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ABSTRACT

Partially Observable Markov Games (POMGs) pose significant challenges for
multi-agent reinforcement learning due to the combination of partial observability
and strategic interactions. Recent advances explore the inherent structure of the
POMG dynamics and develop efficient representation methods to facilitate planning
in the latent space rather than directly operating on the history trajectory. In this
paper, we focus on the low-rank POMGs and propose a unified optimistic value
iteration (OVI) framework that accommodates different low-rank representation
learning methods. With a given representation, OVI constructs an optimistic bonus
and integrates it into the value function to inspire exploration and mitigate the
bias caused by the representation approximation error. When the exact value
function oracle is unavailable, OVI instead utilizes the low-rank representation to
construct optimistic/pessimistic estimators of the value functions via the Bellman
recursion, and selects the final solution based on the optimistic-pessimistic gap.
Our theoretical analysis shows that, once the representation approximation error
is bounded, the OVI converges to an approximate equilibrium. We instantiate the
framework with two provable representation learning methods: an MLE-based
approach and a spectral decomposition representation method. Furthermore, we
develop a novel representation method, L-step Latent Variable Representation
(LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, and
prove that OVI with LLVR also achieves approximate equilibria, with an extra
L-decodability assumption. Collectively, these results establish the first systematic
representation learning perspective for POMGs.

1 INTRODUCTION

Markov games (MGs) have emerged as a foundational framework for multi-agent reinforcement
learning (MARL), enabling rigorous analysis of agents’ performance in strategic interactions (1525 13;
4). Recently, Partially Observable Markov Game (POMG) has been proposed as an extension of MG
under partial observability (3;16). Specifically, each agent in POMGs only observes its own actions
and local signals, leading to incomplete information about the true state. The non-Markovian nature
of the observations forces the agent to maintain memory and reason about beliefs of the system state,
all while exploring to collect information about the environment. Consequently, even in cooperative
settings, POMGs have been shown to be NEXP-complete (7)), implying that solving them in the worst
case requires super-exponential complexity.

Recent advances have sought to explore specific structured subclasses of POMGs that admit tractable
solutions. For instance, (8;9) investigated POMGs with y-observability where observations proba-
bilistically reveal state information, enabling hierarchical state estimation via information-sharing
mechanisms. (10) studied weakly revealing POMGs where observations are sufficiently informative
to infer state properties. More recently, other structured subclasses, such as POMGs with low gener-
alized eluder coefficient (11) have also been investigated. However, these methods either focus on
tabular state spaces or are restricted to two-player zero-sum games, which limits their applicability to
general POMGs. To the best of our knowledge, the only prior work addressing general POMGs is
(12). However, their approach employs a computationally inefficient representation learning method
and relies on access to an exact value function oracle.
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Table 1: Sample complexity of different representation learning methods under our OVI framework.
For the same representation method, value function oracle-free setting(OVI-OF) require more samples
than oracle-based setting(OVI-OB). The additional complexity is highlighted in blue.

Representation
Method OVI-OB OVI-OF
MLE O(e™? log(H|M|/6¢)) O(H d*| A)* - e 2 log(d|.A|H| M| /d¢))
SDR O(d?c 2 log(H|M|/d¢)) | O(H®d*|A]? - d*c> log(d|.A|H|M|/5¢))
i o (H6|A|LClog(H|A|L/2|M\/5s)
LLVR O(e72 log(H|M|/d¢))
=2 log(1A["/2H|M|/62))

In this work, we propose a unified optimistic value iteration (OVI) framework that accommodates
different low-rank representation learning method. With a given representation, it constructs an opti-
mistic bonus to encourage exploration, and then performs value iteration based on the representation
and bonus. The framework is compatible with two distinct settings; one that assumes access to an ex-
act value function oracle and another that operates without it. In the oracle-free setting, OVI bypasses
the need of the value function oracle by using the representation and bonus to construct optimistic and
pessimistic value function estimators via Bellman recursion. We show that if the representation error
is bounded, the framework provides sample-efficient guarantees for learning approximate equilibria.
We instantiate OVI with two concrete representation learning algorithms, one based on Maximum
Likelihood Estimation (MLE) and another on Spectral Decomposition Representation (SDR), and
demonstrate that both converge to approximate equilibria. Furthermore, we develop a novel L-step
latent variable representation (LLVR) method for POMGs with infinite-dimensional latent space,
i.e., infinite rank. Specifically, LLVR utilizes a computationally tractable ELBO to learn an effective
representation with only the recent L-step trajectory. We make the following contributions:

* We propose a unified OVI framework for low-rank POMGs that accommodates various
low-rank representation learning methods. Given a representation, OVI augments rewards
with an optimistic bonus to both encourage exploration and compensate for approximation
error. Notably, this framework is compatible with two distinct settings, supporting scenarios
that assumes access to an exact value function oracle and those that operates without it. In
particular, in the oracle-free setting, OVI constructs optimistic/pessimistic estimators of the
value function based on the representation and bonus, then performs the value iteration with
the constructed estimators, and selects the final solution by minimizing the gap between
these estimators. For both settings of OVI, we show that they converge to an approximate
Nash, Correlated, or Coarse Correlated Equilibrium if the representation error is bounded.

* We instantiate the framework with two concrete representation learning algorithms: MLE
and SDR. We characterize the corresponding approximation error of both representations and
derive the sample complexities of OVI-MLE and OVI-SDR to reach approximate equilibria.
While MLE achieves tighter approximation guarantees, SDR offers a more computationally
efficient alternative by reparameterizing an lo norm objective.

We develop a novel representation method, LLVR, for POMGs with infinite-dimensional
latent spaces, i.e., infinite rank. LLVR learns the latent representation of the transition
kernel by optimizing a computationally friendly ELBO, and yields an exact and tractable
linear form of the value function over the latent space. Our theoretical results establish
that OVI-LLVR retains provable convergence to approximate equilibria under an extra
L-decodability assumption. Note that LLVR only needs to access the recent L-step history
instead of the full history information. Our empirical study in Appendix[[]also shows the
efficiency of LLVR.

1.1 RELATED WORK

Theoretical gunaranteed methods in POMGs. Structural information has been extensively lever-
aged to develop theoretically guaranteed methods for POMGs. A rich body of work has investi-
gated structured subclasses of single-agent POMGs, i.e. POMDPs, such as L-decodable POMDPs
(135145 [15), weakly revealing POMDPs (16; 17), observable POMDPs (18)) and low-rank POMDPs
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(195 120). In the multi-agent setting, solving POMGs is significant challenging: it is NEXP-complete
even under cooperative objectives (7). As a result, while there has been substantial progress on fully
observable MGs (215 225 235 245 255 265 1275 28 295 130), research on POMGs remains relatively
scarce. Motivated by the POMDP literature, recent works have explored structural subclasses of
POMG:s that admit tractable solutions. For instance, (8; 9) investigated information-sharing mecha-
nisms for POMGs with proposed y-observability, where agents’ observations contain probabilistic
information about the underlying state, enabling hierarchical state estimation and efficient coor-
dination. (10) proposed a sample-efficient approach for weakly revealing POMGs by assuming
informative observations, while (31)) studied two-player competitive and tree-structured transition
POMG:s that permit game-theoretic planning via backward induction. More recently, (11) developed
posterior sampling methods for two-player zero-sum games with low generalized eluder coefficients,
extending applicability to continuous state spaces. However, these methods either focus on tabular
state spaces (8;19; [10f 31)) or are restricted to two-player zero-sum games (315 [11)), which limits
their applicability to general POMGs. To the best of our knowledge, the only prior work addressing
general POMGs is (12), which analyzed POMGs under information rank structure assumptions,
characterizing how partial observability interacts with agent interactions. However, their approach
employs a computationally inefficient representation learning method and relies on access to an exact
value function oracle.

Representation learning in RL. A growing body of research has focused on representation
learning in RL, i.e. learning latent representations to capture the underlying dynamics. For instance,
(1351325 133)) investigated representation learning in block MDPs, which is a special case of low-rank
MDPs. (34)) studied representation for MDPs with the structure of Gaussian noise. Several recent
papers studied low-rank MDPs via MLE and facilitating sample-efficient RL (35536} 137). Model-free
representation learning methods in Low-Rank MDPs have also been studied (38;139). Meanwhile,
several methods extracted computationally efficient spectral representations from the low-rank MDPs
(405 41). Recently, (42;17) considered POMDPs and constructed the MLE confidence set for low-
rank structured models. (16) explored POMDPs within an spectral estimation set. (15) studied
latent variable spectral representation for L-decodable POMDPs. In the multi-agent setting, (21)
represented the environment linearly for two-player zero-sum MGs with the structure of Gaussian
noise. (43) and (30) explored representation learning in low-rank fully observable MGs via contrastive
self-supervised learning and MLE, respectively. For the more difficult POMG tasks, (12) constructed
a generalized PSR representation under y-well-conditioned assumption. Note that there is still a lack
of research on comprehensive representation learning for general low-rank POMGs.

2 BACKGROUND

In a POMG, each player does not have complete information about the current state of the game.
Instead, players only have access to partial observations of the state. This partial observability
introduces additional challenges to the design and analysis of policies, as players must make decisions
based on these noisy or incomplete observations.

A POMG is defined by a tuple: (S, {A;}M P, {ri M, H, 1o, {O:},,0), where H denotes
the length of each episode, S is the state space with |S| = S, A; denotes the action space for
the i*h player with |A;| = A;, P = {Py}iL, is the collection of transition probabilities, 1 is
the initial state distribution, ©O; = {O}, ;}/_, denotes the observation space for the ith player
with |O0;| = O, i = {rp; + O; x A; — [0,1]}/_ is the reward function for player i. We
denote by 0 := (01,...,0p) € O := 01 x --- x Oy the joint observations of all m players and
a:= (a,...,apy) € A:= A x --- x Ay the joint observations of all M players, respectively.
O(+s) : & = A(O) is the emission kernel so that O (0|s) is the probability of having a partial
observation o € O at state s.

At each time step h, each player ¢ receives an observation oy, ; and a reward 7, ; based on the true state
sp € S. A key feature of POMGs is that the observation does not fully reveal the true state. Observing
0; instead of the true state s leads to a non-Markovian transition between observations, which means
each player needs to consider policies 7; := {ms,; : ((O; X A;)" 7! x O;) = A4, }peqm) that depend
on the entire history, denoted by 7, = {0p,a¢ ..., 0p}. We denote the joint policy of all players
as 7 := T X ... X my, the action of each player is sampled independently according to their own
policy. We denote the space of 75, as Tj, and the policy of all the players except player i as m_;.
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For a given joint policy 7, we can define the state value function V7, (s,) = E [Zi w0, ap) |sh}

and state-action value function Q};i(sh, ap) = E [Zf{:h 1.5 (0t, Q)| Sh, ah} for each player i at

step h, respectively, for the POMG. Therefore, the Bellman equation can be expressed as V", (sn) =

E, [Q;{yi(sh,ah)}, Qg,i(sh,ah) = rpi(on,an) + Ep [V}f+17i(sh+1)}. For the convenience of

notation, we denote v} := By, [ViT;(s)].

For any policy 7_;, there exists a best response policy of player i, which is a policy uf(7_;)
satisfying V“T(W‘i)’w‘i(s) = max,, V, ;" ‘(s) for any (s,h) € S x [H]. We denote ijf‘i =

h,i

IICEAY T4 T—i
th,i( 7=t and let v;-r’ Ci=Egp, [VOT,;‘ (5)}

We focus on three classic equilibrium concepts in game theory—Nash Equilibrium, Correlated
Equilibrium (CE) and Coarse Correlated Equilibrium (CCE) (30). First, a NE is defined as a product
policy in which no player can increase her value by changing only her own policy. Formally,

Definition 1 (NE). A joint policy 7 is a Nash equilibrium (NE) if v] = UZ’Li ,Vi € [M]. And we
call T an e-approximate NE if max;c[ar] {v:’ﬂ’i —uf} <e.

Second, a CCE is a relaxed version of Nash equilibrium in which we consider general correlated
policies instead of joint policies.

Definition 2 (CCE). A correlated policy  is a CCE lfVJ;T’(s) < Vh’fi(s) forall s € S,h €
[H],i € [M]. And we call m an e-approximate CCE if maxX;e [ {UZ’L" —uf} <e.

Finally, a CE is defined as a joint policy where no player can increase her value by unilaterally applying
any strategy modification. To define CE, we first introduce the concept of policy modification: A
policy modification w; := {wp,i}ne[m) for player i is a set of H functions from S x A; to A;.
Let Q; := {Qp i }ne(a) denote the set of all possible policy modifications for player 4. One can
compose a policy modification w; with any Markov policy 7 and obtain a new policy w; o 7w such
that when policy 7 chooses to play a@ := (a1, ..., aps) at state s and step h, policy w; o m will play
(al, ey aq;_l,wh7¢(s, ai), Qig 1y CLM) instead.

Definition 3 (CE). A correlated policy 7 is a CE if max,,cq, Vy,:"" (s) < V)T, (s) for all (s, h) €
S x [H],i € [M]. And we call T an e-approximate CE if max;e[pj{max,,cq, v;""" — v} <e.

Solving general POMGs is notoriously hard due to their inherent complexity, which is known to be
NEXP-complete. To overcome this, prior works has focused on structured subclasses that allow for
more tractable solutions. Examples include weakly revealing POMGs (10), y-observable POMGs
(8;19). In this paper, we focus on POMGs with low-rank dynamics, a structure widely used in the
RL literature (3651375 40). A POMG is called low-rank if its transition function factorizes through a
pair of low-dimensional embeddings. This structural assumption applies only to valid history triplets
(7,a,7’), so the rank d does not scale with (|O||.A|)"* and can remain small in practice.

Definition 4 (low-rank POMG). A POMG is low-rank if. there exist embeddings:py, = Tp, x A — R?
and py, : The1 — RY for all h € [H] such that

V1 € T, ™' € That,a € A: Prp(T'|7,a) = (¢n(T,a), un (")) if (1, @) forms the history of T'.

For normalization, we assume that ||¢(1y,, a)|| < 1 for all T, a and for any function g : T, — [0, 1],
| [ w(r3)g(rh)dm|| < V.

3 REPRESENTATION LEARNING BASED OPTIMISTIC VALUE ITERATION

We propose a unified optimistic value iteration (OVI) framework that accommodates various low-rank
representation learning method. The central idea is to use a given latent representation of the dynamics
to construct an optimistic bonus, and then perform value iteration based on the representation and
bonus. Notably, this framework is compatible with two distinct settings, supporting scenarios both
with and without an exact value function oracle. We prove that when the representation error is
upper bounded by ¢, our framework provides sample-efficient guarantees for learning approximate
equilibria, with detailed proof provided in Appendix
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3.1 REPRESENTATION LEARNING FOR POMGsS

If the transition and reward functions of a POMG are known, planning-based approaches like heuristic
search value iteration (44)) and linear programming (45)) can be used to compute the solution.

However, in practice the transition function is typically unknown. In such cases, it is common
to employ representation learning to construct a latent representation of the transition dynamics.
Formally, this is captured by considering a model class M = {(¢n, i) : ¢ € P, fin € Oy,
with the assumptions that |[M| < oo and the true transition is included in the class, i.e., ¢, €
Oy, pp, € Uy, Vh € [H]. The representation quality can be measured by

2
PP (-|mh, an) — Pz’n(‘m,ah)H < Cus

E(T}uah)NDh,n

where Dy, ,, denotes the empirical dataset. A smaller representation error ¢, indicates higher-quality
representations, which in turn yield stronger performance guarantees for subsequent value-iteration
based planning procedure.

3.2 OVI BASED ON REPRESENTATION

With a learned representation, oracle-based and oracle-free value-iteration based planning procedure
can be conducted. Suppose we have access to an oracle that computes the exact value function Vg T’
for a policy 7 and player ¢ with transition P and reward r in a POMG for all ¢ € [M]. In this setting,
we can apply OVI by augmenting rewards with a confidence bonus En derived from the representation.
Specifically, The oracle-based OVI, denoted as OVI-OB, maintains an estimate 75n of the transition
and defines an augmented reward ;" = r+ b,,.The policy is then updated via 7 = arg max,/ Vg; 4

)TTL

In most realistic POMGs, value-function oracles are often unavailable (46; [18). To handle this,
we propose oracle-free OVI, denoted as OVI-OF, that maintains both optimistic and pessimistic
estimates of the value function, updated recursively with confidence intervals derived from the

bonus Bnh Based on the bonus term, we construct both optimistic and pessimistic estimators
(VZJ-, Vi @Z“ Q) ,) according to the Bellman recursion (Line 10 of Algorithm .Depending on
the problem’s solution requirement, the policy 7}’ can be updated as follows,

NE: m.,(Ir) = argmax (Dr, oy Q1) (1), ¥7n € Thvi € [M] )
=N -=n .
CCE: max (Dmmgﬂthi) () < (]D),rth’i) (1), ¥ € Thyi € [M]. @)

CE: max (th:ioﬂ;@;j’i) (Th)g(m)ﬁn@j,i) (rn), VmeThic[M. (3

Wh,i€Qni

Here, (D f)(7) := Equr(|r) [f(1,@)],Vf : T x A — R. Without loss of generality, we assume that
the solution to each formulation is unique; if not, a deterministic selection rule can be applied so that
the same input yields the same policy. Note that although the policy update relies only on the optimistic
estimator, we still maintain the pessimistic estimator to compute the gap A™ = max;¢c[a) {07 — v},

with 7' = I+ V.g’l-(T) pio(7) dr and vi = [V ;(7)po(7) dr. Finally, the algorithm selects the
policy 7 that achieves the smallest estimated gap.

Algorithm [T summarizes OVI-OB and OVI-OF. Under bounded representation error, the output policy
is guaranteed to be an approximate NE/CE/CCE.

Lemma 5. Assume that the representation error of RepLearn in Algll|is bounded as
= 2
P (-7, an) —Pf"('hh,ah)H < Cns

and set A = ©(dlog(nH|M|/d)) and suitable bonus. With probability 1 — 6, the output policy
# of OVI-OB and OVI-OF is an e-approximate {NE, CCE,CE} with ¢ = O(||V™||\/(,) and
e=0 (sz\/N\A|a?V log(1 + %)) respectively, where ||V™|| is the upper bound of the norm of
value function for any policy 7, i € [N],h € [H].

]E(Th,-,ah)NDh,n
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Algorithm 1 Optimistic Value Iteration framework with Oracle Based/Oracle Free value functions
(OVI-OB/OF)

1: Input: Regularizer ), iteration N, parameter {c, }2_;, value function oracle V.

2: Initialize 7° to be uniform; set dataset DY) = ), DO =0, Vh € [H].

3: for episoden =1,2,--- N do

4:  if oracle-free: Set Vi, , =0,V = 0foralli € [M].

5:  Sample data with policy 7,: 7 = (00, @0, ...,0H—1,a85_-1,05H).

6:  Update dataset: D} = D,Tf_l U{Th, @n, Opt1 },752 = T)Z_l U{Th+1, @ht1, Onto} forall he [H].

forsteph=H,H—1...,1do
Learning representation and compute bonus: (¢y,, P, Bn,h) = RepLearn(D}y |J 15;;)
9: if oracle free then
10: Update @, @ as following:

®

@Z,i(T}u CL) = Th,,i(Tha a) + E’ﬁ]? |:VZ+171‘ (771,+1)|7-h7 a’} + Bn,h(T}z,» a)

QZJ.(Tm a) =rpi(Th,a)+ ]Ep} (Vivi1i(thet)|mhs @] = b (7h, @)

11: Compute the NE/CE/CCE solution 7} according to equation equation E}’equation Q’equa-
tion B]and update value function as following:

Vi i(mh) = Eannp (1) [@ni(th,@)], Vi (1) = Earrp (@) ;(Th: @)].

12: end if

13:  end for

14:  if oracle based: Compute 7" = argmax, V7 . (7).

15: if oracle free: Compute A" = max;e[y {v}} —oul} with 7} = fTvai(T)uo(T)dT, vl =
VG (T po(r)dr.

16: end for

17: if oracle based: Return 7 = NE/CE/CCE solution with Vg Z . foralli € [M].

. A~ * .
18: if oracle free: Return 7 = 7" where n* = arg min, ¢y A".

Algorithm 2 MLE Representation Learning and Bonus Computation
1: Input: Dataset D} | Dy
2: Compute (¢ 1, fin.p) = arg Max (1) M EDﬁ uby llog () T é(Th_1,an_1)] forall h € [H],
and obtain P,, = {ﬂmh(Th)ngASn,h(Th_l, an-1)}hein)-
3: Compute l;nﬁh from equationfor all h € [H].
4: Return ¢?n = {(lgn,h}he[H]a P, and b, = {én,h}he[m.

4 INSTANTIATIONS OF REPRESENTATION LEARNING FOR LOW-RANK POMGS

In this section, we instantiate the general framework from Section [3 with concrete representation
learning algorithms, i.e. Maximum Likelihood Estimation (MLE), Spectral Decomposition Represen-
tation (SDR). We then analyze their representation errors and resulting sample complexities when
combined with OVI. The full proof is provided in Appendix

4.1 MLE-BASED REPRESENTATION LEARNING

As shown in Alg. [2] with the latent low-rank structure, MLE estimates the transition kernel by
maximizing the log-likelihood of observed trajectories. The bonus term is computed as

by, ;, = min {anllé(ml, an—1)lz, 52 H} , 4)

n,h,dn
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Algorithm 3 SDR Representation Learning and Bonus Computation
1: Input: Dataset D} | Dy
2: Learning (q@n’h(Th,l,ah,l),,u;hh(m)) with D}’ Uﬁ}f via Equation |5| and obtain P, =
{0 )ity (7)) T b (Th—1, @n—1) e -
3: Compute b,, , from equationfor all h € [H].
4: Return ¢, = {ngh}he[m, P, and b,, = {87L7h}he[H].

where 3, 5 4 = Z(Th_hah_l)ep;; On(Th—1,an-1)0n(Th-1,an-1)" + Ng.

The representation error of Algorithm [2| can be characterized by Lemma We refer to OVI-
OB and OVI-OF with Alg. [2]as OVI-OB-MLE and OVI-OF-MLE, respectively. Based on the
representation error, we can derive a PAC guarantee of OVI-OB-MLE and OVI-OF-MLE, which
exploit the low-dimensional latent representation learned by MLE.

Theorem 6 (PAC guarantee of OVI-OB-MLE and OVI-OF-MLE). Assume OVI-OB-MLE and OVI-
OF-MLE are applied with parameters (,, = © (log(Hn|M|/d§)/n), A = ©(dlog(NH|M|/J)), and
an = O(y/Ad + n|A[C,). By setting the number of episodes N to be N = O(s~2log(H|M|/d¢))
and N = O(HSd*|AP?e 2log(Hd|A||M|/d¢)), respectively, the output policy % is an e-
approximate {NE, CCE, CE} with probability 1 — 0.

Thus, we obtain sample complexities that are independent of |S|, while exhibit polynomial depen-
dency |A|, H,d, e and log | M|. Notably, OVI-OF-MLE incurs an additional H%d*|.A|? complexity
to circumvent the need for a value oracle.

4.2 SDR REPRESENTATION LEARNING

While the MLE oracle offers strong theoretical guarantees, computing it is computationally difficult
(40). Inspired by spectral representation in MDPs (40), we adopt the Spectral Decomposition Repre-
sentation (SDR) approach for low-rank POMGs. As outlined in Algorithm 3] SDR reparameterizes
an [y norm objective, leading to the computationally friendly objective in Equation

min —E(r.a,71)~do <P [0(7:@) W (7)p()] + Epiery [P () T )]/ 2d) - (5)

s.. E(T,G)Ndo [¢(T? G)¢(T, a)T] = Id/d7

where we use reparameterization p(7') = p(7')p’'(7'). Generally, solving SDR is easier than
solving MLE since SDR bypasses the difficult integral calculation in MLE with an easy-to-compute
expectation (40).

Similarly, we refer to OVI-OB and OVI-OF with Alg. as OVI-OB-SDR and OVI-OF-SDR,
respectively. We have the representation error of Algorithm [3|in Lemma [52| and we can derive
a PAC guarantee of OVI-OB-SDR and OVI-OF-SDR, which exploit the low-dimensional latent
representation learned by SDR.

Theorem 7 (PAC guarantee of OVI-OB-SDR and OVI-OF-SDR). Assume Assumption|l|in Appendix
@holds. Consider running OVI-OB-SDR and OVI-OF-SDR with parameters (,, = © (M),

A = O(dlog(NH|M|/6)), and a, = @(Hd\/)\d + n|A|Cn) If the number of episodes is set to

N = O(c2d?log(H|M|/(3¢))) and N = O(H®d*| A[>c=2 log(Hd|A||M|/(S¢))), respectively,
then the output policy 7 is an e-approximate {NE, CCE, CE} with probability at least 1 — 6.

Compared to MLE, SDR generally yields larger representation error but remains polynomially
bounded, and provides a more computationally tractable approach. When combined with OVI, SDR
achieves efficient sample complexity guarantees while being implementable at scale.

Remark 8 (Comparison with (12))). (/2) construct a generalized PSR representation for y-well-
conditioned POMGs with an exact value function oracle. Note that if the rank of the core test set is
uniform across all time steps h, i.e. dp, = d for all h, the POMG satisfies the additional assumptions
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in (12) is a special subclass of low-rank POMGs and this representation can be integrated into our
framework. We extend their method to the oracle-free setting in Appendix|G|

5 LLVR INFINITE-DIMENSIONAL LATENT SPACE

In this section, we develop a novel representation method, L-step Latent Variable Representation
(LLVR), for POMGs with infinite-dimensional latent spaces, i.e., infinite rank, with an extra L-
decodability assumption. When incorporated into the OVI framework, it yields provable convergence
to approximate equilibria. Notably, LLVR requires access only to the most recent 2L steps of history
rather than the entire trajectory.

5.1 L-DECODABILITY

We now introduce the L-decodability assumption, which relies on the belief function. fyeicy(-) :

x (A x O)* — A(S). This function represents the distribution over the underlying state
given the history of observations and actions. It is initialized as fyeiicf(S0|00) = P(s0|0o) and
updated recursively as: fperier(Sh+1|Th+1) fs Foetier (Sn|Th)P(Sh+1|Sh, an)O(0n+1|sh+1) dsh.
See Appendix [C|for a detailed explanation of the belief function and the L-decodability assumptlon
Definition 9 (L-decodability (I1)). Vh € [H], define 7 € TL = (O x A)L=1 x O, 7f =
(Oh_Li1,Qn_141, - ,01). A POMG is L-decodable if there exists a decoder p* : T+ — A(S)
such that p*(ThL) = foetier (Th).

Note that under the L-decodability assumption, there exists an L-step joint policy that constitutes
a Nash equilibrium. Therefore, it suffices to restrict our analysis to L-step policy in the discussion
under the L-decodability assumption.

5.2 LLVR REPRESENTATION LEARNING

‘We now propose LLVR under the L-decodability assumption. LLVR leverages the underlying L-
decodability structure to enable an exact and tractable linear representation of the value functions
over the latent space. Due to space limitations, we have deferred the detailed derivation to Appendix
The ultimate objective of the LLVR is to provide a computationally tractable ELBO objective:

qglAa(XZ)]E‘I(‘\T;f,ah,,oml:hﬂ) [log PX”(O}L-&-l:h-&-l |Zh)] _KL(QHT}%v ap, Oh-‘rl:h-‘rl) | ‘p(zh |T}f7 ah))' 6
where ) is the moment-matching policy for 7 (defined in Appendix , P™(-) denotes the probability
distribution under policy 7, z;, € Z is the latent variable, and [ is a fixed constant with [ < L. Note
that LLVR only requires sampling the past L steps and the future [ steps, where L + | < 2L, rather
than the entire trajectory.

The solution of ELBO can be parameterized with a variational distribution class Q =

{{an (2|77, an, Ons 1n41) nepa } and model class M = {{(pr (2|73, an), pr (On41:0+1]2)) brerm }-
Practically, both Q and M can be implemented as neural networks, yielding approximate solu-

tions §(z |’7’h s Qs Ot 1:h+1)s Phon(Oh+1:h+1|2n) and pp, h(zh|7'h ,ap) and approximated transition
73 n = {(ph n (Zh|7-h > ah) Pn n(oh—i-1|2h))}h€[H]

Once pn p(2|7f, ap) is obtained, the Q-function can be approximated as Q7T (7, an) =
(p(z|7iF, @),w(2)) and can be obtained by a least square regression . However, if z is con-
tinuous, then w(z) is infinite-dimensional. To deal with the infinite-dimensional w(z), we follow
the trick in (41) that forms Q™ (77, @) as an expectation Q™ (7%, an) = (p(z|7}, ar), w™(2)) =
Ep(z7f a) [w™(2)] and then approximate it with random feature quadrature. Specifically, we con-
sider w(z) lying in certain RKHS With ¢ as its random feature basis, i.e., w(z) = Ep(¢)[p(&, 2)]. As
aresult, Q" (7%, ap,) i 1 w™ (&) (zi, &) where the latent variables z; ~ p(z|7i, ap,) and
random features &; ~ (K If the random feature ¢ is specified, then w can be implemented by a
neural network wg. Due to space limitation, we defer the detailed derivation to Appendix [E.1]

5.3 OVIBASED ON LLVR

Based on the learned representation, we construct the following ellipsoid bonus term BZ to get both
optimistic and pessimistic estimation of the value function,

H}, N

Bn,h(TLaa) = min{a, &n,h('h-thLaahfL)H

100
2n
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Algorithm 4 LLVR Representation Learning and Bonus Computation
1: Input: Dataset D} | Dy
2: Learn p,,(2|7F, a)) with D | 752 via maximizing the ELBO objective, i.e. equation@ and
obtain Py, = {(pn.n (2|71, @n), Pr.n(0n4112)) bneia)-
3: Compute bn ., from equationfor all h € [H].
4: Return p,, = {ﬁn,h}he[H]’ P,, and lA)n = {Bn,h}he[H]-

where 1, 5 (7, an) = [p(z1;61), -, ©(2K; €k )] denotes the random feature sampled from the
RKHS and the covariance matrix is defined as E;}L = Z(rf,ai)eD;; Un n(TE @) Yn (T an)T + AL

Optimistic and pessimistic estimators are constructed using the bonus as in Alg. [1} These estimators
can also be approximated by neural networks and computed using least-squares regression. Crucially,
as shown in Appendix q since all terms in the least-squares formulation are derived from the feature
space spanned by p(z|7;’, ap), parameterizing them enables highly efficient computation.

The theoretical guarantees for OVI-OB-LLVR and OVI-OF-LLVR are proven in Appendix [E|

Theorem 10 (PAC guarantee of OVI-OB-LLVR and OVI-OF-LLVR). Assume Assumption E] in
Appendix[E-4| hold and the kernel K satisfies the regularity condition; in Appendix[E-2] Consider
running OVI-OB-LLVR and OVI-OF-LLVR with proper parameters Gy, by, 1, ct, and . By setting the
number of episodes N to be N = O(e~2log(H|M|/6¢)) and N = poly(C, H, | A|X, e, log 2121,

5
respectively, the output policy 7 is an e-approximate {NE, CCE, CE} with probability 1 — 0.

Notably, the complexity is also independent of |2

, implying that z can be a continuous variable.

Remark 11 (Comparison of MLE, SDR, and LLVR). The three instantiations of our framework
exhibit complementary strengths. MLE achieves the tightest theoretical guarantees, but solving
the MLE problem is computationally demanding in practice. SDR yields looser bounds due to a
larger representation error, yet it offers a more computationally tractable approach. Finally, LLVR
extends our framework to POMGs with infinite-dimensional latent spaces. Under the additional
L-decodability assumption, LLVR preserves approximate equilibrium guarantees while only requiring
access to short 2L-step histories, thereby broadening the applicability of our framework.

5.3.1 OFFLINE POLICY OPTIMIZATION.

We also propose an offline OVI-OF-LLVR algorithm for sample-efficient policy optimization using
only a static dataset of size n, which is assumed to be drawn from the stationary distribution p of a
fixed behavior policy 7. Consequently, unlike the online setting where new data can be collected to
explore unseen state—action pairs, the offline scenario precludes further exploration beyond what is in
the static dataset. Despite this limitation, our offline algorithm retains the core structure of its online
counterpart, differing only in the absence of new data from the environment. A detailed description
of the offline algorithm and PAC analysis for it is provided in Appendix [E.3]

6 CONCLUSION

In this paper, we present a unified optimistic value iteration (OVI) framework for POMGs. OVI
integrates an optimism bonus derived from suitable representations into the value function and
provably converges to approximate equilibria under bounded representation error, in both oracle-based
and oracle-free settings. We instantiate OVI with two concrete representation learners: an MLE-based
method offering the tightest guarantees but higher computational cost, and an SDR-based method
yielding looser bounds but better tractability. We further proposed a novel LLVR representation that
extends OVI to infinite-dimensional latent spaces under an additional L-decodability assumption and
show that OVI with LLVR also achieves approximate equilibria while relying only on short histories.
Overall, our results establish the first systematic representation learning view for low-rank POMGs.
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A ADDITIONAL NOTATIONS

This section collects additional notations and technical definitions used throughout our analysis.

Given a (possibly not normalized) transition probability P and a policy m, we define the density
function of (z, a) at step h under P and 7 by

dg,()(xﬂ a) = NO("E)WO(GM)v dg,thl(xv a’) = Z d;’,h(‘%ﬂ d)Ph(xlfv&)Wh+1(a|x)ﬂ Vh = 0.
TEX,acA

We abuse the notations a bit and denote d7, ;, (x) as the marginalized state distribution, i.e., d} ;, (v) =
ZaGA dTlg,h(x’ (1).
We then define
1 .
pn,h(xv a) = ﬁ Z d;ﬁh(xa a)a
i€[n]

puilr.a) =+ 37 5 (r)ua(a).

~ 1 L
Pr.n (2, @) = n ZEiwd;fhyfl,&NU(A) [P(z|2,a)ua(a)],

and oL7/(.A) means uniformly taking actions in the consecutive L steps.

When we use the expectation E, o), [f(x,a)] (or Ez~,[f(x)]) for some (possibly not normalized)
distribution p and function f, we simply mean >y ,c 4 P(2,@)f(z,a) (or 3_, 5 p(z) f(2)) s0

that the expectation can be naturally extended to the unnormalized distributions. For an iteration n, a
distribution p and a feature ¢, we denote the expected feature covariance as
T
En,p,¢ = nE(m,a)Np [¢(£L', a)¢(xva) ] + Ag.

Meanwhile, define the empirical covariance by

2”7}1@ = Z ¢(!L‘7 a)¢(xa a)T + )‘Id

(z,a)eD}
Finally, we define the following operators in the space of La(1) — Lo(p):

S xti(A),é =NEorp amuia) [0(x,a)0 " (z,@)] + AT, !
Epn,¢7 :nE(z,a)an [¢($7 a)d)—r (.’E, a’)] + >‘Tn_1

B THEORETICAL ANALYSIS FOR METHODS FOR LOW-RANK POMGS

This section presents the theoretical guarantees for our algorithms for low-rank POMGs.

B.1 PROOF OF SEC.[3

We will provide the proof of Section[3]in this subsection.

Lemma 12. [f the representation error in Alg. |I|is bounded

P 2
PE('|Thva'h) - PZLDH('|Th7a’h)H g Cn’

]E(Thyah)NDll,n

with probability 1 — 6, the output policy & of OBOVI is an e-approximate {NE, CCE, CE} with
e = O(|V™ V), where ||V™|| is the upper bound of the norm of value function for any policy T,
i € [N],h € [H].

13
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Proof. Denote by Vi (r) the value function of player i under policy 7 and transition P. Since
the returned policy # is an equilibrium with respect to P, we have for all i € [N]: V;)(fr) =

(7,771 .= VT (7).

max;: Vi 5

P
Note that
VA (#) = VE (7)] = [max Vi (7', m) = max Vb (&, 77|

< max |V (7, 7~) = V('m0

<IVTIVGa

Thus, we have
V() = V(@) = VTV

=V G = IVTIVG

>Vt =2V Ivea
Hence, 7 is an 2||V ™ ||\/(,,-approximate equilibrium. O
Lemma 13. If the representation error in Alg. [I)is bounded as
PY (-|7h, an) — Phﬁn('h—haah)HQ < Cn,
with A = ©(dlog(nH|M|/J)) and properly chosen bonus, with probability 1 — §, the output policy
# of OVI-OF is an e-approximate {NE, CCE, CE} with ¢ = O (H2d\/N|.A|oz?v log(1 + %))

where ay = O(y/Ad + N|A|(n) and |V™|| is the upper bound of the norm of value function for
any policy w, i € [N], h € [H].

]E(Th7ah)"‘Dh,n

The proof of [T3]is included in the proof of Theorem 21]

B.2 PROOF OF SEC. 4]

We will provide the proof of Theorem|[f]in this subsection.

Theorem 14 (PAC guarantee of OBOVI-MLE). When OBOVI-MLE is applied with parameters
¢" = O (log(Hn|M|/d)/n), A = ©(dlog(NH|M]|/d)), and e, = ©(+/Ad + n|A|(,) by setting
the number of episodes N to be at most N = O(e~2log(H|M|/d¢)) with probability 1 — &, the
output policy 7 is an e-approximate {NE, CCE, CE}.

Proof. Recall that the estimated transition satisfies
PN 2
Pr
BE (hs @n) = BL" (s an)|| < Go-

Denote by V} () the value function of player  under policy 7 and transition P. Since the returned pol-
icy 7 is an equilibrium with respect to P, we have for all i € [N]: V% (7) = maxz Vé (78,770 ==
V;T ( #i )

Note that

]E(T}uah)NDh,n

L UCOEAAUCHIE | max Vg (7', 71) — max Vp (7', 77|

i

Thus, we have
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Hence, 7 is an 2+/(,-approximate equilibrium.

To guarantee an e-approximate equilibrium, we require 2v/¢, < ¢, which leads to N =
O(e2log(H|M|/d¢)). O

Then, we prove the PAC guarantee for OFOVI-MLE, establishing key technical lemmas that culminate
in the finite-sample convergence theorem.

Lemma 15 (one-step back inequality for the true model). Given a set of functions [gy),, c[H) where
gn:Th x A= R, ||grlleo < B, Vh € [H], we have that VT,

Z E(Tinah)NPn,h[gh(Th’ah)] < Z E(Thfl,ah,l)wpn,h,l ||¢h71(7—h717a’h*l)”Lz(H)’E;l} P
he[H] he[H] T

AL ey st [0 (o] + 2B

Proof. The proof can be adapted from the proof of Lemma B.4 in (30), and we include it for the
completeness. We observe the following one-step-back decomposition:

E(Th,ah)wpn,h [gh (Tha ah)]
=E(r,_1,an_1)~pn.n1 [/ (Dr-1(Th—1,an-1), kh—1(Th)) L2 () - Bap~rn (1mn) 90 (Ths @n)]dop,

Oh

gE("'hfl;ahfl)’vpn,hfl lon—1(Th—1,an—1) ||L2(u)’2;:,h—l’¢

/ pn—1(Tn)Ea, o, (1) 90 (Thy @n)]dop,

Oh

! E(Th—lxah—l)"’ﬂn,h—l

LQ(U‘)vzpnyhfl,tiw

Direct computation shows that for all

2
E

/ pn—1(Tn)Ea, ~m, (100) 90 (Thy @n)]dop,

Oh

Th*l;ah—l)'\’pn,h—l
L2(M)azpnyh_1,¢

2
:nE(":IL—lvah—l)an,h—l I:EThNPW('|Th—17ah,—1)vah""ﬂ'h('|7’h) [gh(Th’ ah)H

/ 1th—1(71) * Eay, rory () [90(Th, @n)|don,

Oh

2
+ )\E(Thflva‘hfl)'\’l)n,h—l

H

2
gnE(‘T’h—l,flh—1)an,h—llE‘FhNHJ’"('\‘Fh—l,ah—l),tlh~7"h('|‘l'h) [Qh(Th, a‘h)] + AB?*d
<SUAE G, &)~ pn 1 cu(A) (90 (T, @1)]* + AB?d,

which finishes the proof. O

Lemma 16 (one-step back inequality for the learned model). Assume we have a set of functions
[9n] ey where gn : X x A= R, ||gnlloc < B, Vh € [H]. Given Lemma|51} we have that ¥/,

Z ]E(T}uah)NPn,h [gh(Th? ah)]
he[H]

< Z E(Th—hah—l)wpn,h—l [
he[H]

él—l Th—1,Qh—1 ‘
—1(Th—1, an )LQ(“)’ZZ,I,I,&

: \/ﬂ|A|E(%h,ah)~pn,h_1ou(,4) (91 (Th, @n)]? + nB2(, + B?*Ad

15
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Proof. The proof can be adapted from the proof of Lemma B.3 in (30), and we include it for the
completeness. We make the following one-step-back decomposition:

E(r,..an)~pnn [90(Ths an)]
:E(T}Lihahil)'\/p"‘hil [/ <¢gh71(7—h71’ ah*l)’ﬂhfl(Th»LﬂH) ’ EahNW}L("T}z)[gh(Th7 ah)]doh
on

<E(‘rh_l,

llh,—l)NPn,h,—l

bn_1(Th_1, ah—l)‘

L st .
2(#)7 Prh_1:®

: E(Th—laah—l)"’/)n,h—l

/ﬂh—l(Th)anm(»m)[gh(Th,ah)]dOh
Oh L2(H)7E,,n$h’71,q;
Direct computation shows that

2
E(r,_

1,@h—1)~Pn h—1

/ ﬂh—l (Th)EahNﬂ'h('lTh) [gh(Tha ah)]doh

Oh

LQ('[L)’EPW,,h—l’d;

2
:nE(q;h—lvdh—l)NPn,h,—l |:E7'h’\‘ﬁn('|7-hfl7&4h—1)7ah"‘7"h('|7—h) [gh (7, ah)]}
2

/ﬂhﬂ(Th|')Eah~7rh(.|Th)[gh(Th,ah)]dOh

Oh

+ )\E(Th—l @k 1)~ Pr k1
H

gnE(%hfl;&hfl)an,hflEThNﬁn(,‘%}1717&h71),ahNﬂ.h(,lTh) [Q}L(Th, Clh)]2 + B2/\d
<,n|‘/4|IE("~'h,751)1,)“’%771,}17101/1(./4) [gh (%hu &h)]2 + nB2Cn + .Bg)\d7
where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof. O

Lemma 17 (Optimism for NE and CCE). For episode n € [N], set

bp,n = min {an”(lgn,hl(Thla ahf1)||L2(M),g—1 ,H} )

n,h,pn
with o, = O(H/Ad + nA(,), A = O(dlog(nH|M|/J)),
S, i Lalw) = La(p), =5 = > [én,h(Th,ah)én,h(Th;ah)T} + M.
(Th,@n)EDn n
™ is computed by solving NE or CCE. Then with probability at least 1 — 6, Vn € [N],i € [M] we
have

Proof. Define fij; ,(+|7) := arg max,, (D#’W}’i.ﬂ Lfﬁ) (7) as the best response policy for player i

atstep h, and let 7y = i ; x 7 .. Let fi'(7,a) = ‘
to lemma [51] and lemma [56] we have that using the chosen A, with probability at least 1 — 4,
Vn € [N],h € [H],P € M,

73n’h(-|7, a) — Py(-|r, a)Hl, then according

Erayminn |1(1,0)°] <o Eaypon |7 a))] <G,

=0 (||¢>h1(fh1,ah1)i;1 ¢> .

1601 (mn1,@n)llg=

A direct conclusion is we can find an absolute constant ¢, such that

an,h(Th—laah—l)Hzfl ,H}
1,9

n,h—

Z’n,h(Th, ap) =min {ozn

>min{can én,h(rh_l,ah_l)HEA H} Vn € [N],h € [H].
1,é

n,h—

16
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Next, we prove by induction that Vh € [H],

H
N Ty 2 . n
Bz [Vh,i(T) = Vi (T)} >y E s ap)~dir [bn,h’ (Th, @n) — H min{ f! (7, an’), 1}} :

h'=h
®
First, notice that Vh € [H],
—n s —n ",
Epeazr [Vii(T) = Vai (1) =Erage [(Pr@ni) (1) = (D@17 (0)]
A .72
ZE. gz [(Dfr;:Qh,i) (1) - (Dfr;:Qh,i ) (T)}
AN Tl
By apaz |Gni(r@) = QL7 (ra)],
M
where the inequality uses the fact that 7} is the NE (or CCE) solution for {Q h l} . Now we are
' 1

1=

ready to prove equation @

e When h = H, we have

n

—n 7, —n ",
ETNd;" [VH,Z'(T) -V (7) >E(T,a)~d;;" {QH,i(Tﬂ a)— H,i (T, a)}

)

=E ;. a)naz” [En,H(T, a) — Hmin{f}(r, a), 1}} .

* Suppose the statement is true for step h + 1, then for step h, we have
Ermagr |Vial?) = Vil ()]
>E(r a)agr [@ha(r @) = Q) (7, 0)]
B ayaz [bnn(r.@) + (PuViirs) (@) = (PaVY) ) (7))

=By an~az  |bnn(Th, an)
nh L

ot

+ (ﬁnh (VZH@ - fofl%)) (Th, an) + ((ﬁnh - Ph) Vit 7;) (Th, ah)}

ZE(T,”a,L)Nd;" Bn,h(Tha ap) + ((ﬁnh - Ph) V;:Tﬂ) (Th»ah)}

n,h *“
o o,
FEry iz | Vnra(me)) = Varis (mne)|

Pn,h+1

2E(r, an)~ar b (Thy an) — Hmin { £} (1, an), 1}}

she &

n

—n t,m™,
+ ETh+1Nd7%n s {Vh+1,i<7h+1) — Vi1 (Th+1)}
H
> Z ]E(Tmah)fvd;i;" y {bn,h’ (Tha a'h) - Hmln{fi?’ (Thv ah)a 1}} ’
h=h n,

where we use the fact

5 77
’(Pn,h - Ph) Vh+1,i

- 7

PuaIra) = PuClma)| [V

(r,a) <min {H, ‘

J

<Hmin {1|Ponllr.a) = Palir.a)| }
=H min {1, fI'(7,a)}

and the last row uses the induction assumption.

17
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Therefore, we have proved equation[8] We then apply h = 0 to equation[8] and get
Ermay [Voulr) = Vor (7))

—n ta
=K, 4= |:V0,i(T) - V(m (7)}
Pn,0
H ~
> Eapaz  [bun(r.a) — Hmin {ff(r.0), 1}]
h=0 "

H
=Y Epajay [brn(ra)] - HY B azr lmin {7 (r,a),1}].
h—0 n,h n,h

h=0

Next we are going to bound the second term. Applying Lemmato gn(z,a) = min{f](z,a), 1},
we have

H
Z ZE(Thaah)Npk,h [Inin{ff]f(Tll7ah)71}]

k€[n] h=0

H
< Z ZE(-,—h_l,ah_l)NPk,h,—l [ )

ke[n] h=0

- (Th_1,ah_1)Hz,1 ]

Pl h—1:¢

. \/n|A| . E("ih,ydh)’\’l’k,h—l {min {f}’f(%m dh), 1}2} + Ad + n,

H
< Z ZE(Th—hah—l)Npk,h—l [”ak¢k7h1(7hlaahl)"2_l ‘|
1,(5

ke[n] h=0 Pl h—

Note that we here use the fact min {f7/(7,a),1} < 1, E¢z, a,)~pnn_s [min {7 (Tn, an), 1}2] <
¢, and our choice of a,.

Combining all things together,

>t s L UG RAHRIC]
ZZETG)Nth[tha} HZZE(TG‘)NPJC}L mln{tha 1}]

ke[n] h=1
>0.

Since the inequality holds for all n, we have that 7} — v;r e for all n.

Lemma 18 (Optimism for CE). For episode n € [N], set

h,

bnhmln{an||¢nh 1(Th—1, @n—1) | 1y () 51 . ,H},
n,

with o, = O(H/Ad + nA(,), A = O(dlog(nH|M|/J)),

S, i Lap) = La(p), =5 = Y [én,h(Th,ah)émh(Thaah)T} + M.

(Th,an)EDn, h

7™ is computed by solving CE. Then with probability at least 1 — 6, Vn € [N],i € [M] we have

vy — mz}zxv o >0, Vnel[N]ie |[M].
we

18
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(n) _ wor (™) ~(n) _ ~
hi = AIEMAaXy, cq, thonfj’ max,eq, Qh’i (1) and let 7,/ = @y ; 0

ﬂé"). Let fi'(1,a) = Hﬁ”’h(.h’ a) — Py(:|7, a)‘ , then according to lemmaand lemma we
1
have that using the chosen A, with probability at least 1 — 0, Vn € [N],h € [H],P € M,

Proof. Denote @

Egaypon [T 0] <G By, (@] < G

=0 (H(bh(Thhahl)i;lh_w#) -

16n(Th-1s @n-1)ll5r

A direct conclusion is we can find an absolute constant ¢, such that

5n7h(7h, ap) =min {an

(Zgn,h(Th—laah—l)H271 vH}
1,é

n,h—

> min {can

an,h(Th—lvah—l)H271 aH}v VTLE [N]vhe [H]

Next, we prove by induction that Vh € [H],

H

Ercaz |:Vh,i(7-) — max V5" (7)} > Bl anmdz |bnns (T an) — Hmin{ f7 (7, ), 1}} :
) h'=h
)

First, notice that Vh € [H],

E. gz |Vii(r) — max Vit™ (1)| =B, _gzr | (Dry Qi) (7) — ( Dap max Q55 ) (7)
P weR; P Taax

2B, Lz [(Dﬁ;;QZ@) (1) — (Dfr;; max Q‘;:?iﬂn> (T)}

weN

—n n
e | Qhari )~ mx QT (7. a)].

o VM
where the inequality uses the fact that 7, is the CE solution for {QZ Z} . Now we are ready to
" i=1

prove equation [0

e When h = H, we have

B |Vhalr) ~ max Viss™ ()

—-—n n
Sy | Q7 )~ max Q3 (7. )

=B, )i [bosi(r,a@) — Hmin{ffs(r,a),1}]

19
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* Suppose the statement is true for step i + 1, then for step h, we have

E, caz |:Vh,i(7-

—-=n
2R a)~dz? |:Qh

i(1,@) —maxQ
K3

) — max V327
we; ’

)]

wor™

hyi

(r.a)

=E (7 q)ndz" |:l;n,h(7_; a)+ (ﬁhVLM) (r,a) — <Ph max Vﬁff:) (r, a)}

:E(T;L,ah)fvd%n
+ (7/57,,7h (VZ+

(Th'7ah')wd73n,h

+E

wn
T ~dZ
h+1 P

>

= (Th7ah)Ndin

n,h =

+E

Thi1 ~d7§"
H

=

h'=h

n,h -

n,h41

> B anmaz [

by 1 (Th, an)
o= ViSE)) (mean) + ((Pan = Pu) VT ) (s

b (Ths @n) + ((ﬁnh - Ph) V;i’ﬂff;) (Thvah)}

—_—n n
(Vi) = VT (mn)|
+1

bn,h(Thv ah) — Hmin {ff?(Th7 a’h)v 1}

}

(Vi) = ViEETs ()|

b n (T, @p) — Hmin { f3 (1, an), 1}} ,

n,h’!

where we use the fact

Prn(|r,a) — Pu(-|7,a)

wor™

Vit

(r,a) <min {H, ‘ Hl vaiuffz
<Hmin{1, Hﬁnyh('h, a) — Pn(:|r, a)H1}
=H min {1, f}/(7,a)}

N

‘ (Pn,h - Ph)
and the last row uses the induction assumption.

Therefore, we have proved equation[9] We then apply h = 0 to equation[9} and get
Rk wor™

Ernao [Vou(r) = Viid™ (7)]

=K, gz [Vo,z‘(T) - oujfﬂ (7)}
Pn,0
H

>3 E ﬁn[én,—H'"7,1

}z_;) (T,G)N(i,ﬁnﬁ (7, a) min { f3'(7,a), 1}

H
| =Y By Duin{fi(r.a),1}].

H
- Z E(T,a)Nd%" ., [bn,h(Ta a)
h=0 " h=0

20
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Next we are going to bound the second term. Applying Lemmal[l6to g, (7, @) = min { f}’(7, a), 1},
we have

H
Z Z ]E(Thaah)NPk,h [min {f}?(ﬂu ah)7 1}]

ke[n] h=0
H

< Z Z]E(Th—lvahfl)’vpk,h—l |"¢k’h1(7_h17(1h1)H2_1 ‘|

ke[n] h=0 Pl h—1,¢

. \/n|A| "Bz, 1) ~prn_1 {min {f}’f(f'h, ap), 1}2} + Ad 4+ n¢,

H
S Z Z]E(Th—hah—l)"’pk,h—l l"ak¢k’h_l(7h'_l7ah_l)HE1 ] :

k€[n] h=0 Plh—1:®

Note that we here use the fact min {f7/(7,a),1} < 1, E¢z, a,)~pnn_s [min {7 (Tn, an), 1}2] <

¢, and our choice of a,.

Combining all things together,

. —k
2 - max o™ = 3 Erep [vo,m) ~ max Ve <T>}

we; we;
ke[n)] keln]
H H
2 Z Z ]E(Th,ah)"‘f)kﬁ {bk,h(Thv ah)} —-H Z Z ]E(Th,ah)"‘/)kﬁ [min {ff]f(Thv ah)7 1}]
ke[n] h=1 ke[n] h=1
20,
Since the inequality holds for all n, we have that 77 — max,cq, v¥°" for all n. O

Lemma 19 (Pessimism). For episode n € [N), set

b = min f o (o n )l o5 H

T
with o, = O(H/Ad + nA,), A = O(dlog(nH|M|/J)),
S, Do) = La(p), T, = > [én,h(Th,ah)émh(Th;ah)T} + Al
(Th,an)EDn, K
Then with probability at least 1 — 0, Yn € [N],i € [M] we have

n

v —vl <0, Vne[N]ie[M].

Proof. Let fJ'(1,a) = ‘ ﬁn,h(~|7, a) — By(-|7,a)|| , then according to lemma and lemma
1
we have that using the chosen ), with probability at least 1 — 8, Vn € [N],h € [H],P € M,

Erayson [0 s Eiraypn (71 0)] <G

n,h—1,6

||€2)n,h(7'h—17ah—1)“ﬁ:’l =0 (||€Z7n,h(7'h—1,ah—1)| st > :
Pp h—1:¢

A direct conclusion is we can find an absolute constant ¢, such that

an,h(Th—laah—l)Hzfl ,H}
1,¢

Z’n,h(Th, ap) =min {ozn
n,h—

bnn(rian-)| H} Vn € [N],h € [H].

n,h—

> min {can

21
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Again, we prove by induction that Vh € [H],

H

Erazn [KZJ(T) ~ Vit (7)] < Etryap~azr [—gn,h' (Thr, an) + H min{ fyi, (1, an), 1}} :
n h/:h 7L,h/l
(10)

e When h = H, we have
Erarr [Vini(r) = Viis()| =Erayear |@,(70) — QFri(r.a)]

Pn
:]E(T,a)’\‘d’;;: |:_IA)7LH(T7 a‘) + Hmln{f}-bl (Ta a)7 1}:| .

* Suppose the statement is true for step i + 1, then for step h, we have
E,ar [Vii(r) = Vi (7)]
:E(T,G)Nd;i" [QZ i(T7 G,) - QZZ (7-7 a):|
Pn )
:E(-rh,,ah,)Nd%” X [—Bn,h(T, a) + (ﬁ"thZ-i-l,i) (T}L, ah) — (PhV}ZT:L,L-) (Th7 ah):|
:E(Th»ah,)Nd;Z . [_Bmh(Th» ap)
+ (ﬁnh (KZH,i - Vlﬂlu)) (Th, an) + ((ﬁnh - Ph) Vhﬂnlyi) (Th, ah)}

:E(Th,ah)wg" [—Bn,h(fh,ah) + ((ﬁn,h - Ph) V}f:l,i) (Th, ah)}

n,h

B ar [KZ+17¢(Th+1) - V}:r+1,i(7—h+1)}
n, b1
<E(T,”ah)~d*ﬁ" |:—I;n,h(7'h, ap)+ Hmin {f}} (1, an), 1}}
n,h

Vir(mnn) = Vit ()|

H
<Y Eaneay (b (7 @) = H min {f7 (70, @), 1}

.
h'=h b

where we use the fact

‘ (ﬁn,h - ph) V}ZT_:LZ‘

~

Punl(-|lr,a) — Py(-|T, a)H1 thw-:m
<H min {1, ’ Punllr,a) = Pu(lr, a)Hl}
—H min {1, f'(r,a)}

(1,a) <min {H,

J

and the last row uses the induction assumption.

The remaining steps are exactly the same as the proof in Lemma[I7]or Lemma|[I8] we get

H
Z E(Th»ah)"'ﬂk,h [min {filf(Thv an), 1}]
h=0

&

€[n] h=
H
< Z ZE(Th—lxah—l)NPk,h—l Hak(kaL(Th—lva’h—l)HE,l
ke[n] h=0 Pkyhflyds
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Combining all things together, We have

ok 7k v”lii
Skt = Y B [Vo,im v <r>}
ken]

ke(n]

H H
< Z ZE(T}uah)NPk.h {_Bk,h(Thvah)} +H Z ZE("'h,»ah)NPk,h [min{ff/f(Thvah)vl}]

ke[n] h=1 ke[n] h=1
<0,

which has finished the proof. O

Lemma 20. For episode n € [N], set
bnh—mln{an||¢nh 1(Th 1, Ap— 1)||L2(,u)2 1 e 7H}7

with a,, = O(H+/Ad + nA(,), A = O(dlog(nH|M]|/J)),
Song, i La(w) = La(p), %, 5 = > [an,h(Thaah)an,h(Th;ah)—q + M.
(Th,@n)€EDn,n
Then with probability at least 1 — 0, Yn € [N],i € [M] we have
N

Y Argo <H3d2N§Alog(H]\;|/Vl|)>

Proof. Let f'(T,a) = H?S,Lh(-h', a) — Py(+|7,a)|| , then according to lemma and lemma
’ 1
we have that using the chosen A, with probability at least 1 — 6, Vn € [N],h € [H],P € M,

n=1

Eraympnn |(1(1,0)°] <o Eaypon |7 a))] <G
=0 <||¢h(7—h 1, Ah— I)HZ 1 )

o (Th—1,an—1)lls-1
n, Pn,h—1:®

h—1,¢
By definition, we have
A" = lrél[z}@[( {v} — o'}

For each fixed ¢ € [M],h € [H] and n € [N], we have

Emd;;f [th ]
“Eeiz, | (P z) - (P25,) )]
Bz, [Qnilnia) = Qi )}
:E(Th,ah)wg " an,h(Tha ap) + Pn,h (Vh+1,i - KZ-H,@‘) (Ths ah)}
=Er an)maz?, _Qi)n,h(ﬂu ap) + ((ﬁnh - Ph) (VZ-&-l,i - KZJrl,i)) (Th,ah)}
+E, iy, [VZ+1,i(Th+1) - Kz+1,i(7_h+1)}

<E(r an)~ag?,

2B (7 @) +2H £ (i @n) [ 4 Vs () =V (i)

Note that we use the fact V', +1.i(7) = Vi1 ;(7) is upper bounded by 2H?, which can be proved
easily using induction using the fact that I;’,'LL (1,a) < H. Applying the above formula recursively to
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o [VZ +14(7) = Vi1 (T)} , one gets the following result (or more formally, one can prove
by induction, just like what we did in Lemma [36] Lemma [37|and Lemma [38)):

T~d

H H
Ede;';fO |:V0,i(7) - 7871‘ (T):| <2 Z E(Th,,ah)wd’;; |:b717h(7-h7 ah):| +2H2 Z E('rh,ah)rwd;?h [f}?(Tha a‘h)] .
h=0 h=0

(a) (b)
(11)

First, we calculate the first term (a) in Inequality equation[TT] Following Lemma[T3]and noting the
bonus by, 5, is O(H ), we have

H

Z ]E(Thvah)’\’pk,h |:l;k7h(7-h7 ah):|
ke[n] h=0

H
< Z ZE(‘rh,,ah)NPk’h [min{ak
kG[n} h=0

ng,h(Thfhahfl)HEil ,HH

k. b

H
< Z ZE(T;L717O';L71)N/J7€,;L71 |:||¢h(7—h—17ah—1)“21 :|
ke[n] h=0

nlAl(@r)? - B, an)mpnn [||€Z7k,h+l(7~'hv an)|3- + AH?d.

n,f)kyhyd;

Note that we use the fact that B = H when applying Lemma|[T3] In addition, we have that for all n,

RE i anyepn [||¢n,h+1<%h,ah>;_l }
" Pn b P

R R R R —1
—nTr (E(%h,,&h,)an7h [¢n,h+1(7~'h;dh)(ﬁn,h-&-l(%hadh)—r} (nE(%h,ah)wmh [¢n,h+1(7~'hy&h)(ﬁn,h-&-l(%hadh)T} + /\Id) )

<d.

Then,
H H
7 2
§ : § :E(Tmah)NPk,h {bk,h(T}“ah)} < § E ]E(Th—lvah—l)wpk,h—l |:¢h(7_h17ah1)|2‘1’ :| \/dA (o)™ + H2dA.
kP no®
ke[n] h=0 ke[n] h=0 '

Second, we calculate the term (b) in inequality equation [TT} Following Lemma|[T3] we have

H
Z Z E(‘m,ah)Npk,n [ff]f(Tha ay)]

ke[n] h=0
H-1
< Z Z E(Th—l,llh,—l)Nﬂk,h—l |:||¢h<7—h—17ah—1)”2p1 ¢:|
keln] h=0 o

: \/n|A|E(7~'h,»dh)NPk,h1 [(ff]f(%h’ &h))ﬂ +dA

H—-1
< Z Z E(Thflyahfl)’\‘ﬂk,h—l |:||¢h(7—h1aah1)||2;k17h1,¢:| V n|AKk +dA

ke[n] h=0

H-1
g
N Z Z E(r_1,an—1)~prn-1 |:H ”Qbh(Th—l’ah—l)”zp}ih1’¢:| :

ke[n] h=0
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Then, by combining the above calculation of the term (a) and term (b) in inequality equation[TT] we
have:

otk (k) k
2 P =0 = 37 B [Vou () - V30 (6)]
ke[n] keln]
< Z Z (E(Th 1,81 —1)~Pk,h—1 {|¢h(7'h 1, Qph— 1)”2 1 ¢:| \/dA Oék —|—H2d)\>
ke[n] h=1 Pk,
H-1
+H2 Z ZE(Thflvah—l)NPk,h—l |: H(bh(Th 1,Qp— 1)”2—1 ¢:| .
ke[n] h=0 Pk,h—1>
Note that
N
ZE(Th 1an—1)~dE ) |:||¢h(7'h 1, Qh— 1)||Z 1p }¢:|
n=1 n,h
N
S NZE(T}L*l’aiLfl)ngfh,—l Ph(Thl’ahl)TZ ™ or ¢h(7—h1aah1):| (CS inequality)
n=1 v P h
N
SV <logdet <Z ]E(Th1,ah,1)~d;;’fh_l[¢h(7'h—17ah_1)¢h(7h_1,ah_1)T]> - logdet()\ld)>
n=1

(Lemmal[53)

N
<y /dN1 1+ —
\/d og( +d>\>

(Potential function bound, Lemma [54|noting ||¢}, (s, @)||2 < 1 for any (s,a).)

Taking maximum over ¢ on both sides, we get

- - (n) __(n)
A — RN
2 AM =3 ma {70 - ol
SH\/leog<1+)\/dA (an)® + H2dA
1 N
H* | — dNlog ( 1+ —
+ <HaN\/ og( +d/\)>
9 N
<H%day NAlog(l—f—a)

HN
gHSdQN%Alog(%)
O
Theorem 21 (PAC guarantee of OFOVI-MLE). When OFOVI-MLE is applied with
parameters (, = O (log(Hn|M|/é)/n), X = ©O(dlog(NH|M|/F)), bpn =

min {aanth 1(Th—1,Qp— 1>||L2(u)2 - 7H} and an, = O(/Ad+nlA|C,) by setting

the number of episodes N = (’)(1576(1l4|./4|2 ~2log(Hd|A||M|/be)) with probability 1 — 6, the
output policy 7 is an e-approximate {NE, CCE, CE}.

Proof. For any fixed episode n and agent ¢, by Lemma[I7] Lemma[I8|and Lemma[T9] we have

Tl n n n _ N
v, Tt = |or maxvT —of ) <77 — 0 <A™
. weN;
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Taking maximum over ¢ on both sides, we have
771'/’17/ n n n
max {vj — vy } or max | maxvy°" — vl <A™ (12)
1€[M)] i€[M] (we;

From Lemma[20] with probability 1 — §, we can ensure

N
dAargo <H3d2N%Alog(
k=1
Therefore, according to Lemma[54] when we pick IV to be
~ (HSd*A? HdA|M|
(@) 5— log
€ de

i

we have

1N
— A" L e.
v

On the other hand, we have
max {vj’ﬁ”' - vf} or max { max v¥°" — vf
i1€[M] ie[M] (we;

*
1‘77\'Ev n* n* n*
=max v, " —v] or max { max vy°"  —of
1€[M] i€[M] (we;

N
n* : n 1 n
<A" = min A <NZA <,
n=1
which has finished the proof. O

B.3 PROOF OF SEC.[4.2]

We will provide the proof of Theorem [7)in this subsection. We first introduce the following additional
assumptions on the representation and the reward.

Assumption 1. [ ([, [¢(7,a)|2da)*dr < dforall ¢ € ® and [([,r(r,a)da)*dr < d.
Lemma 22 (L, norm of value function). Vi € [N], h € [H], for any policy w, we have that

IVirille < 2d + 2H%d* S H2d?.

Proof. From the proper of low-rank POMG, we know that there exists w™, such that ||w™ |2 < VdH
and Q7 ;(7,a) = ¢(7,a)Tw™ forall h € [H],i € [N]. Then, we have

Wi
:/ Vi () dm,
i
2
-/ ( [ w@nlm) () + Pl (@)@ s ane) dah> I
T A

2
</ (/ (T(Th,ah)+P(Th+1|Th7ah)ﬁ(ahﬂ\Th+1)QZ+1,i(Th+1,ah+1)) dah) dTy
T A

2 2
2 [ ([ rtowandan) amsoma [ ([ 1om.anldan) o7,

< 2d + 2H?d?
< H?d?

N
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Theorem 23 (PAC guarantee of OBOVI-SDR). When OBOVI-SDR is applied with parameters
Cn = O (log(Hn|M|/d)/n), A = ©(dlog(NH|M]|/d)), and o, = O(Hd\/Ad + n|A|(,) by

setting the number of episodes N = O(e~2d? log(H|M|/d¢)) with probability 1 — 6, the output
policy 7 is an e-approximate {NE, CCE, CE}.

Proof. Recall that the estimated transition satisfies

2
<Gn

PE('M'}L’ ah) - P’}’j”('h:ha ah) )

E(Ihuah)NDh,n

Denote by V() the value function of player  under policy 7 and transition P. Since the returned pol-
icy 7 is an equilibrium with respect to P, we have for all i € [N]: V;(fr) = max;: Vé (78,770 =
(BN
Vﬁ- (7").
Note that
VR () = Vol (7)) = | max VR (7, 7) — max Vi (7", 77|

< max [VA (7, 77) = V(7,77

Thus, we have

Vh(#) 2 VA(#) — dV/Ga
=VyIE) —dve
> Vgl (") = 2dv/Co

Hence, 7 is an 2d+/(,,-approximate equilibrium.

To guarantee an c-approximate equilibrium, we require 2d+/(,, < &, which leads to N =
O(e~2d?log(H| M|/d¢)). O
Theorem 24 (PAC guarantee of OFOVI-SDR). When OFOVI-SDR is applied with parameters
Cn = O (log(Hn|M|/d)/n), A = O(dlog(NH|M|/?)), and o, = O(Hd\/Ad + n|A|(,), by
setting the number of episodes N = O(HSd*| A|>¢ =2 log(Hd|.A||M|/d¢)) with probability 1 — 6,
the output policy 7 is an e-approximate {NE, CCE, CE}.

Proof. Similar to the proof of Theorem[21] with Lemma[22] we have that

H
—(n n 2
7)2( ) Qz(‘ )= § : (E(T}Llya}Ll)ng7,lh,1 |:||¢h(7—h17ah1)”2_{ ] \/dA (Oén) + sz}‘)

et P b
H-1 a
1760 DL B [ A £

h=0 n,h—lvd’

Taking maximum over ¢ and taking dominating term out, we have

N
dargo <H3d2N%Alog(

k=1

i

The remaining steps of the proof follow similarly to the proof of Theorem 21] O
C BELIEF-BASED MG AND DERIVATION OF LLVR

C.1 EQUIVALENT BELIEF-BASED MG CONSTRUCTION

We show that a POMG can be converted to an equivalent belief-based MG. Recall that the belief
function is initialized as fyeiie r(51|00) = P(so]00), with recursive updates: fperies(Spt1|Thy1) o
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fs foetiet (8n|Th) P(Sh+1|8h, @n)O(0h+1|8h+1) dsp. This enables a transformation from a POMG
to an equivalent MG over beliefs, denoted as My, = (B, { A}, {Ris} M, H, iy, Pp), where
B C A(S) represents the set of possible beliefs, 14(61) = [ 1gy=fy.1. s (-|oo)#0(51)D(00|50) dso,
and Pb(ﬁthl ‘5}“ ah) = f 1Bh,+1:fbelief(Thyahyoh+1)]P)(Oh+1|ﬁh’ ah) d0h+1. AIly joint pOliCy 7T('|T)
of the original POMG uniquely maps to a belief-based policy 7y (-| fpesic £ (7)) in the associated MG.

For a given belief-based policy 7, the state value function V;"*(8,) and state-action
value function Q}*(0p,ap) for the belief Markov game can be defined as: V,*(8,) =

E Zf{:h r(ot7at)|6h}, 2o (Bh,an) = E Zfihr(ot,atﬂﬂh,ah] Therefore, the Bellman
equation can be expressed as

Vit (Br) = Ex, (@3 (Bryan)], Q5" (Brsan) = r(on, an) +Ee, [V, (Bri1)] - (13)

Note that the equivalent MG is based on beliefs, which are not directly observed. More importantly,
these beliefs rely on the entire history, including all players’ observations and actions. Consequently,
the joint distribution is supported on a space with exponentially growing dimensionality. This
exponential representation complexity leads to infeasible computational and statistical demands,
highlighting the inherent limitations of directly applying MG-based RL algorithms to POMGs.
Consequently, several special structures, such as L-decodability, have been investigated to reduce the
statistical complexity of learning in a POMG, motivating our work.

C.2 DERIVATION OF LLVR

We now derive LLVR that leverages the underlying structure of L-decodability to support exact and
tractable linear representation of the value functions over the latent space in POMGs without full
history dependence.

As mentioned above, though an equivalent belief-based MG can provide a Markovian Bellman
recursion (cf. equation [I3), operating within the belief space tends to be computationally challenging.
We derive L-step Latent Variable Representation (LLVR) for L-decodable POMGs that leverages the
underlying structure of L-decodability to remove the need for explicit belief calculations.

By Deﬁnition@, an L-step memory state T,f contains sufficient information. Therefore, we obtain
the simplification Q' ( oetie 7(mn), qh) = Qp*(p*(rh), ah).. Since any belief-based policy m, has a
corresponding joint policy 7, we will henceforth make no distinction between them and uniformly
denote both as 7. To simplify notation, we redefine Q7 (7F, arn) = Q7 (p*(7£), an), leading to the

simplifie Bellman equation:

QZ(Tifv ah) = T(Ohﬂ ah) + E]P’"(oh+1\7,f,ah) [V}ZrJrl(TIiLl)] ) (14)
where P7(-) denotes the probability distribution under policy .
Note that in equation there is an additional dependence of V(7. ;) on (7, an)
since 1} 1 shares overlapping components with (tF,ap).  Specifically, 7 '\, includes
(Oh—L+2,@n—1 42, ,0n,ay) from (7}, a;). Consequently, we turn to the following L-step

Bellman equation to avoid this overlapping.

h+L—-1

QZ(Tff’ a'h) = EPW(O},,+1:},,+L_1|T;IL’,G/;L) [( Z T(Oi’ al)) + V’ZT+L(T}%+L)|ThL7 ah * (15)
i=h

We note that by L-decodability, there exists a moment-matching policy x, for arbitrary policy m,
which is conditioned on a latent variable to generate the same expected observation dynamics while
being independent of history older than L steps (14). We defer the detailed construction of x to
Appendix [D| for brevity. Using such a correspondent moment-matching policy x . of , one can write

P (i Ll an) = /p(2h+1|7;f,ah)ﬂ”x" (s L1 2h41) dznr = (PCITE, an), PX (77 1))

(16)
where z denotes the latent variable and the first equality follows from the construction of .

28



Under review as a conference paper at ICLR 2026

Substituting equationback into equation [15|enables a reformulation of Q7 (7%, ay,) in linear form.
Each reward and value term in equation |15|becomes an inner product of p (zh+1 | TF, ah) with the
corresponding integrals. Specifically, for the first term in , forall k € {0,--- , L — 1}, we have

B iirt an M (Ohtk, @nik)] = <p(Wvaah)7}[P“*(0h+k7ah+kJT(0h+k,ah+k)d0h+kdah+k>

W;:+k(')

Similarly, for the second term in (I3]), we have

EW[Vhﬂ+L(ThL+L)] = <P('|ThL,ah)a/PX” (Ti%+L")V(TIf+L) dTh+L> a7

Wi ()

Altogether, we conclude that in an L-decodable POMG, both the reward function r and the value
function Q7 (7, @) can be linearly represented with p(zp,1|7/F, @) Specifically, defining &7 (-) =
S o Wi 1. (+), the Q-function can be represented as Qf (77, @) = (p(:|7¥, an),@f (-)). With this
linear representation for ()7, the backup step of the Bellman recursion can be replaced by a least
squares regression in the space spanned by p(-|7i,a). Specifically, at step h, the estimate of
Q7 (Th, ap) can be obtained by the optimization:

+L—1
m@%nth,LJrL,ah <<p |7iv @), i) ( Z Ouaz> Pty s ansr) w}L+L()>)>

i=h

(18)

Since p(zp+1|7, ap) is typically unknown a priori that must be learned from data, we can estimate
it via MLE for conditional density estimation,

max log PX™ (01 1:n41|7h  an) = log (p(:|7i, @n), PX" (04 1:41"))

Note that solving this MLE problem is generally intractable and the following evidence lower bound
(ELBO) can be constructed as a tractable surrogate objective for MLE (47):

I B o 1OB P (O 101120 ~ KL @ne 0nsvv) )
(19)

We provide the complete mathematical derivation of the ELBO in Appendix [F| This derivation
establishes a computational friendly variational ELBO and the methods for solving this ELBO
have been extensively explored within the variational inference community (48)) (see Appendix
[F for detailed analysis). We remark that under Assumption [4] the estimator obtained by max-
imizing the ELBO is identical to the estimator obtained by MLE and the ELBO can be effi-
ciently optimized using variational inference techniques. We can parameterize the solution to the
ELBO with a variational distribution class Q = {{qx (2|7, an, On+1:h+1) the[r]} and model class
M = {{(pn(z|7iF, an), pr(On+1:n+112)) he(m }- Practically, both Q and M can be implemented
as neural networks, yielding approximate solutions §(z|7, an, 0n+1:1+1)s Ph.n(On+1:n+1|21) and

Pr.n(zn|TE, @y) and approximated transition P, = {(pn.n (217, @n), Pron(Oni1 |21)) Y ne -

Once pn p(2|7E,ap) is obtained, the Q-function can be approximated as Q7T (7t,an) =
(p(z|7, a),w(2)) and can be obtained by a least square regression . However, if z is con-
tinuous, then w(z) is infinite-dimensional. To deal with the infinite-dimensional w(z), we follow
the trick in (41) that forms Q™ (77, @) as an expectation Q™ (i, an) = (p(z|7f, ar), w™(2)) =
Ep(z)r2 ay) [w™(2)] and then approximate it with random feature quadrature. Specifically, we con-
sider w(z) lying in certain RKHS with ¢ as its random feature basis, i.e., w(z) = Ep(¢)[p(, 2)]. As
aresult, Q" (1}, a5) ~ & Zfil w™(&)¢(zi, &) where the latent variables z; ~ p(z|7F, ap) and
random features &; ~ P(¢). If the random feature ¢ is specified, then w can be implemented by a
neural network wg. We defer the detailed derivation to Appendix
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D MOMENT MATCHING POLICY

We provide a formal definition of the moment matching policy below.

Definition 25 (Moment Matching Policy (14)). With the L-decodability assumption, for h € !LH )
W elh—L+1,hlandl =h" —h+ L — 1, we can define the moment matching policy x™" =

{XZ}W : S x O x AT — A(A)Y_p,_ 141 introduced by (I4) , such that

,h
Xpi (@n|(Sh—L+1:h's Oh—L41:h's Q@h—L41:h—1))
=B [mn (an|2n )| (Sh—r+1:h Oh— L4107y @h— L1 —1)], YA < h—1,

and xZ’h = 7p,. We further define 7", which takes first h — L actions from m and the remaining L
actions from x™".

The primary motivation for defining the moment matching policy is to construct a policy that is
conditionally independent of the past history for theoretical analysis while remaining indistinguishable
from the history-dependent policy to align with practical algorithms. By Lemma B.2 in (14), under
the L-decodability assumption, for a fixed h € [H], we have d}, ,,(zp) = dﬁp”‘h(mh), for all L-step
policy 7 and z;, € AXj. As XZ’h = 7, we have d},h(xh,ah) = d?h(:vh, ap,). This enables the
factorization in equation|17| without the dependency of the overlap observation trajectory.

E THEORETICAL ANALYSIS FOR METHODS FOR L-DECODABLE POMGS

This section presents the theoretical guarantees for our algorithms for L-decodable POMGs, including
key technical background and assumptions, and proof for online and offline setting. For notational
simplicity, we denote = and X by 7% and T %, respectively, in this section.

E.1 TECHNICAL BACKGROUND ABOUT KERNEL METHOD

In this subsection, we revisit several important concepts from functional analysis that will be repeat-
edly used in our theoretical analysis. We start from the concept of the Lo (1) space. For a complete
introduction, we refer the reader to (4.1).

Definition 26 (Lo (1) space). Let (X, A, 1) be a measure space. The Lo (1) space is defined as the
Hilbert space consists of square-integrable function with respect to p, with inner product

(fs @) La(n) = /X fodp,

1/2
1Nl zaqu) = (/Xdeu> .

Throughout the paper, 1 is specified as the Lebesgue measure for continuous X and the counting
measure for discrete X. Specifically, when X is discrete, we can represent f as a sequence [f(x)]zcx,
and the corresponding Lo (1) inner product and Lo (1) norm is identical to the €2 inner product and
02 norm, which is defined as

1/2
(f9)e = f@)g@), |flle= <Z f2(w)> :

reX reX

and the norm

that is closely related to the inner product and norm of the Euclidean space.

Then we introduce several concepts of the kernel and the reproducing kernel Hilbert space (RKHS).

Definition 27 ((Positive-Definite) Kernel (21)). A symmetric function k : X x X — R is said to be
a positive definite kernel if for any {x1,...,xm} C X, the matrix K = [k(x;, x;)];; € R™*™ is
symmetric positive-definite.
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Definition 28 (Reproducing Kernel Hilbert Space (RKHS) (49)). Let k : X x X — R be a
Positive-Definite kernel. Then, there exists a Hilbert space Hy, and a mapping ¢ : X — Hy, such
that:

Voo’ € X, k(z,2) = (¢(2), d(2")).

Furthermore, Hy, has the following property known as the reproducing property:
Vh € Hi, Ve e X f(x) = (f k(x,-)).
Hp, is called a reproducing kernel Hilbert space (RKHS) associated to k.

Theorem 29 (Mercer’s Theorem (50)). Let k(x, x’) be a bounded continuous positive definite kernel.
Then, k(z,x") admits Mercer decomposition, i.e. there exists a countable orthonormal basis {e;}5°,
of Lo(p) with corresponding eigenvalues {v;}52,, such that

k(z,2') = Z viei(x)e;(z'), (20)
i=1

where the convergence is absolute and uniform for all (x,2") € X x X. Without loss of generality,
we assume v, > vy = -+ > 0.

Definition 30 (Random Feature). The kernel k : X x X — R has a random feature representation if
there exists a function ¢ : X x = — R and a probability measure P over = such that

Kz, 2') = / Ol ) (e’ E)AP(€).

Remark (random feature quadrature): We here justify the random feature quadrature (41) for
completeness.

We can represent ()}, as an expectation,
QR (zn, an) = (p(zlzn), wi (2)) = Epala) (Wi (2)] 1, ()

Under the assumption that w], (-) € Hj, where H;, denoting some RKHS with some kernel & (-, -).
When k (-, -) can be represented through random feature, i.e.,

k(z,y) =Epe [ (2:€) ¢ (y; €)]
the w} (=) admits a representation as
wj; (2) = Epg) [@F, (§) ¥ (2:€)].
Therefore, we plug this random feature representation of wj () to QF (x5, ap), we obtain

Qn (Th, an) = Epaja,),pee) [07 ()Y (2:€)] . 21

Applying Monte-Carlo approximation to equation 21| we obtain the random feature quadrature.

E.2 TECHNICAL CONDITIONS

We adopt the following assumptions for the reproducing kernel, which have been previously used in
(415 15)) in the single-agent setting.

Assumption 2 (Regularity Conditions). Let Z be a compact metric space with respect to the Lebesgue
measure v when Z is continuous. Additionally, we assume that f = k(z,2z)dv < 1.

Remark 31. Assumption is mainly for the ease of presentation. The assumption | 2 k(z,2)dv <1
can be relaxed to |. = k(z, z)dv < c with some positive constant c, at the cost of additional terms at
most poly(c) in the sample complexity.

Assumption 3 (Eigendecay Conditions). Assume that the sequence {v;}c defined in Theorem[29]
satisfies one of the following conditions:

e [-finite spectrum: for some positive integer 3, we have v; = 0, Vi > .
o B-polynomial decay: v; < Cyi~P with absolute constant Cy and 8 > 1.
e [B-exponential decay: v; < Cy exp(—CQiﬁ ), with absolute constants C, Cy and 8 > 0.
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We will use Coly to denote constants in the analysis of 3-polynomial decay, which depend only on
Co and B, and Cexy, to denote constants in the analysis of [3-exponential decay, which depend only
on Cy, Cs, and . This simplifies the dependency on the constant terms. Both Cpo1y and Ceyy, may
vary step by step.

Remark 32. Most existing kernels satisfy one of these eigendecay conditions. For example, the
linear kernel and the polynomial kernel satisfy the [3-finite spectrum condition, the Matern kernel
satisfies the B-polynomial decay and the Gaussian kernel satisfies the [-exponential decay.

E.3 ALGORITHM AND GUARANTEE FOR LLVR WITH EXACT VALUE ORACLE

In this subsection, we provide PAC guarantee of OBOVI-LLVR.
Theorem 33 (PAC guarantee of OBOVI-LLVR). When OBOVI-LLVR is applied with parameters

G = © (log(Hn|M|/8)/n) by, = min el (len om0l s H | with @ =
0\/A\C + nL|A[EC, and

* (finite spectrum: X\ = O(Blog N + log(N|M|/$));

* B-polynomial decay: X\ = O(Cyory N/ (15 4 log(N|M|/6));

* B-exponential decay: N = O(Cexp(log N)Y/P 4 log(N|M|/6));

by setting the number of episodes N to be at N = O (e~ log(H|M|/d¢)), with probability 1 — 6,
the output policy 7 is an e-approximate {NE, CCE, CE}.

Proof. According to Lemma|[56] the estimated transition satisfies

. 2
E(Ih,ah)NDh,n PE('M’M ah) - ]P)Zz)n('lew ah)Hl < CTL

Denote by V5 (7) the value function of player 4 under policy 7 and transition P. Since the returned pol-

icy 7 is an equilibrium with respect to P, we have for all i € [N]: V(#) = maxz: V(7', 777) :=
4T (i

Vs (7).

Note that

VAT ) = Vit ()] = [ max Vi (7, m) — max Vi (77, m)|

i

< max [V (7, 7) = Vi (', 7))

Thus, we have

Hence, 7 is an 24/(,,-approximate equilibrium.

To guarantee an e-approximate equilibrium, we require 2v/¢, < ¢, which leads to N =
O(e~2log(H|M|/é¢)). O

E.4 FORMAL PROOF FOR ONLINE SETTING

In this subsection, we provide analysis for OFOVI, establishing key technical lemmas that culminate
in the convergence theorem. We start from the following assumptions, that are commonly used in the
literature (1551415375 130).

Assumption 4 (Realizability). Assume {(ph(z\r,f,ah),]P’Z(ohﬂ:hH\z))}he[H] € M and
pr(ZITE, an, ony1n 1) € Qfor all (pu(z|7iL, an), pr(oni1:n11]2)) € M.
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Assumption 5 (Normalization Conditions). VP = {(Pn(27E, an), Pr(0ns112)) them € M, b €
[H], (tF,an) € TV x A, |pn (|7, an)||lu < 1 for some kernel K. Furthermore, Yg : T — R
such that ||g||sc < 1, we have || [, p(T,LL+L|-)g(T}f+L)dThL+L||HK <C.

We remark that under Assumption[d] the estimator obtained by maximizing the ELBO is identical to
the estimator obtained by MLE and the ELBO can be efficiently optimized using variational inference
techniques. In Appendix [F} we further explain why ELBO optimization offers superior computational
tractability compared to direct MLE optimization.

Lemma 34 (L-step back inequality for the true model). Given a set of functions [gp,] he(m) Where
gn i X X A= R, ||gnlleo < B, Vh € [H], we have that V',

o }
Pn, h—L>P

> Enam~ds , 90@nan)] < Y By an_ymar,_, [IPClEn-ran-1)ll 1,00 5
he[H] he[H]

A By anypn ottty [n(n, @] + AB2C

Proof. The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
completeness. Recall the moment matching policy X Since X ; does not depend on (Th—r,aQn—1),
we can make the following decomposition:

E(wh,ah)fvd;yhgh(zhv a’h)

:E(l’h—L,ﬂ-h,—L)Nd;h,L |:/ <p("xh*L?ah*L)>wa (‘rh|')>L2(#) : ]EahNXw,h[gh(xh7ah)]dxh
Tp

SE(o,_r.an_r)~dp, ||p(~|xh—L,ah—L)HLQ(H),z;T} -

Direct computation shows that

2
:nE(ih—Ladh—L)NPn,h—L [EwiLNPX” (len—r,an—r),an~Xxn(:lzn) [gh(mh’ ah)H

2
| B @) Byt o, anld,
T

h

/ P (2] By e 90 (s @),
zh

L2(ﬂ)72pn,h7[“p

2

[ P Bt oo,
Th

Lz(M),an,h,L,p

+ A

H

2
SHE(ihfL7&h7L)NPn,h7LE1hNPXW('lmhfL;ahfL%ahNX‘rr,h('lfﬂh) [gh(xhv ah)] + AB*C
Sl AIE G, an)mpnn 1 ott(a)9n (En, @n)]* + AB>C,

which finishes the proof. O

Lemma 35 (L-step back inequality for the learned model). Assume we have a set of functions
[9n]he () where gn : X x A= R, [|gn|loc < B, Vh € [H]. Given Lemma we have that V',

> E(mh,,ah)fwd%n . [9n(7h, an)]

he[H]
S PClzh—r,an—r)|l 1,5t ]
X S (Th—r,an—-1) Prne1 H ) LZ(“)’an‘h,QLoLu(A),ﬁ

: \/n|A|L “E(ay,a0)~pnn_ar02bu(A) [9n(Tn, @n)?] + AB?C + nL| AP~ B2G,
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Proof. The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
completeness. We define a similar moment matching policy and make the following decomposition:

]E(JE;L,G;L)Nd’;; , [gh(xhaah)]

=E(onpan-oymdg [/ BC12n—rs @n—r), P(ER])) Lo (n) - Banmorrn [90 (@0 @n)]dan

Lh

g]E(zh,L7ah,L)~d"'_’3n7h7L ||p(-|17h—L7ah—L)”LZ(;L),E;:J%_QLOLM(A)@

Direct computation shows that

:nE(ih—L’&h—L)NPn,h—2L°LU(A) [EIhNﬁvL("ih—L7dh7L)xah~X7r,h('|wh) [gh (mh’ ah)]
2

/ DEn] VB s (o [0 (0 @)
Th

LZ(H)’ZPn,hszC’LU(A)Yﬁ

2

/ B@n|VEay oo om0 (@0 an)]dn

Th

L2(’L’L)7EP’!L,}L72L0LM(A)WI§

2

#3]

/ B@n|VEay oo n om0 (@0 an)]dn

Th

M
<nE(5jh_L’&h’_L)Np"’h_2LoLu(‘A)]Ewh~ﬁn('lihfLy&h—L)ﬂthX‘lr,h('laih)Lgh(xh’ ah)]2 + AB*C
<l AIYE(z, an)mpnn_arozLu(a) [gn (s an)]? + nL| A" "1 B¢, + AB*C,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof. O

Lemma 36 (Optimism for NE and CCE). For episode n € [N], set

b = min { I Clon-rsan—)l 051 HY,

n,h,pn
with ay = O/ \C + nL|A‘LCm

Snnge : La() = Lo(i), Snnp, = Y, [bo(zlen, an)pa(zlzn, an) '] + AT
(zh,an)€Dn,n

where Ty is the integral operator associated with K (i.e. Tic f = [ f(x)K (z,-)dx) and X is set for
different eigendecay of K as follows:

* (B-finite spectrum: A\ = O(Flog N + log(N|M|/9));
* B-polynomial decay: X\ = O(Cyory N/ (15 4 log(N|M|/6));
* B-exponential decay: \ = ©(Cexp(log N)YP 4-log(N|M|/6));

c is an absolute constant. ™" is computed by solving NE or CCE. Then with probability at least 1 — 6,
Vn € [N],i € [M] we have

Proof. Define fij ;(-|z) := arg max;, (Dum;j L, ILT?> («) as the best response policy for player i

~

atstep h, and let 7y = iy, , x ;. Let fil(z,a) = HPn,h(~|x, a) — Ph(-|:1:,a)H1, then according
to lemma [51] and lemma [56] we have that using the chosen ), with probability at least 1 — 4,
Vn € [N],h € [H],P € M,
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Eapnn |0 0) ] s Egajpn |(fi(@.a)] <G,

-° (”p"('|ﬂchL7ahL)||2—1 ) .

lpn(-|zh—r, an—r)|s— )
Pn,h—L Pn

n,h—L,pn

A direct conclusion is we can find an absolute constant ¢, such that

bn,n(Th, ap) =min {an lDn.n(leh—r,@n_r)| 51 , H}

n,h—L.pn

> min {can 15nn (-l Th—rL, @n-L)|/ 51 ,H}, Vn € [N],h € [H].

n,h—L,pn

Next, we prove by induction that Yh € [H],

H
7 7, 2 . n
Eqnazr Via(@) =V, (x)] > Ewaymazt  |bow(@,a) — Hmin{fj (2, a), 1} .

n,h h=h n,h'!

(22)

First, notice that Vh € [H]|,

—n T, An Ty
EZNd%ﬁn . Vh,i(x) - Vh,i (x)} :EmNdj;” . [(Dﬂ;’j@h,i> (z) — (D%Z'Qh,i ) (95)}

>]Ex~dj; [(Dfr;;@z,i) (z) — (Dfr;; Hi) (33)}

n,h

-n T,
:E(w,a)wd’;" . [Qh,i(xa a) —Wh (:L'v a)] >

n VM
where the inequality uses the fact that 7}, is the NE (or CCE) solution for {QZ 1} . Now we are
=1

ready to prove equation 22}

e When h = H, we have

—n ", —n o
B, qz [VH,i(x) - VH,i (x)} >E(z,a)~di" [QH,i(xva) - QH,i (xaa’):|

P, H Pn,H

=E(r,a)~az” [i’"ﬂ (=, a)}

n,H

>E(z,a)~d’;:H |:(;7L,H(x? a‘) — H min {f}} (JZ, a)a 1}:| :
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* Suppose the statement is true for step i + 1, then for step h, we have
fdl T’y
Eoear |Vii@) = Vil (@)]
Pn,h

>E(z,a)~d7%n . [@Z,i (93, a) - Qh’:_i(mv (1):|

n,

7 5 T .7,
“Eppaeayy [Prn(@.a) 4 (PusViis) (.0) = (BT (.a)

:E(”’“)Nd%f;,h [l;n’h(%a)
+ (73”;1 (VZ—Fl,i - VJ_:{L)) (z,a) + ((ﬁnh — Ph) V,:r_:}l) (z, a)}

“Eayeazr |bnn(@ )+ ((Pun— Po) VL)) (@,0)]

n.h

N 17,
+ E,qin [Vh+1,i(33) — Vi1 (37)}

Prn, h+1

[l;n’h(am a) — Hmin{f}}(z,a), 1}}

(Vhina@) = Vi )]

h

>]E($,a)~d%n )

+ Ezwdi"
P, h+1

H
z Z IE(."c,a)wd’;s71 y [bn,h’($> a) — Hmin {fy,(z, a), 1}’} )
h/_h n,

where we use the fact

T,y

‘(ﬁnh - Ph) Vh+1,i

(z,a) <min {H7

Pon(lz,a) - Ph(~|z,a)H1 ] AN
<H min {1, ”ﬁn)h(~|x, a) — P(|z, a)H1}
=Hmin {1, f}"(z,a)}

and the last row uses the induction assumption.

J

Therefore, we have proved equation[22} We then apply / = 0 to equation 22} and get
TN T77rzi
Eandy |Vou(®) = Vor ' (@)]

ey [T V)

n,0

H
> By [Pun(w.a) — Hmin {fj(z.a).1}]
h=0 "

H H
=Y Bz [bun(@.a)] —H Y Eq gz [min {ff(z.a),1}].
h=0 e h=0

n,h

Next we are going to bound the second term. Applying Lemma[33]to g5 (x, @) = min { f7(z, a), 1},
we have

H
Z E(a:,a)r\ad%n [mln {f}? (l’, a)7 1}]
h—o n,h
H
<Y E N
\h:() (QT}L—L,G}LfL)NdﬁnYh’iL l:pn,h 1(| h—L,Qp L)HEPHI,}'LQLOLM(A),ﬁ}

. \/n|.,4|L . E(-’i‘h,&h)NPn,h—2L02Lu(A) [min {f,?(i?h, dh), 1}2} + AC + TLL‘A|L71Cn

H
< ZE(”_LM,T,_L)N(Z%" {anﬁ7z,h—1('|$h—Laah—L)”E1 }
nh—L

h=0 Pn,h—2rolU(A),P
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Note that we here use the fact min { f}'(z, @), 1} < 1, Ez, a,)~p, p_sr02tu(A) [Min{f7 (Zn, @n), 1}2} <
(n and our choice of a,.

Combining all things together,

n T, —n Ty
- =Ez~d, |:V0,i(x) - VO,i (l’)}

61’ i
H H
> Eapaz [bonl@0)] —HY Eapazr min{f(z,a),1}]
h=1 nn h=1 n,h
20,
which proves the inequality. O

Lemma 37 (Optimism for CE). For episode n € [N], set

by, = min {Oén||]3n,h—1('|$h—L, ah—L)|\L2(H)7g;}h% ) H} ;

with o, = O/ AC + nL|A|LC,,

Snnge : La() = La(i), Snnp, = Y, [Bo(zlen, an)pu(zlzn,an) '] + AT
(zh,an)EDn h

where Ty is the integral operator associated with K (i.e. Tic f = [ f(x)K (z,-)dz) and X is set for
different eigendecay of K as follows:

o (B-finite spectrum: A = ©(Blog N + log(N|M|/d))
s B-polynomial decay: \ = O(Cyory N/ (15 - log(N|M|/6));
s B-exponential decay: N = O(Cexp(log N)Y/P 4 log(N|M|/6));

c is an absolute constant. ©™" is computed by solving CE. Then with probability at least 1 — §,
Vn € [N],i € [M] we have

?(x) — me%xvg’o’rn(x) >0, Vnel[N],ie[M].

<

- ) - -
Proof. Denote w,(:i) = argmax,, cq, (thow‘") max,eq, Q55 ) (s) and let 71'2") = wh’iow,&").

Let fj'(z,a) = ‘ ﬁn,h('|z, a) — Py(-|z, a)’ , then according to lemmaand lemma , we have
1
that using the chosen A, with probability at least 1 — 4, Vn € [N],h € [H],P € M,

B s |0 <G Baayms, [(.0))] <G,

lonClon-rsan-lss,, =0 (InConadlss ).
n,h—L,pn Pn, h—L Pn
A direct conclusion is we can find an absolute constant ¢, such that
b (xh, @n) =min {an 1B (lzn-r, an-r)llss - ,H}
Zmin{can|\13n7h(-|xh_L,ah_L)HE:}HLﬁ H} Vn € [N],h € [H].

Next, we prove by induction that Vh € [H],

H
Busgy Vo) = e Ve ()] > 3 By [ = Hanin (i (0,0),13].
h'=h !

n,h we;

(23)
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First, notice that Vh € [H],

By [Vhle) — mx V2 0] =B | (2000) @) (D max i) )

P, h we; s

Prn,h

>]Ex d"n |:(]D)T~r’7;QZ71) (Qj) — <]D)~n Hé%x Qwoﬂ' ) (x)]

-=n n
Epaiy |@hal) - max Q27 (5,)|.
P,k we;
M
where the inequality uses the fact that 7}’ is the CE solution for {Q h Z} . Now we are ready to

prove equation [23}

e When h = H, we have

Baagy | Vinalo) - ma Vi ()]
>]E(x,a)~d"" { B ) — max Q7 (fﬂaa)}
ey [n’H }

SEaay (b a) — Homin {ffi(z,a),1}].

* Suppose the statement is true for step h + 1, then for step h, we have

By [Vhale) ~ max Ve (o)

ok weR;

>E(m,a)~d’;£’" [QZ,i (z,a) — m%x Qwow (.T, a):|

n,h we

Epatyy [bnne.@) + (PurTii) (n0) — (P max Vi) ) 0.

n,h

:E(’E a,)Nd’f" |:6717h($’ a)

n h
+ (ﬁn,h (Vz-i-l,i - gé%zx Wf—ff,:)) (x,a) + ((ﬁn,iz - Ph) gleaflx V}f.ﬁ{ij) (1‘, a'):|

:E(m,a)wd"%: . |:I;n,h(x7 (1) + ((P’n,h - Ph) géaﬂ)f Vﬁff:) (.17, (1):|

- .
+ Exwd;" Vi) — max VT ()
noht1 | wEeN;

>E(payaz |bunl@,a) = Hmin {f7(z,a),1}]

Pn,h

+ Ea:Nd“" Vh+1,i( ) — max Vf‘ffﬁ (z)
Prn,h+1 [ i
H
> Eapay  [boie(,a) ~ Hmin {ff(z,0), 1]
h'=h "
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where we use the fact

(z,a)

(Pn,h — Ph) max V3*°T;
weN; ’

max V;:‘jffz

gmin{H, i
we

Punllz,a) - Ph(-|z,a)Hl

J

< H min {1, ﬁnh(|x, a) — Pu(:|z, a)Hl}
=H min {1, f}" (z,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 23] We then apply ~ = 0 to equation 23] and get
Eznd, [Vo',z-( ) — max Vo™ (x)}

gy [Viio) - max V™ )]

n,O

> ZE(QE a)~di [l;nyh(x, a) — Hmin{f}}(z,a), 1}]

Pn,h

=ZE@,G)ngh [bun(z,a)] HZE@MW [min {7 (z,@),1}].
h=0 e h

h=0

Next we are going to bound the second term. Applying Lemmato gn(z,a) =min{f](z,a), 1},
we have

H
ZE(S,Q)N(P;S” [mln {f}?(saa)a 1}]
h=0 o

H
<ZE(Ih L,Qp— L)'\/d7r e |:pnh 1( |'Ih L7a’h L)”E 1 :|

h—=0 P, h—2rolUA)P

. \/n|A|L . E(ih,&h)NPn,hszOQLU(A) {min {f]?(jh, dh), 1}2:| + A\C + nL\A|L—1Cn
H
gZE(mhfL7ah,—L)Nd‘%n e |:a”p"h 1( |$h Ly @h— L)”E ! :|

h=0 P h—2r o UCA)D

Note that we here use the fact min { ' (x, @), 1} < 1, E(z, an)~pn p_ar02LU(A) {min {f(Zn, an), 1}2} <
¢, and our choice of a,.

Combining all things together,

5N

o) = ma T 0) e, [V (0) — e Vi )

v
weN; we;
H
Z sy [nn(e,0)] = HY B oy min {f(0),1)]
h=0 h=0 v, h
20,
which proves the inequality. O

Lemma 38 (Pessimism). For episode n € [N), set

by,n = min {an”ﬁn,hfl('mhfL; ahfL)HL2(#)7ﬁ];1h’ﬁn ; H} )

39



Under review as a conference paper at ICLR 2026

with a, = O/ A\C + nL|A|LC,,

Sopn : La() = La(i),  Spnp, = Z [ﬁn(2|$h,ah,i)ﬁn(z|$h7ah,i)—r] + AT?

(zh,an)€EDn,n

where Tk is the integral operator associated with K (i.e. T f = [ f(x)K (x,-)dx) and X is set for
different eigendecay of K as follows:

* (-finite spectrum: A\ = ©(Blog N + log(N|M|/9))
s B-polynomial decay: X = O(Cypo1, N/ 1H5) 4 1og(N|M|/5));
s B-exponential decay: \ = ©(Cexp(log N)*/? +log(N|M|/$));

¢ is an absolute constant. Then with probability at least 1 — §, ¥n € [N],i € [M] we have

n

vt (z) —of (x) <0, Vne|[N],ie[M].

T (2

Proof. Let f]'(z,a) = ‘ ﬁn,h(-|x, a) — Pu(-|z, a)' , then according to lemma and lemma ,
1
we have that using the chosen A, with probability at least 1 — 4,

Eearpnn |(@ @) <G Egaes, |(@@)’] <G VneN]he [H)

lpn(lza)s-s

:@<||ph(-|x,a)||ipl ), Vn € [N],h € [H],73€M.

n,h—L>Pn

A direct conclusion is we can find an absolute constant ¢, such that

b (2h, @n) =min {an 1Pnn—1(len—r,an-r)ls ,H}

> min {can Upnn—1Clen—r, @n_r)] 1 H} , Vne[N),hel[H]

n,h—L,pn

Again, we prove by induction that Vh € [H],

H
Epeay Vi@ = Vil @)] €Y Eayeayy [ ~bun(@,@) + Hmin{ffi(z,0),1}]
n,h

Pn,h,

h'=h
(24
e When h = H, we have
Epnizr  |Vira@) = V@) =EBayear @) (2,0) - Qfri(w,a)]
Pn,H Pn,H ’

:E(I»“)Ndfsz ; [—bn,h(:m a)}

<]E(x,a)wd;;" [_Bn,h($7 a) + H min {fl’?l(wv a’)? 1}i| .

n, H
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* Suppose the statement is true for step i + 1, then for step h, we have
Epear |Vii(@) = Vi @)]
pn,h
Eaiz |, (@.0) - QFi(x.0)]
Poh h,i

By [ b @)+ (Puaiia,) (@)~ (PuVi,) (va)]

E(eayaz’ |~bni(z.a)

b (B (Vi Vi) @)+ (P = P2) Vi) (2]
— [~bnn(e.@) + ((Pan = Pu) Virirs) (@, )]
FEpgy Vi (@) = Vi (@)

Pn,h+1

>E(w,a)~d%" [_En,h(xv a) — H min {fi?(xa a)a 1}}

n,h

+ Edejs" {—Z—&-l,i(x) - V}fﬁ,i(ﬂf)}

7ot 1
H
> Z ]E(m,a)Nd;;" y [_bn,h' (z,a) + Hmin {f} (=, a), 1}} )
h'=h "

where we use the fact
‘ (’Pn,h - Ph) Vhﬂ-i,i

~

Punlcle,a) = Palle,a)| Vi,

o

(z,a) <min {H,

<H min {17 Pon (|, @) - Ph(~|x,a)H1}
=H min {1, ' (x,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 24} We then apply /. = 0 to equation 24] and get
TN T77rzi
Eando |Voi(®) = Vo7 (@)]

sy [T V)

n,0

H
> By [Pun(w.a) — Hmin {fj(z.a).1}]
h=0 "

H H
=Y Bz [bun(@.a)] —H Y Eq gz [min {ff(z.a),1}].
h=0 e h=0

n,h

Next we are going to bound the second term. Applying Lemma[33]to g5 (x, @) = min { f7(z, a), 1},
we have

H
Z E(a:,a)r\ad%n [mln {f}? (l’, a)7 1}]
h—o n,h
H
<Y E N
\h:() (QT}L—L,G}LfL)NdﬁnYh’iL l:pn,h 1(| h—L,Qp L)HEPHI,}'LQLOLM(A),ﬁ}

. \/n|.,4|L . E(-’i‘h,&h)NPn,h—2L02Lu(A) [min {f,?(i?h, dh), 1}2} + AC + TLL‘A|L71Cn

H
<D B anoumay’ [anm—ﬂ-lwh—bah-mnz1 }
n,h—L

h=0 Pn,h—2rolU(A),P
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Note that we here use the fact min { f}'(z, @), 1} < 1, Ez, a,)~p, p_sr02tu(A) [Min{f7 (Zn, @n), 1}2} <
(n and our choice of a,.

Combining all things together,

vl =7 =By, Vi) = Vi (@)]

H H
< Z E(z,a)wdgl . [*bn,h (z, a’)} +H Z E(az,a)~d*ﬁn , [min {f} (z, a),1}]
h=0 o h=0 nh
<0,
which has finished the proof. O

Lemma 39. For episode n € [N], set

bp,n = min {Oén||l3n,h—1('|56h—L, an—r)llp, e 51 ,H} )

n,h,pn
with a, = O/ AC + nL|A|X¢,,

En,h,ﬁn : LQ(:M) — LQ(/’L)a Z’n,h,ﬁn = Z [ﬁn,h(z‘x}u a’h)ﬁn,h(z|xha a’h)T] + )\szl
(zh,an)EDn,n

where Tk is the integral operator associated with K (i.e. T f = [ f(x)K (x,-)dx) and X is set for
different eigendecay of K as follows:

* [-finite spectrum: A = ©(Blog N + log(N H|M|/9))
s B-polynomial decay: \ = O(Cyory N/ (15 - log(NH|M|/6));
o B-exponential decay: \ = ©(Cexp(log N)Y/? + log(N H|M|/$));
¢ is an absolute constant. Then with probability at least 1 — §, Vn € [N],i € [M] we have

* for (B-finite spectrum,

N
Y Arso <H351ogN\/NA|L01og

k=1

NH|M|
1)

* for B-polynomial decay,

N
S ar<o <H3cpoly1vz<f+m log N\/N|ALClog

n=1

NH|M|
5

* for B-exponential decay,

N
d Argo <H3cexp(1og N)1+1/ﬁ\/NA|L01og

n=1

NH[M|
1)

Proof. Let f'(z,a) = ‘ 73n,h(-|s7 a) — By (-|x, a)Hl. With our choice of A and (,, according to
Lemma|56, we have Vn € [N],h € [H],P € M,

oo [ 0] <Gl g,y =0 (Il ). @)

h,op,

By definition, we have

A" = max {v; —u'}.
1€[M]
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For each fixed i € [M], h € [H] and n € [N], we have
By, |Via(®) = Vii(@)]
B,z | (P @hi) (@) — (Prp@;,) (@]
By apaz, |@nil®,0) ~ Q) (v,0)]
=B apaz, [2nn (@) + (Pun (Viirs = Vi) ) (@, a)]
“E(oapeaz, 2@ @)+ ((Pan = Pu) (Viri = Vi) (@)
FEpag, | Viina(®) = Vi o)

<E(z,a)~d;’fh _Zgn,h(% a) + 2H2f}?(337 a)] +E,grm [VZ-H,i(x) - f2+17i($)} .

P,h+1

Note that we use the fact V}, ,; ;(x) — Vi1 ;(2) is upper bounded by 2H2, which can be proved
easily using induction using the fact that ?)m n(z,a) < H. Applying the above formula recursively to
E,. A {VZ 14(z) =V +1,i(l’)} , one gets the following result (or more formally, one can prove
by induction, just like what we did in Lemma [36] Lemma[37]and Lemma 38):

H H
Eyma, [Voa(®) = Vi (@)] <23 Bipamagy, [bun( @) 202D By g iz [fi (2, )].
h=0 h=0

(a) (b)
(26)

First, we calculate the first term (a) in Inequality equation [26] Following Lemma [34]and noting the
bonus by is O(H ), we have

H
Z E(m,a)~d;;’fh [bn,h(xy a)}
h=0 '

H
< Z IE(%a)Nd;nh [min {an brn(|Th—r, ah,L)H » ,H}] (From equation [253)
h=0 ' Z o
H-1
S Bl ran iy, [IPnClonsan Dl ]
h=0 '

' \/H|A|L “E(@.an)~pnn_rolU(A) [(bnyh(jh,dh))ﬂ +AH2C.

Note that we use the fact that B = H when applying Lemma[34] In addition, following the proof of
Lemma 8 in (41)), we have that

* for -finite spectrum,

NE (z,,61)~pn 1P UA) [bn,h(ih,dh)ﬂ = O(Blog N);

S Fopan ey, (1 Clanonsan ). ] = 0(B10g N);
n€[N] '

* for B-polynomial decay,

~

~ ~ 1
NE(&,,an)~pnn—rotU(A) {bn,h(ﬂﬁh, ah)ﬂ =0 (CpolyNz“*’” log N) ;

1
Z E(a:h—L:ah—L)Nd};:Lh [||ph(~|xh_L,¢1J;«L_L)||2L2(#)7E 1 LYJ :O(C'polyN'z(Hﬁ)log N);

Prh—
n€[N]
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* for S-exponential decay,

~

nE(ih,&h)an,h,Lolel(A) |:bn7h(j;h7 &h)2:| =0 (Cexp(IOg N)1+1/B> .

Z Eon_r.an_r)~dpn, [||Ph('|$h7L, ahfL)HiQ(,L),z;; hiw)} :O(chp(log N)HI/B)-
n€([N] '

Second, we calculate the term (b) in inequality equation [26] Following Lemma [34]and noting that
fi(z, a) is upper-bounded by 2 (i.e., B = 2 in Lemma [34), we have

H
Z E(z,a)wd;'fh [f}:b (337 a’)]
h=0
H-1

< hi: E(thLyah—L)ngrjhfL |:||ph("$h7La ahfL)”E;;’hiva}
=0

. \/nA|L]E(.’,E;L,6,}L)anY}LLOLU(A) [(f}?(jha dh))Q} +4CA

H-1
< Z E(mhfL,ahfL)Nd;’fhfL {th('\l‘h—u ah—L)||2;7117h7L,p} \/ UAIEC + 4O,
h=0

where in the second inequality, we use Ez, 4, )~p, 1 olu(A) [(f[; (Zp, dh))ﬂ < Cp-

Then, by combining the above calculation of the term (a) and term (b) in inequality equation we
have:

* for S-finite spectrum,

N
Yargo («/5 log N - (H\/|A|LmogN + AH2C + H3\/N|A|ECy + 40A>)
n=1

* for S-polynomial decay,
N

dargo (\/ Cpoty N0 log N

n=1
: (H\/|A|choly1vz<f+m log N + AH2C + H?\/ N|A|L (N + 40/\)>

* for $-exponential decay,

N
SAT<0 chxp(log N)/p

n=1
: (H\/ |AIL Clxp (log N)T/8 + NH2C + H3\/N|A[LCy + 40/\>)

By substituting A into the results, we obtain:

* for S-finite spectrum,
N
Y Argo <H3/3’10g N\/NA|LC’10g

k=1

NHIM|
1)

* for S-polynomial decay,
N 1

Y Argo <H3C'p01yN2<1+5> log N\/ N|A|LClog

n=1

NH|M|
1)
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* for S-exponential decay,

N
d Argo <H3cexp(1og N)1+1/ﬁ\/NA|L01og NH5M|)
n=1

This concludes the proof. O

Theorem 40 (PAC guarantee of OFOVI-LLVR). Assume AssumptionH5|in Appendix[E.4|hold and
the kernel K satisfies the regularity conditions in Appendix[E:2] When OFOVI-LLVR is applied with

parameters (, = © (log(Hn|M|/d)/n), by n = min{a"LHﬁn(.|xh—L7a’h—L)HL2(H)72;}h,ﬁn,H}
with a, = ©/AC + nL|A[EC, and

e B-finite spectrum: A = O(Blog N + log(NH|M|/8));

s B-polynomial decay: \ = O(Cyory NY/1H5) - log(NH|M|/6));

s B-exponential decay: \ = ©(Cexp(log N)Y/# +log(NH|M|/$));
by setting the number of episodes N to be at most

* for B-finite spectrum,

H|A|"/2|M
& H3B|A\L/201/210g | |§E| |
€
* for B-polynomial decay,

HIAZ/2| M 2+%
& (HSCpolyA|L/201/2 log | \56 M| )
€

* for B-exponential decay,

2
5 <H3C'exp|AL/201/2 log HIA\ZZQIMI >

€

with probability 1 — 6, the output policy 7 is an e-approximate {NE, CCE, CE}.

Proof. For any fixed episode n and agent ¢, by Lemma[36] Lemma[37]and Lemma[38] we have

t,r, n n n . .
v, " —=o |or max v —of ) T} -0 <A™
weR;
Taking maximum over ¢ on both sides, we have
T,y " wor™ 7" < A" 27
max 4 v, — Oor max { max v, —v; <A™ 27

i1€[M] i€[M] (we;

From Lemma[39] with probability 1 — §, we can ensure

* for -finite spectrum,

N
Y Arso <H3510gN\/NA|LC’log 5

k=1

NHM|>

* for S-polynomial decay,

N
Y Argo <H3CpolyNz<ll+ﬂ> log N\/N|ALC’10g
n=1

NH|M|
1)
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* for S-exponential decay,

o

N
Z A" 5 O (chcxp(log N)1+1//8\/NA|LCIOg W)
n=1

Therefore, when we pick N to be

* for B-finite spectrum,

€

L/2
5 <H36|AL/201/2 log HHA‘(SE |M)

* for 3-polynomial decay,

AL/2 2+%
@ (HSCpoly|A|L/2cl/2 log Hi| ‘65 M)

€

* for S-exponential decay,

2
5 <HSCEXP|AL/201/2 log HIA\Z:ZIMI )

€

we have

1N
— A" L e.
Py

On the other hand, from equation [27] we have

max {vj’”’i - vf} or max 4 max vy°" — vf
i€[M] i€[M] (we

1‘77\—71’? n* n* n*
=max v, ' —uj or max < max vy " — vy
i1€[M] i€[M] |weQ;

<A™ = min A" < =Y A" <z,
which has finished the proof. O

E.5 OFFLINE SETTING

In this subsection, we show the theoretical analysis for offline exploitation. For offline exploitation,
we have the access to a offline dataset, which we assume is collected from the stationary distribution
of the fixed behavior policy set 7, which we will denote as p. And we are not allowed to interact
with the environments to collect new data. The only difference between the algorithms for offline
exploitation and online exploration is that, as we do not have access to the new data from the
environment, we cannot further explore the state-action pair that the offline dataset do not cover.
Hence, we need to penalize the visitation to the unseen state action pair to avoid the risky behavior.

Similar to the online setting, we can obtain the upper bound of the statistical error for 7, which is
stated in the following:

Theorem 41 (PAC Guarantee for Offline Exploitation). Define w := max, , 7, ' (a|z), and

2
E(z,a)wd} |:<p(|l‘, a)7 y>L2(#)i|

Cr:= sup 5
VL) F, 0, [(p('|$7a)vy>L2(#)}
When Alg. E] is applied with parameters ¢ = O (log(H|M|/8)/n), b, =

min § a||p(:|Th—r,an—L o1, H p witha = Oy/A\C + nLwl=1¢ and
{allpClan-s.an-0)ll s, H }
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Algorithm 5 Offline OFOVI-LLVR for L—decodable POMGs

1: Input:Variational Distribution Class @ = {{qn(z|Tn, an,0n+1)}reim}, Model Class M =
{Hn(zlzn, an), pr(0oni112)) theim }» offline dataset D = {Dy, } (], Regularizer A, parame-
ter o, C.

2: forsteph=H,H—-1...,1do

3:  Learn the latent variable model p(z|zy, ap) with Dy, via maximizing the ELBO, and obtain

the learned model P = {(pn (2|2, an), Pr(0on+1|2)) bneim)-

4: end for

5: Compute by, from equation For each (z,a) € X x A,i € [M], set

Qnilw,a) = rhi(@,a) + (PuVhsns) (2,0) + b2, )

Qh,i(lv, a) = T‘}L,i(fﬂ, a) + (thhﬂ,i) (CC, a) — Bh(x7 a)

6: Compute 7}, from equation equation |l|or equation equation [2 or equation equation 3| For each
x € X,i € [M], set

Vh,z‘ = (th@h,i) (), Kh,i = (DmQh,i) ().

7: Compute A = max;en {0 — v}, where 7; = [, Voi(z)po(x)de and v, =

fX Ko,i(x)ﬂo(l") de.
8: Return 7.

* (B-finite spectrum: A = O(Slogn + log(|M|/9));
s B-polynomial decay: \ = O(Cporyn'/ 17 +log(|M]/5));
s B-exponential decay: \ = ©(Cexp(logn)t/? +log(|M|/));
with probability 1 — §, the output policy 7 is an e-approximate {NE, CCE, CE} with

* for (B-finite spectrum,

e=0 <H3B log n\/C;nwLC( log |/t/l;|>

* for B-polynomial decay,

e=0 (H?’cpolynwim log n\/ CEnwC( log M;)

* for B-exponential decay,

e=0 (HSCexp(log n)+1/8 \/C’;nwLCC log M;')

We start by showing that C' can be viewed as a measure of the offline data quality, which can be
demonstrated by the following lemma, that was first introduced in (51):

Lemma 42 (Distribution Shift Lemma). For any positive definite operator A : La(p) — Lo(u), we
have that

E(w,a)wd% <p('|xv a)v Ap('|l', a)>L2(u) < C;E(x,a)wp<p<'|mv a)a Ap('|l', a)>L2(H)'
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Proof. We denote the eigendecomposition of A as A = USU where {o;, u;} is the eigensystem of
A. Then we have

E(z,a)wd; <p(|x7 (1), Ap(|5177 a’)>L2(#)

= Z il (z,a)~dr (i, p(-| 7, a)T>%2(H)
icl
<Cr ) 0 ayp(ui |z, @) )7, )
i€l
:C‘rrE(ac,a)Np<p('|xv a), Ap(~|$, a)>L2(u)’
which finishes the proof. O

We also define the X,  : La(p) — Lo(p):

S0 = 1Ea)mp [$(7,@)0" (2,0)] + AT,
where p is the stationary distribution of 7.

Lemma 43 (L-step back inequality for the true model). Given a set of functions [gp,] helH] where
< B, Vh € [H], we have that VT,

Z E(.’L‘h7ah)wd [gh (Eh,ah Z E(Th L,Qh— L)Nd |:Hp( |‘rh Ly @Qh— L)HLZ(M) Xy, z)]
he[H] he[H]

. \/nwL -E(ih,&h)NPOLﬂb(.u) [gn(Zn, an)?] + AB2C

Proof. The proof can be adapted from the proof of Lemma 6 in (41), and we include it for the
completeness. Recall the moment matching policy x . Since X, ;, does not depend on (zp_r, ap—r),
we can make the following decomposition:

E(Ih,yah,)~d7}27h[gh(xfuah)]
B i, | | OC1 @0 P @) 1) B o 0,00
Th
<E(1h rs@n—r)~d% o lp(-leh—1, an— L)HL2 )25k

\ [ P B o an)
Th

Direct computation shows that

=nE,_1.an_1)~p [Ban~bxn (lonn.ans)an~xnn(lon) 9 (Zhs an)]]

2
/ PX*(zp|) - Eaproxr o (zn) 90 (@h, an)ldzs,

Zh

La(u),Ep,p

2

/PX"($h|')Eah~Xﬂ,h(.\xh)[gh(ﬂfh,ah)]dl‘h

Lh

La(p),Zp,p
2

+ A

H
2
gnE(i'h—La(lhfL)Np]EthPX"("xh—L-,ah—L)7a}z’\‘X7r,h("$h) [gh(xhv ah)] +AB*C
S E (3,31  pot my (o) (90 (Fny @)]* + AB2C,
which finishes the proof. O

Lemma 44 (L-step back inequality for the learned model). Assume we have a set of functions
[9n]he iy where gn : X x A= R, ||gnlloc < B, Vh € [H]. Given Lemma|51} we have that ¥/,

> Enanay 90@n el € 3 By pan_imay 10010 @h-0)ll g 51
helH] he[H] hok ’

. \/TL(UL . E(i}”a}L)Np [gh(fh,dh)Z] + \B2C + anLilBZC
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Proof. The proof can be adapted from the proof of Lemma 5 in (41), and we include it for the
completeness. We define a similar moment matching policy and make the following decomposition:

Bty an)mdy [gn(zh, an)]

=E ~dT
(@h—r,@n—p)~ds

U (PClzn—r,an—1);P(@n]) La(w) - Bapmr (90 (€n; an)ldzn
Th

SE( ran-)~ag, ‘|ﬁ('|$h—L;ah—L)HLQ(#)’E;})

Direct computation shows that

2
:n]E(jh—L7dh—L)Np |:]E$h""73("ih—Lvdh—L)>ah,NX1r,h("zh) [gh(zh’ ah)]}
2

/ P(@nl)Eay~xrnlzn) (90 (T, an)ldzs, .
Th La(u),2p,p

2

/ﬁ($h|')Eah~X,r,h(-\zh)[gh(fﬂmah)]dxh
Zh La(u),2p,5

42

/ﬁ($h|')Eah~X,,,h(-\xh)[gh(ﬂ?h,ah)]dl‘n
Tn H

2 2
Exh,N'ﬁ('|i’h—Ladh—L)-,ah""Xw,h,('|mh) [gn (2, @n)]” +AB7C
[9n(&n, @n))* + nLw™ ' B¢ + AB?C,

where we use the MLE guarantee for each individual step to obtain the last inequality. This finishes
the proof. O

Lemma 45 (Optimism for NE and CCE). Set

gn]E(ih—L#ih—L)Nﬂ

L
énw ]E(ihydh)’\‘/)

by = min {a”ﬁ('kﬂhfb ah*L)HLz(u),if ’H} ’

with « = ©/AC + nLwl(, ¢ = O(log(H|M|/8)/n)

Shpt La(p) = Lo(p), Sppi= Z [B(z]zi, ai)p(z2i, @) ] + AT
(zi,a;)ED

where Ty is the integral operator associated with K (i.e. T f = [ f(x)K (z,-)dxz) and X is set for
different eigendecay of K as follows:

o [B-finite spectrum: A = ©(flogn + log(|M|/4))
s B-polynomial decay: \ = O(Cypoyn'/ 1P 4 log(|M]/5));
s B-exponential decay: \ = ©(Cexp(logn)t/? +log(|M|/));

c is an absolute constant. T is computed by solving NE or CCE. Then with probability at least 1 — 6,
Vi € [M] we have

Bi(x) — v ™ () > 0.
T

Proof. Define fij, ;(-|x) := arg max,, (]D)Wmﬁi hi ) (z) as the best response policy for player i

atstep h, and let 7, = i, ; X mh,—;. Let fr(z,a) = Hﬁh(|x, a) — P,(-|x, a)H , then according to
lemma[51]and lemma 56 we have that using the chosen A, with probability at least 1 — 4,

E(z.a)mp [(fh(a:,a))ﬂ <¢, VhelH],

lpnClzn-1, @n-r)ls 2 = © (||Ph('|$h—Lﬂh—L)H2;;) , Vhe[H],PeM.
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A direct conclusion is we can find an absolute constant ¢, such that
by (zn, ap) =min {04 D1 (| 2h—1, ahfL)Hz;;lﬁ ,H}
> min {callpn(lon-r,an1)lsr H}. Ve [H)
Next, we prove by induction that
H
Eoeay [Vhil@) = VIT @] 2 Y Bgayear | [bw(@, @) = Hmin {fi (2, 0),1}], Vh € [H).
P,h ’ h—h P,h!

(28)

First, notice that Vh € [H]|,

Epar | [Vri@) = Vi @)] =Epnar | [(0n,Qns) @) = (P2, Q)7 ) @)]
>]Ex~d;h [(Dfrh@h,i) (r) — (Dfrh ILZL) (37)]
“E(y ayiz , |@nile.@) = Q)7 (@.0)]

where the inequality uses the fact that 7}, is the NE (or CCE) solution for {@hl }j\il Now we are
ready to prove equation 28}

e When h = H, we have
Eonar  [Vii(@) = VT @) >EBayear  [Qnile,a0) - Q7 (@,0)]
Ecaas,,, [bn(a)]
>E(yaymaz , |br(@,@) — Hmin{fn(z,a),1}] .
P H
* Suppose the statement is true for step i + 1, then for step h, we have
By, [Viate) = Vi @)
>E($,a)~d;’5 N [@h,i(x7 a) - ;LL’,:ii (l‘, a):|
“Eraaz, [0n(@,@)+ (PaVii1s) (@.a) = (P (@)
=E(;,a)~dx [Bh(x, a)
P,h
+ (’ﬁh (Vh+1’i — ijffz)) (z,a) + ((73}1 - Ph) V,L:rf;) (z, a)}
“Eayas, [n(@0) + (P = Pu) Vi) (@,0)]
Ve Tom—s
oy, [Virnal@) = Vi @)]

o . tm—:
>E(p ayeas , |00, @) = Hmin {fa(@,0), 1| +Epegr [Varna(@) =V @)

H
>3 Epaaz, [bw(@.0) = Hmin{fu(2,a),1}]
h'=h

where we use the fact

(P Pu) Vi | () <mim {1

Pulle,a) = Pullz,a)| ||V

J

<H min {17 Pi(|x,a) - Ph(~|x,a)H1}
=H min {1, fp (z,a)}

and the last row uses the induction assumption.
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Therefore, we have proved equation 28] We then apply / = 0 to equation 28] and get
Evmao [Vou(@) = Vo™ ()]

“Eois [Tose) ~ W7 @)

H
> Eaapa, [bh(x, a) — Hmin {fy(z,a), 1}]
h=0 .

H

H
= Z E(w,a)wd*ﬁh [bh (iL’, a):| —-H Z E(w,a)rvd%h [min {fh (iL’, a)v 1}] .

h=0 h=0

Next we are going to bound the second term. Applying Lemmato gn(x,a) = min {fx(z,a),1},
we have

H
Z E(La)fvd’;)h [min {fh(x’ a)? 1}]

h=0

H
< Z E(Ih,L,uh,L)Ndi |:||ﬁh_1 (.|xh_L? ah_L)||271A:|
o Ph_rL PP

. \/nwL “Ezp.an)~p [min {fn(@n,an), 1}2} + AC + nLwl=1¢

H
<D Eun 1an p)mds {||0é15h—1('|$h—L7 ap—r) ||2—{}
h—0 Ph—L PP

Note that we here use the fact min { f5,(z,a), 1} <1, Ez, a,)~p [min {fn(Zp,an), 1}2] < ¢ and
our choice of a.

Combining all things together,

T; — vj’w‘i =Ezd, {Vo,i(w) — Vot’f‘i(x)]

H H
2 ZE(m,a)Nd’%’h |:bh(x?a'):| - HZE(m,a)Nd;;h [min{fh(x?a')a 1}]
h=1 h=1
20,
which proves the inequality. O

Lemma 46 (Optimism for CE). Ser
b, = min {a|\]5(.|xh7L, ah—L)HLQ(,‘)yg;lﬁ, H} .

with o = ©+/AC + nLwk(,

Snp i La(p) = La(p), Swpi= > [Pa(2lwi, ai)pn(zlzi,a:) "] + A"
(zi,a;)€D

where Ty is the integral operator associated with K (i.e. Tic f = [ f(x)K (z,-)dx) and X is set for
different eigendecay of K as follows:

o (B-finite spectrum: \ = ©(Blogn + log(|M|/d))
s B-polynomial decay: \ = O(Cypoyn'/ 1P +log(|M]/6));

s B-exponential decay: N = O(Cexp(logn)'/? +log(|M|/5));
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¢ is an absolute constant. 7 is computed by solving CE. Then with probability at least 1 — 6, Vi € [M]|
we have

v;(x) — max v (x) 20, Vie|[M].

Proof. Denote Wy, ; = argmax,, cq, |, (thom maX,eq, ;ﬁ”) (s) and let 71y, = @p,; o mh. Let

fr(z,a) = Hﬁh(|x, a) — By(-|z,a) ’ , then according to lemmaand lemma we have that
1
using the chosen A, with probability at least 1 — 6,

E@.ay~p [(fh(w,a))z] <¢, VhelH],

lon(l2n-r,an-r)lls-1 =© (||ph(-\xh,L,ah,L)H2;;> , Vhel[HLPeM.

A direct conclusion is we can find an absolute constant ¢, such that

by (zh, an) =min {04 1pn (| 2h—1, ahfL)Hz;}ﬁ ,H}

> min {ca|pn(lon-ran1)lyr  HY, Ve [H)
Next, we prove by induction that Vh € [H],

H
Bavy, |Voile) = mx Vir™ ()| > 3 Bpuareay, [ .) — Hin (e ). 1]
' ’ h'=h .
(29)

First, notice that Vh € [H],

Baviy, Vi) = mx Vir™ ()| By | (0, Q) (@)~ (D o @277 ) )]

wEN;
2By | (05,00 (0) — (s, max 57 (o)
(e, |Qni(ra) - e Q1T (0. )]

. . . . — M
where the inequality uses the fact that 7, is the CE solution for {Q h»i}i: ,- Now we are ready to
prove equation 29}

e When h = H, we have

Basy, |Vinslo) = s Vi ()| By, Qi) — e 0577 (0,0
) we; P,H we,;

:E(z,a)wd%,H I:I;H (.’E, a’)j|

2E (4 a)~ax [l;H (z,a)—Hmin{ fu(z,a), 1}} )

P,H
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* Suppose the statement is true for step i + 1, then for step h, we have

h wes,;

]Ewwd;i) [Vhwi(x) — max V;ff”(x)]

h well;

By, |@ni(0:0) — Q57 (0.

=Eza)nay bu(x,a) + (PthH,i) (z,a) — (Ph Inax Vﬁfﬂi) (x,a)}

:]E(av,a)Nd%h _bh (:E7 a‘)

+ (ﬁh (Vh+1,z' — max fofi)) (z,a) + <(73h - Ph) max fofﬁ) (z, a)}

ey, [ne.@)+ (P Pa) max it ) (e,

+Epvar _Vh+1.,z‘($) — max Viiiti(z)

>]E(w,a)~d7%h _E)h(z7 a‘) — H min {fh(z7 (1), 1}:|

+ Esz%,;L+1 _Vh+1,i(x) ~ nax Vh+1,i($)_
H A~
> Z ]E(z,a)r\/d’%, [bh’(xaa) — Hmin {fh’(xva)a]-}} )
h'=h h

where we use the fact

‘ (Ph = Pu) max VisgT | (@, )
weN; ’

<min {1, [PiClr o) = Pt ] v, |
<H min {1, Pi(|e,a) - Ph(~|:r,a)H1}

=H min {1, fp(z,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation 29} We then apply / = 0 to equation 29} and get

Eymd, [Voﬂ(x) — max V5" (x)]

we,;

:Ede;O |:V0,i($) — max V577" (m)]

weN;

H
> Z IE(%G)Nd,;h [Bh(m, a) — Hmin {fr(x,a), 1}]

h=0
H ) H
= Z IE(:J[:,a)~d’_"75h |:bh (93, a):| —-H Z ]E(z,a)wd’;'sh [HllIl {fh (93, a)v 1}] .
h=0 h=0
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Next we are going to bound the second term. Applying Lemma[#4]to g;,(z, @) = min {f;,(z, a), 1},
we have

H
Z E(ac,a)~d% [min {fh ((ﬂ, Cl,), 1}}
prd h

H

< Z E(x;,,L,a;L,L)Nd’% |:||ﬁh*1<.|xh*L7 ah*L)||Zilki|
h=0 h=L or

. \/WL Bz, a0 {min{fh(fch, an), 1}2} £ AC + nLwl-1¢
H

< Bl pan iy, |l Clenanos) s
he0 Ph—L PP

Note that we here use the fact min { f5,(z,a), 1} <1, Ez, a,)~p [min {fn(Zp, an), 1}2] < Cand
our choice of a.

Combining all things together,

T1(0) ~ e 077 (0) =Eaa | Vos(o) — mae Vir ()

H H
2 ZE(I,G)Nd‘%,h |:bh(z7a):| - HZE(I,a)Nd%,h [HllIl {fh(xva)7 1}]
h=0 h=0
20,
which proves the inequality. O

Lemma 47 (Pessimism). Set
by = min {Of||ﬁn('|$h7L7 ahfL)HLz(#)’ﬁ;—l 7H} )

n.h, B
with a = O/ AC + nLwl(,

Snpt La(p) = La(p), Y= Z [D(z]ai, ai)p(zlzi, ai) '] + AT
(wi,ai)eD

where Ty is the integral operator associated with K (i.e. Tic f = [ f(x)K (z,-)dx) and X is set for
different eigendecay of K as follows:

* [-finite spectrum: A\ = ©(Blogn + log(|M|/9))
s B-polynomial decay: \ = O(Cypoyn'/ 18 +log(|M]/5));
s B-exponential decay: \ = ©(Cexp(logn)t/? +log(|M|/9));

¢ is an absolute constant. Then with probability at least 1 — 0, Vi € [M] we have

v;(z) — ol (x) <0, Vie[M].

Proof. Let fr(z,a) = H?sh(\x, a) — Py(|z, a)‘ X then according to lemmaand lemma we
have that using the chosen A, with probability at least 1 — 4,

E(z.a)p [(fh(x,a))ﬂ <¢, VhelH],

ol @l = © (IpnCle.a)lls: ), Vhe [H],Pe M.
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A direct conclusion is we can find an absolute constant ¢, such that
b, an) =min {allpn(len—z, an-r)lp-1  H}

> min {ca [pn(|on—r.an1)lsr  H}, VheE [H].

Again, we prove by induction that

H
Epar Vail®) = Vi@)] < Y Epayear [~ (@, @)+ Hmin {fiv(z,a),1}] , ¥h € [H].
P,h h—h P.,h
(30)
e When h = H, we have
]E;cfvd;;H [KHz(‘r) - VHTF,Z(:E)} :E(x,a)wd%YH [QHJ-(% a’) - Q‘II—TI,i(xﬂ a):|
:E(x,a)fvd’% . |:_l;h($7 a)]
<E(g;7a)~d7% . [_Eh(xa a) + H min {fH(xa a)v 1}} :

* Suppose the statement is true for step h + 1, then for step h, we have
Em~dg [Zh,,i(x) - Vhﬁz(m)]

h

“E gz, @, (@) = QFi(x,a)]
“E(ayeaz, |[~0n(@.@) + (Pl ) (2,0) = (PuVil ) (@)
:E(x,a)Nd%h :—Z)h(m, a) + (73h (Zh+1,i_vizr+1,i)) (z,a) + ((ﬁh_Ph> V}Zr-s-l,i) (z, ‘1)}

=E(; a)~dr :—(;fL(QS,a) + ((73h - Ph) Vhﬂ-f—l,i) (@, a)}

P.h

+ Eamcﬁf73 - [Zh-s-l,i(x) - Vizr—&-l,i(x)}

>E(a:,a)~d7% N _*i)h(xv a)—Hmin{f,(z, a), 1}] +Ez~df]&) N [Kh+1,i(fc) - Vhﬂ+1,i(x)]

+1

H
> Y Epas, [~b (@) + Hmin {fr(z.0),1}]
h'=h
where we use the fact

'(ﬁh - Ph) Vit1

(z,a) <min {H,

73h/(~|z,a) — Ph(-\:z:,a)Hl thw+1vi||oo}
<H min {17 Pi(|x,a) - Ph('|$,a)H1}
=H min {1, fr(z,a)}

and the last row uses the induction assumption.

Therefore, we have proved equation[30} We then apply /2 = 0 to equation [30} and get
Exnd, [ng(l’) - Votéw_i(x)}

“E,ar Vo) = Vi7" (@)]

H
> Z E(%G)Nd%h [bh(sc, a) — Hmin {f(z, a), 1}}
h=0 )

H H
. ;;) Bz, [0(0,0)] = HY B ayeqz [min{fu(z,a),1}].

h=0

Y
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Next we are going to bound the second term. Applying Lemma[#4]to g;,(z, @) = min {f;,(z, a), 1},
we have

H
Z E(m7a)~d7"'75h [min {fh(xa a)a 1}]

h=0

H
<Y B pan iy, | InoaClan-soan-p)lls1

h=0
. \/nwL “Ezp.an)~p [min {fn(@n,an), 1}2} + AC + nLwl=1¢
H
< B pan iy |l Clenanos) s
h=0 - .

Note that we here use the fact min { fx (2, a),1} < 1, E(z, a,)~p [min {frn(@n,an), 1}2] < Cand
our choice of a.

Combining all things together,
v, —v] =Ky, [Ko,i(l”) - VOTji (I)]

H H
< Z IE(ac,a)Nd’?73 [_bh (‘T7 a‘)} +H Z IE(ac,a)Nd’?73 [min {fh (CC, a‘)7 1}]
h=0 h h=0 h
<0,
which has finished the proof. O
Lemma 48. Set

b, = min {a|\ﬁ(~|xh7L, ah*L)H[Q(#)’ﬁ]T—Llﬁy H} ;

with a = O/ \C + nLwk(,

Snp i La(n) = La(n), Snpi= Y, [Pzlai, ai)p(zlri, a:) '] + AT
(z4,a;)€D

where Tk is the integral operator associated with K (i.e. T f = [ f(x)K (x,-)dx) and X is set for
different eigendecay of K as follows:

¢ B-finite spectrum: A = O(Blogn + log(|M|/4))
s B-polynomial decay: \ = O(Cyporyn'/ 1P 4 log(|M]/5));
s B-exponential decay: A = O(Cexp(logn)'/? +log(|M|/d));
c is an absolute constant. Then with probability at least 1 — 6, Vi € [M] we have

* for B-finite spectrum,

A<SO (H?’ﬁlog n\/Cf*rnwLC’C log W;')

* for B-polynomial decay,

A<SO <H3Cpolyn2(1ﬁrﬂ> log n\/C;nwLCC log |'/?|)

* for (B-exponential decay,

A<O (HSCeXp(log n)tt1/8 \/ CrnwlC¢log V?')
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Proof. Let fr(z,a) = Hﬁh( |s,a) — Py(|z,a) H . With our choice of A and ¢, according to Lemma
1
[36, we have

Eony [(fule,@)?] <G llpnCle@llss =6 (IpaCla,a)llyy ), Vhe [H]P e M.
€1y
By definition, we have

A — _
e b

For each fixed i € [M], h € [H], we have
Eonag , [Vii(@) = Vi x)]
By, |[(Dr, Q) (@)~ (P, Q, ) ()]
=E(z,a)~ag , [th(l’ a)-Q, (z, )]
=E(z,a)~dg Qbh(% a) + (Ph (Vhtri — Kh+1,z‘)) (, ‘1)]
=E(y,a)~ds , »213h(a:, a) + ((73h - 77h> (Vi — Z;Hm)) (ﬂf,a)}
AEondg,,y [Vatri(@) = Vi (o))
<E@,a)nag , :2511(337 a) + 2H? fu(x, a)} +Epnag,,, [Vieni(@) = Vg (2)]

Note that we use the fact V11 5(x) — V,, . ;() is upper bounded by 22, which can be proved

easily using induction using the fact that bn (z,a) < H. Applying the above formula recursively to
Exwdp in [V;,,+17¢(:L’) -V, +1,i(x)] , one gets the following result (or more formally, one can prove
by induction, just like what we did in Lemma &3} Lemma#6|and Lemma [{7):

H

Eonag , [Voi(z) = Vo i(2)] <2 Z E@,a)~ag , [Z;h (z, a)] +2H? Z E(z,a)~dg , [n(z,a)].

h=0

(a) (b)
(32)

First, we calculate the first term (a) in Inequality equation [32] Following Lemma 43| and noting the
bonus by, is O(H ), we have

H
S B e, [inte.a)]
h=0

H
< f;) E(z,a)~dg {min {a th(o|xh_L, an_r) HE;13 , HH (From equation [31)

H-1
S Z E(Ih—L1ah,—L)Nd%,h7L {th('lthln ah*L)HE;;}

. \/TL(UL . E(ih,(lh)f\fp [(Eh(ih, dh))ﬂ + )\HQC

Note that we use the fact that B = H when applying Lemma[43] In addition, following the proof of
Lemma 8 in (41)), we have that
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* for S-finite spectrum,

nE (5, an)~p [Eh(i'hadh)ﬂ = O(Blogn);

E(wh,L,ah,L)Np |:||ph('|xh—L7 ah—L)HiQ(#)’Z;})} = 0(6 log n);
* for S-polynomial decay,

nE(j}“ah)Np [Bh(fh, dh)2:| =0 (Cpolyn%l}kﬁ) log Tl) N

2 1
Eans.an-omp 19801202, @n-1), 01503 | = O (Cporyn T logn) ;

P

* for g-exponential decay,

nE(z, an)~p [gh(ih, dh)2:| =0 (C’cxp(log n)“l/ﬁ) )

2
]E(:C;L,L,ah,L)Np |:th('|xh7[n ah*L)”LZ(H),E;}J] = O (chp(log n)1+1/ﬂ) .
Moreover, according to lemmad2] we know

B rian_r)~dg, . [th(-h:h—L,ah—L)”LQ(#)?z;,;}

2
<\/E(mhL,ahL)~d;hL [th('|$h7L7 an_r) HLQ(M),E;;}

2
g\/C,*r]E(zh_L’ah_L)Np {th(-\l‘h—h an-r) ||L2(M),2;§,} .

Second, we calculate the term (b) in inequality equation Following Lemma 43| and noting that
frn(z, a) is upper-bounded by 2 (i.e., B = 2 in Lemma43)), we have

H

Z E(m,a)r\«d;’h [fh (l‘, a)]

h=0

H-1

<> Eon_r.an_r)~dg, {th('\xh—L,ah—L)Hg;ﬂ \/”wL]E(ih,ah)w [(fh(i"h, dh))Q] +4CA

>
o

T

< E(I)L—L»ah,—L)Nd;7h_L |:||ph("xh7L7 ah*L)HE;’%)} V nwLC + 46‘)\7

i
o

where in the second inequality, we use E(z, a,)~p {(fh (Zp, dh))ﬂ < C.

Then, by combining the above calculation of the term (a) and term (b) in inequality equation 32} we
have:

* for g-finite spectrum,

A<O (\ /CBlogn - (H\/wlBlogn + ANH2C + H3/nwl( + 40/\))

* for S-polynomial decay,

ASO <\/ C%Cloryn ™79 logn

) (H\/ch’polynﬂlirB) logn + AH2C + H3\/nwl¢ + 40)\>)
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* for S-exponential decay,

A<O <\/c;cexp(1og n)1+1/8

: (H\/wLC’eXp(log n)H1/B 4 NH2C + H3\/nwk( + 4C>\>>

By substituting A into the results, we obtain:

* for g-finite spectrum,

A<O <H3ﬂlogn\/0;;nwLC’C log V?')

* for S-polynomial decay,

A<SO <H3Cpolyn2(1l+ff> log n\/C;nwLC’C log |'/?|)

* for g-exponential decay,

A<O (HSCexp(log n)tt1/8 \/ CrnwlC(log W;')

This concludes the proof. O
Theorem 49 (PAC guarantee of Algorithm [). When Alg. [3] is applied with parame-
ters ¢ = O (log(H|M|/d)/n),by, = minqea|p(-|zn-1, ah—L)HLQ(,,,),i;lﬁ,H} with a =
O/ AC + nLwl=1¢ and

* (-finite spectrum: A\ = O(Flogn + log(|M|/9));

s B-polynomial decay: \ = O(Cypoyn'/ 18 +log(|M]/5));

s B-exponential decay: \ = ©(Cexp(logn)t/? +log(|M|/9));
with probability 1 — 6, the output policy 7 is an e-approximate {NE, CCE, CE} with

* for B-finite spectrum,

e=0 (H?’Blog n\/C’;nwLCC log |Jt/l;|)

* for B-polynomial decay,

e=0 <H3cpolyn2<f+m log n\/ CEnwC( log M;)

* for B-exponential decay,

e=0 (H?’chp(log n)+1/8 \/C’;nwLCC log M{;”)

Proof. For any agent 4, by Lemma3] Lemmaf46 and Lemma7] we have
vj’ﬂ’i —of <0r max vy°" — v”) <7 —v; <A

weN; v
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Taking maximum over ¢ on both sides, we have

max {UJ’W_i - vf} <0r max {max Vo — vf}) <A (33)
i€[M] i€[M] (weR;

From Lemma with probability 1 — §, we can ensure the output policy 7 is an e-approximate
{NE, CCE, CE} with

* for g-finite spectrum,

e=0 (Hg,ﬁ’log n\/C’;nwLCC log M;')

* for S-polynomial decay,

£ = O (chpolynm log n\/Cf*rnwLCC IOg |'/:;l)

* for $-exponential decay,

e=0 <H3Cexp(log n)+1/8 \/C’;nwLCC log M(;”)

which has finished the proof. O

F DERIVATION AND OPTIMIZATION OF ELBO

This section presents the derivation of the Evidence Lower Bound (ELBO) as a tractable surrogate
objective for maximum likelihood estimation (MLE), followed by an analysis of its computational
advantages over direct MLE optimization.

We begin with the ELBO derivation through variational calculus:

log PX™ (op4 1.1 41|7H , an)

:log/ p(2n|7iEy an)PX™ (0pt1.h1]2n) dzn
z

- q(z|7TE an, Opgrnta) dz, (34)

1o / p(zn|TE, an)PX (op41:n+1|2n)
z q(z| T, an, ong1int)
= ax Eotirt an.onsrns) 108X (Ont1:n4i]2n)] — KL(q(zn|7, an, ons1:n) (2077, an))

where the last equation comes from Jensen’s inequality, with equality holding when
(2|7, an, ony1:n41) o p(zn|TE, @n)PX" (04 1:n41|2n). Notably, under Assumption [} the
q(z|7’,f,ah,oh+1:h+l) € Q for all (p(zh|7'}f,ah),PX”(oh+1:h+l|zh)) € M, so the equality al-
ways holds and the estimator obtained by maximizing the ELBO is identical to the estimator obtained
by MLE.

Compared to the standard MLE objective, maximizing the ELBO is computationally efficient because
it avoids the need to compute integrals explicitly. Instead, the ELBO only requires evaluating an
expectation and a KL divergence term, both of which can be approximated efficiently via sampling.

Note that the ELBO objective

Eq(airt ansonsanso 108X (0n s vnyil2n)] = KL((q(2177; s ans opg ) |[p(2n| 70 an))

= — KL(q(2|7%, an, ont1:n40)|[PX7 (Ont1:nr1]20)p (20T, an)).
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Algorithm 6 OVI-OF with Generalized PSRs

1: Input: Regularizer ), iteration N, parameter {c, }N_; {¢,}Y_;, and model class M =
{(pn(-lxn, an), pr(oni1l)) tnerm }-

2: Initialize 7° to be uniform; set datasets D) = (), D) = (), Vh € [H].

3. for episoden =1,2,--- ;N do

4 SetViy 1, =0,V} 1, =0forallie [M].

5:  Sample trajectory and learn representation like Algorithm 2 in (12).
6: forsteph=H,H—-1...,1do
7: Compute by from equation 7|and update @, Q as following:
Qpi(Th,a) = Thi(Th, @) + Ep, [VZ+1,i(Th+1)Irh7 ah] + 0 (. @)
@, (Th-a) = r1i(mh, @) + Ep [V (i)l an] — by (71, @)
8: Compute the NE/CE/CCE solution 7} according to equation equation [[fequation [2Jequa-

tion [3]and update value function as following:
Vii(mh) = Banap (1m0 [@ni(mh, @)], - Vi i(h) = Barrr (7)) (@), (Th, @)]-

9: end for

10:  Compute A" =max;e ({0 —vf} with 77 = [,V ;(2)po(z)dz, v = [,V (2)po(z)dz.
11: end for X

12: Return 7t = 7" where n* = argmin, c;n) A".

This is a variational inference problem. When Assumptionholds, then q(z\ThL y @y Op41:h+1) and
P™(ont1:n+1|21)p (21 |T}€', ap,) is a conjugate family and this problem admits a closed-form solution.
Otherwise, we can solve this problem via black box variational inference (48). In particular, we
consider a parameterized family gy and its derivative w.r.t. f can be calculate as follows.

VGqu (z|TfF an,0n41:n41) [log Px- (0h+1:h+l |Zh)] - KL((QQ(Z|T}%, Qp, 0h+1:h+l) | |p(zh|7-}f7 ah))
=/q0(2|7;f’ah,0h+1:h+z)ve log qo (2|7, an, Ongrntt)-
(log qo (2|73t s ans Ont1:n+1) — Log PX™ (0p1.h41]20)P (2| T, an))dz

As aresult, we can find an approximate solution of the ELBO maximization by stochastic gradient
ascent type methods.

G COMPARISON WITH (12))

(12) construct a generalized PSR representation for y-well-conditioned POMGs. Note that if the
rank of the core test set is uniform across all time steps h, i.e. d, = d for all h, the POMG satisfies
the assumptions in (12)) is a special subclass of low-rank POMGs and this representation can be
integrated into our framework.

Now consider a POMG that satisfies the assumptions in (12), where the set of generalized PSR
representation is M and the rank of the core test set is uniform across all time steps h, i.e. dp, = d
for all h.

As shown in (12)), learning generalized PSRs via MLE and conduct self-play UCB algorithm with an
access to an oracle for the exact value function, the algorithm terminates with a sample complexity

of O((d + ’f—QH) dzHS‘SPﬁiiOg(‘MEl) ), where M is an optimistic e-cover of M, as defined in (12)).
We extend their method to oracle-free setting.
Theorem 50 (PAC guarantee of Algorithm [6). Assume assumptions in (I12) holds and the rank of

= max{AVHDX 4 ISIAVE g

the core test set is uniform across all time steps h. Suppose o,
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H+\/nAty}, A= 1USIP QS max ;{/‘2%’5’%”4\/?/7} and B = O(log(|M.|)) . Then, by setting the number

of episodes N to be O (Hmd4A6|S‘2 log(|Me]) ), with probability at least 1 — §, the returned policy 7t

82'}/6
is an e-approximate equilibrium.

2 3 214
Proof. Denote ty = (r + szH ) e '1‘481‘\/@/*5 . Analogous to the previous proof, we obtain:

Ery an s 1P 7y an) = (I an) [} < Oltn)

and

N

N 2
N dA (ap)
(n) 2 n
E AW <H \/dN10g<1—|— d>\/dA(aN) +H2d)\+n§=1 p

n=1

+ H? (;\/dN log (1 + C‘ZZ\;)QN + N\/AtN>

_ HPd?N'3 A3|S|log'/* (| M)

when we pick N to be

~ (Hd*A%|S|? log(IM.|)
o £2+6 )
we have

1 N
il ZA(H) <e.
Nn:l

Then, we have

Ae i
{v;r - vf} or max < max vy°" — v}
i€[M] (we;
font n* n* nt
= max v, —ol or max < max vy’  —ul
1€[M] ) ie[M] |weQ;

which has finished the proof. O

H TECHNICAL LEMMA

In this section, we present some technical lemmas used in the proof.

Lemma 51 (MLE Guarantee). For any episode n € [N|, step h € [H], define py, as the joint
distribution of (xy, ap,) in the dataset Dy, ,, at episode n. Then with probability at least 1 — 6, we
have that

2
Pf('lxh7ah) - Pﬁn('|xh7ah)Hl < C’ru

E@n,an)~Dn.n
where ¢, = O(log(Hn|M|/§)/n).

For the proof, see (30).

Lemma 52 (I; Guarantee). For any episode n € [N, step h € [H|, with probability at least 1 — 6,
we have that

]E(T}uah)NDh,n

where ¢, = O(log(Hn|M|/8)/n).

= 2
]P)E('|T}L7 ah) - PE" ('|Th7 ah)H2 g Cn’
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For the proof, see (40).

Lemma 53 ((52), Lemma G.2). Consider the following process. Forn =1,...,N, M, = M,,_1 +
G, with My = NI and G, being a positive semidefinite matrix with eigenvalues upper bounded by
1. We have

Tr(G, M, ).

M=

2logdet(My) — 2logdet(Ao]) >
1

B2

3
Il

Lemma 54 (Potential function lemma). Suppose Tr(G,,)

N

NB?
2log det(My) — 2logdet(MoI) < dlog | 1+ ™
0

Proof. Letoy,--- ,04 be the set of singular values of My recalling M is a positive semidefinite
matrix. Then, by the AM-GM inequality,

d d
log det(My)/ det(AoI) = log [[(0:/Xo) < logd (; S (o //\0))>

i=1 i=1

Since we have ) |, 0; = Tr(My) < dh\o + N B2, the statement is concluded. O

pick N = log2 A4BZ =0 (A log? AB) we have

A
——log(BN) < ¢
Wi g(BN)

Proof. We have

log (A A2B 16e 2 A;B2)

A
—1log(BN) =¢

VN log 4
Note that
A’B ., A*B?  A'B? o, A*B?  A’B
=2 log = < = < log 1 < =
A is larger than some given constant. Therefore,
we get

A
——log(BN) < ¢
Widi g(BN)

O

Lemma 56 (Concentration of the Bonuses). Let u; be the conditional distribution of ¢ given
the sampled ¢1,- - ,¢;—1, define ¥ : La(p) — Lao(p), X = %Zie[n] Epmp; 90 . Assume

loll3, < 1 for any realization of ¢. If X satisfies the following conditions for each eigendecay
condition:

o [B-finite spectrum: A = ©(Blog N + log(N/9));
s B-polynomial decay: X\ = O(Cyory N/ (15 4+ log(N/6));

s B-exponential decay: \ = O(Ceyp(log N)/P +10g(N/4)), where Cs is a constant depends
on Cy and Cy;
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Table 2: Average exploitability of the final policy of DQN and OVI-OF-LLVR over 5 trails. Note that
lower exploitability implies that the policy is closer to the equilibrium.

Exploitability(]) DQN OVI-OF-LLVR
=3 1.1101(+0.0033) _ 0.2566(+0.0063)
H=10 3.1124 (£0.0875) 0.7290(+£0.0133)

then there exists absolute constant ¢y and cs, such that Yz € Hy, the following event holds with
probability at least 1 — §:

vn € [N], c1<x,(n2n+ATk1)w>L2<m<<x, > bl + T x> :

i€[n] La(n)

DA

and <x, Z qﬁigbiT + /\Tk_1 x> ) <x, (nEn + /\Tk—l) x>L2(
1€[n] La(n)

In the same event above, the following event must hold as well:

—-1
1 -1
Vn e [N], —{z, (nX,+ AT, * a:> < =z, i Z-T+)\T_1 T
V] Cz< ( " k) La(p) < Z¢¢ k
1€[n] La(p)
—1
1 —1
and x, i iT+)\T_1 T <— <:1:, nY, + \NT ! x>
< iez[%(ﬁcb ' > “ ( ) L)

For the proof, see (41)).

I EXPERIMENTS

1c3s52 2c_vs_642g 3552 5m_vs_6m

— — — o =
RepaPro | 1.0 —— Repmap =3 APV oY AR 10 RepMAPFO. RepMAPPO
10 by RPRIVACS AT VENATE) s
14 | Y AR
08 08 | A M Wy
0 | AR
0.6 \
206 zos 506 B ﬂr
g £ £ € oa y
50, S04 S o4 1 H "
02 02 J',‘/ 02
{
h .
. /
00 00 00 -~k
W o2 7 o8 1o T o2 7 s 10 oo 02 o1 o5 o8 10 O T %5 1o
Timestep: i Timestept Timestep: Timesteps
6h 8 . corri idor MMM MMM2
1
— MAPPO — MAPPO — MAPPO o — MAPPO
howro g [ 100 e v0 . reouasro | | repuar v0
WP
08 NIW v Lot 4 08
0 y . A M
o 06
06
) H ,‘AI 0 fo
= 2, = =
0
02
o o 4
0o B 0.0 0.0

Figure 1: Comparison of win rate between REPMAPPO and MAPPO in SMAC. Y axis denotes the
win rate and X axis denotes the number of steps taken in the environment.

In this section, we present two experiments to evaluate our methods. The first experiment focuses
on a simple POMG with random latent transitions and rewards, aiming to validate the convergence
of OVI-OF-LLVR. Our second experiment evaluate LLVR on the StarCraft Multi-Agent Challenge
(SMAC) environments (53)), a widely used benchmark for Dec-POMDPs, to assess its effectiveness.
Note that, in Dec-POMDPs, all agents cooperate and share observations during training, making this
setting well-suited for our method.
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1.1 EXPERIMENT ON SIMPLE POMG

Our first experiment aims to verify whether OVI-OF-LLVR can reliably converge under L-
decodability assumption with random dynamics and rewards. To achieve this, the algorithm must
not only decode the latent structure accurately but also solve the POMG to produce NE/CE/CCE
policies. Accordingly, we construct a Block Partially Observable Markov Games (BPOMGs) defined
as follows:

Definition 57 (BPOMG). (30) For any h € [H], a BPOMG has an emission distribution ey (-|z) €
As and a latent state space transition Ty, (2'|z, @), such that for any s € S, e (s|z) > 0 for a unique
latent state z € Z, denoted as 1} (s). Together with the ground truth decoder 1)}, it defines the
transitions Pp(s'[s,a) =) .z en(s'[2")Th(2' [¥}(5), a).

It is straightforward to see that BPOMG is a special case of the 1-decodable POMG when we define
the latent state z to be exactly equivalent to the current observation (i.e., z = o).

We construct two two-player zero-sum BPOMG variants, with horizons H = 3 (short) and H = 10
(long). Each BPOMG is randomly generated with H horizon, 3 states, 2 players each with 3 actions,
random reward matrix 7, € (0, 1)>*9*# and random latent transition matrix 7},. The dimension of
the observation space is 2/1°8(H+ISI+D1 Note that similar mechanism has also been adopted in (32)
to construct a Block MDP. See Appendix [J] for details.

We adopt DQN (54) together with fictitious self-play (55) as baseline, and measure the policy
exploitability to assess the performance. For each variant, we run 5 trials and report the mean
exploitability and its variance. As shown in Table [2] OVI-OF-LLVR obtains policy closer to the
equilibrium, with significantly lower exploitability.

1.2 EXPERIMENT ON SMAC

Our second experiment verify the effectiveness of our proposed representation in OVI-OF-LLVR
on the SMAC benchmark environments. In this experiment, we learn the latent representations by
predicting future outcomes from a history of length L. Specifically, we employ a continuous latent
variable model similar to (15)), approximating probability distributions with Gaussians parameterized
by their mean and variance. The learned representations can be integrated with various MARL
methods by feeding them into the value function. In our experiments, we select MAPPO (56)) as
baseline and compare it against its representational variant, REPMAPPO. Detailed implementation
information, including hyperparameters, is provided in Appendix [J] We apply L = 1 across all
domains.

In Figure|l] we report the results from 8 selected SMAC scenarios —4 Hard and 4 Super Hard—out
of 23 scenarios. It is shown that REPMAPPO achieves significantly better empirical results in 5
scenarios and marginally outperforms MAPPO in other scenarios. Moreover, it can also be observed
that REPMAPPO demonstrates greater stability, with smaller variance and a smoother training curve
during evaluation, on most scenarios.

J  EXPERIMENT DETAILS

J.1 DETAILED EXPERIMENT SETUP

In this section, we provide the detailed setups for the two experiments conducted to evaluate our
methods. For completeness we repeat certain details already introduced in the main text.

Firstly, we introduce the details of the environment construction of the BPOMGs. We designed a
BPOMG by randomly generating a tabular POMG with horizon H, 3 states, 2 players each with 3
actions, and random reward matrix rj, € (0,1)**?*# and random latent transition matrix 7},. The
dimension of the observation space is 2/'°8(#+ISI+1)1 "in line with the design of (32).

For the implementation of LLVR, we break down the introduction into two parts: the implementation
of feature learning and the implementation of game solving algorithm using the current features. For
the implementation of feature learning, we assume that the features follow a Gaussian distribution. To
model the mean and log standard deviation of this distribution, we adopt a three-layer neural network
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with ReLU non-linearity. This approach allows us to effectively capture and represent the underlying
feature distributions necessary for solving the game.

For solving the POMGs, in addition to following OVI-OF-LLVR, we implement the NE/CCE solvers
based on the public repository: https://github.com/quantumiracle/MARS.

For the SMAC experiment, we implement MAPPO and REPMAPPO based on the public repository:
https://github.com/marlbenchmark/on-policy. We employ a continuous latent variable model
similar to (15)), using Gaussian distributions parameterized by their mean and variance. To enhance
training stability, we utilize a target network for feature updates, applying a soft target network update
mechanism. All parameters are set to their default values.

J.2 HYPERPARAMETERS

In this subsection, we include the hyperparameters for LLVR and REPMAPPO in Table[3]

Table 3: Hyperparameters for LLVR and REPMAPPO in the experiment

REPMAPPO
LLVR Value
Value GAE A 0.95
Buffer size 100000 v 0.99
Batch size 256 Feature dimension 64
Feature dimension 32 Feature Target Update Tau  0.01
Hidden dimension 32 Hidden dimension 64
Optimizer sgd Optimizer Adam
Learning rate 0.01 Actor learning rate Se-4
LSVI bonus coefficient o 0.1 Critic learning rate Se-4
LSVI regularization coefficient A 1 Feature Learning rate Se-4
Warm up number 10 GAE )\ 0.95
07 0.99
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