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ABSTRACT

Partially Observable Markov Games (POMGs) pose significant challenges for
multi-agent reinforcement learning due to the combination of partial observability
and strategic interactions. Recent advances explore the inherent structure of the
POMG dynamics and develop efficient representation methods to facilitate planning
in the latent space rather than directly operating on the history trajectory. In this
paper, we focus on the low-rank POMGs and propose a unified optimistic value
iteration (OVI) framework that accommodates different low-rank representation
learning methods. With a given representation, OVI constructs an optimistic bonus
and integrates it into the value function to inspire exploration and mitigate the
bias caused by the representation approximation error. When the exact value
function oracle is unavailable, OVI instead utilizes the low-rank representation to
construct optimistic/pessimistic estimators of the value functions via the Bellman
recursion, and selects the final solution based on the optimistic-pessimistic gap.
Our theoretical analysis shows that, once the representation approximation error
is bounded, the OVI converges to an approximate equilibrium. We instantiate the
framework with two provable representation learning methods: an MLE-based
approach and a spectral decomposition representation method. Furthermore, we
develop a novel representation method, L-step Latent Variable Representation
(LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, and
prove that OVI with LLVR also achieves approximate equilibria, with an extra
L-decodability assumption. Collectively, these results establish the first systematic
representation learning perspective for POMGs.

1 INTRODUCTION

Markov games (MGs) have emerged as a foundational framework for multi-agent reinforcement
learning (MARL), enabling rigorous analysis of agents’ performance in strategic interactions (1; 2; 3;
4). Recently, Partially Observable Markov Game (POMG) has been proposed as an extension of MG
under partial observability (5; 6). Specifically, each agent in POMGs only observes its own actions
and local signals, leading to incomplete information about the true state. The non-Markovian nature
of the observations forces the agent to maintain memory and reason about beliefs of the system state,
all while exploring to collect information about the environment. Consequently, even in cooperative
settings, POMGs have been shown to be NEXP-complete (7), implying that solving them in the worst
case requires super-exponential complexity.

Recent advances have sought to explore specific structured subclasses of POMGs that admit tractable
solutions. For instance, (8; 9) investigated POMGs with γ-observability where observations proba-
bilistically reveal state information, enabling hierarchical state estimation via information-sharing
mechanisms. (10) studied weakly revealing POMGs where observations are sufficiently informative
to infer state properties. More recently, other structured subclasses, such as POMGs with low gener-
alized eluder coefficient (11) have also been investigated. However, these methods either focus on
tabular state spaces or are restricted to two-player zero-sum games, which limits their applicability to
general POMGs. To the best of our knowledge, the only prior work addressing general POMGs is
(12). However, their approach employs a computationally inefficient representation learning method
and relies on access to an exact value function oracle.
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Table 1: Sample complexity of different representation learning methods under our OVI framework.
For the same representation method, value function oracle-free setting(OVI-OF) require more samples
than oracle-based setting(OVI-OB). The additional complexity is highlighted in blue.

Representation
Method OVI-OB OVI-OF

MLE Õ(ε−2 log(H|M|/δε)) Õ(H6d4|A|2 · ε−2 log(d|A|H|M|/δε))
SDR Õ(d2ε−2 log(H|M|/δε)) Õ(H6d2|A|2 · d2ε−2 log(d|A|H|M|/δε))

LLVR Õ(ε−2 log(H|M|/δε))
Õ

(
H6|A|LC log(H|A|L/2|M|/δε)

·ε−2 log(|A|L/2H|M|/δε)
)

In this work, we propose a unified optimistic value iteration (OVI) framework that accommodates
different low-rank representation learning method. With a given representation, it constructs an opti-
mistic bonus to encourage exploration, and then performs value iteration based on the representation
and bonus. The framework is compatible with two distinct settings; one that assumes access to an ex-
act value function oracle and another that operates without it. In the oracle-free setting, OVI bypasses
the need of the value function oracle by using the representation and bonus to construct optimistic and
pessimistic value function estimators via Bellman recursion. We show that if the representation error
is bounded, the framework provides sample-efficient guarantees for learning approximate equilibria.
We instantiate OVI with two concrete representation learning algorithms, one based on Maximum
Likelihood Estimation (MLE) and another on Spectral Decomposition Representation (SDR), and
demonstrate that both converge to approximate equilibria. Furthermore, we develop a novel L-step
latent variable representation (LLVR) method for POMGs with infinite-dimensional latent space,
i.e., infinite rank. Specifically, LLVR utilizes a computationally tractable ELBO to learn an effective
representation with only the recent L-step trajectory. We make the following contributions:

• We propose a unified OVI framework for low-rank POMGs that accommodates various
low-rank representation learning methods. Given a representation, OVI augments rewards
with an optimistic bonus to both encourage exploration and compensate for approximation
error. Notably, this framework is compatible with two distinct settings, supporting scenarios
that assumes access to an exact value function oracle and those that operates without it. In
particular, in the oracle-free setting, OVI constructs optimistic/pessimistic estimators of the
value function based on the representation and bonus, then performs the value iteration with
the constructed estimators, and selects the final solution by minimizing the gap between
these estimators. For both settings of OVI, we show that they converge to an approximate
Nash, Correlated, or Coarse Correlated Equilibrium if the representation error is bounded.

• We instantiate the framework with two concrete representation learning algorithms: MLE
and SDR. We characterize the corresponding approximation error of both representations and
derive the sample complexities of OVI-MLE and OVI-SDR to reach approximate equilibria.
While MLE achieves tighter approximation guarantees, SDR offers a more computationally
efficient alternative by reparameterizing an l2 norm objective.

• We develop a novel representation method, LLVR, for POMGs with infinite-dimensional
latent spaces, i.e., infinite rank. LLVR learns the latent representation of the transition
kernel by optimizing a computationally friendly ELBO, and yields an exact and tractable
linear form of the value function over the latent space. Our theoretical results establish
that OVI-LLVR retains provable convergence to approximate equilibria under an extra
L-decodability assumption. Note that LLVR only needs to access the recent L-step history
instead of the full history information. Our empirical study in Appendix I also shows the
efficiency of LLVR.

1.1 RELATED WORK

Theoretical guaranteed methods in POMGs. Structural information has been extensively lever-
aged to develop theoretically guaranteed methods for POMGs. A rich body of work has investi-
gated structured subclasses of single-agent POMGs, i.e. POMDPs, such as L-decodable POMDPs
(13; 14; 15), weakly revealing POMDPs (16; 17), observable POMDPs (18) and low-rank POMDPs

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(19; 20). In the multi-agent setting, solving POMGs is significant challenging: it is NEXP-complete
even under cooperative objectives (7). As a result, while there has been substantial progress on fully
observable MGs (21; 22; 23; 24; 25; 26; 27; 28; 29; 30), research on POMGs remains relatively
scarce. Motivated by the POMDP literature, recent works have explored structural subclasses of
POMGs that admit tractable solutions. For instance, (8; 9) investigated information-sharing mecha-
nisms for POMGs with proposed γ-observability, where agents’ observations contain probabilistic
information about the underlying state, enabling hierarchical state estimation and efficient coor-
dination. (10) proposed a sample-efficient approach for weakly revealing POMGs by assuming
informative observations, while (31) studied two-player competitive and tree-structured transition
POMGs that permit game-theoretic planning via backward induction. More recently, (11) developed
posterior sampling methods for two-player zero-sum games with low generalized eluder coefficients,
extending applicability to continuous state spaces. However, these methods either focus on tabular
state spaces (8; 9; 10; 31) or are restricted to two-player zero-sum games (31; 11), which limits
their applicability to general POMGs. To the best of our knowledge, the only prior work addressing
general POMGs is (12), which analyzed POMGs under information rank structure assumptions,
characterizing how partial observability interacts with agent interactions. However, their approach
employs a computationally inefficient representation learning method and relies on access to an exact
value function oracle.

Representation learning in RL. A growing body of research has focused on representation
learning in RL, i.e. learning latent representations to capture the underlying dynamics. For instance,
(13; 32; 33) investigated representation learning in block MDPs, which is a special case of low-rank
MDPs. (34) studied representation for MDPs with the structure of Gaussian noise. Several recent
papers studied low-rank MDPs via MLE and facilitating sample-efficient RL (35; 36; 37). Model-free
representation learning methods in Low-Rank MDPs have also been studied (38; 39). Meanwhile,
several methods extracted computationally efficient spectral representations from the low-rank MDPs
(40; 41). Recently, (42; 17) considered POMDPs and constructed the MLE confidence set for low-
rank structured models. (16) explored POMDPs within an spectral estimation set. (15) studied
latent variable spectral representation for L-decodable POMDPs. In the multi-agent setting, (21)
represented the environment linearly for two-player zero-sum MGs with the structure of Gaussian
noise. (43) and (30) explored representation learning in low-rank fully observable MGs via contrastive
self-supervised learning and MLE, respectively. For the more difficult POMG tasks, (12) constructed
a generalized PSR representation under γ-well-conditioned assumption. Note that there is still a lack
of research on comprehensive representation learning for general low-rank POMGs.

2 BACKGROUND

In a POMG, each player does not have complete information about the current state of the game.
Instead, players only have access to partial observations of the state. This partial observability
introduces additional challenges to the design and analysis of policies, as players must make decisions
based on these noisy or incomplete observations.

A POMG is defined by a tuple: (S, {Ai}Mi=1,P, {ri}Mi=1, H, µ0, {Oi}Mi=1,O), where H denotes
the length of each episode, S is the state space with |S| = S, Ai denotes the action space for
the ith player with |Ai| = Ai, P = {Ph}Hh=0 is the collection of transition probabilities, µ0 is
the initial state distribution, Oi = {Oh,i}Hh=0 denotes the observation space for the ith player
with |Oi| = Oi, ri = {rh,i : Oi × Ai → [0, 1]}Hh=0 is the reward function for player i. We
denote by o := (o1, . . . , oM ) ∈ O := O1 × · · · × OM the joint observations of all m players and
a := (a1, . . . , aM ) ∈ A := A1 × · · · × AM the joint observations of all M players, respectively.
O(·|s) : S → ∆(O) is the emission kernel so that Oh(o|s) is the probability of having a partial
observation o ∈ O at state s.

At each time step h, each player i receives an observation oh,i and a reward rh,i based on the true state
sh ∈ S . A key feature of POMGs is that the observation does not fully reveal the true state. Observing
oi instead of the true state s leads to a non-Markovian transition between observations, which means
each player needs to consider policies πi := {πh,i : ((Oi×Ai)

h−1×Oi) → ∆Ai
}h∈[H] that depend

on the entire history, denoted by τh = {o0,a0 . . . ,oh}. We denote the joint policy of all players
as π := π1 × . . .× πM , the action of each player is sampled independently according to their own
policy. We denote the space of τh as Th and the policy of all the players except player i as π−i.
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For a given joint policy π, we can define the state value function V π
h,i(sh) = E

[∑H
t=h rt,i(ot,at)|sh

]
and state-action value function Qπ

h,i(sh,ah) = E
[∑H

t=h rt,i(ot,at)|sh,ah

]
for each player i at

step h, respectively, for the POMG. Therefore, the Bellman equation can be expressed as V π
h,i(sh) =

Eπ

[
Qπ

h,i(sh,ah)
]
, Qπ

h,i(sh,ah) = rh,i(oh,ah) + EP

[
V π
h+1,i(sh+1)

]
. For the convenience of

notation, we denote vπi := Es∼µ0

[
V π
0,i(s)

]
.

For any policy π−i, there exists a best response policy of player i, which is a policy µ†(π−i)

satisfying V µ†(π−i),π−i

h,i (s) = maxπi
V

πi,π−i

h,i (s) for any (s, h) ∈ S × [H]. We denote V †,π−i

h,i :=

V
µ†(π−i),π−i

h,i and let v†,π−i

i := Es∼µ0

[
V

†,π−i

0,i (s)
]
.

We focus on three classic equilibrium concepts in game theory—Nash Equilibrium, Correlated
Equilibrium (CE) and Coarse Correlated Equilibrium (CCE) (30). First, a NE is defined as a product
policy in which no player can increase her value by changing only her own policy. Formally,

Definition 1 (NE). A joint policy π is a Nash equilibrium (NE) if vπi = v
†,π−i

i , ∀i ∈ [M ]. And we
call π an ε-approximate NE if maxi∈[M ]{v

†,π−i

i − vπi } < ε.

Second, a CCE is a relaxed version of Nash equilibrium in which we consider general correlated
policies instead of joint policies.

Definition 2 (CCE). A correlated policy π is a CCE if V †,π−i

h,i (s) ⩽ V π
h,i(s) for all s ∈ S, h ∈

[H], i ∈ [M ]. And we call π an ε-approximate CCE if maxi∈[M ]{v
†,π−i

i − vπi } < ε.

Finally, a CE is defined as a joint policy where no player can increase her value by unilaterally applying
any strategy modification. To define CE, we first introduce the concept of policy modification: A
policy modification ωi := {ωh,i}h∈[H] for player i is a set of H functions from S × Ai to Ai.
Let Ωi := {Ωh,i}h∈[H] denote the set of all possible policy modifications for player i. One can
compose a policy modification ωi with any Markov policy π and obtain a new policy ωi ◦ π such
that when policy π chooses to play a := (a1, . . . , aM ) at state s and step h, policy ωi ◦ π will play
(a1, . . . , ai−1, ωh,i(s, ai), ai+1, . . . , aM ) instead.
Definition 3 (CE). A correlated policy π is a CE if maxωi∈Ωi

V ωi◦π
h,i (s) ⩽ V π

h,i(s) for all (s, h) ∈
S × [H], i ∈ [M ]. And we call π an ε-approximate CE if maxi∈[M ]{maxωi∈Ωi v

ωi◦π
i − vπi } < ε.

Solving general POMGs is notoriously hard due to their inherent complexity, which is known to be
NEXP-complete. To overcome this, prior works has focused on structured subclasses that allow for
more tractable solutions. Examples include weakly revealing POMGs (10), γ-observable POMGs
(8; 9). In this paper, we focus on POMGs with low-rank dynamics, a structure widely used in the
RL literature (36; 37; 40). A POMG is called low-rank if its transition function factorizes through a
pair of low-dimensional embeddings. This structural assumption applies only to valid history triplets
(τ,a, τ ′), so the rank d does not scale with (|O||A|)h and can remain small in practice.
Definition 4 (low-rank POMG). A POMG is low-rank if, there exist embeddings:ϕh : Th ×A → Rd

and µh : Th+1 → Rd for all h ∈ [H] such that

∀τ ∈ Th, τ ′ ∈ Th+1,a ∈ A : Ph(τ
′|τ,a) = ⟨ϕh(τ,a), µh(τ

′)⟩ if (τ,a) forms the history of τ ′.

For normalization, we assume that ∥ϕ(τh,a)∥ ⩽ 1 for all τh,a and for any function g : Th → [0, 1],
∥
∫
µ(τh)g(τh)dτh∥ ⩽

√
d.

3 REPRESENTATION LEARNING BASED OPTIMISTIC VALUE ITERATION

We propose a unified optimistic value iteration (OVI) framework that accommodates various low-rank
representation learning method. The central idea is to use a given latent representation of the dynamics
to construct an optimistic bonus, and then perform value iteration based on the representation and
bonus. Notably, this framework is compatible with two distinct settings, supporting scenarios both
with and without an exact value function oracle. We prove that when the representation error is
upper bounded by ζ, our framework provides sample-efficient guarantees for learning approximate
equilibria, with detailed proof provided in Appendix B.
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3.1 REPRESENTATION LEARNING FOR POMGS

If the transition and reward functions of a POMG are known, planning-based approaches like heuristic
search value iteration (44) and linear programming (45) can be used to compute the solution.

However, in practice the transition function is typically unknown. In such cases, it is common
to employ representation learning to construct a latent representation of the transition dynamics.
Formally, this is captured by considering a model class M = {(ϕ̂h, µ̂h) : ϕ̂h ∈ Φh, µ̂h ∈ Φh}Hh=0,
with the assumptions that |M| < ∞ and the true transition is included in the class, i.e., ϕh ∈
Φh, µh ∈ Ψh, ∀h ∈ [H]. The representation quality can be measured by

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2 ⩽ ζn,

where Dh,n denotes the empirical dataset. A smaller representation error ζn indicates higher-quality
representations, which in turn yield stronger performance guarantees for subsequent value-iteration
based planning procedure.

3.2 OVI BASED ON REPRESENTATION

With a learned representation, oracle-based and oracle-free value-iteration based planning procedure
can be conducted. Suppose we have access to an oracle that computes the exact value function V π,i

P,r

for a policy π and player i with transition P and reward r in a POMG for all i ∈ [M ]. In this setting,
we can apply OVI by augmenting rewards with a confidence bonus b̂n derived from the representation.
Specifically, The oracle-based OVI, denoted as OVI-OB, maintains an estimate P̂n of the transition
and defines an augmented reward r+n = r+ b̂n.The policy is then updated via π = argmaxπ′ V π′

P̂n,r
+
n

.

In most realistic POMGs, value-function oracles are often unavailable (46; 18). To handle this,
we propose oracle-free OVI, denoted as OVI-OF, that maintains both optimistic and pessimistic
estimates of the value function, updated recursively with confidence intervals derived from the
bonus b̂n,h. Based on the bonus term, we construct both optimistic and pessimistic estimators
(V

n

h,i, V
n
h,i, Q

n

h,i, Q
n

h,i
) according to the Bellman recursion (Line 10 of Algorithm 1).Depending on

the problem’s solution requirement, the policy πn
h can be updated as follows,

NE : πn
h,i(·|τh) = argmax

πh,i

(
Dπh,i,πn

h,−i
Q

n

h,i

)
(τh), ∀τh ∈ Th, i ∈ [M ]. (1)

CCE : max
πh,i

(
Dπh,i,πn

h,−i
Q

n

h,i

)
(τh) ⩽

(
DπnQ

n

h,i

)
(τh), ∀τh ∈ Th, i ∈ [M ]. (2)

CE : max
ωh,i∈Ωh,i

(
Dωh,i◦πn

h
Q

n

h,i

)
(τh) ⩽

(
DπnQ

n

h,i

)
(τh), ∀τh ∈ Th, i ∈ [M ]. (3)

Here, (Dπf)(τ) := Ea∼π(·|τ) [f(τ,a)] , ∀f : T ×A → R. Without loss of generality, we assume that
the solution to each formulation is unique; if not, a deterministic selection rule can be applied so that
the same input yields the same policy. Note that although the policy update relies only on the optimistic
estimator, we still maintain the pessimistic estimator to compute the gap ∆n = maxi∈[M ] {vni − vni },
with vni =

∫
T V

n

0,i(τ)µ0(τ) dτ and vni =
∫
T V

n
0,i(τ)µ0(τ) dτ . Finally, the algorithm selects the

policy π̂ that achieves the smallest estimated gap.

Algorithm 1 summarizes OVI-OB and OVI-OF. Under bounded representation error, the output policy
is guaranteed to be an approximate NE/CE/CCE.
Lemma 5. Assume that the representation error of RepLearn in Alg.1 is bounded as

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2 ⩽ ζn,

and set λ = Θ(d log(nH|M|/δ)) and suitable bonus. With probability 1 − δ, the output policy
π̂ of OVI-OB and OVI-OF is an ε-approximate {NE,CCE,CE} with ε = Õ(∥V π∥

√
ζn) and

ε = Õ
(
H2d

√
N |A|α2

N log(1 + N
dλ )
)

, respectively, where ∥V π∥ is the upper bound of the norm of

value function for any policy π, i ∈ [N ], h ∈ [H].

5
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Algorithm 1 Optimistic Value Iteration framework with Oracle Based/Oracle Free value functions
(OVI-OB/OF)

1: Input: Regularizer λ, iteration N , parameter {αn}Nn=1, value function oracle V .
2: Initialize π0 to be uniform; set dataset D0

h = ∅, D̂0
h = ∅, ∀h ∈ [H].

3: for episode n = 1, 2, · · · , N do
4: if oracle-free: Set V

n

H+1,i = 0, V n
H+1,i = 0 for all i ∈ [M ].

5: Sample data with policy πn: τH = (o0,a0, . . . ,oH−1,aH−1,oH).
6: Update dataset: Dn

h =Dn−1
h ∪{τh,ah,oh+1},D̂n

h =D̂n−1
h ∪{τh+1,ah+1,oh+2} for all h∈ [H].

7: for step h = H,H − 1 . . . , 1 do
8: Learning representation and compute bonus: (ϕ̂n, P̂n, b̂n,h) = RepLearn(Dn

h

⋃
D̂n

h).
9: if oracle free then

10: Update Q,Q as following:

Q
n

h,i(τh,a) = rh,i(τh,a) + EP̂n
h

[
V

n

h+1,i(τh+1)|τh,a
]
+ b̂n,h(τh,a)

Qn

h,i
(τh,a) = rh,i(τh,a) + EP̂n

h

[
V n

h+1,i(τh+1)|τh,a
]
− b̂n,h(τh,a)

11: Compute the NE/CE/CCE solution πn
h according to equation equation 1/equation 2/equa-

tion 3 and update value function as following:

V
n

h,i(τh) = Ea∼πn
h (·|τh)[Q

n

h,i(τh,a)], V n
h,i(τh) = Ea∼πn

h (·|τh)[Q
n

h,i
(τh,a)].

12: end if
13: end for
14: if oracle based: Compute πn = argmaxπ V

π
P̂n,r+b̂n

(τ).

15: if oracle free: Compute ∆n = maxi∈[M ]{vni −vni} with vni =
∫
T V

n

0,i(τ)µ0(τ)dτ , vni =∫
T V

n
0,i(τ)µ0(τ)dτ .

16: end for
17: if oracle based: Return π̂ = NE/CE/CCE solution with V π̂,i

P̂N ,r
for all i ∈ [M ].

18: if oracle free: Return π̂ = πn⋆

where n⋆ = argminn∈[N ] ∆
n.

Algorithm 2 MLE Representation Learning and Bonus Computation

1: Input: Dataset Dn
h

⋃
D̂n

h .
2: Compute (ϕ̂n,h, µ̂n,h) = argmax(ϕ,µ)∈M EDn

h

⋃
D̂n

h
[log µ(τh)

⊤ϕ(τh−1,ah−1)] for all h ∈ [H],

and obtain P̂n = {µ̂n,h(τh)
⊤ϕ̂n,h(τh−1,ah−1)}h∈[H].

3: Compute b̂n,h from equation 4 for all h ∈ [H].
4: Return ϕ̂n = {ϕ̂n,h}h∈[H], P̂n and b̂n = {b̂n,h}h∈[H].

4 INSTANTIATIONS OF REPRESENTATION LEARNING FOR LOW-RANK POMGS

In this section, we instantiate the general framework from Section 3 with concrete representation
learning algorithms, i.e. Maximum Likelihood Estimation (MLE), Spectral Decomposition Represen-
tation (SDR). We then analyze their representation errors and resulting sample complexities when
combined with OVI. The full proof is provided in Appendix B.

4.1 MLE-BASED REPRESENTATION LEARNING

As shown in Alg. 2, with the latent low-rank structure, MLE estimates the transition kernel by
maximizing the log-likelihood of observed trajectories. The bonus term is computed as

b̂n,h = min

{
αn∥ϕ̂(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
, (4)
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Algorithm 3 SDR Representation Learning and Bonus Computation

1: Input: Dataset Dn
h

⋃
D̂n

h .
2: Learning (ϕ̂n,h(τh−1,ah−1), µ

′
n,h(τh)) with Dn

h

⋃
D̂n

h via Equation 5, and obtain P̂n =

{(p′(τh)µ′
n,h(τh))

⊤ϕ̂n,h(τh−1,ah−1)}h∈[H].
3: Compute b̂n,h from equation 4 for all h ∈ [H].
4: Return ϕ̂n = {ϕ̂n,h}h∈[H], P̂n and b̂n = {b̂n,h}h∈[H].

where Σ̂n,h,ϕ :=
∑

(τh−1,ah−1)∈Dn
h
ϕh(τh−1,ah−1)ϕh(τh−1,ah−1)

⊤ + λId.

The representation error of Algorithm 2 can be characterized by Lemma 51. We refer to OVI-
OB and OVI-OF with Alg. 2 as OVI-OB-MLE and OVI-OF-MLE, respectively. Based on the
representation error, we can derive a PAC guarantee of OVI-OB-MLE and OVI-OF-MLE, which
exploit the low-dimensional latent representation learned by MLE.
Theorem 6 (PAC guarantee of OVI-OB-MLE and OVI-OF-MLE). Assume OVI-OB-MLE and OVI-
OF-MLE are applied with parameters ζn = Θ(log(Hn|M|/δ)/n), λ = Θ(d log(NH|M|/δ)), and
αn = Θ(

√
λd+ n|A|ζn). By setting the number of episodes N to be N = Õ(ε−2 log(H|M|/δε))

and N = Õ(H6d4|A|2ϵ−2 log(Hd|A||M|/δε)), respectively, the output policy π̂ is an ε-
approximate {NE,CCE,CE} with probability 1− δ.

Thus, we obtain sample complexities that are independent of |S|, while exhibit polynomial depen-
dency |A|, H, d, ε and log |M|. Notably, OVI-OF-MLE incurs an additional H6d4|A|2 complexity
to circumvent the need for a value oracle.

4.2 SDR REPRESENTATION LEARNING

While the MLE oracle offers strong theoretical guarantees, computing it is computationally difficult
(40). Inspired by spectral representation in MDPs (40), we adopt the Spectral Decomposition Repre-
sentation (SDR) approach for low-rank POMGs. As outlined in Algorithm 3, SDR reparameterizes
an l2 norm objective, leading to the computationally friendly objective in Equation 5.

min
ϕ,µ′

−E(τ,a,τ ′)∼d0×P
[
ϕ(τ,a)⊤µ′(τ ′)p(τ ′)

]
+ (Ep(τ ′)

[
p(τ ′)µ′(τ ′)⊤µ′(τ ′)

]
)/(2d) (5)

s.t. E(τ,a)∼d0

[
ϕ(τ, a)ϕ(τ, a)⊤

]
= Id/d,

where we use reparameterization µ(τ ′) = p(τ ′)µ′(τ ′). Generally, solving SDR is easier than
solving MLE since SDR bypasses the difficult integral calculation in MLE with an easy-to-compute
expectation (40).

Similarly, we refer to OVI-OB and OVI-OF with Alg. 3 as OVI-OB-SDR and OVI-OF-SDR,
respectively. We have the representation error of Algorithm 3 in Lemma 52 and we can derive
a PAC guarantee of OVI-OB-SDR and OVI-OF-SDR, which exploit the low-dimensional latent
representation learned by SDR.
Theorem 7 (PAC guarantee of OVI-OB-SDR and OVI-OF-SDR). Assume Assumption 1 in Appendix
B holds. Consider running OVI-OB-SDR and OVI-OF-SDR with parameters ζn = Θ

(
log(Hn|M|/δ)

n

)
,

λ = Θ
(
d log

(
NH|M|/δ

))
, and αn = Θ

(
Hd
√
λd+ n|A|ζn

)
. If the number of episodes is set to

N = Õ
(
ε−2d2 log

(
H|M|/(δε)

))
and N = Õ

(
H6d4|A|2ε−2 log

(
Hd|A||M|/(δε)

))
, respectively,

then the output policy π̂ is an ε-approximate {NE,CCE,CE} with probability at least 1− δ.

Compared to MLE, SDR generally yields larger representation error but remains polynomially
bounded, and provides a more computationally tractable approach. When combined with OVI, SDR
achieves efficient sample complexity guarantees while being implementable at scale.
Remark 8 (Comparison with (12)). (12) construct a generalized PSR representation for γ-well-
conditioned POMGs with an exact value function oracle. Note that if the rank of the core test set is
uniform across all time steps h, i.e. dh = d for all h, the POMG satisfies the additional assumptions

7
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in (12) is a special subclass of low-rank POMGs and this representation can be integrated into our
framework. We extend their method to the oracle-free setting in Appendix G.

5 LLVR INFINITE-DIMENSIONAL LATENT SPACE

In this section, we develop a novel representation method, L-step Latent Variable Representation
(LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, with an extra L-
decodability assumption. When incorporated into the OVI framework, it yields provable convergence
to approximate equilibria. Notably, LLVR requires access only to the most recent 2L steps of history
rather than the entire trajectory.

5.1 L-DECODABILITY

We now introduce the L-decodability assumption, which relies on the belief function. fbelief (·) :
O × (A × O)h → ∆(S). This function represents the distribution over the underlying state
given the history of observations and actions. It is initialized as fbelief (s0|o0) = P(s0|o0) and
updated recursively as: fbelief (sh+1|τh+1) ∝

∫
S fbelief (sh|τh)P(sh+1|sh,ah)O(oh+1|sh+1) dsh.

See Appendix C for a detailed explanation of the belief function and the L-decodability assumption.
Definition 9 (L-decodability (11)). ∀h ∈ [H], define τLh ∈ T L := (O × A)L−1 × O, τLh =
(oh−L+1,ah−L+1, · · · ,oh). A POMG is L-decodable if there exists a decoder p⋆ : T L → ∆(S)
such that p⋆(τLh ) = fbelief (τh).

Note that under the L-decodability assumption, there exists an L-step joint policy that constitutes
a Nash equilibrium. Therefore, it suffices to restrict our analysis to L-step policy in the discussion
under the L-decodability assumption.

5.2 LLVR REPRESENTATION LEARNING

We now propose LLVR under the L-decodability assumption. LLVR leverages the underlying L-
decodability structure to enable an exact and tractable linear representation of the value functions
over the latent space. Due to space limitations, we have deferred the detailed derivation to Appendix
C. The ultimate objective of the LLVR is to provide a computationally tractable ELBO objective:

max
q∈∆(Z)

Eq(·|τL
h ,ah,oh+1:h+l)[logP

χπ(oh+1:h+l|zh)]−KL(q(·|τLh ,ah,oh+1:h+l)||p(zh|τLh ,ah)). (6)

where χπ is the moment-matching policy for π (defined in Appendix F), Pπ(·) denotes the probability
distribution under policy π, zh ∈ Z is the latent variable, and l is a fixed constant with l < L. Note
that LLVR only requires sampling the past L steps and the future l steps, where L+ l < 2L, rather
than the entire trajectory.

The solution of ELBO can be parameterized with a variational distribution class Q =
{{qh(z|τLh ,ah,oh+1:h+l)}h∈[H]} and model class M = {{(ph(z|τLh ,ah), ph(oh+1:h+l|z))}h∈[H]}.
Practically, both Q and M can be implemented as neural networks, yielding approximate solu-
tions q̂(z|τLh ,ah,oh+1:h+l), p̂h,n(oh+1:h+l|zh) and p̂n,h(zh|τLh ,ah) and approximated transition
P̂n = {(p̂h,n(zh|τLh ,ah), p̂h,n(oh+1|zh))}h∈[H].

Once p̂n,h(z|τLh ,ah) is obtained, the Q-function can be approximated as Qπ
h(τ

L
h ,ah) =〈

p̂(z|τLh ,a), ω(z)
〉

and can be obtained by a least square regression (18). However, if z is con-
tinuous, then ω(z) is infinite-dimensional. To deal with the infinite-dimensional ω(z), we follow
the trick in (41) that forms Qπ

(
τLh ,ah

)
as an expectation Qπ

(
τLh ,ah

)
=
〈
p(z|τLh ,ah), w

π(z)
〉
=

Ep(z|τL
h ,ah) [w

π(z)] and then approximate it with random feature quadrature. Specifically, we con-
sider ω(z) lying in certain RKHS with φ as its random feature basis, i.e., ω(z) = EP (ξ)[φ(ξ, z)]. As
a result, Qπ(τLh ,ah) ≈ 1

K

∑K
i=1 ω

π(ξi)φ(zi, ξi) where the latent variables zi ∼ p̂(z|τLh ,ah) and
random features ξi ∼ P (ξ). If the random feature φ is specified, then ω can be implemented by a
neural network ωθ. Due to space limitation, we defer the detailed derivation to Appendix E.1.

5.3 OVI BASED ON LLVR

Based on the learned representation, we construct the following ellipsoid bonus term b̂nh to get both
optimistic and pessimistic estimation of the value function,

b̂n,h(τ
L,a) = min{αn

∥∥∥ψ̂n,h(·|τLh−L,ah−L)
∥∥∥∑−1

n,h

, H}, (7)

8
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Algorithm 4 LLVR Representation Learning and Bonus Computation

1: Input: Dataset Dn
h

⋃
D̂n

h .
2: Learn p̂n(z|τLh ,ah) with Dn

h

⋃
D̂n

h via maximizing the ELBO objective, i.e. equation 6, and
obtain P̂n = {(p̂n,h(z|τLh ,ah), p̂n,h(oh+1|z))}h∈[H].

3: Compute b̂n,h from equation 7 for all h ∈ [H].
4: Return p̂n = {p̂n,h}h∈[H], P̂n and b̂n = {b̂n,h}h∈[H].

where ψ̂n,h(τ
L
h ,ah) = [φ(z1; ξ1), · · · , φ(zK ; ξK)] denotes the random feature sampled from the

RKHS and the covariance matrix is defined as
∑−1

n,h=
∑

(τL
i ,ai)∈Dn

h
ψ̂n,h(τ

L
h ,ah)ψ̂n,h(τ

L
h ,ah)

⊤+λI .

Optimistic and pessimistic estimators are constructed using the bonus as in Alg. 1. These estimators
can also be approximated by neural networks and computed using least-squares regression. Crucially,
as shown in Appendix C, since all terms in the least-squares formulation are derived from the feature
space spanned by p̂(z|τLh ,ah), parameterizing them enables highly efficient computation.

The theoretical guarantees for OVI-OB-LLVR and OVI-OF-LLVR are proven in Appendix E.
Theorem 10 (PAC guarantee of OVI-OB-LLVR and OVI-OF-LLVR). Assume Assumption 4,5 in
Appendix E.4 hold and the kernel K satisfies the regularity conditions in Appendix E.2. Consider
running OVI-OB-LLVR and OVI-OF-LLVR with proper parameters ζn, b̂n,h, αn and λ. By setting the
number of episodes N to be N = Õ(ε−2 log(H|M|/δε)) and N = poly(C,H, |A|L, ϵ, log H|M|

δ ),
respectively, the output policy π̂ is an ε-approximate {NE,CCE,CE} with probability 1− δ.

Notably, the complexity is also independent of |Z|, implying that z can be a continuous variable.
Remark 11 (Comparison of MLE, SDR, and LLVR). The three instantiations of our framework
exhibit complementary strengths. MLE achieves the tightest theoretical guarantees, but solving
the MLE problem is computationally demanding in practice. SDR yields looser bounds due to a
larger representation error, yet it offers a more computationally tractable approach. Finally, LLVR
extends our framework to POMGs with infinite-dimensional latent spaces. Under the additional
L-decodability assumption, LLVR preserves approximate equilibrium guarantees while only requiring
access to short 2L-step histories, thereby broadening the applicability of our framework.

5.3.1 OFFLINE POLICY OPTIMIZATION.

We also propose an offline OVI-OF-LLVR algorithm for sample-efficient policy optimization using
only a static dataset of size n, which is assumed to be drawn from the stationary distribution ρ of a
fixed behavior policy πb. Consequently, unlike the online setting where new data can be collected to
explore unseen state–action pairs, the offline scenario precludes further exploration beyond what is in
the static dataset. Despite this limitation, our offline algorithm retains the core structure of its online
counterpart, differing only in the absence of new data from the environment. A detailed description
of the offline algorithm and PAC analysis for it is provided in Appendix E.5.

6 CONCLUSION

In this paper, we present a unified optimistic value iteration (OVI) framework for POMGs. OVI
integrates an optimism bonus derived from suitable representations into the value function and
provably converges to approximate equilibria under bounded representation error, in both oracle-based
and oracle-free settings. We instantiate OVI with two concrete representation learners: an MLE-based
method offering the tightest guarantees but higher computational cost, and an SDR-based method
yielding looser bounds but better tractability. We further proposed a novel LLVR representation that
extends OVI to infinite-dimensional latent spaces under an additional L-decodability assumption and
show that OVI with LLVR also achieves approximate equilibria while relying only on short histories.
Overall, our results establish the first systematic representation learning view for low-rank POMGs.
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A ADDITIONAL NOTATIONS

This section collects additional notations and technical definitions used throughout our analysis.

Given a (possibly not normalized) transition probability P and a policy π, we define the density
function of (x,a) at step h under P and π by

dπP,0(x,a) := µ0(x)π0(a|x), dπP,h+1(x,a) :=
∑

x̃∈X ,ã∈A

dπP,h(x̃, ã)Ph(x|x̃, ã)πh+1(a|x), ∀h ⩾ 0.

We abuse the notations a bit and denote dπP,h(x) as the marginalized state distribution, i.e., dπP,h(x) =∑
a∈A d

π
P,h(x,a).

We then define

ρn,h(x,a) =
1

n

∑
i∈[n]

dπi

P,h(x,a),

ρ̂n,h(x,a) =
1

n

∑
dπi

P,h(x)uA(a),

ρ̃n,h(x,a) =
1

n

∑
Ex̃∼d

πi
P,h−1,ã∼U(A) [P (x|x̃, ã)uA(a)] ,

and ◦LU(A) means uniformly taking actions in the consecutive L steps.

When we use the expectation E(x,a)∼ρ[f(x,a)] (or Ex∼ρ[f(x)]) for some (possibly not normalized)
distribution ρ and function f , we simply mean

∑
x∈X ,a∈A ρ(x,a)f(x,a) (or

∑
x∈X ρ(x)f(x)) so

that the expectation can be naturally extended to the unnormalized distributions. For an iteration n, a
distribution ρ and a feature ϕ, we denote the expected feature covariance as

Σn,ρ,ϕ = nE(x,a)∼ρ

[
ϕ(x,a)ϕ(x,a)⊤

]
+ λId.

Meanwhile, define the empirical covariance by

Σ̂n,h,ϕ :=
∑

(x,a)∈Dn
h

ϕ(x,a)ϕ(x,a)⊤ + λId.

Finally, we define the following operators in the space of L2(µ) → L2(µ):

Σρn×U(A),ϕ =nEx∼ρn,a∼U(A)

[
ϕ(x,a)ϕ⊤(x,a)

]
+ λT−1

n

Σρn,ϕ =nE(x,a)∼ρn

[
ϕ(x,a)ϕ⊤(x,a)

]
+ λT−1

n

B THEORETICAL ANALYSIS FOR METHODS FOR LOW-RANK POMGS

This section presents the theoretical guarantees for our algorithms for low-rank POMGs.

B.1 PROOF OF SEC. 3

We will provide the proof of Section 3 in this subsection.

Lemma 12. If the representation error in Alg. 1 is bounded

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2 ⩽ ζn,

with probability 1 − δ, the output policy π̂ of OBOVI is an ε-approximate {NE,CCE,CE} with
ε = Õ(∥V π∥

√
ζn), where ∥V π∥ is the upper bound of the norm of value function for any policy π,

i ∈ [N ], h ∈ [H].

13
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Proof. Denote by V i
P (π) the value function of player i under policy π and transition P . Since

the returned policy π̂ is an equilibrium with respect to P̂ , we have for all i ∈ [N ]: V i
P̂(π̂) =

maxπ̃i V i
P̂(π̃

i, π̂−i) := V i,†
P̂

(π̂i).

Note that
|V i,†

P̂
(π̂i)− V i,†

P (π̂i)| = |max
π̃i

V i
P̂(π̃

i, π−i)−max
π̃i

V i
P(π̃

i, π−i)|

⩽ max
π̃i

|V i
P̂(π̃

i, π−i)− V i
P(π̃

i, π−i)|

⩽ ∥V π∥
√
ζn

Thus, we have

V i
P(π̂) ⩾ V i

P̂(π̂)− ∥V π∥
√
ζn

= V i,†
P̂

(π̂−i)− ∥V π∥
√
ζn

⩾ V i,†
P (π̂−i)− 2∥V π∥

√
ζn

Hence, π̂ is an 2∥V π∥
√
ζn-approximate equilibrium.

Lemma 13. If the representation error in Alg. 1 is bounded as

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2 ⩽ ζn,

with λ = Θ(d log(nH|M|/δ)) and properly chosen bonus, with probability 1− δ, the output policy

π̂ of OVI-OF is an ε-approximate {NE,CCE,CE} with ε = Õ
(
H2d

√
N |A|α2

N log(1 + N
dλ )
)

,

where αN = Θ(
√
λd+N |A|ζN ) and ∥V π∥ is the upper bound of the norm of value function for

any policy π, i ∈ [N ], h ∈ [H].

The proof of 13 is included in the proof of Theorem 21.

B.2 PROOF OF SEC. 4.1

We will provide the proof of Theorem 6 in this subsection.
Theorem 14 (PAC guarantee of OBOVI-MLE). When OBOVI-MLE is applied with parameters
ζn = Θ(log(Hn|M|/δ)/n), λ = Θ(d log(NH|M|/δ)), and αn = Θ(

√
λd+ n|A|ζn) by setting

the number of episodes N to be at most N = Õ(ε−2 log(H|M|/δε)) with probability 1 − δ, the
output policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. Recall that the estimated transition satisfies

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2
1
⩽ ζn.

Denote by V i
P (π) the value function of player i under policy π and transition P . Since the returned pol-

icy π̂ is an equilibrium with respect to P̂ , we have for all i ∈ [N ]: V i
P̂(π̂) = maxπ̃i V i

P̂(π̃
i, π̂−i) :=

V i,†
P̂

(π̂i).

Note that
|V i,†

P̂
(π̂i)− V i,†

P (π̂i)| = |max
π̃i

V i
P̂(π̃

i, π−i)−max
π̃i

V i
P(π̃

i, π−i)|

⩽ max
π̃i

|V i
P̂(π̃

i, π−i)− V i
P(π̃

i, π−i)|

⩽
√
ζn

Thus, we have

V i
P(π̂) ⩾ V i

P̂(π̂)−
√
ζn

= V i,†
P̂

(π̂−i)−
√
ζn

⩾ V i,†
P (π̂−i)− 2

√
ζn

14
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Hence, π̂ is an 2
√
ζn-approximate equilibrium.

To guarantee an ε-approximate equilibrium, we require 2
√
ζn ⩽ ε, which leads to N =

Õ(ε−2 log(H|M|/δε)).

Then, we prove the PAC guarantee for OFOVI-MLE, establishing key technical lemmas that culminate
in the finite-sample convergence theorem.

Lemma 15 (one-step back inequality for the true model). Given a set of functions [gh]h∈[H], where
gh : Th ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H], we have that ∀π,

∑
h∈[H]

E(τh,ah)∼ρn,h
[gh(τh,ah)] ⩽

∑
h∈[H]

E(τh−1,ah−1)∼ρn,h−1

[
∥ϕh−1(τh−1,ah−1)∥L2(µ),Σ

−1
ρn,h−1,P

]
·
√
n|A| · E(τ̃h,ãh)∼ρn,h−1◦U(A) [gh(τ̃h, ãh)2] + λB2d

Proof. The proof can be adapted from the proof of Lemma B.4 in (30), and we include it for the
completeness. We observe the following one-step-back decomposition:

E(τh,ah)∼ρn,h
[gh(τh,ah)]

=E(τh−1,ah−1)∼ρn,h−1

[∫
oh

⟨ϕh−1(τh−1,ah−1), µh−1(τh)⟩L2(µ) · Eah∼πh(·|τh)[gh(τh,ah)]doh

]
⩽E(τh−1,ah−1)∼ρn,h−1

∥ϕh−1(τh−1,ah−1)∥L2(µ),Σ
−1
ρn,h−1,ϕ

· E(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µh−1(τh)Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥
L2(µ),Σρn,h−1,ϕ

.

Direct computation shows that for all

E(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µh−1(τh)Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥2
L2(µ),Σρn,h−1,ϕ

=nE(τ̃h−1,ãh−1)∼ρn,h−1

[
Eτh∼Pπ(·|τh−1,ah−1),ah∼πh(·|τh)[gh(τh,ah)]

]2
+ λE(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µh−1(τh) · Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥2
H

⩽nE(τ̃h−1,ãh−1)∼ρn,h−1
Eτh∼Pπ(·|τh−1,ah−1),ah∼πh(·|τh) [gh(τh,ah)]

2
+ λB2d

⩽n|A|E(τ̃h,ãh)∼ρn,h−1◦U(A)[gh(τ̃h, ãh)]
2 + λB2d,

which finishes the proof.

Lemma 16 (one-step back inequality for the learned model). Assume we have a set of functions
[gh]h∈[H], where gh : X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H]. Given Lemma 51, we have that ∀π,∑

h∈[H]

E(τh,ah)∼ρn,h
[gh(τh,ah)]

⩽
∑

h∈[H]

E(τh−1,ah−1)∼ρn,h−1

[∥∥∥ϕ̂h−1(τh−1,ah−1)
∥∥∥
L2(µ),Σ

−1

ρn,h−1,ϕ̂

]

·
√
n|A|E(τ̃h,ãh)∼ρn,h−1◦U(A)[gh(τ̃h, ãh)]2 + nB2ζn +B2λd

15
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Proof. The proof can be adapted from the proof of Lemma B.3 in (30), and we include it for the
completeness. We make the following one-step-back decomposition:

E(τh,ah)∼ρn,h
[gh(τh,ah)]

=E(τh−1,ah−1)∼ρn,h−1

[∫
oh

⟨ϕ̂h−1(τh−1,ah−1), µ̂h−1(τh)⟩L2(µ) · Eah∼πh(·|τh)[gh(τh,ah)]doh

]
⩽E(τh−1,ah−1)∼ρn,h−1

∥∥∥ϕ̂h−1(τh−1,ah−1)
∥∥∥
L2(µ),Σ

−1

ρn,h−1,ϕ̂

· E(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µ̂h−1(τh)Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥
L2(µ),Σρn,h−1,ϕ̂

.

Direct computation shows that

E(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µ̂h−1(τh)Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥2
L2(µ),Σρn,h−1,ϕ̂

=nE(ϕ̃h−1,ãh−1)∼ρn,h−1

[
Eτh∼P̂n(·|τ̃h−1,ãh−1),ah∼πh(·|τh)[gh(τh,ah)]

]2
+ λE(τh−1,ah−1)∼ρn,h−1

∥∥∥∥∫
oh

µ̂h−1(τh|·)Eah∼πh(·|τh)[gh(τh,ah)]doh

∥∥∥∥2
H

⩽nE(τ̃h−1,ãh−1)∼ρn,h−1
Eτh∼P̂n(·|τ̃h−1,ãh−1),ah∼πh(·|τh)[gh(τh,ah)]

2 +B2λd

⩽n|A|E(τ̃h,ãh)∼ρn,h−1◦U(A)[gh(τ̃h, ãh)]
2 + nB2ζn +B2λd,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof.

Lemma 17 (Optimism for NE and CCE). For episode n ∈ [N ], set

b̂n,h = min

{
αn∥ϕ̂n,h−1(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
,

with αn = Θ(H
√
λd+ nAζn), λ = Θ(d log(nH|M|/δ)),

Σ̂n,h,ϕ̂n
: L2(µ) → L2(µ), Σ̂n,h,ϕ̂n

:=
∑

(τh,ah)∈Dn,h

[
ϕ̂n,h(τh,ah)ϕ̂n,h(τh,ah)

⊤
]
+ λId.

πn is computed by solving NE or CCE. Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we
have

vni − v
†,πn

−i

i ⩾ 0.

Proof. Define µ̃n
h,i(·|τ) := argmaxµ

(
Dµ,πn

h,−i
Q

†,πn
−i

h,i

)
(τ) as the best response policy for player i

at step h, and let π̃n
h = µ̃n

h,i × πn
h,−i. Let fnh (τ,a) =

∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)
∥∥∥
1
, then according

to lemma 51 and lemma 56, we have that using the chosen λ, with probability at least 1 − δ,
∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

E(τ,a)∼ρ̂n,h

[
(fnh (τ,a))

2
]
⩽ ζn, E(τ,a)∼ρ̃n,h

[
(fnh (τ,a))

2
]
⩽ ζn,

∥ϕh−1(τh−1,ah−1)∥Σ̂−1
n,h−1,ϕ

= Θ

(
∥ϕh−1(τh−1,ah−1)∥Σ̂−1

ρn,h−1,ϕ

)
.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(τh,ah) =min

{
αn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}

⩾min

{
cαn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}
, ∀n ∈ [N ], h ∈ [H].
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Next, we prove by induction that ∀h ∈ [H],

Eτ∼dπ̃n
P

[
V

n

h,i(τ)− V
†,πn

−i

h,i (τ)
]
⩾

H∑
h′=h

E(τh′ ,ah′ )∼dπ̃n
P

[
b̂n,h′(τh′ ,ah′)−Hmin{fnh′(τh′ , ah′), 1}

]
.

(8)

First, notice that ∀h ∈ [H],

Ex∼dπ̃n
P

[
V

n

h,i(τ)− V
†,πn

−i

h,i (τ)
]
=Eτ∼dπ̃n

P

[(
Dπn

h
Q

n

h,i

)
(τ)−

(
Dπ̃n

h
Q

†,πn
−i

h,i

)
(τ)
]

⩾Eτ∼dπ̃n
P

[(
Dπ̃n

h
Q

n

h,i

)
(τ)−

(
Dπ̃n

h
Q

†,πn
−i

h,i

)
(τ)
]

=E(τ,a)∼dπ̃n
P

[
Q

n

h,i(τ,a)−Q
†,πn

−i

h,i (τ,a)
]
,

where the inequality uses the fact that πn
h is the NE (or CCE) solution for

{
Q

n

h,i

}M

i=1
. Now we are

ready to prove equation 8:

• When h = H , we have

Eτ∼dπ̃n
P

[
V

n

H,i(τ)− V
†,πn

−i

H,i (τ)
]
⩾E(τ,a)∼dπ̃n

P

[
Q

n

H,i(τ,a)−Q
†,πn

−i

H,i (τ,a)
]

=E(τ,a)∼dπ̃n
P

[
b̂n,H(τ,a)−Hmin{fnH(τ,a), 1}

]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

Eτ∼dπ̃n
P

[
V

n

h,i(τ)− V
†,πn

−i

h,i (τ)
]

⩾E(τ,a)∼dπ̃n
P

[
Q

n

h,i(τ,a)−Q
†,πn

−i

h,i (τ,a)
]

=E(τ,a)∼dπ̃n
P

[
b̂n,h(τ,a) +

(
P̂hV

n

h+1,i

)
(τ,a)−

(
PhV

†,πn
−i

h+1,i

)
(τ,a)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah)

+
(
P̂n,h

(
V

n

h+1,i − V
†,πn

−i

h+1,i

))
(τh,ah) +

((
P̂n,h − Ph

)
V

†,πn
−i

h+1,i

)
(τh,ah)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah) +

((
P̂n,h − Ph

)
V

†,πn
−i

h+1,i

)
(τh,ah)

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(τh+1)− V
†,πn

−i

h+1,i (τh+1)
]

⩾E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah)−Hmin {fnh (τh,ah), 1}

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(τh+1)− V
†,πn

−i

h+1,i (τh+1)
]

⩾
H∑

h′=h

E(τh,ah)∼dπ̃n

P̂
n,h′

[
b̂n,h′(τh,ah)−Hmin {fnh′(τh,ah), 1}

]
,

where we use the fact∣∣∣(P̂n,h − Ph

)
V

†,πn
−i

h+1,i

∣∣∣ (τ,a) ⩽min
{
H,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

∥∥∥V †,πn
−i

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

}
=Hmin {1, fnh′(τ,a)}

and the last row uses the induction assumption.
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Therefore, we have proved equation 8. We then apply h = 0 to equation 8, and get

Eτ∼d0

[
V

n

0,i(τ)− V
†,πn

−i

0,i (τ)
]

=Eτ∼dπ̃n

P̂n,0

[
V

n

0,i(τ)− V
†,πn

−i

0,i (τ)
]

⩾
H∑

h=0

E(τ,a)∼dπ̃n

P̂n,h

[
b̂n,h(τ,a)−Hmin {fnh (τ,a), 1}

]
=

H∑
h=0

E(τ,a)∼dπ̃n

P̂n,h

[
b̂n,h(τ,a)

]
−H

H∑
h=0

E(τ,a)∼dπ̃n

P̂n,h

[min {fnh (τ,a), 1}] .

Next we are going to bound the second term. Applying Lemma 35 to gh(x,a) = min {fnh (x,a), 1},
we have ∑

k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
min

{
fkh (τh,ah), 1

}]
⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[∥∥∥ϕ̂k,h−1(τh−1,ah−1)
∥∥∥
Σ−1

ρk,h−1,ϕ̂

]

·
√
n|A| · E(τ̃h,ãh)∼ρk,h−1

[
min

{
fkh (τ̃h, ãh), 1

}2]
+ λd+ nζn

⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[∥∥∥αkϕ̂k,h−1(τh−1,ah−1)
∥∥∥
Σ−1

ρk,h−1,ϕ̂

]

Note that we here use the fact min {fnh (τ,a), 1} ⩽ 1, E(τ̃h,ãh)∼ρn,h−1

[
min {fnh (τ̃h, ãh), 1}2

]
⩽

ζn and our choice of αn.

Combining all things together,∑
k∈[n]

vki − v
†,πk

−i

i =
∑
k∈[n]

Eτ∼d0

[
V

k

0,i(τ)− V
†,πk

−i

0,i (τ)

]

⩾
∑
k∈[n]

H∑
h=1

E(τ,a)∼ρk,h

[
b̂kh(τ,a)

]
−H

∑
k∈[n]

H∑
h=1

E(τ,a)∼ρk,h

[
min

{
fkh (τ,a), 1

}]
⩾0.

Since the inequality holds for all n, we have that vni − v
†,πn

−i

i for all n.

Lemma 18 (Optimism for CE). For episode n ∈ [N ], set

b̂n,h = min

{
αn∥ϕ̂n,h−1(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
,

with αn = Θ(H
√
λd+ nAζn), λ = Θ(d log(nH|M|/δ)),

Σ̂n,h,ϕ̂n
: L2(µ) → L2(µ), Σ̂n,h,ϕ̂n

:=
∑

(τh,ah)∈Dn,h

[
ϕ̂n,h(τh,ah)ϕ̂n,h(τh,ah)

⊤
]
+ λId.

πn is computed by solving CE. Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we have

vni − max
ω∈Ωi

vω◦πn

i ⩾ 0, ∀n ∈ [N ], i ∈ [M ].
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Proof. Denote ω̃(n)
h,i = argmaxωh∈Ωh,i

(
D

ωh◦π(n)
h

maxω∈Ωi
Qω◦π(n)

h,i

)
(τ) and let π̃(n)

h = ω̃h,i ◦

π
(n)
h . Let fnh (τ,a) =

∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)
∥∥∥
1
, then according to lemma 51 and lemma 56, we

have that using the chosen λ, with probability at least 1− δ, ∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

E(τ,a)∼ρ̂n,h

[
(fnh (τ,a))

2
]
⩽ ζn, E(τ,a)∼ρ̃n,h

[
(fnh (τ,a))

2
]
⩽ ζn,

∥ϕh(τh−1,ah−1)∥Σ̂−1
n,h−1,ϕ

= Θ

(
∥ϕh(τh−1,ah−1)∥Σ̂−1

ρn,h−1,ϕ

)
.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(τh,ah) =min

{
αn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}

⩾min

{
cαn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}
, ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that ∀h ∈ [H],

Eτ∼dπ̃n
P

[
V

n

h,i(τ)− max
ω∈Ωi

V ω◦πn

h,i (τ)

]
⩾

H∑
h′=h

E(τh′ ,ah′ )∼dπ̃n
P

[
b̂n,h′(τh′ ,ah′)−Hmin{fnh′(τh′ ,ah′), 1}

]
.

(9)

First, notice that ∀h ∈ [H],

Eτ∼dπ̃n
P

[
V

n

h,i(τ)− max
ω∈Ωi

V ω◦πn

h,i (τ)

]
=Eτ∼dπ̃n

P

[(
Dπn

h
Q

n

h,i

)
(τ)−

(
Dπ̃n

h
max
ω∈Ωi

Qω◦πn

h,i

)
(τ)

]
⩾Eτ∼dπ̃n

P

[(
Dπ̃n

h
Q

n

h,i

)
(τ)−

(
Dπ̃n

h
max
ω∈Ωi

Qω◦πn

h,i

)
(τ)

]
=E(τ,a)∼dπ̃n

P

[
Q

n

h,i(τ,a)− max
ω∈Ωi

Qω◦πn

h,i (τ,a)

]
,

where the inequality uses the fact that πn
h is the CE solution for

{
Q

n

h,i

}M

i=1
. Now we are ready to

prove equation 9:

• When h = H , we have

Eτ∼dπ̃n
P

[
V

n

H,i(τ)− max
ω∈Ωi

V ω◦πn

H,i (τ)

]
⩾E(τ,a)∼dπ̃n

P

[
Q

n

H,i(τ,a)− max
ω∈Ωi

Qω◦πn

H,i (τ,a)

]
=E(τ,a)∼dπ̃n

P

[
b̂n,H(τ,a)−Hmin{fnH(τ,a), 1}

]
.
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• Suppose the statement is true for step h+ 1, then for step h, we have

Eτ∼dπ̃n
P

[
V

n

h,i(τ)− max
ω∈Ωi

V ω◦πn

h,i (τ)

]
⩾E(τ,a)∼dπ̃n

P

[
Q

n

h,i(τ,a)− max
ω∈Ωi

Qω◦πn

h,i (τ,a)

]
=E(τ,a)∼dπ̃n

P

[
b̂n,h(τ,a) +

(
P̂hV

n

h+1,i

)
(τ,a)−

(
Ph max

ω∈Ωi

V ω◦πn

h+1,i

)
(τ,a)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah)

+
(
P̂n,h

(
V

n

h+1,i − V ω◦πn

h+1,i

))
(τh,ah) +

((
P̂n,h − Ph

)
V ω◦πn

h+1,i

)
(τh,ah)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah) +

((
P̂n,h − Ph

)
V ω◦πn

h+1,i

)
(τh,ah)

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(τh+1)− V ω◦πn

h+1,i (τh+1)
]

⩾E(τh,ah)∼dπ̃n

P̂n,h

[
b̂n,h(τh,ah)−Hmin {fnh (τh,ah), 1}

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(τh+1)− V ω◦πn

h+1,i (τh+1)
]

⩾
H∑

h′=h

E(τh,ah)∼dπ̃n

P̂
n,h′

[
b̂n,h′(τh,ah)−Hmin {fnh′(τh,ah), 1}

]
,

where we use the fact

∣∣∣(P̂n,h − Ph

)
V ω◦πn

h+1,i

∣∣∣ (τ,a) ⩽min
{
H,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

∥∥∥V ω◦πn

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

}
=Hmin {1, fnh′(τ,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 9. We then apply h = 0 to equation 9, and get

Eτ∼d0

[
V

n

0,i(τ)− V ω◦πn

0,i (τ)
]

=Eτ∼dπ̃n

P̂n,0

[
V

n

0,i(τ)− V ω◦πn

0,i (τ)
]

⩾
H∑

h=0

E(τ,a)∼dπ̃n

P̂n,h

[
b̂n,h(τ,a)−Hmin {fnh (τ,a), 1}

]
=

H∑
h=0

E(τ,a)∼dπ̃n

P̂n,h

[
b̂n,h(τ,a)

]
−H

H∑
h=0

E(τ,a)∼dπ̃n

P̂n,h

[min {fnh (τ,a), 1}] .
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Next we are going to bound the second term. Applying Lemma 16 to gh(τ,a) = min {fnh (τ,a), 1},
we have ∑

k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
min

{
fkh (τh,ah), 1

}]
⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[∥∥∥ϕ̂k,h−1(τh−1,ah−1)
∥∥∥
Σ−1

ρk,h−1,ϕ̂

]

·
√
n|A| · E(τ̃h,ãh)∼ρk,h−1

[
min

{
fkh (τ̃h, ãh), 1

}2]
+ λd+ nζn

⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[∥∥∥αkϕ̂k,h−1(τh−1,ah−1)
∥∥∥
Σ−1

ρk,h−1,ϕ̂

]
.

Note that we here use the fact min {fnh (τ,a), 1} ⩽ 1, E(τ̃h,ãh)∼ρn,h−1

[
min {fnh (τ̃h, ãh), 1}2

]
⩽

ζn and our choice of αn.

Combining all things together,∑
k∈[n]

vki − max
ω∈Ωi

vω◦πk

i =
∑
k∈[n]

Eτ∼ρk,h

[
V

k

0,i(τ)− max
ω∈Ωi

V ω◦πk

0,i (τ)

]

⩾
∑
k∈[n]

H∑
h=1

E(τh,ah)∼ρk,h

[
b̂k,h(τh,ah)

]
−H

∑
k∈[n]

H∑
h=1

E(τh,ah)∼ρk,h

[
min

{
fkh (τh,ah), 1

}]
⩾0,

Since the inequality holds for all n, we have that vni −maxω∈Ωi v
ω◦πn

i for all n.

Lemma 19 (Pessimism). For episode n ∈ [N ], set

b̂n,h = min

{
αn∥ϕ̂n,h−1(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
,

with αn = Θ(H
√
λd+ nAζn), λ = Θ(d log(nH|M|/δ)),

Σ̂n,h,ϕ̂n
: L2(µ) → L2(µ), Σ̂n,h,ϕ̂n

:=
∑

(τh,ah)∈Dn,h

[
ϕ̂n,h(τh,ah)ϕ̂n,h(τh,ah)

⊤
]
+λId.

Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we have

vni − vπ
n

i ⩽ 0, ∀n ∈ [N ], i ∈ [M ].

Proof. Let fnh (τ,a) =
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1
, then according to lemma 51 and lemma 56,

we have that using the chosen λ, with probability at least 1− δ, ∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

E(τ,a)∼ρ̂n,h

[
(fnh (τ,a))

2
]
⩽ ζn, E(τ,a)∼ρ̃n,h

[
(fnh (τ,a))

2
]
⩽ ζn,

∥ϕ̂n,h(τh−1,ah−1)∥Σ̂−1
n,h−1,ϕ

= Θ

(
∥ϕ̂n,h(τh−1,ah−1)∥Σ̂−1

ρn,h−1,ϕ

)
.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(τh,ah) =min

{
αn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}

⩾min

{
cαn

∥∥∥ϕ̂n,h(τh−1,ah−1)
∥∥∥
Σ−1

n,h−1,ϕ̂

, H

}
, ∀n ∈ [N ], h ∈ [H].
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Again, we prove by induction that ∀h ∈ [H],

Eτ∼dπ̃n

P̂n

[
V n

h,i(τ)− V πn

h,i (τ)
]
⩽

H∑
h′=h

E(τh′ ,ah′ )∼dπ̃n

P̂
n,h′

[
−b̂n,h′(τh′ ,ah′) +Hmin{fnh′(τh′ ,ah′), 1}

]
.

(10)

• When h = H , we have

Eτ∼dπ̃n

P̂n

[
V n

H,i(τ)− V πn

H,i(τ)
]
=E(τ,a)∼dπ̃n

P̂n

[
Qn

H,i
(τ,a)−Qπn

H,i(τ,a)
]

=E(τ,a)∼dπ̃n

P̂n

[
−b̂n,H(τ,a) +Hmin{fnH(τ,a), 1}

]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

Eτ∼dπ̃n

P̂n

[
V n

h,i(τ)− V πn

h,i (τ)
]

=E(τ,a)∼dπ̃n

P̂n

[
Qn

h,i
(τ,a)−Qπn

h,i(τ,a)
]

=E(τh,ah)∼dπ̃n

P̂n,h

[
−b̂n,h(τ,a) +

(
P̂n,hV

n
h+1,i

)
(τh,ah)−

(
PhV

πn

h+1,i

)
(τh,ah)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
−b̂n,h(τh,ah)

+
(
P̂n,h

(
V n

h+1,i − V πn

h+1,i

))
(τh,ah) +

((
P̂n,h − Ph

)
V πn

h+1,i

)
(τh,ah)

]
=E(τh,ah)∼dπ̃n

P̂n,h

[
−b̂n,h(τh,ah) +

((
P̂n,h − Ph

)
V πn

h+1,i

)
(τh,ah)

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V n

h+1,i(τh+1)− V πn

h+1,i(τh+1)
]

⩽E(τh,ah)∼dπ̃n

P̂n,h

[
−b̂n,h(τh,ah) +Hmin {fnh (τh,ah), 1}

]
+ Eτh+1∼dπ̃n

P̂n,h+1

[
V n

h+1,i(τh+1)− V πn

h+1,i(τh+1)
]

⩽
H∑

h′=h

E(τh,ah)∼dπ̃n

P̂
n,h′

[
b̂n,h′(τh,ah)−Hmin {fnh′(τh,ah), 1}

]
,

where we use the fact∣∣∣(P̂n,h − Ph

)
V πn

h+1,i

∣∣∣ (τ,a) ⩽min
{
H,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

∥∥∥V πn

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1

}
=Hmin {1, fnh′(τ,a)}

and the last row uses the induction assumption.

The remaining steps are exactly the same as the proof in Lemma 17 or Lemma 18, we get

∑
k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
min

{
fkh (τh,ah), 1

}]
⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[∥∥∥αkϕ̂k,h(τh−1,ah−1)
∥∥∥
Σ−1

ρk,h−1,ϕ̂

]
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Combining all things together, We have∑
k∈[n]

vki − vπ
k

i =
∑
k∈[n]

Eτ∼d0

[
V

k

0,i(τ)− V
†,πk

−i

0,i (τ)

]

⩽
∑
k∈[n]

H∑
h=1

E(τh,ah)∼ρk,h

[
−b̂k,h(τh,ah)

]
+H

∑
k∈[n]

H∑
h=1

E(τh,ah)∼ρk,h

[
min

{
fkh (τh,ah), 1

}]
⩽0,

which has finished the proof.

Lemma 20. For episode n ∈ [N ], set

b̂n,h = min

{
αn∥ϕ̂n,h−1(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
,

with αn = Θ(H
√
λd+ nAζn), λ = Θ(d log(nH|M|/δ)),

Σ̂n,h,ϕ̂n
: L2(µ) → L2(µ), Σ̂n,h,ϕ̂n

:=
∑

(τh,ah)∈Dn,h

[
ϕ̂n,h(τh,ah)ϕ̂n,h(τh,ah)

⊤
]
+ λId.

Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we have

N∑
n=1

∆n ≲ O
(
H3d2N

1
2A log(

HN |M|
δ

)

)

Proof. Let fnh (τ,a) =
∥∥∥P̂n,h(·|τ,a)− Ph(·|τ,a)

∥∥∥
1
, then according to lemma 51 and lemma 56,

we have that using the chosen λ, with probability at least 1− δ, ∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

E(τ,a)∼ρ̂n,h

[
(fnh (τ,a))

2
]
⩽ ζn, E(τ,a)∼ρ̃n,h

[
(fnh (τ,a))

2
]
⩽ ζn,

∥ϕh(τh−1,ah−1)∥Σ̂−1
n,h−1,ϕ

= Θ

(
∥ϕh(τh−1,ah−1)∥Σ̂−1

ρn,h−1,ϕ

)
.

By definition, we have

∆n = max
i∈[M ]

{vni − vni } .

For each fixed i ∈ [M ], h ∈ [H] and n ∈ [N ], we have

Eτ∼dπn

P,h

[
V

n

h,i(τ)− V n
h,i(τ)

]
=Eτ∼dπn

P,h

[(
Dπn

h
Q

n

h,i

)
(τ)−

(
Dπn

h
Qn

h,i

)
(τ)
]

=E(τ,a)∼dπn

P,h

[
Q

n

h,i(τ,a)−Qn

h,i
(τ,a)

]
=E(τh,ah)∼dπn

P,h

[
2b̂n,h(τh,ah) + P̂n,h

(
V

n

h+1,i − V n
h+1,i

)
(τh,ah)

]
=E(τh,ah)∼dπn

P,h

[
2b̂n,h(τh,ah) +

((
P̂n,h − Ph

)(
V

n

h+1,i − V n
h+1,i

))
(τh,ah)

]
+ Eτh+1∼dπn

P,h+1

[
V

n

h+1,i(τh+1)− V n
h+1,i(τh+1)

]
⩽E(τh,ah)∼dπn

P,h

[
2b̂n,h(τh,ah)+2H2fnh (τh,ah)

]
+Eτh+1∼dπn

P,h+1

[
V

n

h+1,i(τh+1)−V n
h+1,i(τh+1)

]
Note that we use the fact V

n

h+1,i(τ) − V n
h+1,i(τ) is upper bounded by 2H2, which can be proved

easily using induction using the fact that b̂nh(τ,a) ⩽ H . Applying the above formula recursively to
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Eτ∼dπn

P,h+1

[
V

n

h+1,i(τ)− V n
h+1,i(τ)

]
, one gets the following result (or more formally, one can prove

by induction, just like what we did in Lemma 36, Lemma 37 and Lemma 38):

Eτ∼dπn
P,0

[
V

n

0,i(τ)− V n
0,i(τ)

]
⩽2

H∑
h=0

E(τh,ah)∼dπn

P,h

[
b̂n,h(τh,ah)

]
︸ ︷︷ ︸

(a)

+2H2
H∑

h=0

E(τh,ah)∼dπn

P,h
[fnh (τh,ah)]︸ ︷︷ ︸

(b)

.

(11)

First, we calculate the first term (a) in Inequality equation 11. Following Lemma 15 and noting the
bonus b̂n,h is O(H), we have

∑
k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
b̂k,h(τh,ah)

]

≲
∑
k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
min

{
αk

∥∥∥ϕ̂k,h(τh−1,ah−1)
∥∥∥
Σ−1

k,ρ̂k,h,ϕ̂

, H

}]

≲
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

k,ρ̂k,h,ϕ̂

]

·

√√√√n|A|(αk)2 · E(τ̃h,ãh)∼ρk,h

[
∥ϕ̂k,h+1(τ̃h, ãh)∥2Σ−1

n,ρ̂k,h,ϕ̂

]
+ λH2d.

Note that we use the fact that B = H when applying Lemma 15. In addition, we have that for all n,

nE(τ̃h,ãh)∼ρn,h

[
∥ϕ̂n,h+1(τ̃h, ãh)∥2Σ−1

n,ρ̂n,h,ϕ̂

]
=nTr

(
E(τ̃h,ãh)∼ρn,h

[
ϕ̂n,h+1(τ̃h, ãh)ϕ̂n,h+1(τ̃h, ãh)

⊤
] (
nE(τ̃h,ãh)∼ρn,h

[
ϕ̂n,h+1(τ̃h, ãh)ϕ̂n,h+1(τ̃h, ãh)

⊤
]
+ λId

)−1
)

⩽d.

Then,∑
k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h

[
b̂k,h(τh,ah)

]
⩽
∑
k∈[n]

H∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

k,ρ̂k,h,ϕ̂

]√
dA (αk)

2
+H2dλ.

Second, we calculate the term (b) in inequality equation 11. Following Lemma 15, we have∑
k∈[n]

H∑
h=0

E(τh,ah)∼ρk,h
[fkh (τh,ah)]

⩽
∑
k∈[n]

H−1∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

ρk,h−1,ϕ

]

·
√
n|A|E(τ̃h,ãh)∼ρk,h−1

[(
fkh (τ̃h, ãh)

)2]
+ dλ

⩽
∑
k∈[n]

H−1∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

ρk,h−1,ϕ

]√
n|A|ζk + dλ

≲
∑
k∈[n]

H−1∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
αk

H
∥ϕh(τh−1,ah−1)∥Σ−1

ρk,h−1,ϕ

]
.
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Then, by combining the above calculation of the term (a) and term (b) in inequality equation 11, we
have:∑
k∈[n]

v
(k)
i − v

(k)
i =

∑
k∈[n]

Es∼ρk,0

[
V

(k)

0,i (s)− V
(k)
0,i (s)

]

≲
∑
k∈[n]

H∑
h=1

(
E(τh−1,ah−1)∼ρk,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

k,ρ̂k,h,ϕ

]√
dA (αk)

2
+H2dλ

)

+H2
∑
k∈[n]

H−1∑
h=0

E(τh−1,ah−1)∼ρk,h−1

[
αk

H
∥ϕh(τh−1,ah−1)∥Σ−1

ρk,h−1,ϕ

]
.

Note that
N∑

n=1

E(τh−1,ah−1)∼dπn

P,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

n,ρ̂n,h,ϕ

]

⩽

√√√√N
N∑

n=1

E(τh−1,ah−1)∼dπn

P,h−1

[
ϕh(τh−1,ah−1)⊤Σ

−1

n,γ
(n)
h ,ϕ⋆

h

ϕh(τh−1,ah−1)

]
(CS inequality)

≲

√√√√N

(
log det

(
N∑

n=1

E(τh−1,ah−1)∼dπn

P,h−1
[ϕh(τh−1,ah−1)ϕh(τh−1,ah−1)⊤]

)
− log det(λId)

)
(Lemma 53)

⩽

√
dN log

(
1 +

N

dλ

)
.

(Potential function bound, Lemma 54 noting ∥ϕ⋆h(s,a)∥2 ⩽ 1 for any (s,a).)

Taking maximum over i on both sides, we get
N∑

n=1

∆(n) =

N∑
n=1

max
i∈[M ]

{
v
(n)
i − v

(n)
i

}
≲H

√
dN log

(
1 +

N

dλ

)√
dA (αN )

2
+H2dλ

+H3

(
1

H
αN

√
dN log

(
1 +

N

dλ

))

≲H2dαN

√
NA log(1 +

N

dλ
)

≲H3d2N
1
2A log(

HN |M|
δ

)

Theorem 21 (PAC guarantee of OFOVI-MLE). When OFOVI-MLE is applied with
parameters ζn = Θ(log(Hn|M|/δ)/n), λ = Θ(d log(NH|M|/δ)), b̂n,h =

min

{
αn∥ϕ̂n,h−1(τh−1,ah−1)∥L2(µ),Σ̂

−1

n,h,ϕ̂n

, H

}
and αn = Θ(

√
λd+ n|A|ζn) by setting

the number of episodes N = Õ(H6d4|A|2ϵ−2 log(Hd|A||M|/δε)) with probability 1 − δ, the
output policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. For any fixed episode n and agent i, by Lemma 17, Lemma 18 and Lemma 19, we have

v
†,πn

−i

i − vπ
n

i

(
or max

ω∈Ωi

vω◦πn

i − vπ
n

i

)
⩽ vni − v̂ni ⩽ ∆n.
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Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,πn

−i

i − vπ
n

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦πn

i − vπ
n

i

})
⩽ ∆n. (12)

From Lemma 20, with probability 1− δ, we can ensure
N∑

k=1

∆n ≲ O
(
H3d2N

1
2A log(

HN |M|
δ

)

)
Therefore, according to Lemma 54, when we pick N to be

Õ
(
H6d4A2

ε2
log

HdA|M|
δε

)
we have

1

N

N∑
n=1

∆n ⩽ ε.

On the other hand, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π̂
i − vπ̂i

})
= max

i∈[M ]

{
v
†,πn⋆

−i

i − vπ
n⋆

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦πn⋆

i − vπ
n⋆

i

})
⩽∆n⋆

= min
n∈[N ]

∆n ⩽
1

N

N∑
n=1

∆n ⩽ ε,

which has finished the proof.

B.3 PROOF OF SEC. 4.2

We will provide the proof of Theorem 7 in this subsection. We first introduce the following additional
assumptions on the representation and the reward.
Assumption 1.

∫
T (
∫
A ∥ϕ(τ,a)∥2da)2dτ ⩽ d for all ϕ ∈ Φ and

∫
T (
∫
A r(τ,a)da)

2dτ ⩽ d.

Lemma 22 (L2 norm of value function). ∀i ∈ [N ], h ∈ [H], for any policy π, we have that

∥V π
h,i∥2 ⩽ 2d+ 2H2d2 ≲ H2d2.

Proof. From the proper of low-rank POMG, we know that there exists ωπ , such that ∥ωπ∥2 ⩽
√
dH

and Qπ
h,i(τ,a) = ϕ(τ,a)⊤ωπ for all h ∈ [H], i ∈ [N ]. Then, we have

∥V π
h,i∥22

=

∫
T
V π
h,i(τh)

2dτh

=

∫
T

(∫
A
π(ah|τh)

(
r(τh,ah) + P(τh+1|τh,ah)π(ah+1|τh+1)Q

π
h+1,i(τh+1,ah+1)

)
dah

)2

dTh

⩽
∫
T

(∫
A

(
r(τh,ah) + P(τh+1|τh,ah)π(ah+1|τh+1)Q

π
h+1,i(τh+1,ah+1)

)
dah

)2

dTh

⩽ 2

∫
T

(∫
A
r(τh,ah)dah

)2

dTh + 2H2d

∫
T

(∫
A
∥ϕ(τh,ah)∥2dah

)2

dTh

⩽ 2d+ 2H2d2

≲ H2d2
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Theorem 23 (PAC guarantee of OBOVI-SDR). When OBOVI-SDR is applied with parameters
ζn = Θ(log(Hn|M|/δ)/n), λ = Θ(d log(NH|M|/δ)), and αn = Θ(Hd

√
λd+ n|A|ζn) by

setting the number of episodes N = Õ(ε−2d2 log(H|M|/δε)) with probability 1 − δ, the output
policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. Recall that the estimated transition satisfies

E(xh,ah)∼Dh,n

∥∥∥PP
h (·|xh,ah)− PP̂n

h (·|xh,ah)
∥∥∥2
2
⩽ ζn.

Denote by V i
P (π) the value function of player i under policy π and transition P . Since the returned pol-

icy π̂ is an equilibrium with respect to P̂ , we have for all i ∈ [N ]: V i
P̂(π̂) = maxπ̃i V i

P̂(π̃
i, π̂−i) :=

V i,†
P̂

(π̂i).

Note that

|V i,†
P̂

(π̂i)− V i,†
P (π̂i)| = |max

π̃i
V i
P̂(π̃

i, π−i)−max
π̃i

V i
P(π̃

i, π−i)|

⩽ max
π̃i

|V i
P̂(π̃

i, π−i)− V i
P(π̃

i, π−i)|

⩽ d
√
ζn

Thus, we have

V i
P(π̂) ⩾ V i

P̂(π̂)− d
√
ζn

= V i,†
P̂

(π̂−i)− d
√
ζn

⩾ V i,†
P (π̂−i)− 2d

√
ζn

Hence, π̂ is an 2d
√
ζn-approximate equilibrium.

To guarantee an ε-approximate equilibrium, we require 2d
√
ζn ⩽ ε, which leads to N =

Õ(ε−2d2 log(H|M|/δε)).

Theorem 24 (PAC guarantee of OFOVI-SDR). When OFOVI-SDR is applied with parameters
ζn = Θ(log(Hn|M|/δ)/n), λ = Θ(d log(NH|M|/δ)), and αn = Θ(Hd

√
λd+ n|A|ζn), by

setting the number of episodes N = Õ(H6d4|A|2ϵ−2 log(Hd|A||M|/δε)) with probability 1− δ,
the output policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. Similar to the proof of Theorem 21, with Lemma 22, we have that

v
(n)
i − v

(n)
i =

H∑
h=1

(
E(τh−1,ah−1)∼dπn

P,h−1

[
∥ϕh(τh−1,ah−1)∥Σ−1

n,ρ̂n,h,ϕ

]√
dA (αn)

2
+H2dλ

)

+H2
H−1∑
h=0

E(τh−1,ah−1)∼dπn

P,h−1

[
αn

H
∥ϕh(τh−1,ah−1)∥Σ−1

ρn,h−1,ϕ

]
.

Taking maximum over i and taking dominating term out, we have

N∑
k=1

∆n ≲ O
(
H3d2N

1
2A log(

HN |M|
δ

)

)
The remaining steps of the proof follow similarly to the proof of Theorem 21.

C BELIEF-BASED MG AND DERIVATION OF LLVR

C.1 EQUIVALENT BELIEF-BASED MG CONSTRUCTION

We show that a POMG can be converted to an equivalent belief-based MG. Recall that the belief
function is initialized as fbelief (s1|o0) = P(s0|o0), with recursive updates: fbelief (sh+1|τh+1) ∝
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∫
S fbelief (sh|τh)P (sh+1|sh,ah)O(oh+1|sh+1) dsh. This enables a transformation from a POMG

to an equivalent MG over beliefs, denoted as Mb = (B, {Ai}Mi=1, {Ri,b}Mi=1, H, µb,Pb), where
B ⊂ ∆(S) represents the set of possible beliefs, µb(β1) =

∫
1β0=fbelief (·|o0)µ0(s1)O(o0|s0) ds0,

and Pb(βh+1|βh,ah) =
∫
1βh+1=fbelief (τh,ah,oh+1)P(oh+1|βh,ah) doh+1. Any joint policy π(·|τ)

of the original POMG uniquely maps to a belief-based policy πb(·|fbelief (τ)) in the associated MG.

For a given belief-based policy πb, the state value function V πb

h (βh) and state-action
value function Qπb

h (βh,ah) for the belief Markov game can be defined as: V πb

h (βh) =

E
[∑H

t=h r(ot,at)|βh
]
, Qπb

h (βh,ah) = E
[∑H

t=h r(ot,at)|βh,ah

]
. Therefore, the Bellman

equation can be expressed as

V πb

h (βh) = Eπb
[Qπb

h (βh,ah)] , Qπb

h (βh,ah) = r(oh,ah) + EPb

[
V πb

h+1(βh+1)
]
. (13)

Note that the equivalent MG is based on beliefs, which are not directly observed. More importantly,
these beliefs rely on the entire history, including all players’ observations and actions. Consequently,
the joint distribution is supported on a space with exponentially growing dimensionality. This
exponential representation complexity leads to infeasible computational and statistical demands,
highlighting the inherent limitations of directly applying MG-based RL algorithms to POMGs.
Consequently, several special structures, such as L-decodability, have been investigated to reduce the
statistical complexity of learning in a POMG, motivating our work.

C.2 DERIVATION OF LLVR

We now derive LLVR that leverages the underlying structure of L-decodability to support exact and
tractable linear representation of the value functions over the latent space in POMGs without full
history dependence.

As mentioned above, though an equivalent belief-based MG can provide a Markovian Bellman
recursion (cf. equation 13), operating within the belief space tends to be computationally challenging.
We derive L-step Latent Variable Representation (LLVR) for L-decodable POMGs that leverages the
underlying structure of L-decodability to remove the need for explicit belief calculations.

By Definition 9, an L-step memory state τLh contains sufficient information. Therefore, we obtain
the simplification Qπb

h (fbelief (τh),ah) = Qπb

h (p∗(τLh ),ah). Since any belief-based policy πb has a
corresponding joint policy π, we will henceforth make no distinction between them and uniformly
denote both as π. To simplify notation, we redefine Qπ

h(τ
L
h ,ah) = Qπ

h(p
∗(τLh ),ah), leading to the

simplifie Bellman equation:

Qπ
h(τ

L
h ,ah) = r(oh,ah) + EPπ(oh+1|τL

h ,ah)

[
V π
h+1(τ

L
h+1)

]
, (14)

where Pπ(·) denotes the probability distribution under policy π.

Note that in equation 14, there is an additional dependence of V π
h+1(τ

L
h+1) on (τLh ,ah)

since τLh+1 shares overlapping components with (τLh ,ah). Specifically, τLh+1 includes
(oh−L+2,ah−L+2, · · · ,oh,ah) from (τLh ,ah). Consequently, we turn to the following L-step
Bellman equation to avoid this overlapping.

Qπ
h(τ

L
h ,ah) = EPπ(oh+1:h+L−1|τL

h ,ah)

[(
h+L−1∑
i=h

r(oi,ai)

)
+ V π

h+L(τ
L
h+L)|τLh ,ah

]
. (15)

We note that by L-decodability, there exists a moment-matching policy χπ for arbitrary policy π,
which is conditioned on a latent variable to generate the same expected observation dynamics while
being independent of history older than L steps (14). We defer the detailed construction of χπ to
Appendix D for brevity. Using such a correspondent moment-matching policy χπ of π, one can write

Pπ(τLh+L|τLh ,ah) =

∫
p(zh+1|τLh ,ah)Pχπ (τLh+L|zh+1) dzh+1 =

〈
p(·|τLh ,ah),Pχπ (τLh+L|·)

〉
(16)

where z denotes the latent variable and the first equality follows from the construction of χπ .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Substituting equation 16 back into equation 15 enables a reformulation of Qπ
h(τ

L
h ,ah) in linear form.

Each reward and value term in equation 15 becomes an inner product of p
(
zh+1 | τLh ,ah

)
with the

corresponding integrals. Specifically, for the first term in (15), for all k ∈ {0, · · · , L− 1}, we have

Eπ
oh+k|τL

h ,ah
[r(oh+k,ah+k)] =

〈
p(·|τLh ,ah),

∫
Pχπ (oh+k,ah+k|·)r(oh+k,ah+k) doh+kdah+k︸ ︷︷ ︸

ωπ
h+k(·)

〉

Similarly, for the second term in (15), we have

Eπ[V π
h+L(τ

L
h+L)] =

〈
p(·|τLh ,ah),

∫
Pχπ (τLh+L|·)V (τLh+L) dτh+L︸ ︷︷ ︸

ωπ
h+L(·)

〉
(17)

Altogether, we conclude that in an L-decodable POMG, both the reward function r and the value
functionQπ

h(τ
L
h ,ah) can be linearly represented with p(zh+1|τLh ,ah). Specifically, defining ω̃π

h(·) =∑L
k=0 ω

π
h+k(·), the Q-function can be represented as Qπ

h(τ
L
h ,a) =

〈
p(·|τLh ,ah), ω̃

π
h(·)

〉
. With this

linear representation for Qπ
h, the backup step of the Bellman recursion can be replaced by a least

squares regression in the space spanned by p(·|τLh ,a). Specifically, at step h, the estimate of
Qπ

h(τh,ah) can be obtained by the optimization:

min
ω̃π

h

Eπ
τL
h:h+L,ah

(〈p(·|τLh ,ah), ω̃
π
h(·)
〉
−

((
h+L−1∑
i=h

r(oi,ai)

)
+
〈
p(·|τLh+L,ah+L), ω

π
h+L(·)

〉))2
.
(18)

Since p(zh+1|τLh ,ah) is typically unknown a priori that must be learned from data, we can estimate
it via MLE for conditional density estimation,

max
p,Pχπ

logPχπ (oh+1:h+l|τLh ,ah) = log
〈
p(·|τLh ,ah),Pχπ (oh+1:h+l|·)

〉
Note that solving this MLE problem is generally intractable and the following evidence lower bound
(ELBO) can be constructed as a tractable surrogate objective for MLE (47):

max
q∈∆(Z)

Eq(·|τL
h ,ah,oh+1:h+l)[logP

χπ(oh+1:h+l|zh)]−KL(q(·|τLh ,ah,oh+1:h+l)||p(zh|τLh ,ah)).

(19)

We provide the complete mathematical derivation of the ELBO in Appendix F. This derivation
establishes a computational friendly variational ELBO and the methods for solving this ELBO
have been extensively explored within the variational inference community (48) (see Appendix
F for detailed analysis). We remark that under Assumption 4, the estimator obtained by max-
imizing the ELBO is identical to the estimator obtained by MLE and the ELBO can be effi-
ciently optimized using variational inference techniques. We can parameterize the solution to the
ELBO with a variational distribution class Q = {{qh(z|τLh ,ah,oh+1:h+l)}h∈[H]} and model class
M = {{(ph(z|τLh ,ah), ph(oh+1:h+l|z))}h∈[H]}. Practically, both Q and M can be implemented
as neural networks, yielding approximate solutions q̂(z|τLh ,ah,oh+1:h+l), p̂h,n(oh+1:h+l|zh) and
p̂n,h(zh|τLh ,ah) and approximated transition P̂n = {(p̂h,n(zh|τLh ,ah), p̂h,n(oh+1|zh))}h∈[H].

Once p̂n,h(z|τLh ,ah) is obtained, the Q-function can be approximated as Qπ
h(τ

L
h ,ah) =〈

p̂(z|τLh ,a), ω(z)
〉

and can be obtained by a least square regression (18). However, if z is con-
tinuous, then ω(z) is infinite-dimensional. To deal with the infinite-dimensional ω(z), we follow
the trick in (41) that forms Qπ

(
τLh ,ah

)
as an expectation Qπ

(
τLh ,ah

)
=
〈
p(z|τLh ,ah), w

π(z)
〉
=

Ep(z|τL
h ,ah) [w

π(z)] and then approximate it with random feature quadrature. Specifically, we con-
sider ω(z) lying in certain RKHS with φ as its random feature basis, i.e., ω(z) = EP (ξ)[φ(ξ, z)]. As
a result, Qπ(τLh ,ah) ≈ 1

K

∑K
i=1 ω

π(ξi)φ(zi, ξi) where the latent variables zi ∼ p̂(z|τLh ,ah) and
random features ξi ∼ P (ξ). If the random feature φ is specified, then ω can be implemented by a
neural network ωθ. We defer the detailed derivation to Appendix E.1.
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D MOMENT MATCHING POLICY

We provide a formal definition of the moment matching policy below.

Definition 25 (Moment Matching Policy (14)). With the L-decodability assumption, for h ∈ [H],
h′ ∈ [h − L + 1, h] and l = h′ − h + L − 1, we can define the moment matching policy χπ,h =

{χh,π
h′ : Sl ×Ol ×Al−1 → ∆(A)}hh′=h−L+1 introduced by (14) , such that

χπ,h
h′ (ah′ |(sh−L+1:h′ ,oh−L+1:h′ ,ah−L+1:h′−1))

:= EP
π [πh′(ah′ |xh′)|(sh−L+1:h′ ,oh−L+1:h′ ,ah−L+1:h′−1)], ∀h′ ⩽ h− 1,

and χπ,h
h = πh. We further define π̃h, which takes first h− L actions from π and the remaining L

actions from χπ,h.

The primary motivation for defining the moment matching policy is to construct a policy that is
conditionally independent of the past history for theoretical analysis while remaining indistinguishable
from the history-dependent policy to align with practical algorithms. By Lemma B.2 in (14), under
the L-decodability assumption, for a fixed h ∈ [H], we have dπP,h(xh) = dπ̃h

P,h(xh), for all L-step
policy π and xh ∈ Xh. As χπ,h

h = πh, we have dπP,h(xh, ah) = dπ̃h

P,h(xh, ah). This enables the
factorization in equation 17 without the dependency of the overlap observation trajectory.

E THEORETICAL ANALYSIS FOR METHODS FOR L-DECODABLE POMGS

This section presents the theoretical guarantees for our algorithms for L-decodable POMGs, including
key technical background and assumptions, and proof for online and offline setting. For notational
simplicity, we denote x and X by τL and T L, respectively, in this section.

E.1 TECHNICAL BACKGROUND ABOUT KERNEL METHOD

In this subsection, we revisit several important concepts from functional analysis that will be repeat-
edly used in our theoretical analysis. We start from the concept of the L2(µ) space. For a complete
introduction, we refer the reader to (41).

Definition 26 (L2(µ) space). Let (X ,A, µ) be a measure space. The L2(µ) space is defined as the
Hilbert space consists of square-integrable function with respect to µ, with inner product

⟨f, g⟩L2(µ) :=

∫
X
fgdµ,

and the norm

∥f∥L2(µ) :=

(∫
X
f2dµ

)1/2

.

Throughout the paper, µ is specified as the Lebesgue measure for continuous X and the counting
measure for discrete X . Specifically, when X is discrete, we can represent f as a sequence [f(x)]x∈X ,
and the corresponding L2(µ) inner product and L2(µ) norm is identical to the ℓ2 inner product and
ℓ2 norm, which is defined as

⟨f, g⟩l2 =
∑
x∈X

f(x)g(x), ∥f∥l2 =

(∑
x∈X

f2(x)

)1/2

,

that is closely related to the inner product and norm of the Euclidean space.

Then we introduce several concepts of the kernel and the reproducing kernel Hilbert space (RKHS).

Definition 27 ((Positive-Definite) Kernel (21)). A symmetric function k : X × X → R is said to be
a positive definite kernel if for any {x1, . . . , xm} ⊂ X , the matrix K = [k(xi, xj)]ij ∈ Rm×m is
symmetric positive-definite.
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Definition 28 (Reproducing Kernel Hilbert Space (RKHS) (49)). Let k : X × X → R be a
Positive-Definite kernel. Then, there exists a Hilbert space Hk and a mapping ϕ : X → Hk such
that:

∀x, x′ ∈ X , k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.
Furthermore, Hk has the following property known as the reproducing property:

∀h ∈ Hk, ∀x ∈ X f(x) = ⟨f, k(x, ·)⟩.

Hk is called a reproducing kernel Hilbert space (RKHS) associated to k.
Theorem 29 (Mercer’s Theorem (50)). Let k(x, x′) be a bounded continuous positive definite kernel.
Then, k(x, x′) admits Mercer decomposition, i.e. there exists a countable orthonormal basis {ei}∞i=1
of L2(µ) with corresponding eigenvalues {νi}∞i=1, such that

k(x, x′) =

∞∑
i=1

νiei(x)ei(x
′), (20)

where the convergence is absolute and uniform for all (x, x′) ∈ X × X . Without loss of generality,
we assume ν1 ⩾ ν2 ⩾ · · · > 0.

Definition 30 (Random Feature). The kernel k : X ×X → R has a random feature representation if
there exists a function ψ : X × Ξ → R and a probability measure P over Ξ such that

k(x, x′) =

∫
Ξ

ψ(x; ξ)ψ(x′; ξ)dP (ξ).

Remark (random feature quadrature): We here justify the random feature quadrature (41) for
completeness.

We can represent Qπ
h as an expectation,

Qπ
h(xh,ah) = ⟨p(z|xh), wπ

h(z)⟩ = Ep(z|xh) [w
π
h(z)]L2(µ)

Under the assumption that wπ
h(·) ∈ Hk, where Hk denoting some RKHS with some kernel k (·, ·).

When k (·, ·) can be represented through random feature, i.e.,

k (x, y) = EP (ξ) [ψ (x; ξ)ψ (y; ξ)] ,

the wπ
h (z) admits a representation as

wπ
h (z) = EP (ξ) [w̃

π
h (ξ)ψ (z; ξ)] .

Therefore, we plug this random feature representation of wπ
h(z) to Qπ

h (xh, ah), we obtain

Qπ
h (xh,ah) = Ep(z|xh),P (ξ) [w̃

π
h(ξ)ψ (z; ξ)] . (21)

Applying Monte-Carlo approximation to equation 21, we obtain the random feature quadrature.

E.2 TECHNICAL CONDITIONS

We adopt the following assumptions for the reproducing kernel, which have been previously used in
(41; 15) in the single-agent setting.
Assumption 2 (Regularity Conditions). Let Z be a compact metric space with respect to the Lebesgue
measure ν when Z is continuous. Additionally, we assume that

∫
Z k(z, z)dν ⩽ 1.

Remark 31. Assumption 2 is mainly for the ease of presentation. The assumption
∫
Z k(z, z)dν ⩽ 1

can be relaxed to
∫
Z k(z, z)dν ⩽ c with some positive constant c, at the cost of additional terms at

most poly(c) in the sample complexity.
Assumption 3 (Eigendecay Conditions). Assume that the sequence {νi}i∈I defined in Theorem 29
satisfies one of the following conditions:

• β-finite spectrum: for some positive integer β, we have νi = 0, ∀i > β.
• β-polynomial decay: νi ⩽ C0i

−β with absolute constant C0 and β > 1.
• β-exponential decay: νi ⩽ C1 exp(−C2i

β), with absolute constants C1, C2 and β > 0.
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We will use Cpoly to denote constants in the analysis of β-polynomial decay, which depend only on
C0 and β, and Cexp to denote constants in the analysis of β-exponential decay, which depend only
on C1, C2, and β. This simplifies the dependency on the constant terms. Both Cpoly and Cexp may
vary step by step.
Remark 32. Most existing kernels satisfy one of these eigendecay conditions. For example, the
linear kernel and the polynomial kernel satisfy the β-finite spectrum condition, the Matern kernel
satisfies the β-polynomial decay and the Gaussian kernel satisfies the β-exponential decay.

E.3 ALGORITHM AND GUARANTEE FOR LLVR WITH EXACT VALUE ORACLE

In this subsection, we provide PAC guarantee of OBOVI-LLVR.
Theorem 33 (PAC guarantee of OBOVI-LLVR). When OBOVI-LLVR is applied with parameters
ζn = Θ(log(Hn|M|/δ)/n) , b̂n,h = min

{
αn∥p̂n(·|xh−L, ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}

with αn =

Θ
√
λC + nL|A|Lζn and

• β-finite spectrum: λ = Θ(β logN + log(N |M|/δ));

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N |M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |M|/δ));

by setting the number of episodes N to be at N = Õ(ε−2 log(H|M|/δε)), with probability 1− δ,
the output policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. According to Lemma 56, the estimated transition satisfies

E(xh,ah)∼Dh,n

∥∥∥PP
h (·|xh,ah)− PP̂n

h (·|xh,ah)
∥∥∥2
1
⩽ ζn.

Denote by V i
P (π) the value function of player i under policy π and transition P . Since the returned pol-

icy π̂ is an equilibrium with respect to P̂ , we have for all i ∈ [N ]: V i
P̂(π̂) = maxπ̃i V i

P̂(π̃
i, π̂−i) :=

V i,†
P̂

(π̂i).

Note that

|V i,†
P̂

(π̂i)− V i,†
P (π̂i)| = |max

π̃i
V i
P̂(π̃

i, π−i)−max
π̃i

V i
P(π̃

i, π−i)|

⩽ max
π̃i

|V i
P̂(π̃

i, π−i)− V i
P(π̃

i, π−i)|

⩽
√
ζn

Thus, we have

V i
P(π̂) ⩾ V i

P̂(π̂)−
√
ζn

= V i,†
P̂

(π̂−i)−
√
ζn

⩾ V i,†
P (π̂−i)− 2

√
ζn

Hence, π̂ is an 2
√
ζn-approximate equilibrium.

To guarantee an ε-approximate equilibrium, we require 2
√
ζn ⩽ ε, which leads to N =

Õ(ε−2 log(H|M|/δε)).

E.4 FORMAL PROOF FOR ONLINE SETTING

In this subsection, we provide analysis for OFOVI, establishing key technical lemmas that culminate
in the convergence theorem. We start from the following assumptions, that are commonly used in the
literature (15; 41; 37; 30).
Assumption 4 (Realizability). Assume {(ph(z|τLh ,ah),Pπ

h(oh+1:h+l|z))}h∈[H] ∈ M and
ph(z|τLh ,ah,oh+1:h+l) ∈ Q for all (ph(z|τLh ,ah), ph(oh+1:h+l|z)) ∈ M.
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Assumption 5 (Normalization Conditions). ∀P̂ = {(p̂h(z|τLh ,ah), p̂h(oh+1|z))}h∈[H] ∈ M, h ∈
[H], (τLh ,ah) ∈ T L ×A, ∥p̂h(·|τLh ,ah)∥HK

⩽ 1 for some kernel K. Furthermore, ∀g : T L → R
such that ∥g∥∞ ⩽ 1, we have

∥∥∫
T L p(τ

L
h+L|·)g(τLh+L)dτ

L
h+L

∥∥
HK

⩽ C.

We remark that under Assumption 4, the estimator obtained by maximizing the ELBO is identical to
the estimator obtained by MLE and the ELBO can be efficiently optimized using variational inference
techniques. In Appendix F, we further explain why ELBO optimization offers superior computational
tractability compared to direct MLE optimization.

Lemma 34 (L-step back inequality for the true model). Given a set of functions [gh]h∈[H], where
gh : X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H], we have that ∀π,∑
h∈[H]

E(xh,ah)∼dπ
P,h

[gh(xh,ah)] ⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ
P,h−L

[
∥p(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρn,h−L,p

]
·
√
n|A|L · E(x̃h,ãh)∼ρn,h−L◦LU(A) [gh(x̃h, ãh)2] + λB2C

Proof. The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
completeness. Recall the moment matching policy χπ Since χπ,h does not depend on (xh−L,ah−L),
we can make the following decomposition:

E(xh,ah)∼dπ
P,h
gh(xh,ah)

=E(xh−L,ah−L)∼dπ
P,h−L

[∫
xh

⟨p(·|xh−L,ah−L),Pχπ (xh|·)⟩L2(µ) · Eah∼χπ,h
[gh(xh,ah)]dxh

]
⩽E(xh−L,ah−L)∼dπ

P,h−L
∥p(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρn,h−L,p

·
∥∥∥∥∫

xh

Pχπ (xh|·)Eah∼χπ,h
[gh(xh,ah)]dxh

∥∥∥∥
L2(µ),Σρn,h−L,p

.

Direct computation shows that∥∥∥∥∫
xh

Pχπ (xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
L2(µ),Σρn,h−L,p

=nE(x̃h−L,ãh−L)∼ρn,h−L

[
Exh∼Pχπ (·|xh−L,ah−L),ah∼χπ,h(·|xh)[gh(xh,ah)]

]2
+ λ

∥∥∥∥∫
xh

Pχπ (xh|·) · Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
H

⩽nE(x̃h−L,ãh−L)∼ρn,h−L
Exh∼Pχπ (·|xh−L,ah−L),ah∼χπ,h(·|xh) [gh(xh,ah)]

2
+ λB2C

⩽n|A|LE(x̃h,ãh)∼ρn,h−L◦LU(A)[gh(x̃h, ãh)]
2 + λB2C,

which finishes the proof.

Lemma 35 (L-step back inequality for the learned model). Assume we have a set of functions
[gh]h∈[H], where gh : X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H]. Given Lemma 51, we have that ∀π,∑

h∈[H]

E(xh,ah)∼dπ
P̂n,h

[gh(xh,ah)]

⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ
P̂n,h−L

[
∥p̂(·|xh−L,ah−L)∥L2(µ),Σ

−1

ρn,h−2L◦LU(A),p̂

]
·
√
n|A|L · E(x̃h,ãh)∼ρn,h−2L◦2LU(A) [gh(x̃h, ãh)2] + λB2C + nL|A|L−1B2ζn
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Proof. The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
completeness. We define a similar moment matching policy and make the following decomposition:

E(xh,ah)∼dπ
P̂n,h

[gh(xh,ah)]

=E(xh−L,ah−L)∼dπ
P̂n,h−L

[∫
xh

⟨p̂(·|xh−L,ah−L), p̂(xh|·)⟩L2(µ) · Eah∼χπ,h
[gh(xh,ah)]dxh

]
⩽E(xh−L,ah−L)∼dπ

P̂n,h−L

∥p̂(·|xh−L,ah−L)∥L2(µ),Σ
−1

ρn,h−2L◦LU(A),p̂

·
∥∥∥∥∫

xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥
L2(µ),Σρn,h−2L◦LU(A),p̂

.

Direct computation shows that∥∥∥∥∫
xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
L2(µ),Σρn,h−2L◦LU(A),p̂

=nE(x̃h−L,ãh−L)∼ρn,h−2L◦LU(A)

[
Exh∼P̂n(·|x̃h−L,ãh−L),ah∼χπ,h(·|xh)

[gh(xh,ah)]
]2

+ λ

∥∥∥∥∫
xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
H

⩽nE(x̃h−L,ãh−L)∼ρn,h−2L◦LU(A)Exh∼P̂n(·|x̃h−L,ãh−L),ah∼χπ,h(·|xh)
[gh(xh,ah)]

2 + λB2C

⩽n|A|LE(x̃h,ãh)∼ρn,h−2L◦2LU(A)[gh(x̃h, ãh)]
2 + nL|A|L−1B2ζn + λB2C,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof.

Lemma 36 (Optimism for NE and CCE). For episode n ∈ [N ], set

b̂n,h = min
{
αn∥p̂n,h−1(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}
,

with αn = Θ
√
λC + nL|A|Lζn,

Σ̂n,h,p̂n : L2(µ) → L2(µ), Σ̂n,h,p̂n :=
∑

(xh,ah)∈Dn,h

[
p̂n(z|xh,ah)p̂n(z|xh,ah)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logN + log(N |M|/δ));

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N |M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |M|/δ));

c is an absolute constant. πn is computed by solving NE or CCE. Then with probability at least 1− δ,
∀n ∈ [N ], i ∈ [M ] we have

vni (x)− v
†,πn

−i

i (x) ⩾ 0.

Proof. Define µ̃n
h,i(·|x) := argmaxµ

(
Dµ,πn

h,−i
Q

†,πn
−i

h,i

)
(x) as the best response policy for player i

at step h, and let π̃n
h = µ̃n

h,i × πn
h,−i. Let fnh (x,a) =

∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)
∥∥∥
1
, then according

to lemma 51 and lemma 56, we have that using the chosen λ, with probability at least 1 − δ,
∀n ∈ [N ], h ∈ [H], P̂ ∈ M,
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E(x,a)∼ρ̂n,h

[
(fnh (x,a))

2
]
⩽ ζn, E(x,a)∼ρ̃n,h

[
(fnh (x,a))

2
]
⩽ ζn,

∥ph(·|xh−L,ah−L)∥Σ̂−1
n,h−L,p̂n

= Θ

(
∥ph(·|xh−L,ah−L)∥Σ̂−1

ρn,h−L,p̂n

)
.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(xh,ah) =min
{
αn ∥p̂n,h(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}

⩾min
{
cαn ∥p̂n,h(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}
, ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that ∀h ∈ [H],

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− V
†,πn

−i

h,i (x)
]
⩾

H∑
h′=h

E(x,a)∼dπ̃n

P̂
n,h′

[
b̂n,h′(x,a)−Hmin {fnh′(x,a), 1}

]
.

(22)

First, notice that ∀h ∈ [H],

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− V
†,πn

−i

h,i (x)
]
=Ex∼dπ̃n

P̂n,h

[(
Dπn

h
Q

n

h,i

)
(x)−

(
Dπ̃n

h
Q

†,πn
−i

h,i

)
(x)
]

⩾Ex∼dπ̃n

P̂n,h

[(
Dπ̃n

h
Q

n

h,i

)
(x)−

(
Dπ̃n

h
Q

†,πn
−i

h,i

)
(x)
]

=E(x,a)∼dπ̃n

P̂n,h

[
Q

n

h,i(x,a)−Q
†,πn

−i

h,i (x,a)
]
,

where the inequality uses the fact that πn
h is the NE (or CCE) solution for

{
Q

n

h,i

}M

i=1
. Now we are

ready to prove equation 22:

• When h = H , we have

Ex∼dπ̃n

P̂n,H

[
V

n

H,i(x)− V
†,πn

−i

H,i (x)
]
⩾E(x,a)∼dπ̃n

P̂n,H

[
Q

n

H,i(x,a)−Q
†,πn

−i

H,i (x,a)
]

=E(x,a)∼dπ̃n

P̂n,H

[
b̂n,H(x,a)

]
⩾E(x,a)∼dπ̃n

P̂n,H

[
b̂n,H(x,a)−Hmin {fnH(x,a), 1}

]
.
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• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− V
†,πn

−i

h,i (x)
]

⩾E(x,a)∼dπ̃n

P̂n,h

[
Q

n

h,i(x,a)−Q
†,πn

−i

h,i (x,a)
]

=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a) +

(
P̂n,hV

n

h+1,i

)
(x,a)−

(
PhV

†,πn
−i

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

+
(
P̂n,h

(
V

n

h+1,i − V
†,πn

−i

h+1,i

))
(x,a) +

((
P̂n,h − Ph

)
V

†,πn
−i

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a) +

((
P̂n,h − Ph

)
V

†,πn
−i

h+1,i

)
(x,a)

]
+ Ex∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(x)− V
†,πn

−i

h+1,i (x)
]

⩾E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
+ Ex∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(x)− V
†,πn

−i

h+1,i (x)
]

⩾
H∑

h′=h

E(x,a)∼dπ̃n

P̂
n,h′

[
b̂n,h′(x,a)−Hmin {fnh′(x,a), 1}

]
,

where we use the fact∣∣∣(P̂n,h − Ph

)
V

†,πn
−i

h+1,i

∣∣∣ (x,a) ⩽min
{
H,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥∥V †,πn
−i

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fnh′(x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 22. We then apply h = 0 to equation 22, and get

Ex∼d0

[
V

n

0,i(x)− V
†,πn

−i

0,i (x)
]

=Ex∼dπ̃n

P̂n,0

[
V

n

0,i(x)− V
†,πn

−i

0,i (x)
]

⩾
H∑

h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}] .

Next we are going to bound the second term. Applying Lemma 35 to gh(x,a) = min {fnh (x,a), 1},
we have

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥p̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]

·
√
n|A|L · E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
+ λC + nL|A|L−1ζn

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥αnp̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]
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Note that we here use the fact min {fnh (x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
⩽

ζn and our choice of αn.

Combining all things together,

vni − v
†,πn

−i

i =Ex∼d0

[
V

n

0,i(x)− V
†,πn

−i

0,i (x)
]

⩾
H∑

h=1

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

]
−H

H∑
h=1

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}]

⩾0,

which proves the inequality.

Lemma 37 (Optimism for CE). For episode n ∈ [N ], set

b̂n,h = min
{
αn∥p̂n,h−1(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}
,

with αn = Θ
√
λC + nL|A|Lζn,

Σ̂n,h,p̂n : L2(µ) → L2(µ), Σ̂n,h,p̂n :=
∑

(xh,ah)∈Dn,h

[
p̂n(z|xh,ah)p̂n(z|xh,ah)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logN + log(N |M|/δ))

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N |M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |M|/δ));

c is an absolute constant. πn is computed by solving CE. Then with probability at least 1 − δ,
∀n ∈ [N ], i ∈ [M ] we have

vni (x)− max
ω∈Ωi

vω◦πn

i (x) ⩾ 0, ∀n ∈ [N ], i ∈ [M ].

Proof. Denote ω̃(n)
h,i = argmaxωh∈Ωh,i

(
D

ωh◦π(n)
h

maxω∈Ωi
Qω◦π(n)

h,i

)
(s) and let π̃(n)

h = ω̃h,i◦π(n)
h .

Let fnh (x,a) =
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1
, then according to lemma 51 and lemma 56, we have

that using the chosen λ, with probability at least 1− δ, ∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

E(x,a)∼ρ̂n,h

[
(fnh (x,a))

2
]
⩽ ζn, E(x,a)∼ρ̃n,h

[
(fnh (x,a))

2
]
⩽ ζn,

∥ph(·|xh−L,ah−L)∥Σ̂−1
n,h−L,p̂n

= Θ

(
∥ph(·|xh−L,ah−L)∥Σ̂−1

ρn,h−L,p̂n

)
.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(xh,ah) =min
{
αn ∥p̂n,h(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}

⩾min
{
cαn ∥p̂n,h(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}
, ∀n ∈ [N ], h ∈ [H].

Next, we prove by induction that ∀h ∈ [H],

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− max
ω∈Ωi

V ω◦πn

h,i (x)

]
⩾

H∑
h′=h

E(x,a)∼dπ̃n

P̂
n,h′

[
b̂n,h′(x,a)−Hmin {fnh′(x,a), 1}

]
.

(23)
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First, notice that ∀h ∈ [H],

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− max
ω∈Ωi

V ω◦πn

h,i (x)

]
=Ex∼dπ̃n

P̂n,h

[(
Dπn

h
Q

n

h,i

)
(x)−

(
Dπ̃n

h
max
ω∈Ωi

Qω◦πn

h,i

)
(x)

]
⩾Ex∼dπ̃n

P̂n,h

[(
Dπ̃n

h
Q

n

h,i

)
(x)−

(
Dπ̃n

h
max
ω∈Ωi

Qω◦πn

h,i

)
(x)

]
=E(x,a)∼dπ̃n

P̂n,h

[
Q

n

h,i(x,a)− max
ω∈Ωi

Qω◦πn

h,i (x,a)

]
,

where the inequality uses the fact that πn
h is the CE solution for

{
Q

n

h,i

}M

i=1
. Now we are ready to

prove equation 23:

• When h = H , we have

Ex∼dπ̃n

P̂n,H

[
V

n

H,i(x)− max
ω∈Ωi

V ω◦πn

H,i (x)

]
⩾E(x,a)∼dπ̃n

P̂n,H

[
Q

n

H,i(x,a)− max
ω∈Ωi

Qω◦πn

H,i (x,a)

]
=E(x,a)∼dπ̃n

P̂n,H

[
b̂n,H(x,a)

]
⩾E(x,a)∼dπ̃n

P̂n,H

[
b̂n,H(x,a)−Hmin {fnH(x,a), 1}

]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃n

P̂n,h

[
V

n

h,i(x)− max
ω∈Ωi

V ω◦πn

h,i (x)

]
⩾E(x,a)∼dπ̃n

P̂n,h

[
Q

n

h,i(x,a)− max
ω∈Ωi

Qω◦πn

h,i (x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a) +

(
P̂n,hV

n

h+1,i

)
(x,a)−

(
Ph max

ω∈Ωi

V ω◦πn

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

+

(
P̂n,h

(
V

n

h+1,i − max
ω∈Ωi

V ω◦πn

h+1,i

))
(x,a) +

((
P̂n,h − Ph

)
max
ω∈Ωi

V ω◦πn

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a) +

((
P̂n,h − Ph

)
max
ω∈Ωi

V ω◦πn

h+1,i

)
(x,a)

]
+ Ex∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(x)− max
ω∈Ωi

V ω◦πn

h+1,i (x)

]
⩾E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
+ Ex∼dπ̃n

P̂n,h+1

[
V

n

h+1,i(x)− max
ω∈Ωi

V ω◦πn

h+1,i (x)

]
⩾

H∑
h′=h

E(x,a)∼dπ̃n

P̂
n,h′

[
b̂n,h′(x,a)−Hmin {fnh′(x,a), 1}

]
,

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

where we use the fact∣∣∣∣(P̂n,h − Ph

)
max
ω∈Ωi

V ω◦πn

h+1,i

∣∣∣∣ (x,a)
⩽min

{
H,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥∥∥max
ω∈Ωi

V ω◦πn

h+1,i

∥∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fnh′(x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 23. We then apply h = 0 to equation 23, and get

Ex∼d0

[
V

n

0,i(x)− max
ω∈Ωi

V ω◦πn

0,i (x)

]
=Ex∼dπ̃n

P̂n,0

[
V

n

0,i(x)− max
ω∈Ωi

V ω◦πn

0,i (x)

]
⩾

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}] .

Next we are going to bound the second term. Applying Lemma 35 to gh(x,a) = min {fnh (x,a), 1},
we have

H∑
h=0

E(s,a)∼dπ̃n

P̂n,h

[min {fnh (s,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥p̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]

·
√
n|A|L · E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
+ λC + nL|A|L−1ζn

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥αnp̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]

Note that we here use the fact min {fnh (x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
⩽

ζn and our choice of αn.

Combining all things together,

vni (x)− max
ω∈Ωi

vω◦πn

i (x) =Ex∼d0

[
V

n

0,i(x)− max
ω∈Ωi

V ω◦πn

0,i (x)

]
⩾

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}]

⩾0,

which proves the inequality.

Lemma 38 (Pessimism). For episode n ∈ [N ], set

b̂n,h = min
{
αn∥p̂n,h−1(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}
,
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with αn = Θ
√
λC + nL|A|Lζn,

Σ̂n,h,p̂n
: L2(µ) → L2(µ), Σ̂n,h,p̂n

:=
∑

(xh,ah)∈Dn,h

[
p̂n(z|xh,ah,i)p̂n(z|xh,ah,i)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logN + log(N |M|/δ))

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N |M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(N |M|/δ));

c is an absolute constant. Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we have

vni (x)− vπ
n

i (x) ⩽ 0, ∀n ∈ [N ], i ∈ [M ].

Proof. Let fnh (x,a) =
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1
, then according to lemma 51 and lemma 56,

we have that using the chosen λ, with probability at least 1− δ,

E(x,a)∼ρ̂n,h

[
(fnh (x,a))

2
]
⩽ ζn, E(x,a)∼ρ̃n,h

[
(fnh (x,a))

2
]
⩽ ζn, ∀n ∈ [N ], h ∈ [H],

∥ph(·|x,a)∥Σ̂−1
n,h−L,p̂n

= Θ

(
∥ph(·|x,a)∥Σ̂−1

ρn,h−L,p̂n

)
, ∀n ∈ [N ], h ∈ [H], P̂ ∈ M.

A direct conclusion is we can find an absolute constant c, such that

b̂n,h(xh,ah) =min
{
αn ∥p̂n,h−1(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}

⩾min
{
cαn ∥p̂n,h−1(·|xh−L,ah−L)∥Σ−1

n,h−L,p̂n

, H
}
, ∀n ∈ [N ], h ∈ [H].

Again, we prove by induction that ∀h ∈ [H],

Ex∼dπ̃n

P̂n,h

[
V n

h,i(x)− V πn

h,i (x)
]
⩽

H∑
h′=h

E(x,a)∼dπ̃n

P̂′
n,h

[
−b̂n,h′(x,a) +Hmin {fnh′(x,a), 1}

]
.

(24)

• When h = H , we have

Ex∼dπ̃n

P̂n,H

[
V n

H,i(x)− V πn

H,i(x)
]
=E(x,a)∼dπ̃n

P̂n,H

[
Qn

H,i
(x,a)−Qπn

H,i(x,a)
]

=E(x,a)∼dπ̃n

P̂n,H

[
−b̂n,h(x,a)

]
⩽E(x,a)∼dπ̃n

P̂n,H

[
−b̂n,h(x,a) +Hmin {fnH(x,a), 1}

]
.
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• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃n

P̂n,h

[
V n

h,i(x)− V πn

h,i (x)
]

=E(x,a)∼dπ̃n

P̂n,h

[
Qn

h,i
(x,a)−Qπn

h,i(x,a)
]

=E(x,a)∼dπ̃n

P̂n,h

[
−b̂n,h(x,a) +

(
P̂n,hV

n
h+1,i

)
(x,a)−

(
PhV

πn

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
−b̂n,h(x,a)

+
(
P̂n,h

(
V n

h+1,i − V πn

h+1,i

))
(x,a) +

((
P̂n,h − Ph

)
V πn

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃n

P̂n,h

[
−b̂n,h(x,a) +

((
P̂n,h − Ph

)
V πn

h+1,i

)
(x,a)

]
+ Ex∼dπ̃n

P̂n,h+1

[
V n

h+1,i(x)− V πn

h+1,i(x)
]

⩾E(x,a)∼dπ̃n

P̂n,h

[
−b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
+ Ex∼dπ̃n

P̂n,h+1

[
V n

h+1,i(x)− V πn

h+1,i(x)
]

⩾
H∑

h′=h

E(x,a)∼dπ̃n

P̂
n,h′

[
−b̂n,h′(x,a) +Hmin {fnh′(x,a), 1}

]
,

where we use the fact∣∣∣(P̂n,h − Ph

)
V πn

h+1,i

∣∣∣ (x,a) ⩽min
{
H,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥∥V πn

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂n,h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fnh′(x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 24. We then apply h = 0 to equation 24, and get

Ex∼d0

[
V

n

0,i(x)− V
†,πn

−i

0,i (x)
]

=Ex∼dπ̃n

P̂n,0

[
V

n

0,i(x)− V
†,πn

−i

0,i (x)
]

⩾
H∑

h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)−Hmin {fnh (x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[
b̂n,h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}] .

Next we are going to bound the second term. Applying Lemma 35 to gh(x,a) = min {fnh (x,a), 1},
we have

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥p̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]

·
√
n|A|L · E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
+ λC + nL|A|L−1ζn

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃n

P̂n,h−L

[
∥αnp̂n,h−1(·|xh−L,ah−L)∥Σ−1

ρn,h−2L◦LU(A),p̂

]

41



2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Note that we here use the fact min {fnh (x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρn,h−2L◦2LU(A)

[
min {fnh (x̃h, ãh), 1}2

]
⩽

ζn and our choice of αn.

Combining all things together,

vni − vπ
n

i =Ex∼d0

[
V n

0,i(x)− V πn

0,i (x)
]

⩽
H∑

h=0

E(x,a)∼dπ̃n

P̂n,h

[
−b̂n,h(x,a)

]
+H

H∑
h=0

E(x,a)∼dπ̃n

P̂n,h

[min {fnh (x,a), 1}]

⩽0,

which has finished the proof.

Lemma 39. For episode n ∈ [N ], set

b̂n,h = min
{
αn∥p̂n,h−1(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}
,

with αn = Θ
√
λC + nL|A|Lζn,

Σ̂n,h,p̂n
: L2(µ) → L2(µ), Σ̂n,h,p̂n

:=
∑

(xh,ah)∈Dn,h

[
p̂n,h(z|xh,ah)p̂n,h(z|xh,ah)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logN + log(NH|M|/δ))

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(NH|M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(NH|M|/δ));

c is an absolute constant. Then with probability at least 1− δ, ∀n ∈ [N ], i ∈ [M ] we have

• for β-finite spectrum,
N∑

k=1

∆n ≲ O

(
H3β logN

√
N |A|LC log

NH|M|
δ

)

• for β-polynomial decay,
N∑

n=1

∆n ≲ O

(
H3CpolyN

1
2(1+β) logN

√
N |A|LC log

NH|M|
δ

)

• for β-exponential decay,
N∑

n=1

∆n ≲ O

(
H3Cexp(logN)1+1/β

√
N |A|LC log

NH|M|
δ

)

Proof. Let fnh (x,a) =
∥∥∥P̂n,h(·|s,a)− Ph(·|x,a)

∥∥∥
1
. With our choice of λ and ζn, according to

Lemma 56, we have ∀n ∈ [N ], h ∈ [H], P̂ ∈ M,

Ex∼ρ̂n,h

[
(fnh (x,a))

2
]
⩽ ζn, ∥ph(·|x,a)∥(

Σ̂n
h,ϕh

)−1 = Θ

(
∥ph(·|x,a)∥Σ−1

n,ρ̂n,h,ϕh

)
. (25)

By definition, we have

∆n = max
i∈[M ]

{vni − vni } .
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For each fixed i ∈ [M ], h ∈ [H] and n ∈ [N ], we have

Ex∼dπn

P,h

[
V

n

h,i(x)− V n
h,i(x)

]
=Ex∼dπn

P,h

[(
Dπn

h
Q

n

h,i

)
(x)−

(
Dπn

h
Qn

h,i

)
(x)
]

=E(x,a)∼dπn

P,h

[
Q

n

h,i(x,a)−Qn

h,i
(x,a)

]
=E(x,a)∼dπn

P,h

[
2b̂n,h(x,a) +

(
P̂n,h

(
V

n

h+1,i − V n
h+1,i

))
(x,a)

]
=E(x,a)∼dπn

P,h

[
2b̂n,h(x,a) +

((
P̂n,h − Ph

)(
V

n

h+1,i − V n
h+1,i

))
(x,a)

]
+Ex∼dπn

P,h+1

[
V

n

h+1,i(x)− V n
h+1,i(x)

]
⩽E(x,a)∼dπn

P,h

[
2b̂n,h(x,a) + 2H2fnh (x,a)

]
+ Ex∼dπn

P,h+1

[
V

n

h+1,i(x)− V n
h+1,i(x)

]
.

Note that we use the fact V
n

h+1,i(x)− V n
h+1,i(x) is upper bounded by 2H2, which can be proved

easily using induction using the fact that b̂n,h(x,a) ⩽ H . Applying the above formula recursively to

Ex∼dπn

P,h+1

[
V

n

h+1,i(x)− V n
h+1,i(x)

]
, one gets the following result (or more formally, one can prove

by induction, just like what we did in Lemma 36, Lemma 37 and Lemma 38):

Ex∼dπn
P,0

[
V

n

0,i(x)− V n
0,i(x)

]
⩽ 2

H∑
h=0

E(x,a)∼dπn

P,h

[
b̂n,h(x,a)

]
︸ ︷︷ ︸

(a)

+2H2
H∑

h=0

E(x,a)∼dπn

P,h
[fnh (x,a)]︸ ︷︷ ︸

(b)

.

(26)
First, we calculate the first term (a) in Inequality equation 26. Following Lemma 34 and noting the
bonus b̂nh is O(H), we have

H∑
h=0

E(x,a)∼dπn

P,h

[
b̂n,h(x,a)

]
≲

H∑
h=0

E(x,a)∼dπn

P,h

[
min

{
αn

∥∥∥b̂n,h(·|xh−L,ah−L)
∥∥∥
Σ−1

n,ρ̂n,h,p̂n

, H

}]
(From equation 25)

≲
H−1∑
h=0

E(xh−L,ah−L)∼dπn

P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρn,h−L,p

]
·
√
n|A|L · E(x̃h,ãh)∼ρn,h−L◦LU(A)

[
(b̂n,h(x̃h, ãh))2

]
+ λH2C.

Note that we use the fact that B = H when applying Lemma 34. In addition, following the proof of
Lemma 8 in (41), we have that

• for β-finite spectrum,

nE(x̃h,ãh)∼ρn,h−L◦LU(A)

[
b̂n,h(x̃h, ãh)

2
]
= O(β logN);∑

n∈[N ]

E(xh−L,ah−L)∼dπn
P,h

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρn,h−L,p

]
= O(β logN);

• for β-polynomial decay,

nE(x̃h,ãh)∼ρn,h−L◦LU(A)

[
b̂n,h(x̃h, ãh)

2
]
= O

(
CpolyN

1
2(1+β) logN

)
;∑

n∈[N ]

E(xh−L,ah−L)∼dπn
P,h

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρn,h−L,p

]
=O

(
CpolyN

1
2(1+β) logN

)
;
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• for β-exponential decay,

nE(x̃h,ãh)∼ρn,h−L◦LU(A)

[
b̂n,h(x̃h, ãh)

2
]
= O

(
Cexp(logN)1+1/β

)
.∑

n∈[N ]

E(xh−L,ah−L)∼dπn
P,h

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρn,h−L,p

]
=O

(
Cexp(logN)1+1/β

)
.

Second, we calculate the term (b) in inequality equation 26. Following Lemma 34 and noting that
fnh (x,a) is upper-bounded by 2 (i.e., B = 2 in Lemma 34), we have

H∑
h=0

E(x,a)∼dπn

P,h
[fnh (x,a)]

⩽
H−1∑
h=0

E(xh−L,ah−L)∼dπn

P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρn,h−L,p

]
·
√
n|A|LE(x̃h,ãh)∼ρn,h−L◦LU(A)

[
(fnh (x̃h, ãh))

2
]
+ 4Cλ

⩽
H−1∑
h=0

E(xh−L,ah−L)∼dπn

P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρn,h−L,p

]√
n|A|Lζn + 4Cλ,

where in the second inequality, we use E(x̃h,ãh)∼ρn,h−L◦LU(A)

[
(fnh (x̃h, ãh))

2
]
⩽ ζn.

Then, by combining the above calculation of the term (a) and term (b) in inequality equation 26, we
have:

• for β-finite spectrum,
N∑

n=1

∆n ≲ O
(√

β logN ·
(
H
√

|A|Lβ logN + λH2C +H3
√
N |A|LζN + 4Cλ

))
• for β-polynomial decay,

N∑
n=1

∆n ≲ O
(√

CpolyN
1

2(1+β) logN

·
(
H

√
|A|LCpolyN

1
2(1+β) logN + λH2C +H3

√
N |A|LζN + 4Cλ

))
• for β-exponential decay,

N∑
n=1

∆n ≲ O
(√

Cexp(logN)1+1/β

·
(
H
√
|A|LCexp(logN)1+1/β + λH2C +H3

√
N |A|LζN + 4Cλ

))
By substituting λ into the results, we obtain:

• for β-finite spectrum,
N∑

k=1

∆n ≲ O

(
H3β logN

√
N |A|LC log

NH|M|
δ

)

• for β-polynomial decay,
N∑

n=1

∆n ≲ O

(
H3CpolyN

1
2(1+β) logN

√
N |A|LC log

NH|M|
δ

)
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• for β-exponential decay,
N∑

n=1

∆n ≲ O

(
H3Cexp(logN)1+1/β

√
N |A|LC log

NH|M|
δ

)

This concludes the proof.

Theorem 40 (PAC guarantee of OFOVI-LLVR). Assume Assumption 4,5 in Appendix E.4 hold and
the kernel K satisfies the regularity conditions in Appendix E.2. When OFOVI-LLVR is applied with
parameters ζn = Θ(log(Hn|M|/δ)/n) , b̂n,h = min

{
αn∥p̂n(·|xh−L, ah−L)∥L2(µ),Σ̂

−1
n,h,p̂n

, H
}

with αn = Θ
√
λC + nL|A|Lζn and

• β-finite spectrum: λ = Θ(β logN + log(NH|M|/δ));

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(NH|M|/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β + log(NH|M|/δ));

by setting the number of episodes N to be at most

• for β-finite spectrum,

Õ

(
H3β|A|L/2C1/2 log H|A|L/2|M|

δϵ

ϵ

)

• for β-polynomial decay,

Õ

(H3Cpoly|A|L/2C1/2 log H|A|L/2|M|
δϵ

ϵ

)2+ 2
β


• for β-exponential decay,

Õ

(H3Cexp|A|L/2C1/2 log H|A|L/2|M|
δϵ

ϵ

)2


with probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE}.

Proof. For any fixed episode n and agent i, by Lemma 36, Lemma 37 and Lemma 38, we have

v
†,πn

−i

i − vπ
n

i

(
or max

ω∈Ωi

vω◦πn

i − vπ
n

i

)
⩽ vni − v̂ni ⩽ ∆n.

Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,πn

−i

i − vπ
n

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦πn

i − vπ
n

i

})
⩽ ∆n. (27)

From Lemma 39, with probability 1− δ, we can ensure

• for β-finite spectrum,
N∑

k=1

∆n ≲ O

(
H3β logN

√
N |A|LC log

NH|M|
δ

)

• for β-polynomial decay,
N∑

n=1

∆n ≲ O

(
H3CpolyN

1
2(1+β) logN

√
N |A|LC log

NH|M|
δ

)
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• for β-exponential decay,
N∑

n=1

∆n ≲ O

(
H3Cexp(logN)1+1/β

√
N |A|LC log

NH|M|
δ

)

Therefore, when we pick N to be

• for β-finite spectrum,

Õ

(
H3β|A|L/2C1/2 log H||A|L/2|M|

δϵ

ϵ

)

• for β-polynomial decay,

Õ

(H3Cpoly|A|L/2C1/2 log H||A|L/2|M|
δϵ

ϵ

)2+ 2
β


• for β-exponential decay,

Õ

(H3Cexp|A|L/2C1/2 log H|A|L/2|M|
δϵ

ϵ

)2


we have

1

N

N∑
n=1

∆n ⩽ ε.

On the other hand, from equation 27, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π̂
i − vπ̂i

})
= max

i∈[M ]

{
v
†,πn⋆

−i

i − vπ
n⋆

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦πn⋆

i − vπ
n⋆

i

})
⩽∆n⋆

= min
n∈[N ]

∆n ⩽
1

N

N∑
n=1

∆n ⩽ ε,

which has finished the proof.

E.5 OFFLINE SETTING

In this subsection, we show the theoretical analysis for offline exploitation. For offline exploitation,
we have the access to a offline dataset, which we assume is collected from the stationary distribution
of the fixed behavior policy set πb, which we will denote as ρ. And we are not allowed to interact
with the environments to collect new data. The only difference between the algorithms for offline
exploitation and online exploration is that, as we do not have access to the new data from the
environment, we cannot further explore the state-action pair that the offline dataset do not cover.
Hence, we need to penalize the visitation to the unseen state action pair to avoid the risky behavior.

Similar to the online setting, we can obtain the upper bound of the statistical error for π̂, which is
stated in the following:
Theorem 41 (PAC Guarantee for Offline Exploitation). Define ω := maxx,a π

−1
b (a|x), and

C∗
π := sup

y∈L2(µ)

E(x,a)∼dπ
P

[
⟨p(·|x, a), y⟩L2(µ)

]2
E(x,a)∼ρ

[
⟨p(·|x, a), y⟩L2(µ)

]2 .
When Alg. 5 is applied with parameters ζ = Θ(log(H|M|/δ)/n) , b̂h =

min
{
α∥p̂(·|xh−L, ah−L)∥L2(µ),Σ̂

−1
n,p̂
, H
}

with α = Θ
√
λC + nLωL−1ζ and
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Algorithm 5 Offline OFOVI-LLVR for L−decodable POMGs
1: Input:Variational Distribution Class Q = {{qh(z|xh,ah,oh+1)}h∈[H]}, Model Class M =

{{(ph(z|xh,ah), ph(oh+1|z))}h∈[H]}, offline dataset D = {Dh}h∈[H], Regularizer λ, parame-
ter α, ζ.

2: for step h = H,H − 1 . . . , 1 do
3: Learn the latent variable model p̂(z|xh,ah) with Dh via maximizing the ELBO, and obtain

the learned model P̂ = {(p̂h(z|xh,ah), p̂h(oh+1|z))}h∈[H].
4: end for
5: Compute b̂h from equation 7. For each (x,a) ∈ X ×A, i ∈ [M ], set

Qh,i(x,a) = rh,i(x,a) +
(
P̂hV h+1,i

)
(x,a) + b̂h(x,a)

Q
h,i

(x,a) = rh,i(x,a) +
(
P̂hV h+1,i

)
(x,a)− b̂h(x,a)

6: Compute π̂h from equation equation 1 or equation equation 2 or equation equation 3. For each
x ∈ X , i ∈ [M ], set

V h,i =
(
Dπh

Qh,i

)
(x), V h,i =

(
Dπh

Q
h,i

)
(x).

7: Compute ∆ = maxi∈[M ] {vi − vi}, where vi =
∫
X V 0,i(x)µ0(x) dx and vi =∫

X V 0,i(x)µ0(x) dx.
8: Return π̂.

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ));

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));

with probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE} with

• for β-finite spectrum,

ε = O

(
H3β log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-polynomial decay,

ε = O

(
H3Cpolyn

1
2(1+β) logn

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-exponential decay,

ε = O

(
H3Cexp(log n)

1+1/β

√
C⋆

π̂nω
LCζ log

|M|
δ

)

We start by showing that C∗
π can be viewed as a measure of the offline data quality, which can be

demonstrated by the following lemma, that was first introduced in (51):

Lemma 42 (Distribution Shift Lemma). For any positive definite operator Λ : L2(µ) → L2(µ), we
have that

E(x,a)∼dπ
P
⟨p(·|x,a),Λp(·|x,a)⟩L2(µ) ⩽ C∗

πE(x,a)∼ρ⟨p(·|x,a),Λp(·|x,a)⟩L2(µ).
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Proof. We denote the eigendecomposition of Λ as Λ = UΣU where {σi, ui} is the eigensystem of
Λ. Then we have

E(x,a)∼dπ
P
⟨p(·|x,a),Λp(·|x,a)⟩L2(µ)

=
∑
i∈I

σiE(x,a)∼dπ
P
⟨ui, p(·|x,a)⊤⟩2L2(µ)

⩽Cπ

∑
i∈I

σiE(x,a)∼ρ⟨ui, p(·|x,a)⊤⟩2L2(µ)

=CπE(x,a)∼ρ⟨p(·|x,a),Λp(·|x,a)⟩L2(µ),

which finishes the proof.

We also define the Σρ,ϕ : L2(µ) → L2(µ):

Σρ,ϕ := nE(x,a)∼ρ

[
ϕ(x,a)ϕ⊤(x,a)

]
+ λT−1

k ,

where ρ is the stationary distribution of πb.
Lemma 43 (L-step back inequality for the true model). Given a set of functions [gh]h∈[H], where
gh : X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H], we have that ∀π,∑

h∈[H]

E(xh,ah)∼dπ
P,h

[gh(xh,ah)] ⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ
Ph−L

[
∥p(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρ,p

]
·
√
nωL · E(x̃h,ãh)∼ρ◦Lπb(·|x) [gh(x̃h, ãh)2] + λB2C

Proof. The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
completeness. Recall the moment matching policy χπ Since χπ,h does not depend on (xh−L, ah−L),
we can make the following decomposition:

E(xh,ah)∼dπ
P,h

[gh(xh,ah)]

=E(xh−L,ah−L)∼dπ
P,h−L

[∫
xh

⟨p(·|xh−L,ah−L),Pχπ (xh|·)⟩L2(µ) · Eah∼χπ,h
[gh(xh,ah)]dxh

]
⩽E(xh−L,ah−L)∼dπ

P,h−L
∥p(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρ,p

·
∥∥∥∥∫

xh

Pχπ (xh|·)Eah∼χπ,h
[gh(xh,ah)]dxh

∥∥∥∥
L2(µ),Σρ,p

.

Direct computation shows that∥∥∥∥∫
xh

Pχπ (xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
L2(µ),Σρ,p

=nE(x̃h−L,ãh−L)∼ρ

[
Exh∼Pχπ (·|xh−L,ah−L),ah∼χπ,h(·|xh)[gh(xh,ah)]

]2
+ λ

∥∥∥∥∫
xh

Pχπ (xh|·) · Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
H

⩽nE(x̃h−L,ãh−L)∼ρExh∼Pχπ (·|xh−L,ah−L),ah∼χπ,h(·|xh) [gh(xh,ah)]
2
+ λB2C

⩽nωLE(x̃h,ãh)∼ρ◦Lπb(·|x)[gh(x̃h, ãh)]
2 + λB2C,

which finishes the proof.

Lemma 44 (L-step back inequality for the learned model). Assume we have a set of functions
[gh]h∈[H], where gh : X ×A → R, ∥gh∥∞ ⩽ B, ∀h ∈ [H]. Given Lemma 51, we have that ∀π,∑
h∈[H]

E(xh,ah)∼dπ
P̂h

[gh(xh,ah)] ⩽
∑

h∈[H]

E(xh−L,ah−L)∼dπ
P̂h−L

[
∥p̂(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρ,p̂

]
·
√
nωL · E(x̃h,ãh)∼ρ [gh(x̃h, ãh)2] + λB2C + nLωL−1B2ζ
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Proof. The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
completeness. We define a similar moment matching policy and make the following decomposition:

E(xh,ah)∼dπ
P̂,h

[gh(xh,ah)]

=E(xh−L,ah−L)∼dπ
P̂,h−L

[∫
xh

⟨p̂(·|xh−L,ah−L), p̂(xh|·)⟩L2(µ) · Eah∼χπ,h
[gh(xh,ah)]dxh

]
⩽E(xh−L,ah−L)∼dπ

P̂,h−L
∥p̂(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρ,p̂

·
∥∥∥∥∫

xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥
L2(µ),Σρ,p̂

.

Direct computation shows that∥∥∥∥∫
xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
L2(µ),Σρ,p̂

=nE(x̃h−L,ãh−L)∼ρ

[
Exh∼P̂(·|x̃h−L,ãh−L),ah∼χπ,h(·|xh)

[gh(xh,ah)]
]2

+ λ

∥∥∥∥∫
xh

p̂(xh|·)Eah∼χπ,h(·|xh)[gh(xh,ah)]dxh

∥∥∥∥2
H

⩽nE(x̃h−L,ãh−L)∼ρExh∼P̂(·|x̃h−L,ãh−L),ah∼χπ,h(·|xh)
[gh(xh,ah)]

2 + λB2C

⩽nωLE(x̃h,ãh)∼ρ[gh(x̃h, ãh)]
2 + nLωL−1B2ζ + λB2C,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof.

Lemma 45 (Optimism for NE and CCE). Set

b̂h = min
{
α∥p̂(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
h,p̂
, H
}
,

with α = Θ
√
λC + nLωLζ, ζ = O(log(H|M|/δ)/n)

Σ̂h,p̂ : L2(µ) → L2(µ), Σ̂n,p̂ :=
∑

(xi,ai)∈D

[
p̂(z|xi,ai)p̂(z|xi,ai)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ))

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));

c is an absolute constant. π is computed by solving NE or CCE. Then with probability at least 1− δ,
∀i ∈ [M ] we have

vi(x)− v
†,π−i

i (x) ⩾ 0.

Proof. Define µ̃h,i(·|x) := argmaxµ

(
Dµ,πh,−i

Q
†,π−i

h,i

)
(x) as the best response policy for player i

at step h, and let π̃h = µ̃h,i × πh,−i. Let fh(x,a) =
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1
, then according to

lemma 51 and lemma 56, we have that using the chosen λ, with probability at least 1− δ,

E(x,a)∼ρ

[
(fh(x,a))

2
]
⩽ ζ, ∀h ∈ [H],

∥ph(·|xh−L,ah−L)∥Σ̂−1
n,p̂

= Θ
(
∥ph(·|xh−L,ah−L)∥Σ̂−1

ρ,p̂

)
, ∀h ∈ [H], P̂ ∈ M.
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A direct conclusion is we can find an absolute constant c, such that

b̂h(xh,ah) =min
{
α ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂
, H
}

⩾min
{
cα ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂n

, H
}
, ∀h ∈ [H].

Next, we prove by induction that

Ex∼dπ̃
P̂,h

[
V h,i(x)− V

†,π−i

h,i (x)
]
⩾

H∑
h′=h

E(x,a)∼dπ̃
P̂,h′

[
b̂h′(x,a)−Hmin {fh′(x,a), 1}

]
, ∀h ∈ [H].

(28)

First, notice that ∀h ∈ [H],

Ex∼dπ̃
P̂,h

[
V h,i(x)− V

†,π−i

h,i (x)
]
=Ex∼dπ̃

P̂,h

[(
Dπh

Qh,i

)
(x)−

(
Dπ̃h

Q
†,π−i

h,i

)
(x)
]

⩾Ex∼dπ̃
P̂,h

[(
Dπ̃h

Qh,i

)
(x)−

(
Dπ̃h

Q
†,π−i

h,i

)
(x)
]

=E(x,a)∼dπ̃
P̂,h

[
Qh,i(x,a)−Q

†,π−i

h,i (x,a)
]
,

where the inequality uses the fact that πh is the NE (or CCE) solution for
{
Qh,i

}M
i=1

. Now we are
ready to prove equation 28:

• When h = H , we have

Ex∼dπ̃
P̂,H

[
V H,i(x)− V

†,π−i

H,i (x)
]
⩾E(x,a)∼dπ̃

P̂,H

[
QH,i(x,a)−Q

†,π−i

H,i (x,a)
]

=E(x,a)∼dπ̃
P̂,H

[
b̂H(x,a)

]
⩾E(x,a)∼dπ̃

P̂,H

[
b̂H(x,a)−Hmin {fH(x,a), 1}

]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃
P̂,h

[
V h,i(x)− V

†,π−i

h,i (x)
]

⩾E(x,a)∼dπ̃
P̂,h

[
Qh,i(x,a)−Q

†,π−i

h,i (x,a)
]

=E(x,a)∼dπ̃
P̂,h

[
b̂h(x,a) +

(
P̂hV h+1,i

)
(x,a)−

(
PhV

†,π−i

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂,h

[
b̂h(x,a)

+
(
P̂h

(
V h+1,i − V

†,π−i

h+1,i

))
(x,a) +

((
P̂h − Ph

)
V

†,π−i

h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂,h

[
b̂h(x,a) +

((
P̂h − Ph

)
V

†,π−i

h+1,i

)
(x,a)

]
+ Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)− V

†,π−i

h+1,i (x)
]

⩾E(x,a)∼dπ̃
P̂,h

[
b̂h(x,a)−Hmin {fh(x,a), 1}

]
+Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)−V †,π−i

h+1,i (x)
]

⩾
H∑

h′=h

E(x,a)∼dπ̃
P̂,h′

[
b̂h′(x,a)−Hmin {fh′(x,a), 1}

]
,

where we use the fact∣∣∣(P̂h − Ph

)
V

†,π−i

h+1,i

∣∣∣ (x,a) ⩽min
{
H,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥∥V †,π−i

h+1,i

∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fh′(x,a)}

and the last row uses the induction assumption.
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Therefore, we have proved equation 28. We then apply h = 0 to equation 28, and get

Ex∼d0

[
V 0,i(x)− V

†,π−i

0,i (x)
]

=Ex∼dπ̃
P̂,0

[
V 0,i(x)− V

†,π−i

0,i (x)
]

⩾
H∑

h=0

E(x,a)∼dπ̃
P̂h

[
b̂h(x,a)−Hmin {fh(x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃
P̂h

[
b̂h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}] .

Next we are going to bound the second term. Applying Lemma 44 to gh(x,a) = min {fh(x,a), 1},
we have

H∑
h=0

E(x,a)∼dπ̃
P̂,h

[min {fh(x,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥p̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]
·
√
nωL · E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
+ λC + nLωL−1ζ

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥αp̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]

Note that we here use the fact min {fh(x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
⩽ ζ and

our choice of α.

Combining all things together,

vi − v
†,π−i

i =Ex∼d0

[
V 0,i(x)− V

†,π−i

0,i (x)
]

⩾
H∑

h=1

E(x,a)∼dπ̃
P̂,h

[
b̂h(x,a)

]
−H

H∑
h=1

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}]

⩾0,

which proves the inequality.

Lemma 46 (Optimism for CE). Set

b̂h = min
{
α∥p̂(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,p̂
, H
}
,

with α = Θ
√
λC + nLωLζ,

Σ̂n,p̂ : L2(µ) → L2(µ), Σ̂n,p̂ :=
∑

(xi,ai)∈D

[
p̂n(z|xi,ai)p̂n(z|xi,ai)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ))

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));
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c is an absolute constant. π is computed by solving CE. Then with probability at least 1−δ, ∀i ∈ [M ]
we have

vi(x)− max
ω∈Ωi

vω◦π
i (x) ⩾ 0, ∀i ∈ [M ].

Proof. Denote ω̃h,i = argmaxωh∈Ωh,i

(
Dωh◦πh

maxω∈Ωi
Qω◦π

h,i

)
(s) and let π̃h = ω̃h,i ◦ πh. Let

fh(x,a) =
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1
, then according to lemma 51 and lemma 56, we have that

using the chosen λ, with probability at least 1− δ,

E(x,a)∼ρ

[
(fh(x,a))

2
]
⩽ ζ, ∀h ∈ [H],

∥ph(·|xh−L,ah−L)∥Σ̂−1
n,p̂n

= Θ
(
∥ph(·|xh−L,ah−L)∥Σ̂−1

ρ,p̂

)
, ∀h ∈ [H], P̂ ∈ M.

A direct conclusion is we can find an absolute constant c, such that

b̂h(xh,ah) =min
{
α ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂
, H
}

⩾min
{
cα ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂
, H
}
, ∀h ∈ [H].

Next, we prove by induction that ∀h ∈ [H],

Ex∼dπ̃
P̂h

[
V h,i(x)− max

ω∈Ωi

V ω◦π
h,i (x)

]
⩾

H∑
h′=h

E(x,a)∼dπ̃
P̂,h′

[
b̂h′(x,a)−Hmin {fh′(x,a), 1}

]
.

(29)

First, notice that ∀h ∈ [H],

Ex∼dπ̃
P̂h

[
V h,i(x)− max

ω∈Ωi

V ω◦π
h,i (x)

]
=Ex∼dπ̃

P̂h

[(
Dπh

Qh,i

)
(x)−

(
Dπ̃h

max
ω∈Ωi

Qω◦π
h,i

)
(x)

]
⩾Ex∼dπ̃

P̂h

[(
Dπ̃h

Qh,i

)
(x)−

(
Dπ̃h

max
ω∈Ωi

Qω◦π
h,i

)
(x)

]
=E(x,a)∼dπ̃

P̂h

[
Qh,i(x,a)− max

ω∈Ωi

Qω◦π
h,i (x,a)

]
,

where the inequality uses the fact that πh is the CE solution for
{
Qh,i

}M
i=1

. Now we are ready to
prove equation 29:

• When h = H , we have

Ex∼dπ̃
P̂,H

[
V H,i(x)− max

ω∈Ωi

V ω◦π
H,i (x)

]
⩾E(x,a)∼dπ̃

P̂,H

[
QH,i(x,a)− max

ω∈Ωi

Qω◦π
H,i (x,a)

]
=E(x,a)∼dπ̃

P̂,H

[
b̂H(x,a)

]
⩾E(x,a)∼dπ̃

P̂,H

[
b̂H(x,a)−Hmin {fH(x,a), 1}

]
.
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• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃
P̂,h

[
V h,i(x)− max

ω∈Ωi

V ω◦π
h,i (x)

]
⩾E(x,a)∼dπ̃

P̂h

[
Qh,i(x,a)− max

ω∈Ωi

Qω◦π
h,i (x,a)

]
=E(x,a)∼dπ̃

P̂h

[
b̂h(x,a) +

(
P̂hV h+1,i

)
(x,a)−

(
Ph max

ω∈Ωi

V ω◦π
h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂h

[
b̂h(x,a)

+

(
P̂h

(
V h+1,i − max

ω∈Ωi

V ω◦π
h+1,i

))
(x,a) +

((
P̂h − Ph

)
max
ω∈Ωi

V ω◦π
h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂h

[
b̂h(x,a) +

((
P̂h − Ph

)
max
ω∈Ωi

V ω◦π
h+1,i

)
(x,a)

]
+ Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)− max

ω∈Ωi

V ω◦π
h+1,i(x)

]
⩾E(x,a)∼dπ̃

P̂h

[
b̂h(x,a)−Hmin {fh(x,a), 1}

]
+ Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)− max

ω∈Ωi

V ω◦π
h+1,i(x)

]
⩾

H∑
h′=h

E(x,a)∼dπ̃
P̂′
h

[
b̂h′(x,a)−Hmin {fh′(x,a), 1}

]
,

where we use the fact∣∣∣∣(P̂h − Ph

)
max
ω∈Ωi

V ω◦π
h+1,i

∣∣∣∣ (x,a)
⩽min

{
H,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥∥∥max
ω∈Ωi

V ω◦π
h+1,i

∥∥∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fh′(x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 29. We then apply h = 0 to equation 29, and get

Ex∼d0

[
V 0,i(x)− max

ω∈Ωi

V ω◦π
0,i (x)

]
=Ex∼dπ̃

P̂,0

[
V 0,i(x)− max

ω∈Ωi

V ω◦π
0,i (x)

]
⩾

H∑
h=0

E(x,a)∼dπ̃
P̂h

[
b̂h(x,a)−Hmin {fh(x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃
P̂h

[
b̂h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}] .
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Next we are going to bound the second term. Applying Lemma 44 to gh(x,a) = min {fh(x,a), 1},
we have

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥p̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]
·
√
nωL · E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
+ λC + nLωL−1ζ

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥αp̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]

Note that we here use the fact min {fh(x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
⩽ ζ and

our choice of α.

Combining all things together,

vi(x)− max
ω∈Ωi

vω◦π
i (x) =Ex∼d0

[
V 0,i(x)− max

ω∈Ωi

V ω◦π
0,i (x)

]
⩾

H∑
h=0

E(x,a)∼dπ̃
P̂,h

[
b̂h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃
P̂,h

[min {fh(x,a), 1}]

⩾0,

which proves the inequality.

Lemma 47 (Pessimism). Set

b̂h = min
{
α∥p̂n(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,h,p̂

, H
}
,

with α = Θ
√
λC + nLωLζ,

Σ̂n,p̂ : L2(µ) → L2(µ), Σ̂n,p̂ :=
∑

(xi,ai)∈D

[
p̂(z|xi,ai)p̂(z|xi,ai)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ))

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));

c is an absolute constant. Then with probability at least 1− δ, ∀i ∈ [M ] we have

vi(x)− vπi (x) ⩽ 0, ∀i ∈ [M ].

Proof. Let fh(x,a) =
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1
, then according to lemma 51 and lemma 56, we

have that using the chosen λ, with probability at least 1− δ,

E(x,a)∼ρ

[
(fh(x,a))

2
]
⩽ ζ, ∀h ∈ [H],

∥ph(·|x,a)∥Σ̂−1
n,p̂

= Θ
(
∥ph(·|x,a)∥Σ̂−1

ρ,p̂

)
, ∀h ∈ [H], P̂ ∈ M.
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A direct conclusion is we can find an absolute constant c, such that

b̂h(xh,ah) =min
{
α ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂
, H
}

⩾min
{
cα ∥p̂h(·|xh−L,ah−L)∥Σ−1

n,p̂
, H
}
, ∀h ∈ [H].

Again, we prove by induction that

Ex∼dπ̃
P̂,h

[
V h,i(x)− V π

h,i(x)
]
⩽

H∑
h′=h

E(x,a)∼dπ̃
P̂,h′

[
−b̂h′(x,a)+Hmin {fh′(x,a), 1}

]
, ∀h ∈ [H].

(30)

• When h = H , we have

Ex∼dπ̃
P̂,H

[
V H,i(x)− V π

H,i(x)
]
=E(x,a)∼dπ̃

P̂,H

[
Q

H,i
(x,a)−Qπ

H,i(x,a)
]

=E(x,a)∼dπ̃
P̂,H

[
−b̂h(x,a)

]
⩽E(x,a)∼dπ̃

P̂,H

[
−b̂h(x,a) +Hmin {fH(x,a), 1}

]
.

• Suppose the statement is true for step h+ 1, then for step h, we have

Ex∼dπ̃
P̂,h

[
V h,i(x)− V π

h,i(x)
]

=E(x,a)∼dπ̃
P̂,h

[
Q

h,i
(x,a)−Qπ

h,i(x,a)
]

=E(x,a)∼dπ̃
P̂,h

[
−b̂h(x,a) +

(
P̂hV h+1,i

)
(x,a)−

(
PhV

π
h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂,h

[
−b̂h(x,a) +

(
P̂h

(
V h+1,i−V π

h+1,i

))
(x,a) +

((
P̂h−Ph

)
V π
h+1,i

)
(x,a)

]
=E(x,a)∼dπ̃

P̂,h

[
−b̂h(x,a) +

((
P̂h − Ph

)
V π
h+1,i

)
(x,a)

]
+ Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)− V π

h+1,i(x)
]

⩾E(x,a)∼dπ̃
P̂,h

[
−b̂h(x,a)−Hmin {fh(x,a), 1}

]
+Ex∼dπ̃

P̂,h+1

[
V h+1,i(x)− V π

h+1,i(x)
]

⩾
H∑

h′=h

E(x,a)∼dπ̃
P̂,h′

[
−b̂h′(x,a) +Hmin {fh′(x,a), 1}

]
,

where we use the fact∣∣∣(P̂h − Ph

)
V π
h+1,i

∣∣∣ (x,a) ⩽min
{
H,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

∥∥V π
h+1,i

∥∥
∞

}
⩽Hmin

{
1,
∥∥∥P̂h(·|x,a)− Ph(·|x,a)

∥∥∥
1

}
=Hmin {1, fh′(x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 30. We then apply h = 0 to equation 30, and get

Ex∼d0

[
V

n

0,i(x)− V
†,π−i

0,i (x)
]

=Ex∼dπ̃
P̂,0

[
V 0,i(x)− V

†,π−i

0,i (x)
]

⩾
H∑

h=0

E(x,a)∼dπ̃
P̂h

[
b̂h(x,a)−Hmin {fh(x,a), 1}

]
=

H∑
h=0

E(x,a)∼dπ̃
P̂,h

[
b̂h(x,a)

]
−H

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}] .
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Next we are going to bound the second term. Applying Lemma 44 to gh(x,a) = min {fh(x,a), 1},
we have

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}]

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥p̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]
·
√
nωL · E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
+ λC + nLωL−1ζ

⩽
H∑

h=0

E(xh−L,ah−L)∼dπ̃
P̂h−L

[
∥αp̂h−1(·|xh−L,ah−L)∥Σ−1

ρ,p̂

]

Note that we here use the fact min {fh(x,a), 1} ⩽ 1, E(x̃h,ãh)∼ρ

[
min {fh(x̃h, ãh), 1}2

]
⩽ ζ and

our choice of α.

Combining all things together,

vi − vπi =Ex∼d0

[
V 0,i(x)− V π

0,i(x)
]

⩽
H∑

h=0

E(x,a)∼dπ̃
P̂h

[
−b̂h(x,a)

]
+H

H∑
h=0

E(x,a)∼dπ̃
P̂h

[min {fh(x,a), 1}]

⩽0,

which has finished the proof.

Lemma 48. Set

b̂h = min
{
α∥p̂(·|xh−L,ah−L)∥L2(µ),Σ̂

−1
n,p̂
, H
}
,

with α = Θ
√
λC + nLωLζ,

Σ̂n,p̂ : L2(µ) → L2(µ), Σ̂n,p̂ :=
∑

(xi,ai)∈D

[
p̂(z|xi,ai)p̂(z|xi,ai)

⊤]+ λT−1
K

where TK is the integral operator associated with K (i.e. TKf =
∫
f(x)K(x, ·)dx) and λ is set for

different eigendecay of K as follows:

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ))

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));

c is an absolute constant. Then with probability at least 1− δ, ∀i ∈ [M ] we have

• for β-finite spectrum,

∆ ≲ O

(
H3β log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-polynomial decay,

∆ ≲ O

(
H3Cpolyn

1
2(1+β) log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-exponential decay,

∆ ≲ O

(
H3Cexp(log n)

1+1/β

√
C⋆

π̂nω
LCζ log

|M|
δ

)
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Proof. Let fh(x,a) =
∥∥∥P̂h(·|s,a)− Ph(·|x,a)

∥∥∥
1
. With our choice of λ and ζ , according to Lemma

56, we have

Ex∼ρ

[
(fh(x,a))

2
]
⩽ ζ, ∥ph(·|x,a)∥Σ̂−1

n,ϕh

= Θ
(
∥ph(·|x,a)∥Σ−1

ρ,ϕh

)
, ∀h ∈ [H], P̂ ∈ M.

(31)

By definition, we have

∆ = max
i∈[M ]

{vi − vi} .

For each fixed i ∈ [M ], h ∈ [H], we have

Ex∼dπ
P,h

[
V h,i(x)− V h,i(x)

]
=Ex∼dπ

P,h

[(
Dπh

Qh,i

)
(x)−

(
Dπh

Q
h,i

)
(x)
]

=E(x,a)∼dπ
P,h

[
Qh,i(x,a)−Q

h,i
(x,a)

]
=E(x,a)∼dπ

P,h

[
2b̂h(x,a) +

(
P̂h

(
V h+1,i − V h+1,i

))
(x,a)

]
=E(x,a)∼dπ

P,h

[
2b̂h(x,a) +

((
P̂h − Ph

) (
V h+1,i − V h+1,i

))
(x,a)

]
+Ex∼dπ

P,h+1

[
V h+1,i(x)− V h+1,i(x)

]
⩽E(x,a)∼dπ

P,h

[
2b̂h(x,a) + 2H2fh(x,a)

]
+ Ex∼dπ

P,h+1

[
V h+1,i(x)− V h+1,i(x)

]
.

Note that we use the fact V h+1,i(x)− V h+1,i(x) is upper bounded by 2H2, which can be proved
easily using induction using the fact that b̂h(x,a) ⩽ H . Applying the above formula recursively to
Ex∼dπ

P,h+1

[
V h+1,i(x)− V h+1,i(x)

]
, one gets the following result (or more formally, one can prove

by induction, just like what we did in Lemma 45, Lemma 46 and Lemma 47):

Ex∼dπ
P,0

[
V 0,i(x)− V 0,i(x)

]
⩽ 2

H∑
h=0

E(x,a)∼dπ
P,h

[
b̂h(x,a)

]
︸ ︷︷ ︸

(a)

+2H2
H∑

h=0

E(x,a)∼dπ
P,h

[fh(x,a)]︸ ︷︷ ︸
(b)

.

(32)

First, we calculate the first term (a) in Inequality equation 32. Following Lemma 43 and noting the
bonus b̂h is O(H), we have

H∑
h=0

E(x,a)∼dπ
P,h

[
b̂h(x,a)

]
≲

H∑
h=0

E(x,a)∼dπ
P,h

[
min

{
α
∥∥∥b̂h(·|xh−L,ah−L)

∥∥∥
Σ−1

ρ,p̂

, H

}]
(From equation 31)

≲
H−1∑
h=0

E(xh−L,ah−L)∼dπ
P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρ,p

]
·
√
nωL · E(x̃h,ãh)∼ρ

[
(b̂h(x̃h, ãh))2

]
+ λH2C.

Note that we use the fact that B = H when applying Lemma 43. In addition, following the proof of
Lemma 8 in (41), we have that
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• for β-finite spectrum,

nE(x̃h,ãh)∼ρ

[
b̂h(x̃h, ãh)

2
]
= O(β logn);

E(xh−L,ah−L)∼ρ

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρ,p

]
= O(β log n);

• for β-polynomial decay,

nE(x̃h,ãh)∼ρ

[
b̂h(x̃h, ãh)

2
]
= O

(
Cpolyn

1
2(1+β) log n

)
;

E(xh−L,ah−L)∼ρ

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρ,p

]
= O

(
Cpolyn

1
2(1+β) log n

)
;

• for β-exponential decay,

nE(x̃h,ãh)∼ρ

[
b̂h(x̃h, ãh)

2
]
= O

(
Cexp(logn)

1+1/β
)
.

E(xh−L,ah−L)∼ρ

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρ,p

]
= O

(
Cexp(log n)

1+1/β
)
.

Moreover, according to lemma 42, we know

E(xh−L,ah−L)∼dπ
P,h−L

[
∥ph(·|xh−L,ah−L)∥L2(µ),Σ

−1
ρ,p

]
⩽

√
E(xh−L,ah−L)∼dπ

P,h−L

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρ,p

]
⩽

√
C⋆

πE(xh−L,ah−L)∼ρ

[
∥ph(·|xh−L,ah−L)∥2L2(µ),Σ

−1
ρ,p

]
.

Second, we calculate the term (b) in inequality equation 32. Following Lemma 43 and noting that
fh(x,a) is upper-bounded by 2 (i.e., B = 2 in Lemma 43), we have

H∑
h=0

E(x,a)∼dπ
P,h

[fh(x,a)]

⩽
H−1∑
h=0

E(xh−L,ah−L)∼dπ
P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρ,p

]√
nωLE(x̃h,ãh)∼ρ

[
(fh(x̃h, ãh))

2
]
+4Cλ

⩽
H−1∑
h=0

E(xh−L,ah−L)∼dπ
P,h−L

[
∥ph(·|xh−L,ah−L)∥Σ−1

ρ,p

]√
nωLζ + 4Cλ,

where in the second inequality, we use E(x̃h,ãh)∼ρ

[
(fh(x̃h, ãh))

2
]
⩽ ζ.

Then, by combining the above calculation of the term (a) and term (b) in inequality equation 32, we
have:

• for β-finite spectrum,

∆ ≲ O
(√

C⋆
π̂β log n · (H

√
ωLβ log n+ λH2C +H3

√
nωLζ + 4Cλ)

)
• for β-polynomial decay,

∆ ≲ O
(√

C⋆
π̂Cpolyn

1
2(1+β) log n

·
(
H

√
ωLCpolyn

1
2(1+β) log n+ λH2C +H3

√
nωLζ + 4Cλ

))
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• for β-exponential decay,

∆ ≲ O
(√

C⋆
π̂Cexp(log n)1+1/β

·
(
H
√
ωLCexp(log n)1+1/β + λH2C +H3

√
nωLζ + 4Cλ

))
By substituting λ into the results, we obtain:

• for β-finite spectrum,

∆ ≲ O

(
H3β log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-polynomial decay,

∆ ≲ O

(
H3Cpolyn

1
2(1+β) log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-exponential decay,

∆ ≲ O

(
H3Cexp(log n)

1+1/β

√
C⋆

π̂nω
LCζ log

|M|
δ

)

This concludes the proof.

Theorem 49 (PAC guarantee of Algorithm 5). When Alg. 5 is applied with parame-
ters ζ = Θ(log(H|M|/δ)/n) , b̂h = min

{
α∥p̂(·|xh−L, ah−L)∥L2(µ),Σ̂

−1
n,p̂
, H
}

with α =

Θ
√
λC + nLωL−1ζ and

• β-finite spectrum: λ = Θ(β logn+ log(|M|/δ));

• β-polynomial decay: λ = Θ(Cpolyn
1/(1+β) + log(|M|/δ));

• β-exponential decay: λ = Θ(Cexp(log n)
1/β + log(|M|/δ));

with probability 1− δ, the output policy π̂ is an ε-approximate {NE,CCE,CE} with

• for β-finite spectrum,

ε = O

(
H3β log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-polynomial decay,

ε = O

(
H3Cpolyn

1
2(1+β) logn

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-exponential decay,

ε = O

(
H3Cexp(log n)

1+1/β

√
C⋆

π̂nω
LCζ log

|M|
δ

)

Proof. For any agent i, by Lemma 45, Lemma 46 and Lemma 47, we have

v
†,π−i

i − vπi

(
or max

ω∈Ωi

vω◦π
i − vπi

)
⩽ vi − vi ⩽ ∆.
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Taking maximum over i on both sides, we have

max
i∈[M ]

{
v
†,π−i

i − vπi

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π
i − vπi

})
⩽ ∆. (33)

From Lemma 48, with probability 1 − δ, we can ensure the output policy π̂ is an ε-approximate
{NE,CCE,CE} with

• for β-finite spectrum,

ε = O

(
H3β log n

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-polynomial decay,

ε = O

(
H3Cpolyn

1
2(1+β) logn

√
C⋆

π̂nω
LCζ log

|M|
δ

)

• for β-exponential decay,

ε = O

(
H3Cexp(log n)

1+1/β

√
C⋆

π̂nω
LCζ log

|M|
δ

)

which has finished the proof.

F DERIVATION AND OPTIMIZATION OF ELBO

This section presents the derivation of the Evidence Lower Bound (ELBO) as a tractable surrogate
objective for maximum likelihood estimation (MLE), followed by an analysis of its computational
advantages over direct MLE optimization.

We begin with the ELBO derivation through variational calculus:

logPχπ (oh+1:h+l|τLh ,ah)

= log

∫
Z
p(zh|τLh ,ah)Pχπ (oh+1:h+l|zh) dzh

= log

∫
Z

p(zh|τLh ,ah)Pχπ (oh+1:h+l|zh)
q(z|τLh ,ah,oh+1:h+l)

· q(z|τLh ,ah,oh+1:h+l) dzh (34)

= max
q∈∆(Z)

Eq(·|τL
h ,ah,oh+1:h+l) [logP

χπ (oh+1:h+l|zh)]−KL(q(zh|τLh ,ah,oh+1:h+l)||p(zh|τLh ,ah))

where the last equation comes from Jensen’s inequality, with equality holding when
q(z|τLh ,ah,oh+1:h+l) ∝ p(zh|τLh ,ah)Pχπ (oh+1:h+l|zh). Notably, under Assumption 4, the
q(z|τLh ,ah,oh+1:h+l) ∈ Q for all (p(zh|τLh ,ah),Pχπ (oh+1:h+l|zh)) ∈ M, so the equality al-
ways holds and the estimator obtained by maximizing the ELBO is identical to the estimator obtained
by MLE.

Compared to the standard MLE objective, maximizing the ELBO is computationally efficient because
it avoids the need to compute integrals explicitly. Instead, the ELBO only requires evaluating an
expectation and a KL divergence term, both of which can be approximated efficiently via sampling.

Note that the ELBO objective

Eq(z|τL
h ,ah,oh+1:h+l)[logP

χπ (oh+1:h+l|zh)]−KL((q(z|τLh , ah, oh+1:h+l)||p(zh|τLh , ah))

=−KL(q(z|τLh , ah, oh+1:h+l)||Pχπ (oh+1:h+l|zh)p(zh|τLh , ah)).
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Algorithm 6 OVI-OF with Generalized PSRs
1: Input: Regularizer λ, iteration N , parameter {αn}Nn=1, {ζn}Nn=1, and model class M =

{{(ph(·|xh,ah), ph(oh+1|·))}h∈[H]}.
2: Initialize π0 to be uniform; set datasets D0

h = ∅, D̃0
h = ∅, ∀h ∈ [H].

3: for episode n = 1, 2, · · · , N do
4: Set V

n

H+1,i = 0, V n
H+1,i = 0 for all i ∈ [M ].

5: Sample trajectory and learn representation like Algorithm 2 in (12).
6: for step h = H,H − 1 . . . , 1 do
7: Compute b̂nh from equation 7 and update Q,Q as following:

Q
n

h,i(τh,a) = rh,i(τh,a) + EP̂n
h

[
V

n

h+1,i(τh+1)|τh,ah

]
+ b̂nh(τh,a)

Qn

h,i
(τh,a) = rh,i(τh,a) + EP̂n

h

[
V n

h+1,i(τh+1)|τh,ah

]
− b̂nh(τh,a)

8: Compute the NE/CE/CCE solution πn
h according to equation equation 1/equation 2/equa-

tion 3 and update value function as following:

V
n

h,i(τh) = Ea∼πn
h (·|τh)[Q

n

h,i(τh,a)], V n
h,i(τh) = Ea∼πn

h (·|τh)[Q
n

h,i
(τh,a)].

9: end for
10: Compute ∆n=maxi∈[M ]{vni −vni} with vni =

∫
XV

n

0,i(x)µ0(x)dx, vni =
∫
XV

n
0,i(x)µ0(x)dx.

11: end for
12: Return π̂ = πn⋆

where n⋆ = argminn∈[N ] ∆
n.

This is a variational inference problem. When Assumption 4 holds, then q(z|τLh , ah, oh+1:h+l) and
Pπ(oh+1:h+l|zh)p(zh|τLh , ah) is a conjugate family and this problem admits a closed-form solution.
Otherwise, we can solve this problem via black box variational inference (48). In particular, we
consider a parameterized family qθ and its derivative w.r.t. θ can be calculate as follows.

∇θEqθ(z|τL
h ,ah,oh+1:h+l)[logP

χπ (oh+1:h+l|zh)]−KL((qθ(z|τLh , ah, oh+1:h+l)||p(zh|τLh , ah))

=

∫
qθ(z|τLh , ah, oh+1:h+l)∇θ log qθ(z|τLh , ah, oh+1:h+l)·

(log qθ(z|τLh , ah, oh+1:h+l)− logPχπ (oh+1:h+l|zh)p(zh|τLh , ah))dz

As a result, we can find an approximate solution of the ELBO maximization by stochastic gradient
ascent type methods.

G COMPARISON WITH (12)

(12) construct a generalized PSR representation for γ-well-conditioned POMGs. Note that if the
rank of the core test set is uniform across all time steps h, i.e. dh = d for all h, the POMG satisfies
the assumptions in (12) is a special subclass of low-rank POMGs and this representation can be
integrated into our framework.

Now consider a POMG that satisfies the assumptions in (12), where the set of generalized PSR
representation is M and the rank of the core test set is uniform across all time steps h, i.e. dh = d
for all h.

As shown in (12), learning generalized PSRs via MLE and conduct self-play UCB algorithm with an
access to an oracle for the exact value function, the algorithm terminates with a sample complexity
of Õ((d+ A2H

γ2 )d
2H3|S|2A4 log(|Mϵ|)

γ4ϵ2 ), where Mϵ is an optimistic ϵ-cover of M, as defined in (12).
We extend their method to oracle-free setting.
Theorem 50 (PAC guarantee of Algorithm 6). Assume assumptions in (12) holds and the rank of
the core test set is uniform across all time steps h. Suppose αn = max{A

√
Hdλ
γ2 + |S|A

√
β

γ , dλ +
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H
√
nAtN}, λ =

γ|S|2Qβmax {
√
rPSR,A

√
H/γ}√

dH
and β = O(log(|Mϵ|)) . Then, by setting the number

of episodes N to be Õ
(

H10d4A6|S|2 log(|Mϵ|)
ε2γ6

)
, with probability at least 1− δ, the returned policy π̂

is an ε-approximate equilibrium.

Proof. Denote tN = (r +
Q2

AH
γ2 )

rdH3|S|2Q4
Aβ

γ4N . Analogous to the previous proof, we obtain:

E(τh,ah)∼dπ̂
P
∥P(·|τh,ah)− P̂(·|τh,ah)∥21 ⩽ O(tN )

and
N∑

n=1

∆(n) ≲H

√dN log

(
1 +

N

d

)√
dA (αN )

2
+H2dλ+

N∑
n=1

√
dA (αn)

2

n


+H3

(
1

H

√
dN log

(
1 +

N

dλ

)
αN +N

√
AtN

)

≲
H5d2N

1
2A3|S| log1/2(|Mϵ|)

γ3
.

when we pick N to be

Õ

(
H10d4A6|S|2 log(|Mϵ|)

ε2γ6

)
,

we have

1

N

N∑
n=1

∆(n) ⩽ ε.

Then, we have

max
i∈[M ]

{
v
†,π̂−i

i − vπ̂i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦π̂
i − vπ̂i

})
= max

i∈[M ]

{
v
†,πn⋆

−i

i − vπ
n⋆

i

}(
or max

i∈[M ]

{
max
ω∈Ωi

vω◦πn⋆

i − vπ
n⋆

i

})
⩽∆n⋆

= min
n∈[N ]

∆n ⩽
1

N

N∑
n=1

∆n ⩽ ε,

which has finished the proof.

H TECHNICAL LEMMA

In this section, we present some technical lemmas used in the proof.
Lemma 51 (MLE Guarantee). For any episode n ∈ [N ], step h ∈ [H], define ρh as the joint
distribution of (xh, ah) in the dataset Dh,n at episode n. Then with probability at least 1 − δ, we
have that

E(xh,ah)∼Dh,n

∥∥∥PP
h (·|xh, ah)− PP̂n

h (·|xh, ah)
∥∥∥2
1
⩽ ζn,

where ζn = O(log(Hn|M|/δ)/n).

For the proof, see (36).
Lemma 52 (l2 Guarantee). For any episode n ∈ [N ], step h ∈ [H], with probability at least 1− δ,
we have that

E(τh,ah)∼Dh,n

∥∥∥PP
h (·|τh,ah)− PP̂n

h (·|τh,ah)
∥∥∥2
2
⩽ ζn,

where ζn = O(log(Hn|M|/δ)/n).
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For the proof, see (40).

Lemma 53 ((52), Lemma G.2). Consider the following process. For n = 1, . . . , N , Mn =Mn−1 +
Gn with M0 = λ0I and Gn being a positive semidefinite matrix with eigenvalues upper bounded by
1. We have

2 log det(MN )− 2 log det(λ0I) ⩾
N∑

n=1

Tr(GnM
−1
n−1).

Lemma 54 (Potential function lemma). Suppose Tr(Gn) ⩽ B2.

2 log det(MN )− 2 log det(λ0I) ⩽ d log

(
1 +

NB2

dλ0

)

Proof. Let σ1, · · · , σd be the set of singular values of MN recalling MN is a positive semidefinite
matrix. Then, by the AM-GM inequality,

log det(MN )/ det(λ0I) = log

d∏
i=1

(σi/λ0) ⩽ log d

(
1

d

d∑
i=1

(σi/λ0))

)

Since we have
∑

i σi = Tr(MN ) ⩽ dλ0 +NB2, the statement is concluded.

Lemma 55. For parameters A,B, ε such that A2B
ε2 is larger than some absolute constant, when we

pick N = A2

ε2 log2 A4B2

ε4 = O
(

A2

ε2 log2 AB
ε

)
, we have

A√
N

log(BN) ⩽ ε.

Proof. We have

A√
N

log(BN) = ε
log
(

A2B
ε2 log2 A4B2

ε4

)
log A4B2

ε4

Note that

A2B

ε2
log2

A4B2

ε4
⩽
A4B2

ε4
⇔ log2

A4B2

ε4
⩽
A2B

ε2

where the right hand side is always true whenever A2B
ε2 is larger than some given constant. Therefore,

we get

A√
N

log(BN) ⩽ ε.

Lemma 56 (Concentration of the Bonuses). Let µi be the conditional distribution of ϕ given
the sampled ϕ1, · · · , ϕi−1, define Σ : L2(µ) → L2(µ), Σn := 1

n

∑
i∈[n] Eϕ∼µi

ϕϕ⊤. Assume
∥ϕ∥Hk

⩽ 1 for any realization of ϕ. If λ satisfies the following conditions for each eigendecay
condition:

• β-finite spectrum: λ = Θ(β logN + log(N/δ));

• β-polynomial decay: λ = Θ(CpolyN
1/(1+β) + log(N/δ));

• β-exponential decay: λ = Θ(Cexp(logN)1/β+log(N/δ)), where C3 is a constant depends
on C1 and C2;
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Table 2: Average exploitability of the final policy of DQN and OVI-OF-LLVR over 5 trails. Note that
lower exploitability implies that the policy is closer to the equilibrium.

Exploitability(↓) DQN OVI-OF-LLVR
H=3 1.1101(±0.0033) 0.2566(±0.0063)

H=10 3.1124 (±0.0875) 0.7290(±0.0138)

then there exists absolute constant c1 and c2, such that ∀x ∈ Hk, the following event holds with
probability at least 1− δ:

∀n ∈ [N ], c1
〈
x,
(
nΣn + λT−1

k

)
x
〉
L2(µ)

⩽

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

x

〉
L2(µ)

,

and

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

x

〉
L2(µ)

⩽c2
〈
x,
(
nΣn + λT−1

k

)
x
〉
L2(µ)

.

In the same event above, the following event must hold as well:

∀n ∈ [N ],
1

c2

〈
x,
(
nΣn + λT−1

k

)−1
x
〉
L2(µ)

⩽

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

x

〉
L2(µ)

and

〈
x,

∑
i∈[n]

ϕiϕ
⊤
i + λT−1

k

−1

x

〉
L2(µ)

⩽
1

c1

〈
x,
(
nΣn + λT−1

k

)−1
x
〉
L2(µ)

For the proof, see (41).

I EXPERIMENTS

Figure 1: Comparison of win rate between REPMAPPO and MAPPO in SMAC. Y axis denotes the
win rate and X axis denotes the number of steps taken in the environment.

In this section, we present two experiments to evaluate our methods. The first experiment focuses
on a simple POMG with random latent transitions and rewards, aiming to validate the convergence
of OVI-OF-LLVR. Our second experiment evaluate LLVR on the StarCraft Multi-Agent Challenge
(SMAC) environments (53), a widely used benchmark for Dec-POMDPs, to assess its effectiveness.
Note that, in Dec-POMDPs, all agents cooperate and share observations during training, making this
setting well-suited for our method.
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I.1 EXPERIMENT ON SIMPLE POMG

Our first experiment aims to verify whether OVI-OF-LLVR can reliably converge under L-
decodability assumption with random dynamics and rewards. To achieve this, the algorithm must
not only decode the latent structure accurately but also solve the POMG to produce NE/CE/CCE
policies. Accordingly, we construct a Block Partially Observable Markov Games (BPOMGs) defined
as follows:

Definition 57 (BPOMG). (30) For any h ∈ [H], a BPOMG has an emission distribution eh(·|z) ∈
∆S and a latent state space transition Th(z′|z,a), such that for any s ∈ S, eh(s|z) > 0 for a unique
latent state z ∈ Z , denoted as ψ⋆

h(s). Together with the ground truth decoder ψ⋆
h, it defines the

transitions Ph(s
′|s,a) =

∑
z′∈Z eh(s

′|z′)Th(z′|ψ⋆
h(s),a).

It is straightforward to see that BPOMG is a special case of the 1-decodable POMG when we define
the latent state z to be exactly equivalent to the current observation (i.e., z = oh).

We construct two two-player zero-sum BPOMG variants, with horizons H = 3 (short) and H = 10
(long). Each BPOMG is randomly generated with H horizon, 3 states, 2 players each with 3 actions,
random reward matrix rh ∈ (0, 1)3×9×H and random latent transition matrix Th. The dimension of
the observation space is 2⌈log(H+|S|+1)⌉. Note that similar mechanism has also been adopted in (32)
to construct a Block MDP. See Appendix J for details.

We adopt DQN (54) together with fictitious self-play (55) as baseline, and measure the policy
exploitability to assess the performance. For each variant, we run 5 trials and report the mean
exploitability and its variance. As shown in Table 2, OVI-OF-LLVR obtains policy closer to the
equilibrium, with significantly lower exploitability.

I.2 EXPERIMENT ON SMAC

Our second experiment verify the effectiveness of our proposed representation in OVI-OF-LLVR
on the SMAC benchmark environments. In this experiment, we learn the latent representations by
predicting future outcomes from a history of length L. Specifically, we employ a continuous latent
variable model similar to (15), approximating probability distributions with Gaussians parameterized
by their mean and variance. The learned representations can be integrated with various MARL
methods by feeding them into the value function. In our experiments, we select MAPPO (56) as
baseline and compare it against its representational variant, REPMAPPO. Detailed implementation
information, including hyperparameters, is provided in Appendix J. We apply L = 1 across all
domains.

In Figure 1, we report the results from 8 selected SMAC scenarios —4 Hard and 4 Super Hard—out
of 23 scenarios. It is shown that REPMAPPO achieves significantly better empirical results in 5
scenarios and marginally outperforms MAPPO in other scenarios. Moreover, it can also be observed
that REPMAPPO demonstrates greater stability, with smaller variance and a smoother training curve
during evaluation, on most scenarios.

J EXPERIMENT DETAILS

J.1 DETAILED EXPERIMENT SETUP

In this section, we provide the detailed setups for the two experiments conducted to evaluate our
methods. For completeness we repeat certain details already introduced in the main text.

Firstly, we introduce the details of the environment construction of the BPOMGs. We designed a
BPOMG by randomly generating a tabular POMG with horizon H , 3 states, 2 players each with 3
actions, and random reward matrix rh ∈ (0, 1)3×9×H and random latent transition matrix Th. The
dimension of the observation space is 2⌈log(H+|S|+1)⌉, in line with the design of (32).

For the implementation of LLVR, we break down the introduction into two parts: the implementation
of feature learning and the implementation of game solving algorithm using the current features. For
the implementation of feature learning, we assume that the features follow a Gaussian distribution. To
model the mean and log standard deviation of this distribution, we adopt a three-layer neural network
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with ReLU non-linearity. This approach allows us to effectively capture and represent the underlying
feature distributions necessary for solving the game.

For solving the POMGs, in addition to following OVI-OF-LLVR, we implement the NE/CCE solvers
based on the public repository: https://github.com/quantumiracle/MARS.

For the SMAC experiment, we implement MAPPO and REPMAPPO based on the public repository:
https://github.com/marlbenchmark/on-policy. We employ a continuous latent variable model
similar to (15), using Gaussian distributions parameterized by their mean and variance. To enhance
training stability, we utilize a target network for feature updates, applying a soft target network update
mechanism. All parameters are set to their default values.

J.2 HYPERPARAMETERS

In this subsection, we include the hyperparameters for LLVR and REPMAPPO in Table 3.

Table 3: Hyperparameters for LLVR and REPMAPPO in the experiment

LLVR
Value

Buffer size 100000
Batch size 256

Feature dimension 32
Hidden dimension 32

Optimizer sgd
Learning rate 0.01

LSVI bonus coefficient α 0.1
LSVI regularization coefficient λ 1

Warm up number 10

REPMAPPO
Value

GAE λ 0.95
γ 0.99

Feature dimension 64
Feature Target Update Tau 0.01

Hidden dimension 64
Optimizer Adam

Actor learning rate 5e-4
Critic learning rate 5e-4

Feature Learning rate 5e-4
GAE λ 0.95
γ 0.99
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