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Abstract
Diffusion models have emerged as a powerful class of generative models, capable of producing high-
quality samples that generalize beyond the training data. However, evaluating this generalization
remains challenging: theoretical metrics are often impractical for high-dimensional data, while no
practical metrics rigorously measure generalization. In this work, we bridge this gap by introducing
probability flow distance (PFD), a theoretically grounded and computationally efficient metric to
measure distributional generalization. Specifically, PFD quantifies the distance between distributions
by comparing their noise-to-data mappings induced by the probability flow ODE. Moreover, by using
PFD under a teacher-student evaluation protocol, we empirically uncover several key generalization
behaviors in diffusion models, including: (1) scaling behavior from memorization to generalization,
(2) early learning and double descent training dynamics, and (3) bias-variance decomposition.
Beyond these insights, our work lays a foundation for future empirical and theoretical studies on
generalization in diffusion models.

1. Introduction

In recent years, diffusion models and their variants have revolutionized generative AI, achieving
state-of-the-art performance in tasks ranging from image synthesis [21, 59] to molecular design
[1, 31]. These models, including score-based generative models [66] and flow matching techniques
[47, 50], learn the underlying data distribution through forward and reverse processes that gradually
inject and remove noise. Their success raises a fundamental question: how can we rigorously evaluate
the generalization ability of these models? A good evaluation framework is essential not only for
deepening our understanding of the underlying mechanisms of generative modeling but also for
providing principled guidance in designing more effective architectures, training strategies, and
benchmarking methods.

However, existing metrics for evaluating the generalizability of diffusion models face significant
limitations. Empirically, common metrics like Fréchet inception distance (FID) [28], Inception
Score (IS) [64] focus on generation quality, but they cannot distinguish between memorization and
generalization, as both can yield high-quality outputs. While metrics such as Kullback-Leibler (KL)
divergence [16, 44, 54], total variation (TV) [14, 42, 43, 71], and Wasserstein distance [11, 12, 23, 24]
are theoretically appealing, they are often computationally expensive and thus impractical for
diffusion models. Furthermore, since the true data distribution is typically unknown, it makes such
comparisons inherently challenging. In summary, existing metrics are neither accurate nor efficient
for evaluating diffusion models in practice, highlighting the need for a generalization metric that is
both theoretically grounded and practically tractable.
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Our Contribution. In this work, we introduce a systematic framework for evaluating the generaliz-
ability of diffusion models through a novel metric, the probability flow distance (PFD). This metric
quantifies distributional differences by leveraging the backward probability flow ODE (PF-ODE)
[66], which is widely used in the sampling process of diffusion models. Unlike practical metrics such
as FID, PFD provides a theoretically grounded measure of distance between distributions, offering a
more reliable assessment of generalization. Compared to theoretical metrics like the Wasserstein
distance, PFD is computationally efficient by leveraging the benign properties of PF-ODE. Moreover,
under a distillation-based setting, we use this metric to study generalization error by comparing the
PFD between the student and teacher models. Our analysis reveals several intriguing generalization
phenomena that offer new insights into the learning behavior of diffusion models, including: (1)
Scaling behavior from memorization to generalization. (2) Early learning and double descent of
generalization in learning dynamics. (3) Bias and variance trade-off of the generalization error. Due
to space limitations, we defer this to Appendix B.

2. Measuring Distribution Distance via Probability Flow Distance

In this section, we propose a new metric called probability flow distance (PFD), which is designed to
quantify the distance between two arbitrary probability distributions. The design of PFD is motivated
by the PF-ODE, which we first review in Section 2.1. We then formally define PFD in Section 2.2
and present its empirical estimation with theoretical guarantees in Section 2.3.

2.1. A Mapping from Noise to Target Distribution Spaces Induced by PF-ODE

In general, PF-ODE is a class of ordinary differential equations (ODE) that aim to reverse a for-
ward process, where Gaussian noise is progressively added to samples drawn from an underlying
distribution, denoted as pdata 1. The forward process and the PF-ODE can be described as follows:

• Forward process. Given a sample x0
i.i.d.∼ pdata(x), the forward process progressively corrupts it

by adding Gaussian noise. This process can be characterized by the stochastic differential equation
(SDE) dxt = f(t)xtdt + g(t)dwt, where t ∈ [0, T ] is the time index, {wt}t∈[0,T ] is a standard
Wiener process, and f(t), g(t) : R+ → R are drift and diffusion function functions that control the
noise schedule. In this work, we adopt the noise schedule proposed by elucidated diffusion models
(EDM) [36], where f(t) = 0 and g(t) =

√
2t. Substituting this into the SDE and integrating both

sides, we obtain

xt = x0 +

∫ t

0

√
2τdwτ . (1)

For ease of exposition, we use pt(xt) to denote the distribution of the noisy image xt for each
t ∈ [0, T ]. In particular, it is worth noting that p0(x) = pdata(x) and pT (x) → N (0, T 2In) as
T → +∞.

• Probability flow ODE. According to [66], the PF-ODE can transform a noise sample xT back
into a clean data sample x0. Specifically, under EDM noise scheduler, the PF-ODE admits the
following form:

dxt = −t∇ log pt(xt)dt, (2)

1. This paper primarily focuses on image distribution.
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where ∇x log pt(xt) (or simply ∇ log pt(xt)) denotes the score function of the distribution pt(xt)
at time t ∈ [0, T ]. According to [66], the backward PF-ODE (2) and the forward SDE (1) have the
same distribution at each timestep t. In practice, since the score function log pt(xt) is unknown,
in diffusion models we approximate it using a neural network sθ(xt, t) and employ a numerical
solver to generate samples from Equation (2). Additional details are provided in Appendix A.3.

Benign properties of PF-ODE. The backward PF-ODE introduces a mapping Φpdata from xT to
x0. By taking the integral on both sides of (2) from T to 0, the mapping Φpdata can be defined as:

Φpdata(xT ) := xT −
∫ 0

T
t∇ log pt(xt)dt. (3)

Previous work [66] demonstrates that Φpdata(xT ) ∼ pdata(x) when xT ∼ N (0, T 2In) as T →
+∞. This implies that when the underlying distribution pdata is known, the score function
∇ log pt(xt) becomes explicitly available, and the backward PF-ODE induces a deterministic map-
ping from the Gaussian distribution to pdata.

2.2. Definition of Probability Flow Distance

Definition 1 (Probability flow distance (PFD)) For any two given distributions p and q of the
same dimension, we define their distribution distance as

PFD (p, q) :=
(
ExT∼N (0,T 2I)

[
∥Ψ ◦Φp (xT )−Ψ ◦Φq (xT )∥22

])1/2
. (4)

Here, Φp and Φq denote the mappings between the noise and image spaces for distributions p and q,
respectively, as defined in (3), and Ψ(·) represents an image descriptor.

Intuitively, PFD measures the distance between two distributions p and q by comparing their respective
noise-to-image mappings Φp(·) and Φq(·) starting from the same Gaussian noise input xT .

Moreover, the comparison is conducted in a transformed feature space defined by an image
descriptor Ψ(·), which is typically implemented using a pre-trained neural network to effectively
capture perceptual differences.

Under Definition 1, we show that PFD satisfies the axioms of a metric (Definition 2.15 in [61]).

Theorem 1 For any two distributions p and q, the PFD satisfies the following properties:

• (Positivity) PFD(p, q) > 0 for any p ̸= q.

• (Identity Property) PFD(p, q) = 0 if and only if p = q.

• (Symmetry) PFD(p, q) = PFD(q, p).

• (Triangle Inequality) PFD(p, q) ≤ PFD(p, p′) + PFD(p′, q) for all p′.

We defer the proof to Appendix C. Note that Theorem 1 establishes the theoretical validity of PFD as
a metric for measuring distance between any two probability distributions.
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2.3. Empirical Estimation of PFD

In practice, the expectation in (4) is intractable due to the complexity of the underlying distributions.
Thus, we approximate the PFD using finite samples:

ˆPFD(p, q) =

(
1
M

∑M
i=1

∥∥∥Φp

(
x
(i)
T

)
−Φq

(
x
(i)
T

)∥∥∥2
2

)1/2

. (5)

Here, ˆPFD(p, q) is the empirical version of PFD(p, q) computed over M independent samples

{x(i)
T }Mi=1

i.i.d.∼ N (0, T 2In) with T → ∞.
Specifically, our finite-sample approximation relies on two key assumptions: (i) the score

functions are smooth at all timesteps, and (ii) the score functions of two distributions remain
uniformly close within a bounded region of the input space, which can be described as follows.

Assumption 1 Let p and q be two distributions with the same dimension, where we assume:
(i) There exists a constant L > 0 such that for all x1,x2 and t ∈ [0, T ], it holds that

∥∇x log pt(x1)−∇x log pt(x2)∥2 ≤ L ∥x1 − x2∥2 , (6)

and similarly for qt.
(ii) For all t ∈ [0, T ], there exists a constant ϵ > 0 such that

∥∇x log pt(x)−∇x log qt(x)∥2 ≤ ϵ. (7)

The Lipschitz continuity of the score function is a common assumption widely adopted in the
theoretical analysis of score functions in diffusion models [10, 12, 13, 15, 41, 76]. More recently,
this property has been rigorously established under the assumption that the data distribution is a
mixture of Gaussians [46]. The uniform closeness assumption holds when p, q follow Assumption 1
(i) and have support on a compact domain, which is often the case for image distributions. Under
Assumption 1, the concentration of the empirical estimate ˆPFD(p, q) to PFD(p, q) can be characterized
as follows.

Theorem 2 Suppose we are given two distributions p and q that satisfy the L-Lipschitz condition
and are uniformly close in Assumption 1. Let ˆPFD(p, q) denote the empirical estimate of PFD(p, q),
computed as the average over M independent samples, as introduced in (5). Then, for any γ > 0,
the empirical estimate satisfies the following bound:

∣∣ ˆPFD(p, q)− PFD(p, q)
∣∣ ≤ γ, whenever M ≥ κ4(L, ϵ)

2γ4
log

2

η
, (8)

with probability at least 1−η. Here, κ(L, ϵ) := exp

(
LT 2

ξ

2

)
ξ+ ϵ

L

(
exp

(
LT 2

ξ

2

)
− 1

)
is a constant,

with a numerical constant ξ > 0 and a finite timestep Tξ depending only on ξ.

We defer the proof to Appendix C. Given the score functions of both distributions are smooth and
uniformly close, our result in Theorem 2 guarantees that PFD(p, q) can be approximated to arbitrary
precision by its empirical estimate ˆPFD(p, q) with high probability, givem a finite number of samples.
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3. Quantifying Generalization Error of Diffusion Models

In this section, we leverage the PFD metric in Section 2 to rigorously define and evaluate the
generalization error of diffusion models. Specifically, this metric enables us to distinguish between
memorization and generalization behaviors for diffusion models, as well as analyze the transition
from memorization to generation (MtoG).

Definition 2 (Generalization and Memorization Errors) Consider a diffusion model sθ trained
on a finite dataset D = {y(i)}Ni=1, where each sample y(i) is drawn i.i.d. from the underlying
distribution pdata(x). Denote the learned distribution induced by a diffusion model sθ as pθ(x).
Using the PFD metric, we can formally define the generalization and memorization errors as follows:

Egen (θ) := PFD (pθ, pdata) , Emem (θ) := PFD
(
pθ, pemp

)
, (9)

where the empirical distribution is given by pemp(x) =
1
N

∑N
i=1 δ(x− y(i)), with δ(·) denoting the

Dirac delta function.

Here, given access to pemp(x), the memorization error Emem(θ) can be exactly computed (see Ap-
pendix E). We further show that Emem(θ) coincides with metrics introduced in [73, 75]. However, since
the underlying distribution pdata(x) is typically unknown in practice, we introduce a teacher–student
evaluation protocol to analyze the generalization error of diffusion models.
Evaluation protocol of generalization. To study the generalization behavior of diffusion models
(see Appendix B), we adopt a teacher–student framework. We treat a large-scale pretrained diffusion
model sθt(xt) with parameters θt as the teacher, inducing a distribution pθt , which we take as a
proxy for the true data distribution, i.e., pdata = pθt . We then train a student model sθ using samples
drawn from pθt , and evaluate its generalization by comparing pθ to pθt using the generalization
errors defined in Definition 2.

In our experiments for the rest of the paper, both teacher and student models adopt the U-Net
architecture [60]. The teacher model sθt is trained on the CIFAR-10 dataset [39] with a fixed model
architecture (UNet-10 introduced in Appendix D.1). The student model sθ is trained on samples
generated by the teacher, with the number of training samples varying from N = 26 to N = 216,
using the same training hyperparameters but different model sizes. For evaluating the generalization
error in (9), we compute the PFD between the teacher and student models using M = 104 samples
drawn from shared initial noise, as defined in (5). Similar for the memorization error, we compute
the PFD between the student model and the empirical distribution of the training data. Additional
details for the evaluation protocol and ablation studies with different teacher models are provided in
Appendix D.2 and Appendix F.4, respectively. Due to the space limitation, we defer the generalization
behaviors in diffusion models experiment in Appendix B.

4. Conclusion

In this work, we introduced Probability Flow Distance, a theoretically grounded and computationally
tractable metric for evaluating the generalization ability of diffusion models. Using a teacher–student
evaluation protocol, we empirically reveal several key generalization behaviors in learning diffusion
models, including: (1) the scaling transition from memorization to generalization, (2) early learning
and double descent training dynamics, and (3) a bias–variance trade-off of generalization error.
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Appendix A. Related Works

In this section, we briefly review related work on generalization metrics for diffusion models, discuss
diffusion model generalizability, and cover the fundamentals of training diffusion models.

A.1. Generalization Metrics for Diffusion Models

Generalization metrics quantify the distance between the learned distribution and the underlying data
distribution in diffusion models. To measure this distributional gap, theoretical works commonly
employ metrics such as Kullback-Leibler (KL) divergence [16, 44, 54], total variation (TV) [14, 42,
43, 71], and Wasserstein distance [11, 12, 23, 24]. However, these metrics are practically inefficient
for diffusion models. Practical metrics focus on various perspective, including negative log-likelihood
(NLL) [66], image generation quality: Fréchet inception distance (FID) [28], inception score (IS)
[64], FDdinov2 [67], maximum mean discrepancy (MMD) [9], CLIP maximum mean discrepancy
(CMMD) [32]; alignment: CLIPscore [27], and precision, recall [40, 62]. However,
these practical metrics are not explicitly designed to evaluate the generalizability of diffusion models.
Thus, there is a need for a generalization metric that are both theoretical grounded and practically
efficient for diffusion models. To address this gap, we propose PFD, a novel generalization metric that
is theoretically proven to be a valid distributional distance and can be efficiently approximated by its
empirical version using a polynomial number of samples. In practice, PFD requires fewer samples for
estimation and is the only existing metric that explicitly quantifies generalization in diffusion models.

A.2. Diffusion Model Generalizability

Recent works have shown that diffusion models transition from memorization to generalization
as the number of training samples increases [73, 75]. With sufficient data, models trained with
different architectures, loss functions, and even disjoint datasets can reproduce each other’s outputs,
indicating a strong convergence toward the underlying data distribution [33, 75]. To explain this
strong generalization, [33] attribute it to the emergence of a geometric-adaptive harmonic basis, while
others argue that generalization arises from interpolation across the data manifold [2, 17]. Theoretical
insights by [44] provide generalization bounds using KL-divergence under simplified models. More
recent efforts focus on characterizing the learned noise-to-image mapping for generalized diffusion
models, either through Gaussian parameterizations [45, 70] or patch-wise optimal score functions
[34, 55]. However, despite these theoretical analyses and qualitative insights, prior work lacks a
quantitative framework for measuring generalizability. In this paper, we propose PFD, a metric
that enables such quantitative evaluation. Using this measure, we uncover further insights into the
generalization behavior of diffusion models, as discussed in Appendix B.

A.3. Training diffusion models

To enable sampling via the PF-ODE (2), we train a neural network sθ(xt, t) to approximate the score
function ∇ log pt(xt) using denoising score matching loss [66]:

min
θ

ℓ(θ) =
1

N

N∑
i=1

∫ T

0
λtEϵ∼N (0,T 2In)

[∥∥∥sθ(x(i) + tϵ, t) + ϵ/t
∥∥∥2
2

]
dt, (10)
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Figure 1: Scaling behavior in the MtoG transition. Emem and Egen plotted against log2(N) for
a range of U-Net architectures (U-Net-1 to U-Net-10). Right: the same metrics plotted against
log2(N/

√
|θ|), where |θ| is the number of model parameters.

λt denotes a scalar weight for the loss at t. Given the learned score function, the corresponding
noise-to-image mapping is:

Φpθ(xT ) = xT −
∫ 0

T
tsθ(xt, t)dt. (11)

Although alternative training objectives exist, such as predicting noise xT [29], clean image x0 [36],
rectified flow xT − x0 [50] or other linear combinations of x0 and xT [63], prior works [22, 51]
have shown that it is still possible to recover an approximate score function sθ(xt, t) from these
methods.

Appendix B. Measuring Key Generalization Behaviors in Diffusion Models

Based on the evaluation protocol in Section 3, this section reveals several key generalization behaviors
in diffusion models: (i) MtoG scaling behaviors with model capacity and training size (Appendix B.1),
(ii) early learning and double descent in learning dynamics (Appendix B.2), and (iii) bias-variance
trade-off of generalization error (Appendix B.3).

B.1. Scaling Behaviors of the MtoG Transition

First, we investigate the scaling behavior of the MtoG transition with respect to both model capacity
|θ| and training data size N , using the metrics Egen and Emem. We evaluate ten U-Net architectures
on the CIFAR-10 dataset, with model sizes ranging from 0.9M to 55.7M parameters (U-Net-1 to U-
Net-10). For each model, we compute Emem and Egen across varying training dataset sizes, following
the evaluation protocol outlined in Section 3. We report our results in Figure 1 with additional
experimental details provided in Appendix D.4, where we observe the following:
Finding I.1: Scaling training data N induces MtoG transition under fixed model capacity |θ|.
As shown in Figure 1 (left), for a fixed model capacity |θ|, our metrics reveal a clear transition
from memorization to generalization as the number of training samples N increases. Notably,
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Figure 2: Training dynamics of diffusion models in different regimes. The top figure plots
Emem, Egen, ℓtrain, ℓtest over training epochs for different different dataset sizes: N = 26 (left), 212

(middle), 216 (right). The bottom figure visualizes the generation when N = 212. The top row shows
samples from the underlying distribution Φpdata(xT ), while the middle and bottom rows display
outputs from the trained diffusion model Φpθ(xT ) at epoch 85 and 500, respectively.

larger models transition more slowly to generalization, as their greater capacity allows them to
memorize more of the training data. Compared to prior studies of this transition [73, 75], our results
more accurately capture the underlying behavior by directly measuring the distributional distance
between the learned and ground-truth distributions. In contrast, earlier approaches [73, 75] assess
generalization based on the deviation of generated samples from the training data, which does not
reliably reflect true generalization.
Finding I.2: MtoG transition governed consistently by the ratio N/

√
|θ|. Moreover, in contrast

to prior work that focuses solely on the effect of training sample size N , our results in Figure 1 (right)
reveal a consistent scaling behavior when using our metric, governed by the ratio N/

√
|θ| between

data size and model capacity. Remarkably, both Egen and Emem metrics exhibit near-identical MtoG
transition curves across models of varying sizes when plotted against this ratio. As such, analogous
to the empirical scaling laws observed in large language models [35], this predictable trend provides
practical guidance for the development of diffusion models, particularly when scaling up model size,
data, or compute to achieve optimal performance gains.

B.2. Early Learning and Double Descent in Learning Dynamics

Building on the findings in Appendix B.1, we further examine the generalization behavior across
different training regimes. Under the evaluation protocol in Section 3, we analyze the learning
dynamics of a U-Net model with fixed model capacity (UNet-10 introduced in Appendix D.1) trained
with the number of data samples N = 26, 212, and 216, corresponding to the memorization, transition,
and generalization regimes in Appendix B.1, respectively. The model is trained using stochastic
gradient descent (SGD) for 500 epochs, during which we track Emem, Egen, ℓtrain, and ℓtest at
each epoch. The results in Figure 2 reveal several notable generalization behaviors that align with
phenomena previously observed in the training of overparameterized deep models [52, 74]:
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Figure 3: Bias–Variance Trade-off. Left figure shows Ebias and Evar as functions of the number of
training samples N for various network architectures. Right figure plots the generalization error Egen,
bias Ebias, and variance Evar across different network architectures with a fixed training sample size
of N = 216.

Finding II.1: Early learning behavior in memorization and transition regimes. As shown in
Figure 2 (left & middle), in both the memorization (N = 26) and transition (N = 212) regimes, the
generalization error initially decreases during training but reaches its minimum at an early epoch,
after which it begins to increase again. This early learning (or early generalization) phenomenon
becomes more salient as the training sample size increases from the memorization to the transition
regime. As shown in the visualization at the bottom of Section 3, the model at Epoch 85 clearly
exhibits generalization, whereas the model at Epoch 500 fails to generalize. This is also corroborated
by the divergence of training loss ℓtrain and test loss ℓtest at the top of the figure. It is worth
mentioning that, although early learning behavior has been theoretically and visually demonstrated
in previous works [44, 45], PFD is the first metric to provide empirical evidence of this phenomenon.
Finding II.2: Double descent of the generalization error in the generalization regime. In contrast,
as shown in Figure 2 (right), training in the generalization regime (N = 216) reveals a clear instance
of the double descent phenomenon [52] in the generalization error. Specifically, the error initially
decreases, then increases during intermediate training epochs, and finally decreases again as training
approaches convergence. Notably, this non-monotonic behavior is not captured by the standard
training and test losses ℓtrain and ℓtest, both of which decrease monotonically throughout training.
This implies that extended training can improve generalization performance in the generalization
regime.
Remarks. For both cases, it should be noted that these generalization phenomena observed through
our metrics are not unique to diffusion models. Similar surprising behaviors have been previously
reported in training overparameterized deep learning models with extensive theoretical investigations
[4, 5, 7, 52, 74]. For example, the early learning phenomenon has been widely observed when
training models with limited or noisy data, such as in deep image priors [69] and learning with
label noise [48, 49]. Similarly, the double descent phenomenon has been reported in the training
dynamics of overparameterized models [52]. These observations challenge the traditional view of
generalization and highlight the critical role of inductive bias and training time in the learning process.
Similarly, our findings imply that such factors should also be carefully considered when training
diffusion models.
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B.3. Bias-variance Trade-off of the Generalization Error

In statistical learning theory, bias-variance trade-off is a classical yet fundamental concept in super-
vised learning which helps us understand and analyze the sources of prediction error in the model
[6, 26, 38, 72]. Specifically, bias–variance decomposition expresses the expected generalization
error as the sum of two components: (i) the bias term, which quantifies the discrepancy between the
expected model prediction and the true function—high bias indicates systematic error or underfitting;
and (ii) the variance term, which measures the prediction variability of the model across different
training sets—high variance reflects sensitivity to data fluctuations or overfitting.

However, in unsupervised learning settings such as diffusion models, the notion of generalization
error was not well-defined prior to our work, in contrast to the well-established definitions in
supervised learning. As a result, bias–variance decomposition in this context remains largely
unexplored. In this work, we address this gap through the generalization error measure Egen (see
Equation (9)), which admits a bias–variance decomposition analogous to that in the supervised
setting, as we detail below.

Definition 3 (Bias-Variance Decomposition of Egen) Based on the same setup as Definition 2, we
can decompose Egen in Equation (9) as

ED
[
E2
gen

(
pθ(D)

)]
= E2

bias + Evar (12)

where pθ(D) denotes the distribution induced by a diffusion model θ (D) trained on a given training
dataset D sampled from pdata. Specifically, the bias and variance terms are defined as:

Ebias := ExT ([∥Ψ ◦Φpdata(xT )−Ψ ◦Φpθ(xT )∥22])1/2, Evar := EDExT [∥Ψ ◦Φpθ(D)
(xT )−Ψ ◦Φpθ(xT )∥22],

with Ψ ◦Φpθ(·) := ED[Ψ ◦Φpθ(D)
(·)].

Intuitively, our definitions of the bias term Ebias and the variance term Evar are both well-justified:
(i) Ebias quantifies the systematic error between the learned distribution pθ and the ground-truth
distribution pdata; and (ii) Evar captures the variability of model predictions across different training
sets by measuring the distance between pθ and the mean pθ which can be empirically estimated by
averaging over multiple datasets D sampled from pdata. Experimental results, following the protocol
in Section 3, are shown in Figure 3, with detailed settings in Appendix D.6.

In Figure 3 (a), when diffusion models are trained in the generalization regime, the resulting
generalization decomposition aligns with classical bias–variance theory from supervised learning: as
model complexity increases, the bias term Ebias decreases while the variance term Evar increases,
resulting in a U-shaped generalization error curve. Additionally, Figure 3 (b) further illustrates the
effect of the training sample size N and number of parameters |θ|: increasing N reduces both Ebias
and Evar, thereby lowering the generalization error Egen, as expected; In contrast, increasing |θ|
consistently increases Evar, and its effect on Ebias depends on the size of N : it decreases Ebias when
N ≥ 215 but increases it when N ≤ 211.

Appendix C. Proof in Section 2

Proof [Proof of Theorem 1] It is trivial to show PFD(p, q) > 0 for any p ̸= q and PFD(p, q) =
PFD(q, p), and thus we omit the proof.
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• Proof of p = q ⇔ PFD(p, q) = 0 :

– (⇒) If p = q, ∇ log pt (xt) = ∇ log qt (xt), thus:

dxt = −t (∇ log pt(xt)−∇ log qt(xt)) dt = 0 (13)

Thus, Φp(xT ) − Φq(xT ) is the solution of the ODE function Equation (13) with initial
xT = 0. Thus Φp(xT )−Φ1(xT ) = 0 for all xT . Thus PFD(p, q) = 0

– (⇐) If PFD(p, q) = 0 and Φp,Φq are continuous function w.r.t xT , then we have Φp(xT ) =
Φq(xT ) for all xT . If x0 = Φ(xT ), from the transformation of probability identities, we
have:

p(x0) =
∂

∂[x0]1
. . .

∂

∂[x0]n

∫
{ϵ|Φ(ϵ)≤x0}

pN (ϵ)dnϵ, (14)

where [x0]i denotes the i-th element of x0, f(ϵ) ≤ x0 denotes the element wise less or equal.
pN (·) is the probability density function (PDF) of Gaussian distribution N

(
0, T 2In

)
. Thus,

for all x0 we have:

p(x0)− q(x0) =
∂

∂[x0]1
. . .

∂

∂[x0]n

∫
{ϵ|Φp(ϵ)≤x0}

pN (ϵ)dnϵ

− ∂

∂[x0]1
. . .

∂

∂[x0]n

∫
{ϵ|Φq(ϵ)≤x0}

pN (ϵ)dnϵ,

=
∂

∂[x0]1
. . .

∂

∂[x0]n

∫
{ϵ|Φp(ϵ)≤x0}

pN (ϵ)dnϵ

− ∂

∂[x0]1
. . .

∂

∂[x0]n

∫
{ϵ|Φp(ϵ)≤x0}

pN (ϵ)dnϵ,

= 0,

(15)

so p = q.

• Proof of PFD(p, q) ≤ PFD(p, p′) + PFD(p′, q):

PFD(p, q)

=
(
ExT∼N (0,T 2I)

[
∥Φp (xT )−Φq (xT )∥22

])1/2
≤
(
ExT∼N (0,T 2I)

[(∥∥Φp (xT )−Φp′ (xT )
∥∥
2
+
∥∥Φp (xT )−Φp′ (xT )

∥∥
2

)2])1/2
≤
(
ExT∼N (0,T 2I)

[
∥Φp (xT )−Φq (xT )∥22

])1/2
+
(
ExT∼N (0,T 2I)

[
∥Φp (xT )−Φq (xT )∥22

])1/2
=PFD(p, p′) + PFD(p′, q)

(16)
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Lemma 1 Under Assumption 1, for all xT ∈ N (0, T 2In), as T → ∞, we have:

∥Φp (xT )−Φq (xT )∥2 ≤ exp

(
LT 2

ξ

2

)
ξ +

ϵ

L

(
exp

(
LT 2

ξ

2

)
− 1

)
, (17)

where ξ is a numerical constant and a finite timestep Tξ depending only on ξ.

Proof [Proof of Theorem 1] Let ϕt, t ∈ [0, T ] denotes the ODE trajectory:

ϕt = xp
t − xq

t ,

xp
t = xT −

∫ t

T
τ∇x log pτ (x

p
τ )dτ,

xq
t = xT −

∫ t

T
τ∇x log qτ (x

q
τ )dτ,

(18)

From the definition, ϕ0 = Φp (xT ) −Φq (xT ). Because limT→∞ϕt = xT − xT = 0, from the
ϵ− δ definition of the limit, given xT , and a constant ξ , there exists a finite Tξ related to ξ such that:

∥ϕt∥2 ≤ ξ for all t ≥ Tξ. (19)

As t ≤ Tξ, we have:
dϕt

dt
= −t (∇x log pt(x

p
t )−∇x log qt(x

q
t )) ,

∥ϕT0∥2 ≤ ξ.
(20)

Apply Assumption 1 to Equation (20), we could obtain the following integral inequality w.r.t ∥ϕt∥2:

d ∥ϕt∥2
dt

≤
∥∥∥∥dϕt

dt

∥∥∥∥
2

≤ t ∥∇x log pt(x
p
t )−∇x log qt(x

q
t )∥2

≤ t (ϵ+ L ∥ϕt∥2) ,∥∥ϕTξ

∥∥
2
≤ ξ, 0 ≤ t ≤ Tξ,

(21)

where the first inequality comes from the fact that
d ∥ϕt∥2

dt
≤
∥∥∥∥dϕt

dt

∥∥∥∥
2

. From Grönwall’s inequality

[19], we could solve ∥Φp (xT )−Φq (xT )∥2 = ∥ϕ0∥2 ≤ exp(
LT 2

ξ

2
)ξ +

ϵ

L

(
exp(

LT 2
ξ

2
)− 1

)
.

Proof [Proof of Theorem 2]Let X := ∥Φp (xT )−Φq (xT )∥22. From Theorem 1,

0 ≤ X ≤ κ2 (L, ϵ) ,

with κ (L, ϵ) := exp

(
LT 2

ξ

2

)
ξ +

ϵ

L

(
exp

(
LT 2

ξ

2

)
− 1

)
. From Hoeffding’s inequality [30], we

have:

P

(∣∣∣∣∣E[X]− 1

M

M∑
i=1

Xi

∣∣∣∣∣ ≥ γ

)
≤ 2 exp

(
− 2Mγ2

κ4 (L, ϵ)

)
, (22)
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with M samples to achieve γ accuracy. Thus, we could guarantee P
(∣∣∣∣E[X]− 1

M

M∑
i=1

Xi

∣∣∣∣ ≤ γ

)
with probability η, when:

M ≥ κ4 (L, ϵ)

2γ2
log

2

η
. (23)

Because ∣∣PFD(p, q)− ˆPFD(p, q)
∣∣ =
∣∣∣∣∣∣√E[X]−

√√√√ 1

M

M∑
i=1

Xi

∣∣∣∣∣∣
≤

√√√√∣∣∣∣∣E[X]− 1

M

M∑
i=1

Xi

∣∣∣∣∣.
(24)

(25)

We could guarantee that P
(∣∣PFD(p, q)− ˆPFD(p, q)

∣∣ ≤ γ
)

with probability η, when:

M ≥ κ4 (L, ϵ)

2γ4
log

2

η
. (26)

Example 1 The Wasserstein-2 distance W2(·, ·) is the lower bound of the probability flow distance,
i.e.,

W2(p, q) ≤ PFD(p, q), (27)

Specifically, let p and q be multivariate Gaussian distribution N (µ1,Σ1), N (µ2,Σ2), respectively,
where µ1,µ2 ∈ Rn and Σ1,Σ2 ∈ Rn×n. The PFD is given by

PFD (p, q) =
(
∥µ1 − µ2∥2 +

∥∥∥Σ1/2
1 −Σ

1/2
2

∥∥∥
F

)1/2
, (28)

under this case, the equality in Equation (27) holds when Σ1Σ2 = Σ2Σ1.

Proof [Proof of Example 1]
Proof of W2(p, q) ≤ PFD(p, q). From the definition of Wasserstein-2 distance:

W2(p, q) = inf
γ∈Γ(p,q)

(
E(xp,xq)∼γ ∥xp − xq∥22

)1/2
, (29)

where Γ (p, q) is the set of all couplings of p and q. As proofed by [66], the noise-to-image
mapping Φp and Φq pushes the Gaussian distribution N

(
0, T 2In

)
to the p and q distribution

respectively. Thus we could find the coupling γPFD := (Φp,Φq)#N
(
0, T 2In

)
, i.e., the pushforward

of N
(
0, T 2In

)
by (Φp,Φq), such that

PFD(p, q) =
(
E(xp,xq)∼γPFD ∥xp − xq∥22

)1/2
≥ W2(p, q) (30)

When distribution p (x) is Gaussian distribution N (µ,Σ) with µ ∈ Rn and Σ ∈ Rn×n, from
Equation (1) , we have pt (x) is N

(
µ,Σ+ σ2

t In
)
, thus the score function could be caluclated as,

∇x log pt (x) =
(
Σ+ t2In

)−1
(µ− x) . (31)
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By plugging in Equation (31) to Equation (3), we could obtain the ODE equation w.r.t x:

dx = −t
(
Σ+ t2In

)−1
(µ− x) dt, . (32)

The above ODE equation has a close form solution:

xt = µ+U diag

√ λ1 + t2

λ1 + T 2
, . . . ,

√
λn + t2

λn + T 2

U⊤ (xT − µ) (33)

where U , λk, k ∈ [n] are singlar value decomposition of Σ, Σ = U diag ([λ1, . . . , λn])U
⊤.

diag (·) convert a vector in Rn into diagonal matrix Rn×n, and xT ∼ N
(
0, T 2In

)
. Let xT = Tϵ

with ϵ ∼ N (0, In). As t = 0 and T → ∞, we have:

xt =

In −U diag

√ λ1 + t2

λ1 + T 2
, . . . ,

√
λn + t2

λn + T 2

U⊤

µ,

+U diag

T√ λ1 + t2

λ1 + T 2
, . . . , T

√
λn + t2

λn + T 2

U⊤xT ,

= µ+U diag
([√

λ1, . . . ,
√
λn

])
U⊤xT ,

= µ+Σ1/2xT = Φ (xT ) .

(34)

(35)

(36)

(37)

Thus, plugging in Definition 1, we have:

PFD (p, q) =
(
ExT∼N (0,T 2I)

[
∥Φ1 (xT )−Φ2 (xT )∥22

])1/2
=

(
ExT∼N (0,T 2I)

[∥∥∥µ1 +Σ
1/2
1 xT − µ2 −Σ

1/2
2 xT

∥∥∥2
2

])1/2

=

(
∥µ1 − µ2∥22 +

∥∥∥Σ1/2
1 −Σ

1/2
2

∥∥∥2
F

)1/2

=
(
∥µ1 − µ2∥22 +Tr

(
Σ1 +Σ2 − 2Σ

1/2
1 Σ

1/2
2

))1/2

(38)

(39)

(40)

(41)

From Wasserstein-2 distance for Gaussian distribution p, q has close form solution:

W2 (p, q) =

(
||µ1 − µ2||22 +Tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2))1/2

. (42)

From Theorem 2, we have W2 (p, q) ≤ PFD (p, q). And specifically, W2 (p, q) = PFD (p, q) when
Σ1Σ2 = Σ2Σ1.

Lemma 2 Given two positive semi-definite matrix Σ1,Σ2 ∈ Rn×n,

0 ≤ Tr
(
Σ

1/2
1 Σ

1/2
2

)
≤ Tr

((
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
. (43)
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Table 1: U-Net architectures details.

Name Dimensions for encoder blocks Number of residual blocks Number of parameters |θ|

U-Net-1 [32, 32, 32] 4 0.9M
U-Net-2 [64, 64, 64] 4 3.5M
U-Net-3 [96, 96, 96] 4 7.9M
U-Net-4 [128, 128, 128] 4 14.0M
U-Net-5 [80, 160, 160] 4 17.1M
U-Net-6 [160, 160, 160] 3 17.8M
U-Net-7 [160, 160, 160] 4 21.8M
U-Net-8 [192, 192, 192] 4 31.3M
U-Net-9 [224, 224, 224] 4 42.7M
U-Net-10 [256, 256, 256] 4 55.7M

Proof [Proof of Theorem 2] Because Σ1,Σ2 are positive semi-definite matrix, Tr
(
Σ

1/2
1 Σ

1/2
2

)
≥ 0

and

Tr

((
Σ

1/2
1 Σ2Σ

1/2
1

)1/2)
= Tr

(√(
Σ

1/2
1 Σ

1/2
2

)(
Σ

1/2
1 Σ

1/2
2

)⊤)
=
∥∥∥Σ1/2

1 Σ
1/2
2

∥∥∥
∗
, (44)

where || · ||∗ is the nuclear norm (trace norm). From trace norm inequality ([8] Chapter IV, Section
2), for a random matrix M , Tr (M) ≤ ∥M∥∗. Thus, we have:

Tr
(
Σ

1/2
1 Σ

1/2
2

)
≤
∥∥∥Σ1/2

1 Σ
1/2
2

∥∥∥
∗
. (45)

Appendix D. Experiments

In this section, we provide experimental details and additional discussion of the main results presented
in Section 3 and Appendix B.

D.1. Network architecture details

In this subsection, we provide details of the U-Net architectures, as summarized in Table 1. The
U-Net follows an encoder-decoder design, where the encoder comprises multiple encoder blocks.
The column "Dimensions for encoder blocks" indicates the feature dimensions of each encoder
block, while "Number of residual blocks" specifies how many residual blocks are used within each
encoder block. The decoder is symmetric to the encoder. For further architectural details, please
refer to [37]. By varying the encoder block dimensions and the number of residual blocks, we scale
the U-Net model from 0.9M to 55.7M parameters.

D.2. Evaluation protocol

In this subsection, we provide details of the evaluation protocol introduced in Section 3, as well as
the comparison between the synthetic data from the teacher model and the real dataset.
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Experiment settings for evaluation protocol. The teacher model θt and the student model θ share
a similar U-Net architecture [60] with different numbers of parameters, as introduced in Appendix D.1.
The teacher model, with UNet-10 architecture, is trained on the CIFAR-10 dataset [39] using the
EDM noise scheduler [36], with a batch size of 128 for 1,000 epochs. The student model 2 is trained
using the variance-preserving (VP) noise scheduler [29], under the same training hyperparameters.
We use one A40 GPU with 48 GB video random access memory (VRAM) for all experiments. We
generated three subsets of initial noise {x(i)

train,T }Ni=1, {x
(i)
gen,T }Mi=1, {x

(i)
test,T }Mi=1

iid∼ N (0, T 2In).
The training and test datasets are produced using the teacher model:

D := {x(i)
train}

N
i=1 = {Φpθt

(x
(i)
train,T )}

N
i=1, Dtest := {x(i)

test}Mi=1 = {Φpθt
(x

(i)
test,T )}

M
i=1.

To evaluate the student model, we generate an evaluation dataset from itself:

Dgen := {x(i)
gen}Mi=1 = {Φpθ(x

(i)
gen,T )}

M
i=1.

All samples are generated using the second-order Heun solver [36] with 18 sampling steps. We
vary the number of training samples N from 26 to 216 in powers of two. M is set to 50,000 for the
experiments in Appendix D.3, and 10,000 for the rest.

Experiment settings for validating the synthetic dataset with real real-world dataset. We
evaluate FID and Emem for diffusion models with UNet-4 architecture, trained separately on the
synthetic dataset D and CIFAR-10 training dataset. We keep the number of training dataset N
the same for these two settings, ranging from 26 to 215, with a power of 2. Then we evaluate the
FID between Dgen and Dtest (CIFAR-10 test dataset) for the synthetic (real-world) setting, with
M = 10000. To evaluate Emem, we use the initial noise {x(i)

gen}Mi=1.

D.3. Comparison with practical metrics for generalization evaluation

In this subsection, we expand upon the experiment presented in Section 3, which compares our
proposed metric with practical metrics for evaluating generalization. We compare Egen and Emem with
well-used generative model metrics, inluding FID,FDDINOv2,KID,CMMD,Precision,Recall,NND,IS.
We also including the training and testing loss ℓtrain, ℓtest (Equation (10)) as comparison. We
evaluating their ability in capturing the MtoG transition, under the evaluation protocol proposed in
Section 3.

We use UNet-10 for the student model in this experiment. We summarized datasets used by these
metrics in Table 2. Results are shown in Figure 4, summarized into one sentence, only Egen and Emem
could quantitatively capture this transition. We include detailed discussions below:

Results discussions. Figure 4 (bottom) is consistent with prior empirical observations [73, 75]: In
the memorization regimes (N = 26), pθ tends to memorize the empirical distribution pemp, resulting
in similar generation between Φpemp(xT ) and Φpθ(xT ); in the transition regime (N = 212), the model
lacks sufficient capacity to memorize and the sample complexity is inadequate for generalization,
leading to poor-quality generations Φpθ(xT ); in the generalization regimes (N = 216), pθ captures
the underlying distribution pdata, and the generations Φpdata(xT ) and Φpθ(xT ) are closely aligned.

As shown in Figure 4 (top), when N increases, Emem consistently increases and Egen consistently
decreases. This aligns with our intuition: as sample complexity grows, models tend to generalize and
memorize less. In contrast, all other metrics fail to capture this transition effectively. The reasons
can be summarized as follows:

2. The architecture of the student model varies across experiments and will be described in detail for each specific case.
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Figure 4: Comparison of practical metrics on the MtoG transition. The top figure plots multiple
evaluation metrics as functions of log2N . The bottom figure visualizes the generation under three
numbers of training samples (26, 212, 216). For each setting, the figure shows generations from
the underlying distribution (top row), empirical data distribution (middle row), and the learned
distribution from the diffusion model (bottom row). Each column corresponds to the same initial
noise.

Metric Dataset(s)

FID, FDDINOv2, KID, CMMD,
Precision, Recall, NND

Dgen vs. Dtest

FIDtrain, FDDINOv2,train D vs. Dtest

IS Dgen

ℓtrain D
ℓtest Dtest

Emem, Egen {x(i)
gen,T }Mi=1

Table 2: Datasets used to evaluate each metric.

• FID, FDDINOv2, KID, IS, and CMMD are sensitive to generation quality. Image quality metrics,
including FID, FDDINOv2, KID, IS, and CMMD, show degradation in performance at N = 212.
This drop is primarily due to degraded visual quality in the generated samples, as visualize in
Figure 4 (bottom-middle). However, at this sample complexity, the generated data still captures
low-level features such as colors and structures from the underlying distribution. This is evident

24



UNDERSTANDING GENERALIZATION IN DIFFUSION MODELS VIA PROBABILITY FLOW DISTANCE

from the visual similarity between Φpdata(xT ) and Φpθ(xT ), suggesting the model have some
generalizability. In comparison, only Egen decreases consistently around N = 212, indicating it
captures generalizability better than others despite visual degradation.

• FID, FDDINOv2 and Recall are sensitive to diversity. The monotonic trends for FID, FDDINOv2
and Recall are due to their sensitivity to the diversity of Dgen, rather than their ability to measure
generalizability. At small N , the model memorizes the training samples, resulting in Dgen closely
resembling D and exhibiting significantly lower diversity than Dtest, since N ≪ M . Under
these conditions, FID, FDDINOv2 are large because they are biased towards the diversity of the
evaluation samples (as proved in [18]). Meanwhile, Recall is low because the the support of
Dtest is limited, reducing the probability that samples drawn from Dgen lie within the support of
Dtest. In contrast, Egen measures generalizability by directly quantifying the distance between
the generation from the learned distribution and the underlying distribution and is less affected by
the diversity of the generated samples.

• NND and ℓ fail to capture the generalizability. The NND, originally designed for assessing
the generalization of GANs, is sensitive to image quality and increases during the transition
regime. Additionally, it produces identical values across a wide range of sample sizes (e.g., N =
28, 29, 213, 214, 215, 216), making it unreliable for evaluating generalization in diffusion models.
Similarly, neither the training loss ℓtrain nor the test loss ℓtest exhibits a consistent decreasing
trend as N increases, indicating that these losses do not directly reflect either memorization or
generalization. While the loss gap ℓtest − ℓtrain does tend to decrease with larger N , it cannot
serve as a robust generalization metric either. This is because even a randomly initialized model θ
can exhibit a small loss gap.

In conclusion, Emem and Egen are the only metrics that could capture the MtoG transition for
diffusion models. They evaluate the generalization (memorization) by directly measuring the distance
between the learned distribution by the diffusion model and the underlying (empirical) distribution.
Unlike other metrics, they are less affected by the quality or diversity of the evaluating samples.

D.4. Scaling Behaviors of the MtoG Transition

In this subsection, we provide detailed experimental settings for Appendix B.1, along with additional
experiments to further investigate the MtoG transition across more architectures (e.g., Transformer-
based models [3]).

Experiment settings The detailed architectures of the student models, from U-Net-1 to U-Net-10,
are provided in Appendix D.1, with model sizes ranging from 0.9M to 55.7M parameters. We
scale up the architectures by increasing the dimensionality of the encoder blocks and the number of
residual blocks.

MtoG Transition between U-Net and Transformer architecture To further investigate the impact
of network architecture, we compare the U-Net architecture with the transformer-based UViT [3].
Specifically, we use the U-Net-9 from Table 1, containing 42.7M parameters, and design the UViT
model with comparable parameters of 44.2M. Both models are trained for 1000 epochs. Using the
same experimental setup described in Appendix B.1, we plot the MtoG transition curves for both
U-Net and UViT, as shown in Figure 5.
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Figure 5: Comparison of scaling behavior between UNet and Transformer architectures in the
MtoG transition. Emem and Egen plotted against log2(N) for U-Net architecture (U-Net-9) and UViT
architecture. Right: the same metrics plotted against log2(N/

√
|θ|), where |θ| is the number of

model parameters.

As illustrated in Figure 5, with a similar number of parameters and the same training data sizes,
UViT exhibits a higher Emem in the memorization regime (26 ≤ N ≤ 210) and a higher Egen in the
generalization regime (211 ≤ N ≤ 215), suggesting a lower model capacity compared to U-Net under
these conditions. However, when provided with sufficient training data (N = 216), UViT achieves a
lower Egen, demonstrating better generalization performance. This observation is consistent with
prior findings on transformer architectures in classification tasks: transformer-based models, lacking
the inductive biases inherent to CNNs, tend to generalize poorly when trained on limited data [20].

D.5. Early Learning and Double Descent in Learning Dynamics

In this subsection, we build on the discussion from Appendix B.2. In Figure 2, we evaluate ℓtrain
and ℓtest across the three training regimes. Notably, the gap ℓtest − ℓtrain emerges as a practical
heuristic for identifying the training regime: In the memorization regime, the gap increases steadily
with training; In the transition regime, the gap remains near zero during early training (when
generalization improves) and increases for further training (when generalization degrades); in the
generalization regime, the gap remains close to zero throughout training. While ℓtest − ℓtrain is
not a strict measure of generalization, it proves to be a useful empirical indicator of training regimes
for diffusion models. Practically, by setting aside a test dataset to estimate this gap, we can more
effectively identify the training regime for diffusion models.

D.6. Bias-variance Decomposition of Generalization Error

To approximate Ψ ◦Φpθ(·), we independently sample two training datasets, D1 and D2, for each
specified number of training samples N . We then train two student models, θ(D1) and θ(D2), using
these datasets. The quantity Ψ ◦Φpθ(·) is approximated as follows:
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Ψ ◦Φpθ(·) ≈
1

2
(Ψ ◦Φpθ(D1)

(·) +Ψ ◦Φpθ(D2)
(·)). (46)

Appendix E. Further Discussions of Emem
In this section, we present the mathematical formulation for estimating Emem and compare it with
existing memorization metric.

Empirically estimate Emem. As described in Definition 1 and Definition 2, estimating Emem requires
access to the mapping Φpemp(·). According to Equation (3), this mapping is determined by the score
function of the empirical distribution, denoted as ∇ log p̂t(xt). Based on prior works [25, 36, 74],
the score function of the empirical distribution has a closed-form expression:

∇ log p̂t(xt) =
1

T 2

(
Ex∼pemp [N (xt;x, T

2In) · x]
Ex∼pemp [N (xt;x, T 2In)]

− xt

)
, (47)

where pemp(x) =
1
N

∑N
i=1 δ(x − y(i)) corresponds to the empirical distribution over the training

dataset y(i)N
i=1. This formulation allows us to numerically compute ∇ log p̂t(xt) for any given t.

Subsequently, we can use a numerical solver to estimate the integral in Equation (3), thereby enabling
the estimation of Emem.

Comparison between existing memorization metric and Emem. Previous works [73, 75] define
memorization metirc as:

M Distance (pθ) := ExT

[
min

x∼pemp
∥Ψ (x)−Ψ ◦Φpθ (xT )∥2

]
, (48)

A generated sample Φpθ (xT ) is a memorized sample if it is close enough to one of the sample x from
pemp. It is easy to show that Emem is a more strict metric than M Distance, i.e. "Emem

(
pθ
)
= 0" is

a sufficient but not necessary condition for "M Distance
(
pθ
)
= 0".

Appendix F. Ablation Study

In this section, we present ablation studies on the evaluation protocol, examining the effects of
different noise schedulers and sampling methods (Appendix F.1), image descriptors (Appendix F.2),
sample sizes for evaluation (Appendix F.3), and teacher models (Appendix F.4).

F.1. Sampling Methods

In this subsection, we present ablation studies on various noise schedulers and sampling strategies.
Specifically, we evaluate the performance of the following methods: Variance Preserving (VP) [66],
Variance Exploding (VE) [66], iDDPM [53] + DDIM [65], and EDM [36]. The specific form of
f(t), g(t) used in each approach are detailed in Table 1 of [36]. Additionally, each method also
differs in its choice of ODE solver and timestep discretization strategy. For sampling, we use 256
steps for VP, 1000 for VE, 100 for iDDPM + DDIM, and 18 for EDM. All experiments are conducted
under the evaluation protocol described in Section 3, where we estimate the Egen under different
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Figure 6: Comparison of different sampling methods. Emem and Egen plotted against log2(N) for
different sampling methods, including: EDM, VP, VE, iDDPM+DDIM.

training samples N . The student models use the UNet-10 architecture. During the ablation study,
both the teacher and student models use the same sampling method3 as specified above.

As shown in Figure 6, different samplers yield highly consistent results, demonstrating that PFD
can be extended to various noise schedules, i.e., different choices of f(t) and g(t).

F.2. Image Descriptors

In this subsection, we present ablation studies on the image descriptor Ψ used in Equation (4).
The descriptors evaluated include DINOv2 [56], InceptionV3 [68], CLIP [58], SSCD [57], and the
identity function. All experiments follow the evaluation protocol described in Section 3, where we
estimate both Emem and Egen across varying training sample sizes N and different student model
architectures: U-Net-1, U-Net-2, U-Net-4, and U-Net-10.

As shown in Figure 7, different feature embeddings reveal a consistent trend in the memorization-
to-generalization (MtoG) transition across various U-Net architectures. With limited training samples,
smaller models exhibit lower generalization scores. Conversely, with sufficient training data, larger
models tend to have lower generalization scores. When comparing with Egen measured in pixel space
(i.e., using the identity function as the descriptor), we observe that Egen values are nearly identical
across diffusion architectures when N ≥ 215. In this regime, all models have learned low-level image
features such as color and structure; however, only the larger models capture high-level perceptual
details. Because pixel-space measurements fail to reflect these high-level features, they yield similar
Egen values regardless of model size. Therefore, it is better to evaluate Egen in a feature space, which
better captures perceptual differences between models.

F.3. Evaluation Sample Number

In this subsection, we present ablation studies on the number of samples M used by ˆPFD to ap-
proximate PFD, as defined in Equation (5). All experiments follow the evaluation protocol de-
scribed in Section 3, where we estimate Egen across varying training sample sizes N and dif-
ferent student model architectures: U-Net-1, U-Net-2, U-Net-4, and U-Net-10. We vary M ∈

3. Note that the noise scheduler used for sampling could differ from that used during training.

28



UNDERSTANDING GENERALIZATION IN DIFFUSION MODELS VIA PROBABILITY FLOW DISTANCE

Figure 7: Comparison between different image descriptors. Egen plotted against log2(N) for a
range of U-Net architectures (U-Net-1, U-Net-2, U-Net-4, U-Net-10) using different image descrip-
tors, including identity function, SSCD, DINOv2, CLIP, Inceptionv3.

Figure 8: Comparison across evaluation sample sizes. The mean and variance of Egen are plotted
against the number of evaluation samples M for various U-Net architectures (U-Net-1, U-Net-2,
U-Net-4, U-Net-10), with a fixed number of training samples N = 216.

{10, 32, 100, 316, 1000, 3163, 10000}, and for each setting, generate 5 independent sets of {x(i)
gen,T }Mi=1

initial noise estimate Egen, computing both the mean and variance. In this experiment, we use DI-
NOv2 as the image descriptor.

As shown in Figure 8, the variance of Egen approaches zero as M increases to 10,000, indicating
that when M ≥ 10000, the empirical estimate of Egen converges to its value over the underlying
distribution. This result holds consistently across different model architectures.
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Figure 9: Comparison of different teacher models.The figure shows the Egen values for various
student models (EDM, Rect, UViT) trained using different teacher models (EDM, Rect, UViT), with
a fixed training data size of N = 216.

F.4. Teacher Model Architecture

We end this section by examining how different teacher models affect the evaluation protocol.
Specifically, we consider three types of diffusion models: EDM, Rectified Flow (Rect) [50], and
UViT. Using the CIFAR-10 dataset, we train three teacher models, one for each of these diffusion
types. For each teacher model, we then evaluate all three diffusion models as student models. We
report their corresponding Egen values. Both teacher and student models use the same sampling
method, the second-order Heun solver with 18 steps.

As shown in Figure 9, the Egen is approximately 0.7 when both the student and teacher models
are selected from EDM or UViT. However, Egen increases to around 0.8 when either the student or
teacher model is Rect. According to its original paper, Rect has the poorest generation quality among
the three, as measured by FID. This suggests that the teacher model should possess strong generative
performance to serve as an underlying distribution that is close to the real-world data distribution.
Therefore, in this paper, we adopt EDM as the teacher model, as it achieves the lowest FID among
the three models.
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