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Abstract
Parallel neurosymbolic architectures have been
applied effectively in NLP by distilling knowl-
edge from a logic theory into a deep model. How-
ever, prior art faces several limitations including
supporting restricted forms of logic theories and
relying on the assumption of independence be-
tween the logic and the deep network. We present
Concordia, a framework overcoming the limita-
tions of prior art. Concordia is agnostic both to
the deep network and the logic theory offering
support for a wide range of probabilistic theories.
Our framework can support supervised training
of both components and unsupervised training of
the neural component. Concordia has been suc-
cessfully applied to tasks beyond NLP and data
classification, improving the accuracy of state-
of-the-art on collective activity detection, entity
linking and recommendation tasks.

1. Introduction
Motivation. To overcome the limitations of deep networks,
such as dependence on significant amount of labelled train-
ing data, researchers proposed to integrate logical theo-
ries, a computational paradigm known as neurosymbolic
AI (d’Avila Garcez et al., 2002). One way to integrate the
components is in a staged or stratified fashion. Stratified
neurosymbolic frameworks find applications in problems
admitting well-separable symbolic and subsymbolic tasks
– to name a toy example, performing mathematical opera-
tions using symbolic models over MNIST digits identified
by a neural model. One of the first stratified architectures
was DeepProbLog (Manhaeve et al., 2018). More followed:
NeurASP (Yang et al., 2020), ABL (Dai et al., 2019), RNMs
(Marra et al., 2020) and NeuroLog (Tsamoura et al., 2021).
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An alternative to stratified is parallel integration. In contrast
to stratified frameworks, parallel integration applies in set-
tings in which the same task can be solved both symbolically
and sub-symbolically and the aim is to increase the accu-
racy of the end task by distilling knowledge from the logic
component into the neural one and vice versa. Two parallel
neurosymbolic frameworks have been proposed recently:
Teacher-Student (T-S) by Hu et al. (Hu et al., 2016a;b) and
Deep Probabilistic Logic (DPL) by Wang and Poon (Wang
& Poon, 2018). T-S is based on posterior regularization
(Ganchev et al., 2010) to build a teacher network which is
later used to train the neural module. DPL defines a joint
distribution after making the assumption of independence
between the logical theory and the deep network and uses
this distribution to regularize the deep model.

Problem. Stratified approaches focus on separating the
pattern recognition and the reasoning to allow for more
complex reasoning and querying. However, the approaches
named above tend to suffer from high computational com-
plexity. In this work, we focus in particular on how neuro-
symbolic AI can help to reduce the need of (labelled) data.
To this end, we focus on parallel approaches which are more
tailored to this problem as they enhance the neural model.
However, both T-S and DPL come with several limitations.
Firstly, the adopted formulations do not support settings in
which the inputs and the targets abide by more complex
relations. In particular, they only support rules expressing
constraints directly relating the input with the output data
and do not support recursive formulas. However, in practi-
cal scenarios, the relationships between the inputs and the
outputs may be modelled only via richer logical formulas
that reference latent information, i.e., information that is
not available either in the input or output data. Additionally,
with regards to DPL, the integration is based on the assump-
tion of independence between the two components, which
generally does not hold as they both depend upon the same
input data. Finally, DPL is bound to Markov Logic Net-
works (MLNs) (Richardson & Domingos, 2006) limiting its
applicability to classification only.

Contribution. We present Concordia1, a parallel neurosym-
bolic framework that overcomes the above limitations. Con-
cordia adopts probabilistic logics due to their flexibility to

1Available on https://github.com/jonathanfeldstein/Concordia
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reason in a formal fashion over uncertain data (De Raedt
& Kimmig, 2015). Concordia relies on the theoretically
sound inference and training techniques of probabilistic
logics to train the two components in a supervised or unsu-
pervised fashion. Its interface supports theories expressed
as weighted formulas in first-order logic, including lifted
graphical models like MLNs and Probabilistic Soft Logic
(PSL) (Bach et al., 2017) allowing for easy integration of
domain expertise. Offering a plug-and-play interface is cru-
cial as each language comes with its own semantics and
inference/learning footprint. Furthermore, our framework
employs a mixture of experts technique (Jacobs et al., 1991)
to integrate the two components without relying on the
independence assumption, and it supports using the deep
network predictions as priors. Our empirical findings sup-
port the hypothesis that integrating symbolic models with
neural ones does indeed reduce the need for (labelled) data.
Finally, as we empirically demonstrate, learning the weights
of the formulas at training time provides the means to learn
the formulas of the theories themselves and not just their
weights. In fact, we show that if we throw arbitrary formulas
at training time, then the weights of the non-useful ones will
drop to zero.

Results Concordia is the first framework of its kind to be
applied beyond NLP and, in particular, on formulas that
prior art in parallel approaches are incapable of supporting.
Our evaluation shows that even simple commonsense for-
mulas can have a significant impact on the accuracy of the
end-task. In particular, Concordia leads to NLP models with
up to 5.8% higher accuracy than those of DPL and to activ-
ity recognition models with up to 6.75% and 3.87% higher
accuracy than the neurosymbolic techniques from (London
et al., 2013) and (Kuang & Tie, 2020), respectively. It also
improves the root mean squared error on recommendation
(Kouki et al., 2015) by up to 2.10%. These improvements
increase even further with less data.

2. Related work
Stratified integration As reported in (Tsamoura et al.,
2021), most existing stratified frameworks suffer from lim-
ited scalablity especially in the presence of recursion. Fur-
thermore, the ones that employ heuristics to reduce the
reasoning overhead, such as ABL (Dai et al., 2019), suffer
from limited accuracy. The above limitations restrict the
applicability of frameworks such as (Manhaeve et al., 2018;
Dai et al., 2019; Yang et al., 2020) to real-world settings.
Concordia supports theories that relevant prior art fails to
support, see Section 5 for further details.

Parallel integration Above, we focused on several limita-
tions of T-S and DPL, including inability to express com-
plex relationships that govern the input and the output data.
Hence, their applicability is restricted to simple tasks. With

regards to T-S, there is an additional limitation: the opti-
mization objective that is used to build the teacher model
does not abide by the semantics of Probabilistic Soft Logic
(Bach et al., 2017). In particular, in the optimal solution
found, when building a teacher, the slack variables (the ξ’s
in (Hu et al., 2016a)) should approach 0 so that the expec-
tation of the rule satisfaction becomes 1. However, in that
case, the weight of each constraint is not taken into account.

Knowledge distillation Our work is relevant to the broader
area of knowledge distillation (Mobahi et al., 2020; Dao
et al., 2021; Hinton et al., 2015). There, the objective is
to distill knowledge from a complex deep model into a
simpler one. Our work substantially differs from the above
line of research. (i) Our teacher is a (probabilistic) logical
theory and not a neural model. Therefore, Concordia allows
integrating into a deep model prior knowledge in symbolic
form, making introduction of domain expertise very simple.
(ii) At a higher level, prior art on purely neural teacher-
student techniques aims to simplify a complex deep model.
In contrast, we aim to improve the accuracy of a neural
model using prior knowledge. (iii) In the above line of
research, the accuracy of the student will not outperform
that of the teacher. In contrast, our analysis shows our
symbolic teacher can lead to neural models with higher
accuracy than on its own.

Regularization LTNs (Donadello et al., 2017), DL (van
Krieken et al., 2020) and DASL (Sikka et al., 2020) intro-
duce stratified techniques for training deep models using
the semantics of fuzzy logic, however, without training the
logic theory. pLogicNet (Qu & Tang, 2019) applies Markov
Logic Networks to learn knowledge graph embeddings. Xie
et al. (2019) propose a technique to project fixed proposi-
tional (variable-free) formulas onto a manifold via graph
convolutional networks. The weights of the formulas are
not jointly trained with the deep model. In (Fischer et al.,
2019) and in (Li & Srikumar, 2019), the authors propose
frameworks where the neural models are regularised using
symbolic constraints, by asserting whether the neural model
satisfies one fixed constraint. The above means that their
loss is a SAT function and the constraints are unweighted.

Beyond the difference about supporting theories rather than
single constraints, Concordia distills the knowledge cap-
tured in the full probability distribution, rather than just the
max of the logical component (L) into the neural component
(N ). Hence, we use more of the knowledge produced by L –
our loss is a comparison of distributions. The experiments in
Section 5 show that this additional knowledge is particularly
helpful in settings with limited data.
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3. Preliminaries
First-order logic A term is either a variable or a constant.
An atom α is an expression of the form p(t), where p is a
predicate and t is a vector of terms; α is ground, if t includes
only constants. We refer to expressions in first-order logic
as formulas. Rules are universally quantified formulas of the
form α1 ∧ · · · ∧ αN → α, where αi’s and α are atoms and
each term occurring in α also occurs in some αi. We refer
to the left-hand and right-hand sides of the implication as
the premise and the conclusion of the rule, respectively. A
formula is instantiated if each atom occurring in the formula
is ground. A theory is a collection of formulas. Assuming
a set of constants, we refer to the set of all possible ground
atoms computed by instantiating the formulas in the theory
as its Herbrand base. An interpretation is a mapping of the
ground atoms in the Herbrand base to a truth value. In the
classical Boolean logic, each ground atom is mapped to true
or false. Other logic formalisms map ground atoms to [0, 1].

Example 1. Consider the rule from (Kouki et al., 2015):

SIMILAR(I1, I2) ∧ RATES(U, I1)→ RATES(U, I2) (1)

According to the rule, if items I1 and I2 are similar, then
user U will rate item I1. In this example, I1, I2, and U are
variables. Neither T-S nor DPL can support rule (2) due to
their inability to handle transitive rules. An instantiation
of rule (2), where T1, T2, and A stand for ToyStory1,
ToyStory2, and Alice, respectively, could be

SIMILAR(T1,T2) ∧ RATES(A,T1)→ RATES(A,T2)
(2)

Mappings A substitution σ is a total mapping from variables
to constants. For a vector X, σ(X) is obtained by replacing
each occurrence of X ∈ X in the domain of σ with σ(X).

Markov Random Fields A Markov Random Field (MRF) is
a model for the joint distribution of a set of random variables
(RVs) X = (X1, . . . , XN ). It is composed of an undirected
graph G and a set of potentials ϕ1, . . . , ϕM , where each ϕi

is usually represented by an indicator function fi weighted
by λi. Graph G has a node for each variable, while the
MRF has a potential ϕi for each clique of variables Xi in G.
Potential ϕi maps each instantiation of Xi to a non-negative
real value. The joint distribution represented by an MRF is
given by:

P (X = x) =
1

Z
exp

(
M∑
i=1

λifi(Xi = xi)

)
, (3)

where Z is a normalization constant and xi denotes an
instantiation of Xi as per x, i.e., assuming x = σ(X), for a
substitution σ, then xi = σ(Xi). We will see examples of
fi’s later in the section.

We denote the marginal distribution of the subset Y of X
by MARG(Y = y) and compute conditional probabilities
using the Bayes rule. Let Xo denote a tuple of observed
RVs, i.e., RVs with known values, and Xu denoted a tuple of
unobserved RVs, i.e., RVs with unknown values. The Most
Probable Explanation (MPE) or Maximum A Posteriori
State (MAP) is the most likely assignment to the variables
in Xu given Xo:

MPE(Xu = xu | Xo = xo)

= argmax
xu

P (Xu = xu | Xo = xo) (4)

LGMs To establish the connection between a theory in first
order logic L and probability theory, lifted graphical models
(LGMs) treat each ground atom in the Herbrand base of L
as a random variable (RV) with the same domain as the one
of the atom. Each formula ri in L serves as a template for
defining potentials ϕi,1, . . . , ϕi,Mi . Those potentials share
the same weights λi (as we shall later see, this is going to
be the weight of ri) and map each tuple of constants x to
the same value. To summarize, an LGM is a set of weighted
formulas λi :: ri, for 1 ≤ i ≤M , where each ri defines a
set of potentials ϕi,1, . . . , ϕi,Mi in a MRF with ϕi,j = ϕi,k,
for each j, k ∈ {1, . . . ,Mi}. The log-linear representation
of LGMs defines the joint distribution

P (X = x) =
1

Z
exp

 M∑
i=1

Mi∑
j=1

λifi,j(Xi,j = xi,j)

 ,

where Z is the normalization constant and xi,j is defined
analogously to (3).

Probabilistic Soft Logic (PSL) (Bach et al., 2017) is an ex-
ample of an LGM. PSL adopts the semantics of fuzzy logic
to interpret the formulas and the Lukasiewicz t-(co)norms to
compute the truth values of the instantiated formulas. Due
to the adoption of fuzzy logic, interpretations map atoms to
soft truth values in [0, 1]. Returning back to Example 1, the
truth value of atom SIMILAR(ToyStory1,ToyStory2)
is in [0, 1] in PSL. That allows us to incorporate uncertainty
to the level of similarity between elements, something that
is not possible with Boolean first-order logic. The fi,j func-
tions are given by

fi,j(Xi,j = xi,j) = (1− ri(Xi,j = xi,j))
p (5)

where ri(xi,j) denotes the truth value of formula ri when
instantiated using the ground atoms xi,j and p ∈ {1, 2} pro-
vides a choice of penalty. If rule ri cannot be instantiated
using xi,j , then ri(xi,j) = 0.

4. Combining logic with neural networks
This section presents the main contribution of this work, the
Concordia framework. An overview of the framework is
presented in Figure 1.
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Figure 1. Overview of the Concordia architecture. Grey compo-
nents are the input, blue components are the neural component, red
components are the logic component, and the components parts
are the gating network.

Let D denote the set of training data. Each training datum
is denoted by (x,y), where x ∈ X and y ∈ Y . Concordia
uses each (x,y) to train the neural component, the logical
theory, and a gating network, denoted by N , L and G, re-
spectively. We first present the N and L components and
then proceed with the description of the overall architecture.

4.1. The logical component

The first building block of our architecture is an LGM L.
We denote the vector of all formulas’ weights as λ. Treat-
ing each ground atom in the Herbrand base of L as a RV,
module L defines a probability distribution PL(XL|λ), see
Section 3.

Component L should infer information for each possible
target in Y . This implies that the Herbrand base of L needs
to include a ground atom αj denoting the truth of each target
class cj ∈ Y . We refer to atoms αj as target atoms. If Y is
a continuous space, as in regression tasks, the adoption of
PSL allows us to use rules so that the Herbrand base of L
includes a single ground atom per target.

The training data defines instantiations of the RVs in XL.
In particular, τ(x) and τ(xy) are vectors of (partial) truth
assignments to the elements in XL. Logic allows us to train
under uncertain data by assigning values to the atoms in the
range [0,1]. By abusing the notation, we can also treat the
τ -vectors as mappings of atoms to their truth values. We
use Xo

L to denote the vectors of RVs that are instantiated
(observed) given the vectors in τ(x) or τ(xy); we use Xu

L

to denote the RVs that are left non-instantiated.

Example 2. Reconsider rule (1), where we now use λ to
denote its weight. Each datum (x,y) is a user-item pair. In
particular, vector τ(xy) includes the relational represen-
tation of users and items, e.g., if (x,y) is the rating, say 3,
of user Alice on the movie Toy Story, then the vector
τ(xy) assigns to atom RATES(Alice,Toy Story) the
rating 3 normalized into [0, 1] (that is 0.5).

Inference Inference proceeds by means of a conditional
distribution PL(Y |Xo

L,λ), where Y is a RV with domain
Y , denoting the likelihood of a target for given observations
(instantiations to the observed variables Xo

L) and formula
weights λ. Continuing with Example 2, assuming our goal
is to predict the rating of Alice on Toy Story, then
RATES(Alice,Toy Story) is the single target atom and
PL(Y |Xo

L,λ) denotes the conditional distribution over the
values of the target.

To define PL(Y |Xo
L,λ) in classification tasks, we have two

options depending on the logic semantics. When the logic
admits Boolean interpretations, i.e., an atom is either true or
false with some probability as in Markov Logic Networks
(Richardson & Domingos, 2006), then we can compute the
likelihood of each αj being true using marginals and arrange
the computed likelihoods into distributions over the classes.

In contrast, when the logic interpretations map each ground
atom to [0, 1], PL(Y = cj |Xo

L = τ(x),λ) is the soft truth
value of the atom αj in the interpretation τ(x)x̂u

L, where

x̂u
L = argmax

xu
L

PL(X
u
L = xu

L|Xo
L = τ(x),λ) (6)

Above, x̂u
L denotes the most likely assignment of the unob-

served variables given the input data and the current weights
and τ(x)x̂u

L denotes the assignment of the atoms in the Her-
brand base of L by taking the union of the assignments in
τ(x) and x̂u

L. The discussion on inference for regression
tasks is deferred to Appendix D.

Constraints When L admits Boolean interpretations, we
require it to impose mutual exclusiveness constraints in
the elements in Y , i.e., that the elements in Y cannot be
simultaneously true. When L admits interpretations in [0, 1],
then we require L to impose the constraint that the sum
of the soft truth values of the αj’s in each interpretation
equals to 1. Both constraints ensure that the distribution
over classes is a valid one, i.e., the sum over all possible
outcomes is 1.

Training Training aims to learn the weights λ. The task is
formalized as finding the λ maximizing the log likelihood
of the assignments τ(xy):

λ̂ = argmax
λ

∏
(x,y)∈D

PL(XL = τ(xy),λ) (7)
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Equation (7) works when τ(xy) provides truth assign-
ments to all variables in XL. If that assumption is vio-
lated, training resorts to an expectation-maximization prob-
lem. Parameter learning in lifted graphical models as well
as probabilistic logic programs works via gradient ascent
(Richardson & Domingos, 2006; Bach et al., 2017). We
use UPDATEL(x,y, τ,λt)→ λt+1 to denote updating of
the parameters in L given (x,y).

4.2. The neural component

Given a neural model N , then, for a fixed assignment to
the neural weights θ, N defines a conditional distribution
PN (Y |XN ,θ) by using a softmax output layer produc-
ing a |Y|-dimensional prediction vector. Then, PN (Y =
cj |XN ,θ) defines the likelihood the label is class cj ∈ Y .

Similarly to the previous section, we have to specify the
semantics of the training data. We denote by ν(x) the vector
representation of x in the input format of N .

Inference For fixed θ and ν(x), N returns prediction ŷ:

ŷ = argmax
y

PN (Y = y|XN = ν(x),θ) (8)

We use INFERN (x, ν,θ)→ ŷ to denote inference in N .

Training Training is achieved by backpropagation, as stan-
dard in deep networks, via a loss function measuring the
discrepancy between the neural predictions and the true
label.

4.3. Integration of components

The integration of the two components in Concordia is based
on a gating network G with learnable parameters γ. In our
implementation, the input domain of G is the same as of
N . The output domain is [0, 1]. The idea is that depending
on the data the benefit provided by either model can vary.
Prior art discards the logical model entirely at the end of the
training, or simply multiplies the two distributions under the
assumption that the two distributions are independent. Our
approach is more flexible and takes advantage of the logical
model during testing.

Inference Inference is described in Algorithm 1. For
each input datatum x, we first provide ν(x) and τ(x) to N
and L, to get the distributions PN (Y |XN = ν(x),θ) and
PL(Y |Xo

L = τ(x),λ). Then, we combine those distribu-
tions using G. In particular, Concordia defines the following
conditional probability distribution:

PC(Y |XN ,Xo
L,θ,λ,γ)

= G(XN ,γ)PN (Y |XN ,θ)

+ (1− G(XN ,γ))PL(Y |Xo
L,λ)

(9)

Prediction ŷ given input x and θ, λ, γ is then computed as

ŷ = argmax
y

PC(Y = y|XN = ν(x),Xo
L = τ(x),θ,λ,γ)

(10)

Notice that above formulation is substantially different from
the ones proposed in T-S and DPL: T-S uses posterior regu-
larization; DPL is based on multiplying the predictions.

Forward inference in Concordia is denoted via
INFERC(x, ν, τ,θ,λ,γ)→ ŷ.

Algorithm 1 INFERC(x, ν, τ,θ,λ,γ)
∆N (Y )← PN (Y |XN = ν(x),θ)
∆L(Y )← PL(Y |Xo

L = τ(x),λ)
κ← G(XN ,γ)
∆C(Y )← κ∆N (Y ) + (1− κ)∆L(Y )
return argmaxy ∆C(Y = y)

Training Parameter update in Concordia is summarized
in Algorithm 2. For each (x,y) training proceeds as fol-
lows. Firstly, L is trained based on (x,y) and the inter-
face UPDATEL as described in Section 4.1. Secondly, N
is trained to minimize the difference between its predic-
tions and the true labels y, as well as to minimize the dif-
ference between distributions PN (Y |XN = ν(x),θ) and
PL(Y |Xo

L = τ(x),λ). The first term aims to keep N ’s
predictions close to the ground truth. The second term aims
to keep N ’s predictions close to the ones of L. Hence L
supervises N in a weak fashion during the training process.
The neural weights get updated at each step t as follows:

θt+1 = argmin
θ

ℓ(ŷ,y)+

KL(PN (Y |XN = ν(x),θt)||PL(Y |Xo
L = τ(x),λt))

(11)

Above, ŷ = INFERN (x, ν,θ) and KL denotes the Kull-
back–Leibler divergence between distributions. The N ’s
parameter update process we described above is denoted via
UPDATEN (x,y, ν,θt)→ θt+1.

Lastly, parameters γ of G are amended so that the labels
predicted by the whole framework ŷC fit the ground truth:

γt+1 = argmin
γ

ℓ(y, ŷC) (12)

Above, ŷC = INFERC(x, ν, τ,θ,λ,γ).

Algorithm 2 UPDATEC(x,y, ν, τ,θt,λt,γt)
θt+1 ← UPDATEN (x,y, ν,θt)
λt+1 ← UPDATEL(x,y, τ,λt)
ŷC ← INFERC(x,θt,λt,γt)
γt+1 = argminγ ℓ(y, ŷC)
return (θt+1,λt+1,γt+1)
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Unsupervised learning So far, we discussed supervised
learning. Unsupervised learning is supported by discarding
the first term in (11) and the gating network. Notice that in
the unsupervised setting, we do not train L. Training of L
in an unsupervised setting is left for future work.

Multitasking Above, the explanations focused on a single
target atom. However, the architecture is easily extendable
to multitasking. To this end, we consider instead of a single
RV Y a vector of RVs Y and the probability of N becomes
PN (Y = y|XN = ν(x),θ). This allows on one hand to
achieve different tasks in parallel and on the other to opti-
mize predictions concurrently. For example, in the case of
recommendation above, users and items are dependent on
each other and need to be optimized concurrently. Multi-
tasking is not supported by prior art.

4.4. Neural predictions as priors

We can use the neural predictions as weak supervision signal
to train the logical component. Adding neural priors can be
achieved by considering the neural predictions as additional
observed RVs in L. The above is always possible via two
steps: introducing additional rules propagating information
fromN to L, and assigning to the atoms denoting the neural
predictions the confidences predicted by N .

Example 3. We demonstrate propagating information from
N to L we extend Example 2: To introduce the rating pre-
dictions of N as priors to L, we firstly add

λ : DNN(U, I)→ RATES(U, I)

Atom DNN(U, I) represents ratings of user U on item I as
predicted by the deep network.

Algorithm 3 formalizes the creation of variable instanti-
ations based on the neural predictions. After adding ad-
ditional rules to L as in Example 3, its Herbrand base
includes a ground atom DNNj associated with the like-
lihood to which N predicts the class cj . We refer to
DNNj as the neural atom for cj in the Herbrand base of
L. Algorithm 3 simply assigns to DNNj the likelihood
PN (Y = cj |XN = ν(x),θ).

To incorporate neural priors in Concordia’s inference or
learning process, we simply need to update the instantiations
of Xo

L from τ(x) or τ(xy) to τ(x)z and τ(xy)z, where z
denotes the computed instantiations (Alg. 3).

5. Experiments
Scenarios We consider scenarios that have been adopted
by prior symbolic and neurosymbolic techniques: collec-
tive activity detection (CAD) (Wu et al., 2019; Kuang &
Tie, 2020; London et al., 2013), recommendation (Kouki
et al., 2015) and entity linking (Wang & Poon, 2018). To

Algorithm 3 TRANSLATE(x, ν,θ,L)→ z

z← ∅ {z maps atoms to their truth values.}
for each cj ∈ Y do

DNNj denotes the neural atom for cj in the Herbrand
base of L
set the value of DNNj in z to PN (Y = cj |XN =
ν(x),θ)

end for
return z

ensure a fair comparison, we adopt the same datasets and
baselines with those techniques for each case. Each scenario
includes a neural component N and a logical component L.
L is implemented in PSL for each scenario. We denote by
C(N ,L) the Concordia instantiations. Further details on the
experimental setup and training parameters can be found in
Appendix B.

Baselines We consider the following baselines:

• Recommendation. We compare against (i) the deep mod-
els NNMF (Dziugaite & Roy, 2015), NeuMF (He et al.,
2017b) and GraphRec (Rashed et al., 2019); and (ii)
the purely symbolic technique from (Kouki et al., 2015),
which performs the task using PSL. This dataset is used
to test Concordia on regression tasks.

• CAD. We compare against (i) the state-of-the-art mod-
els from (Wu et al., 2019) that use MobileNet and
Inception-v3 as backbone networks; (ii) the state-
of-the-art neurosymbolic technique IARG2 (Kuang & Tie,
2020) that is based on the above deep architectures, de-
noted as IARG(MobileNet) and IARG(Inception-
v3), respectively; and (iii) the stratified neurosymbolic
technique from (London et al., 2013). This dataset is used
to test Concordia on complex classification.

• Entity linking. We adopt the same experimental set-
ting with (Wang & Poon, 2018) and compare against
(i) BiLSTM, a Bi-LSTM recurrent neural network pro-
posed in (Peng et al., 2017); (ii) DPL; (iii) the sym-
bolic theory adopted by the DPL authors alone; and
(iv) DistilBERT (Sanh et al., 2019) a distilled ver-
sion of BERT, a pre-trained transformer model originally
proposed in (Devlin et al., 2018). Below, we denote
DistilBERT by BERT for readability purposes. This
dataset is used to have a direct comparison with the clos-
est competitor in the literature, as well as testing Concor-
dia’s performance in unsupervised and semi-supervised
settings.

2The authors adopt a Graph Convolutional Network (GCN) and
extend on (Wu et al., 2019) with a more sophisticated message
passing algorithm.
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Other neuro-symbolic comparisons Neither T-S nor DPL
supports the theories adopted in CAD, due to latent vari-
ables, and recommendations, due to recursiveness, and,
hence, they are not considered in those scenarios. In the
appendix, we provide further details on the rules that are not
supported by T-S and DPL.

Furthermore, TensorLog (Cohen et al., 2020) only supports
rules of a specific transitive form and therefore cannot be
used in our experiments, while techniques such as Neural
Theorem Proving (Minervini et al., 2018) are not relevant
as they do not concern knowledge distillation, but ques-
tion answering in Prolog. Based on discussions with the
authors of DeepProbLog (Manhaeve et al., 2018), a com-
parison cannot be performed either: firstly, facts cannot be
updated in ProbLog, secondly, it does not support learn-
ing across time sequences. Both limitations make Deep-
ProbLog inapplicable to our scenarios. Additionally, the
recommendation task has a very large number of entities in
the knowledge base that can increase the training overhead
of DeepProbLog to the extend that training is prohibitively
slow (DeepProbLog faces significant scalability restrictions
as observed in (Tsamoura et al., 2021)). Neurosymbolic
frameworks like NeuroLog (Tsamoura et al., 2021) and
ABL (Dai et al., 2019) that rely on the same principles
with DeepProbLog cannot be applied for the same reasons.
Finally, regarding DL2 (Fischer et al., 2019) and (Li &
Srikumar, 2019), beyond the limitations mentioned in Sec-
tion 2 including the fact that these frameworks only support
a single fixed constraint, they do not support passing latent
variables. Furthermore, (Li & Srikumar, 2019) expects the
rules to be of a specific acyclic form. For the above reasons,
these two frameworks do not support the experiments in this
section.

Learning paradigms. Learning proceeds in a supervised
fashion in the first two scenarios and in an unsupervised
and semi-supervised fashion in the last one. To assess the
robustness of Concordia to the input theory, we consider a
large set of noisy rules (i.e., rules that do not contribute to
the task) with unknown weights and learn the weights of the
rules at training time, in the last scenario.

5.1. Item recommendation

Given a user and his ratings, we aim to determine the user’s
prospective rating on an item. We used the 2020 Yelp and
MovieLens-100k datasets (Harper & Konstan, 2015) and
ran the setups C(NNMF,LREC), C(NeuMF,LREC) as well as
C(GraphRec,LREC) on MovieLens-100k, where LREC is
the PSL theory from (Kouki et al., 2015).

Results Figure 2 shows the RMSE for different percent-
ages of training data used (100% is equivalent to the whole
dataset). We measured performance in terms of Root Mean
Squared Error (RMSE). The results are shown for LREC

Figure 2. Results on a recommendation task on MovieLens (top)
and Yelp (bottom).

being trained independently of the neural components. Con-
cordia can substantially improve the performance of the
respective deep models in most cases. For instance, when
the full MovieLens-100k dataset is used the RMSE drops
from 0.923 to 0.908 with regards to NNMF; with regards to
NeuMF, the RMSE drops from 0.923 to 0.904 and even on
GraphRec, a GNN designed specifically for recommenda-
tion systems, we improve from 0.891 to 0.889. We tested
our hypothesis that the symbolic reasoning will increase
even further when less data is available and found this to
hold across models. In addition, we can see that except for
GraphRec the Concordia models with 80% data outper-
form their purely neural models with 100%, and with 50%
data outperform the neural models with 80% data. This
shows that independent of the model, introducing symbolic
rules further helps the neural models and reduces the need
for data. The same behaviour can be observed on the Yelp
dataset. GraphRec was not capable of performing train-
ing on this dataset due to its size. This shows that while
GNNs can help in a similar fashion to symbolic models, as
they represent relations well, they cannot be used in larger
datasets where Concordia is still able to perform on other
neural models.

5.2. Collective activity detection

CAD asks to identify the activity taking place by a group
of actors in a collection of video frames (Ibrahim & Mori,
2018; Qi et al., 2018). We used the dataset from (Choi et al.,
2011) and the train/test splits from (Qi et al., 2018). We
denote by C(MobileNet,LCAD) and C(Inception-v3,
LCAD) the two different Concordia setups, where LCAD is
taken from (London et al., 2013).

Results Table 1 reports the average, best and worst ac-
curacy over five different training/testing runs. Accuracy

7



Parallel Neurosymbolic Integration with Concordia

is defined as the percentage of the correctly predicted la-
bels for group activity. In contrast to what was reported
in (Kuang & Tie, 2020) and despite that we used their
code base, IARG was less effective than MobileNet and
Inception-v3 alone in most cases. Table 1 shows that
C(MobileNet,LCAD) improves over MobileNet both
in terms of best and average accuracy. In particular, the av-
erage accuracy improves from 90.07% to 90.73%, while the
best one improves from 91.36% to 93.19%. With regards to
Inception-v3, the accuracy improvements brought by
Concordia are even more significant. In particular, the av-
erage accuracy improves from 89.72% to 92.75%, the best
accuracy from 91.83% to 93.34% and the worst accuracy
from 86.84% to 92.31%. Notice that these results are state-
of-the-art in CAD outperforming the ones from (Wu et al.,
2019; Kuang & Tie, 2020). For completeness, Table 1 also
copies the results obtained when using LCAD in a stratified
fashion over action context descriptors (ACD) (Lan et al.,
2012) for solving the task (ACD + LCAD). We also ran the
models on different dataset sizes by taking 50%, 80% and
100% of the training data to test our hypothesis that the
fewer data we have the larger the impact. Similarly to the
recommendation task, we found that to hold across models,
where on MobileNet the addition of symbolic knowledge
increase from 0.67% improvement in accuracy to 1.27%,
while on the Inception-v3 model the improvement was
from 3.03% for 100% data to 4.14% improvement on 50%
of the data.

Table 1. Results on CAD.
Model AA (%) BA (%) WA (%)

ACD+LCAD 86.00 - -
MNet 90.07 91.36 89.61
IARG(MNet) 90.18 92.39 87.55
C(MNet, LCAD) 90.73 93.19 89.54
Incept 89.72 91.83 86.84
IARG(Incept) 88.88 91.67 85.33
C(Incept, LCAD) 92.75 93.34 92.31

Table 2. Results on CAD over different dataset sizes.
Model 50 % 80 % 90%

MNet 68.70 77.1 90.07
C(MNet, LCAD) 69.97 78.29 90.73
Difference 1.27 1.19 0.67
Incept 71.10 84.55 89.72
C(Incept, LCAD) 75.24 88.59 92.75
Difference 4.14 4.04 3.03

Table 3. Results on entity linking.

Model F1 Pr Rec Acc (%)

LEL (u) 0.77 0.80 0.75 74.7
DPL(BiLSTM) (u) 0.76 0.68 0.86 70.0
C(BiLSTM,LEL) (u) 0.78 0.84 0.72 75.8
LEL (sp) 0.76 0.85 0.69 75.2
BiLSTM (sp) 0.74 0.58 1.00 58.5
C(BiLSTM,LEL) (sm) 0.82 0.91 0.74 80.1
BERT (sp) 0.88 0.99 0.78 88.5
C(BERT,LEL) (sm) 0.91 0.99 0.81 91.4

5.3. Entity linking

To compare Concordia to DPL (Wang & Poon, 2018), we
used the PubMedParsed dataset from (Moen & Ananiadou,
2013) and its extension from (Wang & Poon, 2018). We ini-
tially used the setup C(BiLSTM,LEL), where LEL is taken
from (Wang & Poon, 2018) and is encoded in PSL to have a
direct comparison using the neural model used by the DPL
authors. Then, we also used the setup C(BERT,LEL) to
compare to more modern NLP models and understand how
Concordia performs compared to large pre-trained neural
models and to test whether Concordia only improves on sim-
ple neural models or also on large complex neural models.
Firstly, as in (Wang & Poon, 2018), we trained Concordia
in an unsupervised fashion using only unlabelled data. Sec-
ondly, we used half of the labelled data to train Concordia in
a semi-supervised fashion: in each epoch, we firstly trained
the BiLSTM , BERT and LEL in a supervised fashion (using
the labelled data) and then trained BiLSTM and BERT in
an unsupervised fashion (using the unlabelled data). In the
unsupervised case, all rule weights were set to 1. In the
semi-supervised one, the rules were trained on half of the
labelled data in advance. In addition, we also considered
BiLSTM and BERT alone trained in a supervised fashion
on the labelled data. We also considered LEL alone in two
settings. In the unsupervised setting, LEL performs predic-
tions using rules which are all weighted 1. In the supervised
case, LEL is trained alone (i.e., independently of Concordia
and the neural component) using the labelled data. The final
baseline is BiLSTM regularized via DPL in an unsuper-
vised fashion, denoted by DPL(BiLSTM). All models were
trained across five different data folds.

Results Table 3 reports the results of our experiments: (u)
stands for unsupervised, (sm) for semi-supervised and (sp)
for supervised learning. For DPL, we copied the results
from (Wang & Poon, 2018).

DPL uses priors in their factors that were set based on infor-
mation extracted from the labelled data– that contradicts the
statement in their paper that the training was unsupervised.
In contrast, we do not provide these priors to Concordia
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setting the weights of the rules in LEL to 1. Still, even
with rules with untrained weights, Concordia outperforms
DPL by 5.8% in accuracy and by 0.02 in F1. Concordia in
an entirely unsupervised case (Table 3 row 3) outperforms
BiLSTM (Table 3 row 5) trained in a supervised fashion on
the small labelled data set by 17.3%. Our semi-supervised
experiment outperforms the supervised BiLSTM by 21.6%
and even BERT by 2.9%, while the F1 score improves by
0.08 and 0.03 respectively, proving again our hypothesis
that Concordia can help significantly in settings with small
amount of labelled data.

DPL uses Markov Networks (and not MLNs) and takes,
according to the authors, 2.5h to train in a cluster with 25
CPU cores and 1 GPU. Due to approximation techniques
of probabilistic logical solvers, which have worst case poly-
nomial time complexity (Bach et al., 2017; Richardson &
Domingos, 2006), Concordia is much more time-efficient
taking under 6min to train on 1 GPU and 4 CPU cores.

6. Discussion and Conclusions
Theory learning. Concordia assumes that the formulas of
the theory are given. Our assumption is along the lines of
the assumptions made by several other neurosymbolic tech-
niques such as (Manhaeve et al., 2018; Yang et al., 2020;
Tsamoura et al., 2021), as well as T-S and DPL. Despite
that this assumption might be considered as restrictive, one
could argue that purely neural teacher-student architectures
(Mobahi et al., 2020; Dao et al., 2021), as well as deep learn-
ing techniques in general, also assume prior knowledge. In
the former case, the prior knowledge is encoded into the
teacher in subsymbolic form, while in the latter case, prior
knowledge is encoded into the deep architecture. One option
to circumvent this shortcoming if no rules are available is
to use structure learning approaches (Feldstein et al., 2023;
Kok & Domingos, 2010; Khot et al., 2015), these are frame-
works that aim at learning logical formulae from data and
then pass these formulae into the logical model. However,
weight learning can also serve as the means to learn the
structure of the rules as previously shown in (Qu & Tang,
2019) in the context of learning knowledge graph embed-
dings: we can simply inject many arbitrary rules into the
model (e.g., in the worst-case all possible rules of a specific
form3) and then at training time, the weights of the useless
rules will drop to 0. In fact, this phenomenon was observed
in our entity linking scenario. There, most rules turned out
to be useless and their weights dropped to 0.

Expressiveness. We focus on LGMs as they offer a good
balance between expressivity and complexity. Probabilistic
frameworks such as ProbLog have been criticized for their

3This is similar to inductive logic programming (Evans &
Grefenstette, 2018), where users specify patterns of rules to learn.

high inference overhead (Aditya et al., 2019). This over-
head has been the reason for which prior neurosymbolic
techniques such as (Zhu et al., 2014) have resorted to LGMs.
Notice that LGMs support (ground) recursive rules as they
are based on first-order-logic.

Beyond LGMs. We presented an instantiation of Con-
cordia based on LGMs (see Section 3). However, Con-
cordia does not make any assumptions on the logical the-
ory, as long as it abides by the generic interface presented
here, see Section 4. Beyond lifted graphical models, Con-
cordia, can also support languages like ProbLog. Simi-
larly to MLNs and PSL, ProbLog treats the ground atoms
in the theory as RVs. Secondly, ProbLog supports both
MAP (or MPE) inference (Fierens et al., 2015) and super-
vised parameter learning (Gutmann et al., 2008) and hence
can implement Concordia’s interfaces PL(Y |Xo

L,λ) and
UPDATEL(x,y, τ,λt)→ λt+1. We leave the integration of
ProbLog as part of future work.

Conclusions. We presented Concordia, a parallel neurosym-
bolic framework that is based on the formal semantics of
probabilistic logical theories. Concordia can significantly
improve the accuracy of deep models by injecting into them
knowledge represented by probabilistic logic theories, lead-
ing to state-of-the-art results in a variety of tasks. Future
work includes applying Concordia to other tasks, learning
the structure of the rules at training time, and training the
logical component in unsupervised settings.
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A. Parallel neurosymbolic architectures
Let X and Y denote the input and target domain, respec-
tively, (x,y) ∈ X × Y denote a training datum and D
denote the set of training data. Both T-S and DPL as-
sume that the logical theory includes constraints of the form
X × Y → [0, 1] where each constraint is associated with
some level of confidence λ ∈ [0, 1]. These constraints are
functions checking the validity of a specific training datum
(returning zero for no validity and one for perfect validity)
and can be captured using graphical models.

A.1. The T-S framework

Assuming that the neural model with parameters θ defines a
conditional probability distribution pθ(Y|X), T-S builds a
teacher probabilistic model q(Y|X) and uses this network
to update the parameters of the neural model θ. The teacher
network is found by solving the following optimization
problem:

min
q,ξ≥0

KL((q(Y|X)||(Y|X)) + C
∑
l

ξl

s.t. λl(1− E[Zl] ≤ ξl,∀l
(13)

In the above formulation, C denotes a balancing parame-
ter, ξl denotes a slack variable along the lines of (Ganchev
et al., 2010) and ξ is the vector over all the ξl occurring
in the optimization objective. Let us define a random
variable Zl with domain the set of possible confidences
{rl(x,y)}(x,y)∈D when provided in the input with different
items from the training set, where the probability of each
rl(x,y) is q(Y|X). Then E[Zl] denotes the expectation of
Zl. In words, the teacher probability function is one that
stays close to the neural predictions (that is what the KL
term accounts for) and fits the rules (that is what the second
term accounts for).

The T-S formulation makes several assumptions. First, the
shape of the constraints rl does not allow expressing generic
first order logic theories. For instance, T-S cannot support
the rule , as the rule references atoms that do not occur in
the training data. Secondly, the optimization objective does
not abide by the semantics of lifted graphical models. In
particular, in the optimal solution, the ξl’s become 0 so that
E[Zl] becomes 1. However, in such a case, the confidence
of each constraint λl is not taken into account.

A.2. The DPL framework

DPL assumes that the training data is of the form {xi}Ni=1.
Let Φ encode the probability distribution defined by the
logical theory. Let us denote the conditional probability
distribution defined by the neural model with parameters θ

by pθ(Y|X). DPL defines the joint probability distribution:

PDPL(Y1, . . . , YN |X1, . . . , XN ) =

Φ(X1, . . . , XN |Y1, . . . , YN ) ·
∏
i

pθ(Yi|Xi))
(14)

Above, Yi denotes a random variable with domain the possi-
ble labels of xi.

DPL uses the distribution from (14) to train the components.
In particular, at each training step, DPL first computes the
marginal distributions qi(Yi) = PDPL(Y1|X1, . . . , XN ).
The product of those distributions over all i’s, where
1 ≤ i ≤ N , defines a new probability distribution
q(Y1, . . . , YN ). The weights of the logical theory are
updated by firstly, computing the KL divergence between
q(Y1, . . . , YN ) and Φ(Y1, . . . , YN |X1, . . . , XN ) and,
secondly, updating the weights of Φ so that the KL
divergence is minimized. The weights of the deep network
are amended in the same fashion.

The above formulation exposes several restrictions. Firstly,
similarly to T-S, DPL does not straightforwardly extend
to more expressive probabilistic logic theories as the con-
straints can be expressed as factors in MRFs (see section 3).
The extension to lifted graphical models is not discussed.
Hence, it does not allow expressing information in latent
variables. Secondly, the assumption of independence be-
tween the logic and the deep component is not justified.

B. Details on the empirical analysis
Concordia has been developed in PyTorch 1.10. The
logic component of each task was implemented using the
pslpython library4.

Computational environment All experiments ran on a
Linux machine with a NVidia GeForce GTX 1080 Ti GPUs,
64 Intel(R) Xeon(R) Gold 6130 CPUs, and 256GB of RAM.

B.1. CAD

Dataset We used the Collective Activity Augmented Dataset
(CAAD) (Choi et al., 2011). The dataset includes 44 video
sequences with five different group activities (crossing, wait-
ing, queuing, walking and talking) and six different indi-
vidual actions (N/A, crossing, waiting, queuing, walking
and talking). The group activity of each frame is defined
as the activity followed by most of the actors in the frame.
Each input datum x includes a video frame and a set of
bounding boxes within the given frame. Each label datum
y defines the action within each bounding box, as well as
the activity in the frame. We used the train and test splits
proposed in (Qi et al., 2018), namely choosing 2/3 of the
video sequences for training and the rest for testing.

4https://pypi.org/project/pslpython/

12



Parallel Neurosymbolic Integration with Concordia

B.1.1. LOGICAL COMPONENT

Theory LCAD includes the rules:

λ1 : FRAME(B,F ) ∧ FLABEL(F,A)→ DOING(B,A)

λ2 : DOING(B1, A) ∧ CLOSE(B1, B2)→ DOING(B2, A)

λ3 : SEQUENCE(B1, B2) ∧ CLOSE(B1, B2)

→ SAME(B1, B2)

λ4 : DOING(B1, A) ∧ SAME(B1, B2)→ DOING(B2, A)

λ5 : DNN(B,A)→ DOING(B,A)

Atom CLOSE(B1, B2) denotes that bounding boxes B1 and
B2 are close to each other. Atom DOING(B,A) denotes
that the actor within bounding box B is doing action A.
Atom FRAME(B,F ) denotes that bounding box B belongs
to frame F , atom FLABEL(F,A) denotes that the group
activity of frame F is A, atom SEQUENCE(B1, B2) denotes
that two bounding boxes are from two frames in a direct
sequence of each other, and atom SAME(B1, B2) denotes
whether the actor within bounding boxes B1 and B2 is the
same. The first rule states that the activity of an actor is the
same with the activity of the frame. The second rule states
that two actors that are close to each other perform the same
activity. The third rule states that if two bounding boxes
are from a direct sequence of frames, and the two bounding
boxes across the two frames are close to each other, then
they describe the same actor. The fourth rule states that if
the actor within two bounding boxes is the same, then it
is likely that she is performing the same activity. The last
rule is as in Example 3. The above rules hold with some
uncertainty which is captured by the λ parameters.

At training time, we provided instantiations of the predicates
FRAME, FLABEL, CLOSE, DNN, SEQUENCE and DOING us-
ing the training data. To instantiate the predicate CLOSE we
used an RBF kernel to measure the closeness of the bound-
ing boxes, which outputs a value in [0, 1]. To instantiate
predicate DNN, we followed the steps in Section 4.3. At
testing time, we provided instantiations to all predicates but
DOING.

Note that neither DPL nor T-S can implement this logic due
to the latent variable SAME, as both expect all conclusions
of each rule to be target atoms. In addition, they are not
capable of handling this task due to its multi-task nature, as
it predicts both labels for each bounding box in the frame,
as well as the group activity of the frame.

B.1.2. NEURAL COMPONENT

We considered the same architecture as the state-of-the-art
(Wu et al., 2019; Kuang & Tie, 2020): B→ RoIAlign→
L. Component B takes as input an image represented by a
2-dimensional vector of size 480x720 and creates a feature
map for each input frame f of size 57x87. Given the feature
map computed by B, RoIAlign (He et al., 2017a) then

outputs feature vectors for each bounding box within f
of size 1024. L is a fully connected layer predicting the
activity within each bounding box in f , as well as the group
activity in f . To ensure a fair comparison with prior art, we
used MobileNet and Inception-v3 for B ending up
with two different instantiations of the neural architecture.
We will refer to those architectures as MobileNet and
Inception-v3. The loss function used in this experiment
is cross-entropy.

Inputs/outputs The inputs are a set of bounding boxes all
given as coordinates within the frames, which in turn are
passed into the neural model as 2-dimensional vectors of
size 480x720. The outputs are soft-max distribution vectors
over the possible activities for each bounding box and the
group activity of the frame, which include crossing, waiting,
queuing, walking, talking, dancing, jogging, and N/A.

Training To train MobileNet and Inception-v3 we
used a minibatch of size 1 and set the learning rate to
0.00001.

B.1.3. BASELINES

We considered MobileNet and Inception-v3 as base-
lines and trained them for 30 epochs each. We also com-
pared against the state-of-the-art architecture from (Kuang
& Tie, 2020), which uses a Graph Convolutional Network on
top of MobileNet and Inception-v3. The technique
is referred to as IARG. We denote by IARG(MobileNet)
and IARG(Inception-v3) the two different variants. We
used the implementation provided by the authors5 and used
the hyper-parameters from (Wu et al., 2019; Kuang & Tie,
2020). IARG(MobileNet) and IARG(Inception-v3)
were trained for 100 epochs as in (Kuang & Tie, 2020). As
neither T-S nor DPL support the rules in LCAD, we did not
consider them as baselines.

B.2. Recommendation

Dataset We considered Yelp (the academic version) and
MovieLens-100k (Harper & Konstan, 2015). Yelp contains
user ratings on local businesses, as well as information
about business categories and friendships between users.
The goal is to predict the ratings of the users on businesses
they haven’t rated yet. The dataset is updated on an annual
basis by adding different businesses. We used the version
from 2021 and considered businesses only from Cambridge
(US). MovieLens-100k is a movie recommendation dataset
containing categorical information of movie genres and user
occupations.

We used a 90%/10% training/test split for both Yelp and
MovieLens-100k. For MovieLens-100k, we used the split

5https://github.com/kuangzijian/Improved-Actor-Relation-
Graph-based-Group-Activity-Recognition.
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provided by the publishers of the dataset. For Yelp, we
created a random split. We used 30% of the training data
as the unobserved variables and 70% of the training data
as the observed variables of each dataset to learn the rules’
weights.

B.2.1. LOGICAL COMPONENT

PSL has already been successfully applied in recommen-
dation (Kouki et al., 2015). We used the same rules in our
experiments. Below, we describe the rules from LREC in
detail (omitting the rules weights for clarity).

The first two rules encode information about the item and
user similarity:

SIMILARUSERSsim(U1, U2)∧RATING(U1, I)

→ RATING(U2, I)

SIMILARITEMSsim(I1, I2)∧RATING(U, I1)

→ RATING(U, I2)

The first rules states that if two users are similar, then they
will give similar ratings to items. The second states that
users will give similar ratings to similar items. These rules
are also agnostic to the similarity measure used between
users and between items. We adopted the same similarity
metrics used by Kouki et al. (Kouki et al., 2015), namely
Pearson, Cosine, latent cosine, latent euclidean– the last two
metrics are computed on latent vectors extracted using the
Matrix Factorization approach on the rating matrix of all
users and items (Ning et al., 2015). The first two similar-
ity metrics are computed between rating vectors for each
user and item. In addition, for item-based similarity, the ad-
justed cosine similarity is also used. To follow the authors,
we also integrated content-based similarity. Content-based
similarity included information, such as restaurant’s cate-
gory and user’s occupation. The similarity measure used
for content-based similarity is the Jaccard index. Predi-
cates SIMILARUSERSsim and SIMILARITEMSsim are bi-
nary predicates that take values of 1 if the first constant is
one of the k-nearest neighbours of the second constant. In
this experiment we used k = 50. Predicate RATING takes
values in the range [0, 1] and represents the normalized
rating score user U gave to an item I .

The authors in (Kouki et al., 2015) also included rules en-
couraging the predicted ratings to be close to an average
user rating a user gives to items and an average item rating
that is usually given to the item by all other users:

AVERAGEUSERRATING(U)↔ RATING(U, I)

AVERAGEITEMRATING(U)↔ RATING(U, I)

PSL can also leverage existing collaborative filtering meth-
ods to compute the ratings as defined in the rules above. To

follow the original work, the theory LREC included the same
most widely used collaborative filtering methods: matrix
factorization (MF) (Koren et al., 2009), Bayesian probabilis-
tic matrix factorization (BP) (Salakhutdinov & Mnih, 2008),
and item-based collaborative filtering (IB):

RATINGMF (U, I)↔ RATING(U, I)

RATINGBP (U, I)↔ RATING(U, I)

RATINGIB(U, I)↔ RATING(U, I)

Finally, LREC incorporated social network influences, like
friends have similar tastes and thus give similar ratings:

FRIENDS(U1, U2) ∧ RATING(U1, I)→ RATING(U2, I)

The predicates were instantiated as discussed in (Kouki et al.,
2015). Concretely, the RATING predicates were instantiated
directly from the data. For AVERAGEUSERRATING and
AVERAGEITEMRATING, we computed the average as usual,
while the similarity measurements were computed on the
remaining data in the dataset, such as age, occupation and
sex, using popular similarity measurements such as cosine,
Pearson, latent cosine, and latent euclidean measurements.

Note that neither DPL nor T-S can implement these
kind of rules due to the bi-directionality, of e.g.
AVERAGEUSERRATING(U)↔ RATING(U, I), as both ex-
pect all conclusions of the rules to be the target atoms.

B.2.2. NEURAL COMPONENT

We used three state-of-the-art networks: NNMF(Dziugaite
& Roy, 2015), NeuMF(He et al., 2017b), and GraphRec
(Rashed et al., 2019). All networks learn embedding vectors
for each user and item (business or movie).

Inputs/outputs The inputs to the networks are pairs of
user/items. The outputs are the item ratings.

Training The batch size used for NNMFwas 32, the learning
rate 0.001, and the L2 norm set to 0.01 for regularization,
and for NeuMFbatch size was 16, learning rate 0.001, and
the L2 norm was 0.01. The parameters for GraphRec
were as follows: batch size = 1000, learning rate was set to
0.00003, the L2 norm was set to 0.05 for the user features
and 0.02 for the item features. In all three baseline models
the optimizer was set to Adam with loss function set to
RMSE.
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B.2.3. BASELINES

We considered four different baselines: NNMF, NeuMF,
GraphRec and the PSL theoryLREC alone. The parameters
were tuned according to the respective papers (Dziugaite &
Roy, 2015; He et al., 2017b; Rashed et al., 2019).

B.3. Entity linking

Dataset We used the PubMedParsed data set originally put
forth by (Moen & Ananiadou, 2013), where we used the
data generation and processing files from (Wang & Poon,
2018) for a fair comparison. The goal in this data set is to
predict which words in a text are mentions of protein names.
The data contains 96k unlabelled data items, where each
item is a sentence. In addition, for testing the performance
of the unsupervised model, the authors in (Wang & Poon,
2018), provided a set of 12k labelled data items, where the
mentions were labelled as protein or non-protein.

B.3.1. LOGICAL COMPONENT

We used the theory from (Wang & Poon, 2018) and in partic-
ular, the one using distant supervision (DS), data program-
ming (DP) and joint inference (JI).

B.3.2. NEURAL COMPONENT

We used a Bidirectional Long Short-Term Memory
(BiLSTM) recurrent neural network, originally proposed
by (Peng et al., 2017), and used the implementation from
(Wang & Poon, 2018) for a fair comparison. In addition,
we compared the performance of Concordia to DistilBERT
(BERT) (Sanh et al., 2019) a distilled version of BERT (De-
vlin et al., 2018) while retaining 97% of its language under-
standing capabilies and being 60% faster. The aim was to
understand how Concordia performs with respect to large
pre-trained models.

Inputs/outputs The inputs are mentions from sentences
from the PubMedParsed dataset (Moen & Ananiadou, 2013).
The output is a prediction on whether the mention is a pro-
tein or a non-protein. To generate the training and testing
inputs, we used the data generation scripts from (Wang &
Poon, 2018).

Training In the case of the BiLSTM, the embedding layer is
initialized with a word2vec embedding trained on PubMed
abstracts and entire texts. The word embedding dimension
was 200 as in (Wang & Poon, 2018). We used a learning
rate of 0.001 and batch size 64. In the case of BERT, we
used the word embedding provided by the model itself as it
is a pretrained model. We used a learning rate of 0.00003
and batch size 16. The loss function used in all experiments
was cross-entropy.

B.3.3. BASELINES

We were not able to reproduce the results reported in (Wang
& Poon, 2018) due to the exponential approach proposed by
the authors to compute their factor graphs. The authors ran
their experiments on clusters. Therefore, the results on DPL
reported in the main body are taken from their paper.

C. Connection from LGMs to PSL
We demonstrate the notions of LGMs and PSL by example.

Example 4. Consider the second rule r from Section B.1.1:

DOING(B1, A) ∧ CLOSE(B1, B2)→ DOING(B2, A)

Assuming that there are two bounding boxes in total, b1 and
b2, and one activity, crossing, rule r can be instantiated
in two different ways:

X1,1

DOING(b1, crossing) ∧
X1,2

CLOSE(b1, b2)→
X1,3

DOING(b2, crossing) (15)
X1,3

DOING(b2, crossing) ∧
X2,2

CLOSE(b2, b1)→
X1,1

DOING(b1, crossing) (16)

Above each ground atom we show the RV associated with it,
e.g., ground atom DOING(b1, crossing) is associated with
the RV X1,1, while ground atom CLOSE(b1, b2) is associ-
ated with RV X1,2. The domain of all RVs is [0, 1].

We denote by f1 and f2 the factors associated with
the rule instantiations (15) and (16), respectively. Let
X1 = (X1,1, X1,2, X1,3) and X2 = (X1,3, X2,2, X1,1). In
PSL, each factor fi is defined as follows

fi(Xi = xi) = e−λ·(1−r(xi))
p

, (17)

where xi an instantiation of Xi, for i = 1, 2, and p is as
defined in (5). The par-factor ϕ associated with rule r is
essentially the set {f1, f2}. We use ϕ(Xi = xi) to denote
fi(Xi = xi), for i = 1, 2.

Let X = (X1,1, X1,2, X2,2, X1,3) denote the vector com-
posed over all RVs associated with ground atoms in the Her-
brand base of our theory. Probability P (X = x) induced by
the par-factor graph {ϕ}, where x = (x1,1, x1,2, x2,2, x1,3)
is an instantiation of X, is defined as follows:

P (X = x) =
1

Z
ϕ((x1,1, x1,2, x1,3)) · ϕ((x1,3, x2,2, x1,1))

where Z is the normalization constant.
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D. Details on inference in the logical
component

In the main body of this paper, we touched on the differences
of inference in the logical component of Concordia. In this
section, we are revisiting inference in classification tasks,
by considering the CAD example. Then, we will elaborate
on the differences in regression.

D.1. Classification

We elaborated in the main body of this paper on inference
in classification tasks, where we discussed the difference
between the logical component admitting Boolean interpre-
tations vs interpretations in [0,1].

Example 5. Consider the task of collective activity detec-
tion, described in Section B.1.1. In this task, the DOING
atoms, are what we referred to as target atoms in the main
body, as the labels for our data are the activities of the
different bounding boxes in a frame.

Boolean interpretation We mentioned in the case of
Boolean interpretation of the atoms, where the atoms
are mapped to true or false, we obtain a probability for
each option of cj ∈ Y . That is, we get for a bound-
ing box Bi P (DOING(Bi,dancing) = true) = p1,
P (DOING(Bi,talking) = true) = p2, ... However,
obviously, only one activity can be true at a time, and there-
fore, p1+p2+ · · ·+pn = 1. To enforce this, we need to add
an additional rule to the rules mentioned in Section B.1.1,
enforcing the mutual exclusiveness

DOING(Bi,dancing) ⊻ DOING(Bi,talking) ⊻ . . .

Soft interpretation When the logical interpretations ac-
cept values in [0, 1], we have in effect, a probability dis-
tribution for each target atom, i.e. one distribution for
DOING(Bi,dancing), DOING(Bi,talking), ... Then,
as described in Section 4.1, we choose the probability of
each class, as the MAP over the distribution of the soft
truth values. Finally, the values need to be normalized such
that their sum is 1 to enforce the properties of a probability
distribution. This is done through the following rule

DOING(Bi,dancing) + DOING(Bi,talking) + · · · = 1

Figure 3 illustrates how a discrete distribution is obtained
for the CAD example, where only three distinct actions are
considered for illustrative purposes.

D.2. Regression

We support regression tasks via PSL. Recall that each target
atom maps to a continuous RV Y in [0, 1], i.e. the soft
truth value (see Section 3). The conditional probability

Figure 3. Illustrative example how a distribution over different
labels can be obtained using PSL. Top row: each target atom has a
distribution over their soft truth values. Bottom row: taking their
respective MAPs and normalizing so that their sum is 1, produces
a discrete distribution over the classes

PL(Y = y|Xo
L,λ) denotes the likelihood the target atom Y

takes soft truth value y. We define PL by marginalizing

P (X = x) =
1

Z
exp

 M∑
i=1

Mi∑
j=1

λifi,j(Xi,j = xi,j)

 ,

over all the remaining RVs. In case the domain of the
regression task does not coincide with the soft truth domain
[0,1] in PSL, the soft truth values are scaled to the target
domain.

Note that no additional constraint needs to be provided in
regression tasks, as the distribution over the soft truth values
already satisfies the axioms of a probability distribution.

Example 6. Let us consider the recommendation task, with
the logical rules as described in Section B.2.1. In this case,
the target atom is RATING, which takes values between 1
and 5. To achieve this, we scale the interval [1,5] onto the
interval [0,1], such that the soft truth value of the RATING
atoms equals the predicted rating.
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