}$$

when we pick N to be

$$\tilde{O} \left(\frac{H^{10} d^4 A^6 |\mathcal{S}|^2 \log(|\mathcal{M}_\epsilon|)}{\varepsilon^2 \gamma^6} \right),$$

we have

$$\frac{1}{N} \sum_{n=1}^N \Delta^{(n)} \leq \varepsilon.$$

Then, we have

$$\begin{aligned}
& \max_{i \in [M]} \left\{ v_i^{\dagger, \hat{\pi}_{-i}} - v_i^{\hat{\pi}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \hat{\pi}} - v_i^{\hat{\pi}} \right\} \right) \\
&= \max_{i \in [M]} \left\{ v_i^{\dagger, \pi^{n^*}} - v_i^{\pi^{n^*}} \right\} \left(\text{or} \max_{i \in [M]} \left\{ \max_{\omega \in \Omega_i} v_i^{\omega \circ \pi^{n^*}} - v_i^{\pi^{n^*}} \right\} \right) \\
&\leq \Delta^{n^*} = \min_{n \in [N]} \Delta^n \leq \frac{1}{N} \sum_{n=1}^N \Delta^n \leq \varepsilon,
\end{aligned}$$

which has finished the proof.

H TECHNICAL LEMMA

In this section, we present some technical lemmas used in the proof.

Lemma 51 (MLE Guarantee). *For any episode $n \in [N]$, step $h \in [H]$, define ρ_h as the joint distribution of (x_h, a_h) in the dataset $\mathcal{D}_{h,n}$ at episode n . Then with probability at least $1 - \delta$, we have that*

$$\mathbb{E}_{(x_h, a_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | x_h, a_h) - \mathbb{P}_h^{\hat{\mathcal{P}}_n}(\cdot | x_h, a_h) \right\|_1^2 \leq \zeta_n,$$

where $\zeta_n \equiv O(\log(Hn|\mathcal{M}|/\delta)/n)$.

For the proof, see (36).

Lemma 52 (l_2 Guarantee). *For any episode $n \in [N]$, step $h \in [H]$, with probability at least $1 - \delta$, we have that*

$$\mathbb{E}_{(\tau_h, \mathbf{a}_h) \sim \mathcal{D}_{h,n}} \left\| \mathbb{P}_h^{\mathcal{P}}(\cdot | \tau_h, \mathbf{a}_h) - \mathbb{P}_h^{\widehat{\mathcal{P}}_n}(\cdot | \tau_h, \mathbf{a}_h) \right\|^2 \leq \zeta_n,$$

where $\zeta_+ \equiv O(\log(Hn|\mathcal{M}|/\delta)/n)$

3348 For the proof, see (40).

3349
 3350 **Lemma 53** ((52), Lemma G.2). *Consider the following process. For $n = 1, \dots, N$, $M_n = M_{n-1} +$
 3351 G_n with $M_0 = \lambda_0 I$ and G_n being a positive semidefinite matrix with eigenvalues upper bounded by
 3352 1. We have*

3353
$$2 \log \det(M_N) - 2 \log \det(\lambda_0 I) \geq \sum_{n=1}^N \text{Tr}(G_n M_{n-1}^{-1}).$$

3354
 3355 **Lemma 54** (Potential function lemma). *Suppose $\text{Tr}(G_n) \leq B^2$.*

3356
 3357
$$2 \log \det(M_N) - 2 \log \det(\lambda_0 I) \leq d \log \left(1 + \frac{NB^2}{d\lambda_0} \right)$$

3358
 3359
 3360 *Proof.* Let $\sigma_1, \dots, \sigma_d$ be the set of singular values of M_N recalling M_N is a positive semidefinite
 3361 matrix. Then, by the AM-GM inequality,

3362
 3363
$$\log \det(M_N) / \det(\lambda_0 I) = \log \prod_{i=1}^d (\sigma_i / \lambda_0) \leq \log d \left(\frac{1}{d} \sum_{i=1}^d (\sigma_i / \lambda_0) \right)$$

3364
 3365 Since we have $\sum_i \sigma_i = \text{Tr}(M_N) \leq d\lambda_0 + NB^2$, the statement is concluded. \square

3366
 3367 **Lemma 55.** *For parameters A, B, ε such that $\frac{A^2 B}{\varepsilon^2}$ is larger than some absolute constant, when we
 3368 pick $N = \frac{A^2}{\varepsilon^2} \log^2 \frac{A^4 B^2}{\varepsilon^4} = O \left(\frac{A^2}{\varepsilon^2} \log^2 \frac{AB}{\varepsilon} \right)$, we have*

3369
 3370
$$\frac{A}{\sqrt{N}} \log(BN) \leq \varepsilon.$$

3371
 3372 *Proof.* We have

3373
 3374
$$\frac{A}{\sqrt{N}} \log(BN) = \varepsilon \frac{\log \left(\frac{A^2 B}{\varepsilon^2} \log^2 \frac{A^4 B^2}{\varepsilon^4} \right)}{\log \frac{A^4 B^2}{\varepsilon^4}}$$

3375
 3376 Note that

3377
 3378
$$\frac{A^2 B}{\varepsilon^2} \log^2 \frac{A^4 B^2}{\varepsilon^4} \leq \frac{A^4 B^2}{\varepsilon^4} \Leftrightarrow \log^2 \frac{A^4 B^2}{\varepsilon^4} \leq \frac{A^2 B}{\varepsilon^2}$$

3379
 3380 where the right hand side is always true whenever $\frac{A^2 B}{\varepsilon^2}$ is larger than some given constant. Therefore,
 3381 we get

3382
 3383
$$\frac{A}{\sqrt{N}} \log(BN) \leq \varepsilon.$$

3384
 3385 \square

3386
 3387 **Lemma 56** (Concentration of the Bonuses). *Let μ_i be the conditional distribution of ϕ given
 3388 the sampled $\phi_1, \dots, \phi_{i-1}$, define $\Sigma : L_2(\mu) \rightarrow L_2(\mu)$, $\Sigma_n := \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\phi \sim \mu_i} \phi \phi^\top$. Assume
 3389 $\|\phi\|_{\mathcal{H}_k} \leq 1$ for any realization of ϕ . If λ satisfies the following conditions for each eigendecay
 3390 condition:*

3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401

- β -finite spectrum: $\lambda = \Theta(\beta \log N + \log(N/\delta))$;
- β -polynomial decay: $\lambda = \Theta(C_{\text{poly}} N^{1/(1+\beta)} + \log(N/\delta))$;
- β -exponential decay: $\lambda = \Theta(C_{\text{exp}} (\log N)^{1/\beta} + \log(N/\delta))$, where C_3 is a constant depends
 on C_1 and C_2 ;

3402

3403 Table 2: Average exploitability of the final policy of DQN and OVI-OF-LLVR over 5 trials. Note that
3404 lower exploitability implies that the policy is closer to the equilibrium.

Exploitability(\downarrow)	DQN	OVI-OF-LLVR
H=3	1.1101(± 0.0033)	0.2566 (± 0.0063)
H=10	3.1124 (± 0.0875)	0.7290 (± 0.0138)

3408

3409

3410 then there exists absolute constant c_1 and c_2 , such that $\forall x \in \mathcal{H}_k$, the following event holds with
3411 probability at least $1 - \delta$:

3412

$$\forall n \in [N], \quad c_1 \langle x, (n\Sigma_n + \lambda T_k^{-1}) x \rangle_{L_2(\mu)} \leq \left\langle x, \left(\sum_{i \in [n]} \phi_i \phi_i^\top + \lambda T_k^{-1} \right) x \right\rangle_{L_2(\mu)},$$

and $\left\langle x, \left(\sum_{i \in [n]} \phi_i \phi_i^\top + \lambda T_k^{-1} \right) x \right\rangle_{L_2(\mu)} \leq c_2 \langle x, (n\Sigma_n + \lambda T_k^{-1}) x \rangle_{L_2(\mu)}.$

3415

3416 *In the same event above, the following event must hold as well:*

3417

$$\forall n \in [N], \quad \frac{1}{c_2} \langle x, (n\Sigma_n + \lambda T_k^{-1})^{-1} x \rangle_{L_2(\mu)} \leq \left\langle x, \left(\sum_{i \in [n]} \phi_i \phi_i^\top + \lambda T_k^{-1} \right)^{-1} x \right\rangle_{L_2(\mu)}$$

and $\left\langle x, \left(\sum_{i \in [n]} \phi_i \phi_i^\top + \lambda T_k^{-1} \right)^{-1} x \right\rangle_{L_2(\mu)} \leq \frac{1}{c_1} \langle x, (n\Sigma_n + \lambda T_k^{-1})^{-1} x \rangle_{L_2(\mu)}$

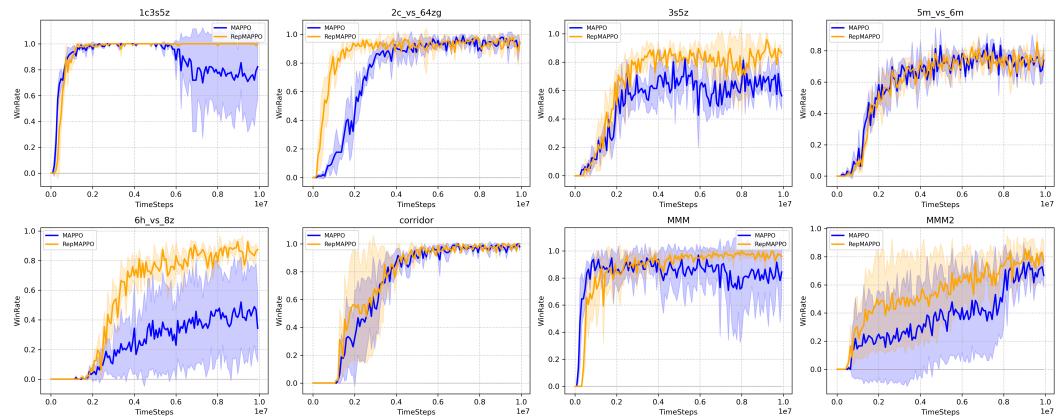
3418

3419 For the proof, see (41).

3420

3421

I EXPERIMENTS

3448 Figure 1: Comparison of win rate between REPMAPPO and MAPPO in SMAC. Y axis denotes the
3449 win rate and X axis denotes the number of steps taken in the environment.

3450

3451 In this section, we present two experiments to evaluate our methods. The first experiment focuses
3452 on a simple POMDP with random latent transitions and rewards, aiming to validate the convergence
3453 of OVI-OF-LLVR. Our second experiment evaluate LLVR on the StarCraft Multi-Agent Challenge
3454 (SMAC) environments (53), a widely used benchmark for Dec-POMDPs, to assess its effectiveness.
3455 Note that, in Dec-POMDPs, all agents cooperate and share observations during training, making this
setting well-suited for our method.

3456 I.1 EXPERIMENT ON SIMPLE POMG
3457

3458 Our first experiment aims to verify whether OVI-OF-LLVR can reliably converge under L -
3459 decodability assumption with random dynamics and rewards. To achieve this, the algorithm must
3460 not only decode the latent structure accurately but also solve the POMG to produce NE/CE/CCE
3461 policies. Accordingly, we construct a Block Partially Observable Markov Games (BPOMGs) defined
3462 as follows:

3463 **Definition 57 (BPOMG).** (30) For any $h \in [H]$, a BPOMG has an emission distribution $e_h(\cdot|z) \in$
3464 $\Delta_{\mathcal{S}}$ and a latent state space transition $T_h(z'|z, a)$, such that for any $s \in \mathcal{S}$, $e_h(s|z) > 0$ for a unique
3465 latent state $z \in \mathcal{Z}$, denoted as $\psi_h^*(s)$. Together with the ground truth decoder ψ_h^* , it defines the
3466 transitions $P_h(s'|s, a) = \sum_{z' \in \mathcal{Z}} e_h(s'|z') T_h(z'|z, a)$.

3467 It is straightforward to see that BPOMG is a special case of the 1-decodable POMG when we define
3468 the latent state z to be exactly equivalent to the current observation (i.e., $z = o_h$).

3470 We construct two two-player zero-sum BPOMG variants, with horizons $H = 3$ (short) and $H = 10$
3471 (long). Each BPOMG is randomly generated with H horizon, 3 states, 2 players each with 3 actions,
3472 random reward matrix $r_h \in (0, 1)^{3 \times 9 \times H}$ and random latent transition matrix T_h . The dimension of
3473 the observation space is $2^{\lceil \log(H+|\mathcal{S}|+1) \rceil}$. Note that similar mechanism has also been adopted in (32)
3474 to construct a Block MDP. See Appendix J for details.

3475 We adopt DQN (54) together with fictitious self-play (55) as baseline, and measure the policy
3476 exploitability to assess the performance. For each variant, we run 5 trials and report the mean
3477 exploitability and its variance. As shown in Table 2, OVI-OF-LLVR obtains policy closer to the
3478 equilibrium, with significantly lower exploitability.

3479
3480 I.2 EXPERIMENT ON SMAC
3481

3482 Our second experiment verify the effectiveness of our proposed representation in OVI-OF-LLVR
3483 on the SMAC benchmark environments. In this experiment, we learn the latent representations by
3484 predicting future outcomes from a history of length L . Specifically, we employ a continuous latent
3485 variable model similar to (15), approximating probability distributions with Gaussians parameterized
3486 by their mean and variance. The learned representations can be integrated with various MARL
3487 methods by feeding them into the value function. In our experiments, we select MAPPO (56) as
3488 baseline and compare it against its representational variant, REPMAPPO. Detailed implementation
3489 information, including hyperparameters, is provided in Appendix J. We apply $L = 1$ across all
3490 domains.

3491 In Figure 1, we report the results from 8 selected SMAC scenarios —4 Hard and 4 Super Hard—out
3492 of 23 scenarios. It is shown that REPMAPPO achieves significantly better empirical results in 5
3493 scenarios and marginally outperforms MAPPO in other scenarios. Moreover, it can also be observed
3494 that REPMAPPO demonstrates greater stability, with smaller variance and a smoother training curve
3495 during evaluation, on most scenarios.

3496 J EXPERIMENT DETAILS
34973498 J.1 DETAILED EXPERIMENT SETUP
3499

3500 In this section, we provide the detailed setups for the two experiments conducted to evaluate our
3501 methods. For completeness we repeat certain details already introduced in the main text.

3502 Firstly, we introduce the details of the environment construction of the BPOMGs. We designed a
3503 BPOMG by randomly generating a tabular POMG with horizon H , 3 states, 2 players each with 3
3504 actions, and random reward matrix $r_h \in (0, 1)^{3 \times 9 \times H}$ and random latent transition matrix T_h . The
3505 dimension of the observation space is $2^{\lceil \log(H+|\mathcal{S}|+1) \rceil}$, in line with the design of (32).

3506 For the implementation of LLVR, we break down the introduction into two parts: the implementation
3507 of feature learning and the implementation of game solving algorithm using the current features. For
3508 the implementation of feature learning, we assume that the features follow a Gaussian distribution. To
3509 model the mean and log standard deviation of this distribution, we adopt a three-layer neural network

3510 with ReLU non-linearity. This approach allows us to effectively capture and represent the underlying
 3511 feature distributions necessary for solving the game.

3512 For solving the POMGs, in addition to following OVI-OF-LLVR, we implement the NE/CCE solvers
 3513 based on the public repository: <https://github.com/quantummiracle/MARS>.

3514 For the SMAC experiment, we implement MAPPO and REPMAPPO based on the public repository:
 3515 <https://github.com/marlbenchmark/on-policy>. We employ a continuous latent variable model
 3516 similar to (15), using Gaussian distributions parameterized by their mean and variance. To enhance
 3517 training stability, we utilize a target network for feature updates, applying a soft target network update
 3518 mechanism. All parameters are set to their default values.

3519

J.2 HYPERPARAMETERS

3520 In this subsection, we include the hyperparameters for LLVR and REPMAPPO in Table 3.

3521

3522 Table 3: Hyperparameters for LLVR and REPMAPPO in the experiment
 3523 **REPMAPPO**

LLVR		Value	Value
Buffer size	100000	GAE λ	0.95
Batch size	256	γ	0.99
Feature dimension	32	Feature dimension	64
Hidden dimension	32	Feature Target Update Tau	0.01
Optimizer	sgd	Hidden dimension	64
Learning rate	0.01	Optimizer	Adam
LSVI bonus coefficient α	0.1	Actor learning rate	5e-4
LSVI regularization coefficient λ	1	Critic learning rate	5e-4
Warm up number	10	Feature Learning rate	5e-4
		GAE λ	0.95
		γ	0.99

3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563