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ABSTRACT

Multimodal fusion emerges as an appealing technique to improve model perfor-
mances on many tasks. Nevertheless, the robustness of such fusion methods is
rarely involved in the present literature. In this paper, we are the first to propose
a training-free robust late-fusion method by exploiting conditional independence
assumption and Jacobian regularization. Our key is to minimize the Frobenius
norm of a Jacobian matrix, where the resulting optimization problem is relaxed to
a tractable Sylvester equation. Furthermore, we provide a theoretical error bound
of our method and some insights about the function of the extra modality. Several
numerical experiments on AV-MNIST, RAVDESS, and VGGsound demonstrate
the efficacy of our method under both adversarial attacks and random corruptions.

1 INTRODUCTION

Deep fusion models have recently drawn great attention of researchers in the context of multimodal
learning (Vielzeuf et al.| 2018} Baltrusaitis et al.l 2018} [Pérez-Rua et al.l [2019; Wang et al., [2020;
Xue et al.||2021)) as it provides an easy way to increase model accuracy and robustness. For instance,
RGB cameras and LiDARs are usually deployed simultaneously on an autonomous vehicle, and the
resulting RGB images and point clouds are referred to as two modalities, respectively. When RGB
images are blurry at night, point clouds could provide complementary information and help to make
decisions in vision tasks (Kim & Ghosh} [2019). Over the past few years, numerous multimodal
fusion methods have been proposed at different levels: early-, middle-, and late-fusion (Chen et al.,
2021). In early-fusion, input feature vectors from different modalities are concatenated and fed into
one single deep neural network (DNN), while in middle-fusion, they go into DNNs independently
and exchange information in feature space. Unlike the previous two cases, late-fusion is realized by
merging distinct DNNs at their output layers via concatenation, element-wise summation, etc.

These three levels of fusion possess different pros and cons. For instance, late-fusion, the primary
concern of our paper, is (i) privacy-friendly and (ii) convenient to deploy. Specifically, assume that
a hospital wants to have an Al agent to judge whether a patient has a certain disease or not (Sun
et al., |2020). It has to divide the complete training feature (e.g., medical records, X-ray images)
of every patient and deliver them to different AI companies, otherwise, the patients’ identities will
be exposed and their privacy are unprotected. This, in turn, directly rules out the possibility of
applying early- or middle-fusion methods. On the other hand, the hospital could still exploit late-
fusion technique to generate the ultimate Al agent after several unimodal DNNs are trained by
Al companies. Moreover, unlike early- or middle-fusion, many late-fusion methods could tolerate
missing modality information (i.e., no need for paired data) and thus are convenient to deploy.

Although late-fusion is a mature topic in the literature, its performance under adversarial attacks
(Madry et al.,|2018; Tsipras et al.,2019) and random corruptions (Zheng et al., 2016} Kim & Ghosh,
2019) is rather under-explored. In this paper, we address the problem of robust late-fusion by uti-
lizing Jacobian regularization (Varga et al.|[2017; Jakubovitz & Giryes, 2018} Hoffman et al., 2019
Chan et al., [2019) and conditional independence assumption (Sun et al., 2020). The key is to min-
imize the Frobenius norm of a Jacobian matrix so that the multimodal prediction is stabilized (see
Figure[I). Our main contributions are as follows:

* To the best of our knowledge, we are the first to propose a training-free robust late-fusion
method. The involving optimization problem is relaxed to a Sylvester equation (Jameson)
1968), and the solution is obtained with only a little computational overhead.
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* We provide a theoretical error bound of our proposed robust late-fusion method and an
illustrative explanation about the function of the extra modality via the TwoMoon example.

* Thorough numerical experiments demonstrate that our method outperforms other late-
fusion methods and is capable to handle both adversarial attacks and random corruptions.
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Figure 1: Illustration of the proposed robust late-fusion method. Before unimodal raw logit z 4 and
zp are fused, the Jacobian regularization technique is applied. Roughly speaking, it will enforce
the derivative of p with respect to z4 becomes smaller. Thus, when z 4 is perturbed to z’y (due
to random corruption or adversarial attack), the change of multimodal prediction ||p’ — p|| will be
limited to some extent. For the illustration purpose, all variables here (e.g., p,z4) are drawn in
one-dimensional space.

2 PRELIMINARY

Network Robustness To verify the network robustness, two major kinds of perturbations are used,
which in our paper we referred to as (i) adversarial attacks such as FGSM, PGD, or CW attack
(Goodfellow et al., 2014; Madry et al.| 2018 |Carlini & Wagner, [2017)) and (ii) random corruptions
such as Gaussian noise, missing entries or illumination change (Zheng et al., [2016} |Kim & Ghosh,
2019). Correspondingly, many methods have been proposed to offset the negative effects of such
perturbations. Adversarial training based on projected gradient descent (Madry et al.| 2018) is one
strong mechanism to defend against adversarial attacks, and the recent Free-m method (Shafahi
et al.,[2019)) is proposed as its fast variant. Besides adversarial training, several regularization tech-
niques are also proven to have such capability, such as Mixup (Zhang et al., | 2020)), Jacobian regular-
ization (Jakubovitz & Giryes, |2018). Alternatively, with regard to random corruptions, Mixup and
Jacobian regularization are also effective in this case (Zhang et al.,[2018;|Hoffman et al., 2019). An-
other powerful approach is stability training (Zheng et al., 2016), where it introduces an additional
KL divergence term into the conventional classification loss so that the trained DNNSs are stabilized.

Multimodal Learning DNNss trained by fusing data from different modalities have outperformed
their unimodal counterparts in various applications, such as object detection (Chen et al., 2021; [ Kim
& Ghosh, 2019), semantic segmentation (Chen et al.| [2020b; [Feng et al., 2020), audio recognition
(Gemmeke et al.,[2017;|Chen et al.,2020a)). Based on where the information is exchanged between
different modalities, multimodal fusion methods could be classified into three kinds: (i) early-fusion
(Wagner et al., 2016; |Chen et al.,[2021)), (ii) middle-fusion (Kim & Ghosh,|2019; Wang et al.| |2020),
and (iii) late-fusion (Chen et al.,|[2021}; |Liu et al.} [2021). For instance, if the information is fused at
the end of DNNGs (e.g., Figure[I), such a method belongs to the late-fusion category.

Although vast efforts have been put into exploiting multimodal fusion methods to improve DNNs’
accuracy on specific learning tasks, few works have explored network robustness in the multimodal
context. Specifically, Mees et al.|(2016), Valada et al.|(2017), and |Kim et al.|(2018)) exploited gating
networks to deal with random corruptions, adverse or changing environments. Afterwards, [Kim
& Ghosh| (2019) proposed a surrogate minimization scheme and a latent ensemble layer to handle
single-source corruptions. However, all the aforementioned methods belong to middle-fusion and
only random corruptions are considered. On the other hand, we focus on another important scenario:
late-fusion, and besides corruptions, we further take adversarial attacks into account. To the best of
our knowledge, robust late-fusion is un-explored in the previous literature.
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3 JACOBIAN REGULARIZATION IN TEST TIME

Consider a supervised K-class classification problem in the multimodal context. Suppose that fea-
tures from two distinct modalities A (e.g., audio) and B (e.g., video) are provided in the form of
Dy = {(x4,y)}X, and Dp = {(x%,y")} Y, where {x4,xp} represents input features and y
represents the true label. We train two unimodal networks separately, each corresponding to one
modality. Given a specific input feature x 4, the first unimodal network calculate the class prediction
pa € RE by:

pA:Ul(ZA):Ul(WAhAerA):Ul(WAfA(XA)+bA) (D)

where o (-) represents the Softmax function, z4 € R represents the raw logit, and hy =
fa(xa) € RHA represents the feature being fed into the last layer ﬂ Here W, € REXH apd
b4 € RX are the learnable weight and bias of the last linear layer, respectively. Similarly, the
second unimodal network provides the class prediction pp = o1(zp) = 01 (Wghp + bp) =
Ul(WBfB(XB) + bB)

Based on the conditional independence assumption (Kong & Schoenebeck| [2018)), the basic statisti-
cal late-fusion method generates the final class prediction as (Chen et al.,[2021):

P4 ©OPB
= 0'2(7

01(z4) © 0'1(ZB))
freq

freq

) = o2

where the division is performed in an element-wise manner, ® represents the element-wise product,
and o5 (-) represents a linear normalization enforcing the summation of elements equal to one. Here
freq € R” contains the occurring frequencies of each class, calculated from the training dataset.

2

Our proposed approach builds upon (2). Specifically, we consider adding two K x K weight matrices

{W,, Wy} ahead of {z 4, zp}, respectively, right before they get activated. Consequently, the final

multimodal prediction is re-calibrated as:

01(Waza) © 01 (Wyzp)
freq

o1(2z)) © o1(2p)
freq

/

P :0'2(

) = o2

Suppose that the data provided from modality A are perturbed at the input or feature level, while
the data from modality B are clean. For matrix Wy, we could simply set it to an identity matrix,
implying that we didn’t invoke the robust add-on for the second modality. To determine the value of
W, we first calculate the derivative of p’ with respect to h 4 (see Appendix :

) 3)

a /
S ='W, W = [p'p"" — Diag(p/)] W, W4 (4)
Oh 4
Then we minimize the following regularized Jacobian loss with respect to W:
win L = min (1= 7)|[3'WaWal 5+ 9 W, — T} (5)

where 0 < 7 < 1 is a tunable hyper-parameter. Minimizing the first term in the loss could make
the change of p’ limited to some extent when h4 is perturbed, while the second term in the loss
guarantees numerical stability and the prediction in the perturbed case won’t get too far from that of
the clean case. For a specific multimodal input {x4,xp}, once W, is determined, so are p’ and J’
via (3) and (@), respectively. Thus, (§) is well-determined and non-linear with respect to W,.

We propose a heuristic iterative method making the above optimization problem tractable in Algo-
rithm Our key is to decouple J’ from W . Namely, in step 5 of Algorithm all terms are known
except W, and thus the relaxed loss is convex. After writing out all terms of 8L(t)/ OW,, we
observe that it is a Sylvester equation (Jameson), |1968). It has a unique solution and the run time is
as large as inverting a K x K matrix and hence affordable. See Appendix [A.2]for details.

Remarks First, in our implementation we find that one iteration could already yield a sufficiently
accurate result, thus all our numerical results are reported with t,.x = 1 (i.e., p’ = p(l)). Second, if
we know data from modality B are also perturbed, we could solve Wy, in a similar manner. Third,

1 holds because the last layer is usually implemented as a fully connected (FC) layer with Softmax
activation in classification tasks.
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Algorithm 1 Iteratively solving regularized Jacobian loss

1: Given one specific input {x 4, xp }. Initialize iteration index ¢ = 0.
Perform one forward pass, yielding the initial class prediction p(®).
while ¢ < t,,,x do
Calculate J®) = p®p®:T _ Diag(p®).
Minimize L") = (1 — )| JOW,W 4|2 + ~||W,, — I||2 with respect to W,.
Calculate p(**t1) based on Eq (3) with the optimal W,.
Update t =t + 1.
end while
Return p’ = p¥.

R RN S

notice that our approach is invoked merely during inference (i.e., test time), but not the train time.
Furthermore, we demonstrate our approach in the context of two modalities, while obviously, it
could be equally applied to many modalities. Finally, with a moderate assumption, we can further
prove that when the input is perturbed, the change of final prediction enhanced by our method is
limited to a certain amount. This has been summarized in Theorem [T] (see Appendix [A3). Some
immediate corollary include: (i) when € ~ N (0, X), the bound is simplified to E[||p""**¢ —p/||] <
1 (525)/2 Tr[%], (ii) when the Ly norm of € is constrained smaller than § (usually assumed in

2(1—7)
adversarial attacks), the bound is simplified to ||p/"°*¢ — p’|| < 1§ (2&57) )2,

Theorem 1 If 4 is I-Lipschitz continuous and x 4 is perturbed by €: X\ = x4 + €, then the

/,noise

Euclidean norm of our final prediction (i.e., ||p — p’'||) at most changes 2('{7{2) l|€]l-

4 NECESSITY OF THE EXTRA MODALITY: BIASING EFFECT

In this sub-section, we explain the principles behind our approach. Let us move one step back and
consider the unimodal case. In what follows, we will demonstrate that our approach might not work
well in the unimodal context, which in turn justifies the necessity of the extra modality.

At first glance, our approach seems to be equally applicable in the unimodal context. Namely,
suppose that only one unimodal network p = 1(z) = o1(Wh + b) is available, in test time and
for each specific input x, we add a weight matrix W, before the raw logit z being fed into the
Softmax activation, re-calibrating the final unimodal prediction as: p’ = o1(z') = o1(W_,z). Here
W, can be solved by analogy to (5). However, we observe that the introduction of W, usually
won’t change the final prediction.

TwoMoon example For an intuitive understanding, we consider the TwoMoon example used by
(2021). In this example, all data points are scattered in a 2D space. The data located at
the upper and lower leaf have true labels 0 and 1, and are colored by red and blue, respectively.

(a) Train on clean data ' (b)y=1.0 (c) y=0.5 (d)y=0.1

Figure 2: (Unimodal case) The leftmost figure reveals the results of training and testing on clean
data. The heatmap in the background represents the value of ||[JW/||r. The remaining right three
figures show the results of testing on data with Gaussian noise, and similarly, the heatmap in the
background represents the value of ||[JW,W||r. For each figure, the test accuracy on clean and
noisy data are reported at the left top and right bottom.
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In the unimodal case, we take both horizontal and vertical coordinates as input and train a neural
network with three FC layers. As shown in Figure[2](a), the network perfectly fits to the clean data
and achieves 97.75% accuracy on the clean test data. In the remaining three figures, we evaluate
the trained network on noisy test data. Specifically, we deliberately choose v = 1.0 in Figure [2]
(b), so that our approach is actually not invoked (since the solved W, equals I). In this case, the
accuracy drops to 97.00% on noisy data, while the heatmap in the background doesn’t change at all
compared to Figure 2] (a). In Figure[2] (c) and (d), we choose v = 0.5 and v = 0.1, respectively.
We observe that even though the color of the heatmap surely becomes lighter as expected, the test
accuracies of both cases are still 97.00%. More importantly, we find that this phenomenon is not
coincident and that the prediction doesn’t change for any input after adding W, in unimodal binary
classification. See Appendix [A-4]for rigorous mathematical proof. Moreover, in a K-class (K > 2)
classification problem, the final prediction might change if y is sufficiently small. For instance, given
z = [1,0,2]7 and W = 1, if we choose v = 0.5, then the final prediction will change from p =
[0.245,0.090,0.665]T to p’ = [0.270,0.096, 0.635], where the last entry remains to be the largest.
However, if we choose v = 0.01, then the final prediction will become p’ = [0.391,0.219, 0.390]7,
and now the first entry is the largest. See Appendix [A-3]for a theoretical bound of ~ in this high-
dimensional case.

Now we turn to the multimodal case. We treat the horizontal coordinates as one modality, and the
vertical coordinates as the second modality. Two neural networks are trained, each corresponding to
one modality. Then we fuse them based on the aforementioned statistical fusion method. As shown
in FigureE[ in the multimodal context, when our method is invoked (v = 0.5 or 0.1), the color of the
heatmap becomes lighter and the test accuracies on noisy data all increase compared to the trivial
statistical fusion (i.e., when v = 1.0). On the other hand, the test accuracies on clean data almost
remain still (or slightly increase alongside v ).

98.00% ' 98.75%

(a) Train on clean data (b)y=1.0 . (dy=0.1

Figure 3: (Multimodal case) The leftmost column reveals the results of training and testing on clean
data. For illustration purpose, we only perturb the Y-coordinates with Gaussian noise. The first
and second row correspond to small and large noise, respectively. Heatmaps reveal the values of
[|[JW||F in (a) and || JW 4 W|| ¢ in (b), (c), and (d). For each figure, the test accuracy on clean and
noisy data are reported at the left top and right bottom.

Lemma 1 Statistical fusion is equivalent to concatenating the raw logits:

02(%) =01(za+ 25 —Infreq) =01 ([ I T { ;2 } —Infreq)

Biasing effect of the extra modality As we have seen in the TwoMoon example, our proposed
method behaves differently in the unimodal and multimodal context. To get a better understanding
of this subtle difference, we first summarize an equivalent form of statistical fusion in Lemmam(see
Appendix[A-T). Now assume that the sample-wise W, is added, then the final multimodal prediction
becomes 01 (W,z4 + zp — Infreq). Alternatively, in the unimodal context, our method adds a
sample-wise W, and the final prediction becomes o1 (W ,z). Comparing these two expressions,
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we observe that the introduced W, and W, occur in the perturbed modality. However, in the
multimodal case, the extra modality acts as a bias term inside the Softmax function oy and plays a
key role.

5 EXPERIMENTAL RESULTS

5.1 AV-MNIST

AV-MNIST (Pérez-Rua et al.,|2019; |Vielzeuf et al., 2018)) is a novel dataset created by pairing audio
features to the original MNIST images. The first modality corresponds to MNIST images with size
of 28 x 28 and 75% energy removed by principal component analysis (Pérez-Rua et al., [2019).
The second modality is made up of spectrograms with size of 112 x 112. These spectrograms
are extracted from audio samples obtain by merging pronounced digits and random natural noise.
Following |Vielzeuf et al.| (2018)), we use LeNet5 (LeCun et al.,[1989) and a 6-layer CNN to process
image and audio modalities, respectively. To thoroughly verify the efficiency of our method, we
design various types of perturbations: (i) random corruptions including Gaussian noise (wy), missing
entries (w1), and biased noise (w3, ws), and (ii) adversarial attacks including FGSM (w4) and PGD
attack (ws, wg). See Appendix @]for detailed definitions.

Baselines We limit our comparison to the range of late-fusion methods. To verify our method, we
consider several methods which could improve network robustness, including (i) regular training,
(ii) adversarial training (advT) by Madry et al.| (2018), (iii) free-m training (freT) by |Shafahi et al.
(2019), (iv) stability training (stabT) by |Zheng et al.|(2016), and (v) Mixup (mixT) by |Zhang et al.
(2018). To the best of our knowledge, no previous robust late-fusion methods exist. Thus for
comparison purpose, we slightly modify the confidence-based weighted summation in [Yu et al.
(2021) and adopt it here, referred to as mean fusion with confidence-based weighted summation.
Combinations of different fusion methods and robust add-ons provide us with a few baselines. We
emphasize that in our experiments, the train data are always free of noise. Following [Kim & Ghosh
(2019), our experiments are mainly conducted on the case when one modality is perturbed.

Results Table |I| reports the test accuracies of several models on AV-MNIST. Six unimodal net-
works are trained on clean data. Then we fuse them with different fusion methods and different
robust add-ons. We only invoke our Jacobian regularization for the perturbed audio modality, while
keeping the image modality unchanged. First, in the case of mean fusion, confidence-based weighted
summation doesn’t improve robustness. In the case of statistical fusion, we observe that our pro-
posed Jacobian regularization method not only boosts the accuracy on noisy data but also on clean
data. For instance, when our method is invoked on the combination of model-0 and model-1, the test
accuracy on clean data increases from 93.6% to 94.7%, and the test accuracy on data with Gaussian
noise (e.g., wg = 1.0) increases from 80.4% to 84.5%. Similar phenomena can be observed when
our method is invoked on other combinations. Moreover, the number of green arrows is much larger
than that of red arrows implying that our method is compatible with different robust techniques and
applicable under different noises/attacks.

Comparing the last row in the second sub-section and the third row in the third sub-section, we
find that with our proposed method enabled, even if the unimodal backbone model-1 is worse than
model-2, the final multimodal accuracies (0, 1) with our method invoked are even larger than (0, 2)
without our method invoked. Similar phenomena could usually be observed in other sub-sections.
We argue that in this example, statistically fusing two regular unimodal baselines with our Jacobian
regularization invoked surpasses robust unimodal baselines and their trivial fusion. Moreover, the
highest accuracy in each column has been bolded. It is clear that the multimodal network with our
method invoked usually achieves the best performance over all others.

Figure[d]further plots model accuracy versus magnitude of noise/attack. It displays a consistent trend
that our method works well regardless of the magnitude of noise/attack. Furthermore, the larger the
noise/attack is, the better our method performs. More numerical results (such as the impact of
hyper-parameters, applying perturbation on the image modality) are shown in Appendix
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Table 1: Accuracies of different models (%) are evaluated on AV-MNIST when audio features are
perturbed. Mean accuracies are reported after repeatedly running 20 times. The value of ~y is se-
lected from {0.1,0.5,0.9}. The green (1) or red (|) arrow represents after applying our Jacobian
regularization, the model accuracy increases or decreases compared to others with the same uni-
modal backbones. The best accuracy in one column is bolded. ‘UM’ and ‘MM’ represent ‘uni-
modal’ and ‘multimodal’, respectively. ‘MM(0, 7)’ represents a multimodal network obtained by
fusing the unimodal network indexed by ‘0’ and ‘7’.

UM/ MM Model Clean wo=10 w1 =10 ws4=0.03 ws=0.001
0: Img-regT 73.4 73.4 73.4 73.4 73.4
1: Aud-regT 83.9 55.1 73.3 69.9 77.8
UM 2: Aud-advT 84.4 59.2 72.0 81.9 83.3
Nets 3: Aud-freT 82.1 55.6 71.9 80.8 81.6
4: Aud-staT 86.2 67.6 74.4 66.5 74.5
5: Aud-mixT 87.6 61.3 74.9 74.9 78.3
Mean-w/o 93.6 80.3 86.4 89.8 92.7
MM Mean-w/ 90.5 73.7 83.6 82.0 88.2
©, 1) Stat-w/o 93.6 80.4 86.6 89.9 92.7
Stat-w/ (ours)  94.7 (1)  84.5() 89.1 (1) 92.2 (1) 94.1 (1)
Mean-w/o 91.8 78.3 82.7 91.9 92.5
MM Mean-w/ 86.0 72.7 77.5 85.7 86.9
©,2) Stat-w/o 91.7 78.3 83.5 91.9 92.4
Stat-w/ (ours) 93.4 (1)  83.1 () 86.4 (1) 93.5 (1) 93.7.(1)
Mean-w/o 93.0 81.1 87.7 93.2 93.2
MM Mean-w/ 82.4 74.4 78.6 83.7 83.5
©, 3) Stat-w/o 93.0 80.9 87.7 93.2 93.2
Stat-w/ 93.0(1) 82.3(1) 88.1 (1) 92.7 () 92.9 ()
Mean-w/o 93.0 83.8 84.9 83.5 88.8
MM Mean-w/ 90.9 78.1 81.8 74.6 81.3
0, 4) Stat-w/o 93.1 83.7 85.3 83.4 88.8
Stat-w/ (ours) 94.7(7) 87.5(]) 87.8(]) 87.9 (1) 91.9 (1)
Mean-w/o 95.2 85.9 89.7 91.1 92.5
MM Mean-w/ 94.0 82.1 88.6 87.1 88.9
©,5) Stat-w/o 95.1 85.7 90.1 91.1 92.4

Stat-w/ (ours)  95.0(}) 86.1(7)  90.1()) 91.0 (1) 92.2 ()

95 95 95
—e— w/o JacoReg

- 88 s 92 w/ JacoReg s 931
81 >89 > 914
374 3 {
B Ss6 g%
< 671 —*— w/o JacoReg < < 87! —e— w/o JacoReg

0 w/ JacoReg 83 w/ JacoReg

0.0 0.5 1.0 1.5 2.0 8l 5 10 15 20 850.020 0.025 0.030 0.035 0.040
Std of Gaussian noise Wo Magnituide of missing entries W1 Magnitude of FGSM attack w4

Figure 4: Accuracies of multimodal networks obtained by statistically fusing a vanilla image net-
work and audio network with v = 0.1. Mean and Std of 20 repeated experiments are shown by the
solid lines and the shaded regions, respectively. Note that FGSM attack is rather deterministic, thus
there is almost no variance when repeating experiments.

5.2 EMOTION RECOGNITION ON RAVDESS

We consider emotion recognition on RAVDESS (Livingstone & Russol 2018; Xue et al., 2021). We
use a similar network structure for both the image and audio modality: Three convolution layers, two
max pooling layers, and three FC layers connect in sequential. Similar baselines and experimental
settings are adopted as those in AV-MNIST. Results are reported in Table 2}



Under review as a conference paper at ICLR 2022

Results Still, in the case of mean fusion, confidence-based weighted mean fusion usually doesn’t
work except in few cases, while our proposed Jacobian regularization exhibits good compatibility
with different trained models under various perturbations. The bold results imply that the multi-
modal network with our Jacobian regularization invoked outperforms all other models except in
FGSM attack (wgy = 0.03). Due to page limits, extra results are presented in Appendix

Table 2: Accuracies of different models (%) are evaluated on RAVDESS when audio features are
perturbed. Mean accuracies are reported after repeatedly running 20 times.

UM /MM Model Clean wo=10 w1 =6 wg4=0.03 ws;=0.001
0: Img-regT 82.5 82.5 82.5 82.5 82.5
1: Aud-regT 71.9 54.2 59.3 31.5 29.9
UM 2: Aud-advT 78.6 43.1 71.9 53.3 62.3
Nets 3: Aud-freT 66.4 19.5 62.4 56.0 60.5
4: Aud-staT 71.8 58.3 59.8 25.9 29.6
5: Aud-mixT 74.6 54.5 66.9 15.7 19.2
Mean-w/o 89.8 82.8 86.7 57.0 63.6
MM Mean-w/ 88.5 80.4 84.1 60.7 57.3
©, 1) Stat-w/o 89.9 82.9 86.3 56.9 63.3
Stat-w/ (ours)  89.9 (1) 85.0 (1) 87.7(1) 59.4 (1) 68.1 (1)
Mean-w/o 90.8 76.9 89.5 87.3 90.6
MM Mean-w/ 89.3 76.9 87.6 79.7 85.9
©,2) Stat-w/o 90.8 77.1 89.6 87.2 90.5
Stat-w/ (ours) 91.4(7) 79.9(7) 90.2(]) 88.6 (1) 90.6 (1)
Mean-w/o 90.5 60.8 89.6 90.1 90.8
MM Mean-w/ 86.9 64.0 86.6 82.2 85.7
©, 3) Stat-w/o 90.5 61.5 89.2 90.0 90.7
Stat-w/ (ours)  90.8 (1) 65.6 (1) 90.0 (1) 89.5 (}) 90.7 (})
Mean-w/o 90.7 88.4 88.5 69.3 78.8
MM Mean-w/ 89.2 85.4 85.5 68.9 69.3
0, 4) Stat-w/o 90.4 88.3 88.5 69.7 78.9
Stat-w/ (ours) 90.8 (1) 88.8 () 88.7()) 75.3 (1) 82.3 (1)
Mean-w/o 89.5 87.8 87.9 81.7 82.7
MM Mean-w/ 87.9 85.8 86.5 82.0 79.7
©,5) Stat-w/o 89.4 87.7 87.9 81.6 82.5

Stat-w/ (ours) 86.6()) 86.7(1) 86.0()) 82.9(M) 83.7(1)

5.3 VGGSOUND

‘We consider classification task on a real-world data set VGGSound (Chen et al., [2020a)), where two
modalities audio and video are available. To construct an affordable problem, our classification
task only focuses on a subset of all classes. Namely, we randomly choose 100 classes and our
classification problem is constrained on them. Consequently, there are 53622 audio-video pairs
for training and 4706 audio-video pairs for testing. For the audio modality, we apply a short-time
Fourier transform on each raw waveform, generating a 313 x 513 spectrogram. We take a 2D
ResNet-18 (He et al., [2016) to process these spectrograms. For the video modality, we evenly
sample 32 frames from each 10-second video resulting input feature size of 32 x 256 x 256. We
take a ResNet-18 network to process the video input where 3D convolutions have been adopted to
replace 2D convolutions.

Results We present the results of mean fusion and statistical fusion with or without robust add-on
in Table [3] Unlike the previous experiments, here we make audio modality clean and assume cor-
ruptions/attacks on the video modality. The results demonstrate that our method outperforms coun-
terpart statistical fusion without Jacobian regularization in most cases. Furthermore, the bold results
imply that our Jacobian regularization could enhance model robustness under various corruptions or
attacks. More results (e.g., unknown corrupted modlity) are presented in Appendix [B.4]
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Table 3: Accuracies of different models (%) are evaluated on VGGSound when video features are
perturbed. Mean accuracies are reported after repeatedly running 5 times.

UM /MM Model Clean wo=15 w1 =6 ws=0.03 ws=0.001
0: Aud-regT 54.4 15.0 49.8 23.0 19.9
1: Img-regT 274 5.8 274 9.5 9.0
UM 2: Img-advT 27.5 5.3 27.4 10.7 10.3
Nets 3: Img-freT 25.2 4.0 24.2 20.4 22.9
4: Img-staT 27.0 6.9 26.9 10.5 9.6
5: Img-mixT 27.2 8.4 27.1 7.3 7.2
Mean-w/o 57.7 45.8 57.7 35.0 25.7
MM Mean-w/ 53.9 48.6 53.9 37.9 20.5
0, 1) Stat-w/o 58.5 46.0 58.4 35.3 26.0
Stat-w/ (ours)  60.1 (1)  51.2(1)  60.0(]) 39.7.(1) 28.5 (1)
Mean-w/o 58.8 45.0 58.8 37.2 26.9
MM Mean-w/ 54.1 49.0 54.1 38.3 21.3
0,2) Stat-w/o 59.4 45.4 59.4 37.3 27.2
Stat-w/ (ours) 61.1 (1) 50.1(7) 61.1()) 41.2 () 29.7 (1)
Mean-w/o 57.9 51.5 57.9 57.8 57.7
MM Mean-w/ 55.2 53.6 55.2 55.0 55.2
0,3) Stat-w/o 58.8 52.6 58.8 55.6 57.7
Stat-w/ (ours)  56.7(}) 53.2())  56.7(]) 58.5 (1) 57.9 ()
Mean-w/o 57.5 47.2 57.3 36.9 30.9
MM Mean-w/ 53.5 49.2 53.4 37.2 23.4
0,4) Stat-w/o 58.2 47.5 58.1 374 31.0
Stat-w/ (ours)  59.8 (1)  51.9(1)  59.7(]) 41.0 () 34.0 ()
Mean-w/o 57.8 55.3 57.8 53.9 53.5
MM Mean-w/ 55.6 54.7 55.6 54.3 49.5
0,5) Stat-w/o 59.1 56.4 59.0 54.5 54.3

Stat-w/ (ours)  57.1())  55.9()) 57.0()  55.2() 55.4 (1)

6 DISCUSSION AND FUTURE WORK

In this paper, we propose a training-free robust late-fusion method. Intuitively, our method designs a
filter for each sample during inference (i.e., test time). Such a filter is implemented by Jacobian reg-
ularization, and after a sample goes through it, the change of final multimodal prediction is limited
to some amount under an input perturbation. The error bound analysis and series of experiments jus-
tify the efficacy of our method both theoretically and numerically. The Twomoon example explains
the biasing effect of the extra modality, rooted for the difference between unimodal and multimodal.

Our method opens up other directions for further exploration. In the unimodal context, we under-
stand that directly applying our method usually doesn’t change the prediction. Thus, would it be
capable to adjust the confidence of a DNN? Another possibility is that besides W, we deliberately
add another bias term b, and optimize both for unimodal robustness. Alternatively, in the multi-
modal context, we might consider minimizing the derivative of the final prediction directly to the
input feature. Moreover, it is educational to compare it with consistency regularization. Last but not
least, statistical fusion implicitly uses the assumption that train and test data come from the same
distribution, so that we could calculate freq based on the train dataset and reuse it in inference time.
When domain shift presents, this doesn’t work and a straightforward remedy might be to make freq
a learnable parameter.
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A MISSING DEDUCTION

A.1 EQUIVALENT FORM AND DERIVATIVE OF STATISTICAL FUSION

In this subsection, we first prove Lemma [I| For conciseness, we denote the k-th element of p4 as
DA, k. Similar notations are adopted for pp, z4, zp, and In freq. The k-th element of the left-hand
side (LHS) in Lemmam can be simplified as:

(z4.x) exp(2B,k)
parPBr/freq, LA SEEEE [ freqy,
K - K ;) ex
Zj:l paps.s/freq; Zj:l exp(TzAA,J) e péfBB,k)/freqj
_ eXp(ZAJc) exp(ZB,k)/fTEQk (6)

K
> i1 exp(za,;) exp(2B,k)/ freq;
exp(zak + 2B,k — In freqy,)

Sy exp(za + 25, — In freg))

which is exactly the k-th element of the right-hand side (RHS) in Lemma[I] by definition. Note that
in the first line of @, we use the definition py = 01(z4), ps = 01(z5), and have introduced two
normalization constants T4 = || exp(z4)||1 and Ts = || exp(z5)||1-

By analogy to the above deduction, an equivalent form of (3) is p’ = 61 (W,24+Wjpzp—Infreq).
Based on the chainrule and z4, = W 4h 4 + b4, we have:

op’  Op' 0z4

e _ J’WaW — 10T Di / WaW 7
Ohs ~ 9z 0ha A=[p'p iag(p’)] A (7

where we have used the Jacobian matrix of Softmax function to calculate J’ (Bishop} [2006). We
emphasize that J’ is symmetric.

A.2 SOLUTION OF REGULARIZED JACOBIAN LOSS

Because Frobenius norm is convex and a weighted summation with positive coefficients preserves
convexity, the relaxed (5) shown in Step 5 of Algorithm|I]is a convex function with respect to W,.
This implies that any local minimum is also the global minimum. We calculate the derivative of the
relaxed (5) with respect to W, and set it to zero, yielding:

1
o D)IO2W, (WAWEH) + W, =1
(7 ) (WaW3) a ®

- AW, + W,B=B

where for simplicity we have defined A = (1/y — 1)J®:2 ¢ REXK and B = (W, W)™t ¢
REXK, is known as Sylvester equationy’| and it has been proven that if A and —B do not
share any eigenvalues, then the Sylvester equation has an unique solution (Jameson) 1968} [Horn &
Johnson, 2012} |Bartels & Stewart, |1972). In our case, since A is positive semi-definite (PSD) and
—B is negative semi-definite, the only possible overlapping eigenvalue is 0. On one hand, 0 is surely
an eigenvalue of A since Ju = Ou, where u is a column vector with all elements equal to 1. On
the other hand, it is argued that a well-generalized neural network normally doesn’t have singular
weight matrices (Martin & Mahoney},[2021). Thus, 0 is almost surely not the overlapping eigenvalue
and a unique solution of (8) is guaranteed. As demonstrated by Jameson| (1968), the matrix equation
@) can be converted to invert a K x K matrix. As in a classification task, K won’t be too large,
the run time of solving Sylvester equation is affordable in this context. Furthermore, as shown in
the above equation, when v — 0, the matrix A will tend to infinity, leading to an ill-conditioned
matrix equation. This, in turn, implies that the second term in the loss shown in Eq (3) guarantees
numerical stability.

%A general Sylvester equation has the form: AX 4+ XB = C, where {A, B, C} are all known and X is
required to be solved.

12
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A.3 PROOF OF THEOREM[I]

In the last iteration ¢t = t;,,x — 00, noticing W, satisfies , we have:

|[J )W, W 4[| % = Tr[J ) W, Wy W W g )]
= Tr[J ) 2 W, (W, W)W ]

1
= (= - 1) 'Tr[AW,B~'WT]
gl

9
1
= (= —1)"'Tr[(B- W,B)B~'W/]
~
1
= (- =)W, — W, W(]
Y
and:
HWa - I||§7‘ = Tr[Wan —2W, + I] (10)
Thus we have:
1 o
|| ) W W 4 [[2 < m[(1 — )| T )W W 4|2 + §|\Wa 12
1 T Y T T
= i {’YTr[Wa, -W,W |+ §Tr[WaWa —owT 4 I}}
(11)
- ﬁTr[I — W, W]
K
S %TI‘[I] = 77_
2(1=7) 2(1—7)

where we have taken advantage of the fact that W, W1 is a positive semi-definite matrix, and thus
its trace is no less than zero. Based on the first-order Taylor expansion, we have:

, op’ A
rnoise _ /o hooise _ 1
P P ahA( y) A)

Op(tmaxt1)
~ Ohy
~ J(tmaX)WaWA(hIAOise _ hA)

(hxhoise _ hA) (12)

Thus we have: ) N
I/ = || < [ W W[ - [R5 ~ b

< oK
2(1—1)

IR = x4l

(13)
K

=1 m”eﬂ

where we have utilized the [-Lipschitz continuity of f4.

A.4 UNIMODAL 2D CASE

Consider an illustrating example when K = 2 (a.k.a. unimodal binary classification). In this case,
the final prediction is two dimensional: p = [p; p2]”. We denote the raw logit after adding the W,
matrix as z’ = Wz, and its entries are denoted as z] and z5. Let us begin by explicitly writing out
the first line of . After some simplification, we obtain:

K =K p1 P2 a b p1oP2 | _q 14
{—H N}{P:& 04}{1) C}—'—[Ps ,04] (14)
where x = 1/ — 1. Here we have explicitly written out the elements of WW? and merged some

terms of J"2 into a = pypa(w?; + w2y), b = p1pa (w1 w11 + wi2wes), and ¢ = pypa (w3, + w,).
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The unknowns occur in W :

we= |5 0 a3

After some algebra, we can solve all unknowns via the following block matrix inversion:

P1 . 1
2| | G H |0
o5 | = { H G } 0 (16)
pa 1
where for simplicity, we have defined:
| 1+4ak bk | —ak bk
G_{ bk 1-|—CK):|’ H_{—bm —cm} a7
Noticing that z’ = Wz, we can prove that:
/ ! | p1—ps —(p1—ps3)
_ . — = 1
(1 =2) (21 —2) =2 [ p2—ps —(p2 — pa) ] “ (18

It is easy to calculate the eigenvalue of the matrix in the middle is 0 and p; + p4 — p2 — p3. In other
words, if we could prove p; + p4s — p2 — ps3 is no less than zero, then the matrix in the middle is
positive semi-definite, which implies order preserving property holds: If z; > zo, then 2] > 25 and
vice versa. This order preserving property is equivalent to say that adding the W, matrix makes no
sense in unimodal binary classification problem, since the predication won’t change for any input.

Now let us prove p; + ps — p2 — p3 > 0. With a lot of algebra, we obtain:

[ P
1 ] P2
p3
L P4

pr+pa—pa—p3=[1 -1 -1

- -1

G

H (19)
H G

=[1 -1 -1 1]

oo

B 2a+2b+c)k+2
~ 4(ac—b2)K2 +2(a+ )k + 1

Based on the definitions of {a, b, ¢, d}, by using Cauchy inequality and completing square, we could
prove: ac—b> > 0,a+c>0,a+2b+c>0,anda —2b+c > 0.

Treat x € (0, c0) as a variable. The derivative of (19)) with respect to « is a fraction. Its denominator
is always larger than zero, while the numerator is a quadratic polynomial:

8(b* —ac)(a+2b+c) k* +16(b* —ac)k — 2 (a — 2b+ c) (20)

<0 <0 >0

Thus p1 + ps — p2 — p3 monotonically decreases when x increases in (0, c0). Its minimum value
equals O and is attained when k — oco. Our proof completes.

A.5 UNIMODAL HIGH-DIMENSIONAL CASE

Without loss of generality, we consider the case when WW? = I. We emphasize this is a mild
assumption. Because when W doesn’t satisfy this condition, we could perform SVD decomposition
W = UXV and convert the FC layer Wh + b into three sequential linear layers: h — Vh —
Y Vh — UXVh + b, where now the weight matrix in the last layer satisfies UU? = I. Under this
assumption B = (WW7T)~1 =1, (8) could be further simplified as:

W, = (- D724 = (1) @
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where J' = J(©) is known, and for simplicity, we have denoted x = 1/ — 1. From this expression,
it is clear that the second term of (5] . ) guarantees numerical stability, since J’? is not invertible
and without the identity matrix @) doesn’t exist. Before moving on, we define a helper vector
e;; € R¥, whose i-th and j-th entrles equal 1 and —1, respectively, and all other entries equal 0.
Then consrdermg the relation of z' = Wz, we have:

(2 — 2j)(zi — 7)) = (2" eyj)(ef;2)

22)
=z"Te;e TW1’ (

This implies that if e;;e;; TW 1 is a positive semi-definite (PSD) matrix for arbitrary i # j, then the
order preserving property holds (i.e., if z; > z;, then 2} > z; ). Since €;j€;,; LWt is asymmetrical,
examining whether 1t is PSD requires us to focus on the summatlon of 1ts transpose and itself.
Namely, e;;e;; T'W_1is PSD if and only if the eigenvalues of [e”e W + (eije; W DT are all
no less than zero. Notice that W, and W, ! are symmetric as shown in , wWe have

e;;e TW + (eije; W hr = ej;€; W +W e;;e Z;

= g;;e Zj( J/2+I) ( J/2+I)eij z; (23)

_ZeUe + r(ejje TJ’2+J'2er 5)

For simplicity we denote the set of x which can make all eigenvalues of the aforementioned matrix
non-negative as: I';; = {r > 0[Amin(2eij€]; + r(e;e 3" + J"2e;;el)) > 0}, where Apin(-)
represents the minimum eigenvalue of a matrlx Then a necessary and sufﬁc1ent condition for the or-
der persevering property is £ € M;x;1";;. An immediate corollary is: if we want the final prediction
to change after adding W, then we must have % —1¢ Nz

B EXPERIMENT DETAILS AND ABLATION STUDY

B.1 DEFINITION OF OMEGA

Figure 5: Image samples in AV-MNIST. Original images are shown in the first column, and their
counterparts perturbed by Gaussian noise ( wy = 0.2) are shown in the second column. The third
(ws = —1) and last (ws = 2) column show the images perturbed by bias noise.

Take AV-MNIST as an example. We have defined the following types of perturbations.

* Gaussian noise: Perturb every element z in the image (or audio) feature by a Gaussian
noise in the form of x™°%*¢ = (1 + €)x, where € ~ N (0, w3).

» Missing entries: For the audio modality, we randomly select w; consecutive columns (or
rows) and all elements in there are set to 0. This corresponds to missing time frames (or
frequency components).

* Bias noise: For the image modality, we randomly select an image patch with size of wa X
ws, and every element x in there is perturbed by a given amount: 2™°**¢ = (1 +w3)x. This
corresponds to change of illumination. (see Figure 3).

* FGSM attack: We use the Cleverhans libarary (Papernot et al 2016) to implement a
FGSM attack on the input image/audio feature with /o, norm. The maximum overall norm
variation is wy (e.g., wy = 0.3).
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* PGD attack: Cleverhans is adopted to implement a PGD attack on the input image/audio
feature with /., norm. The maximum overall norm variation also equals w,, and that for
each inner attack is ws (e.g., ws = 0.01), and the number of inner attacks is wg.

Unless explicitly mentioned, wg is set to 20.

B.2 EXTRA RESULTS ON AV-MNIST

Impact of hyper-parameters Following Figure 4] we plot model accuracy versus magnitude of
noise/attack with different gamma values in Figure|6| For comparison purpose, Figure[]is re-drawn
in its first row. As demonstrated in Figure [6] alongside the increasing of -, the gap between the
orange and blue lines becomes smaller. However, the orange lines consistently appear upon the blue
lines, indicating that our method works in a wide range of gamma value and that hyper-parameter
tuning is relatively easy in our method. We emphasize that v = 1.0 is equivalent to trivial fusion.

95 95 95
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88 = 92 w/ JacoReg - 93
> 81 >89 91
Q Q Q
-
|-
3 3 86 g 89
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Figure 6: Accuracies of multimodal networks obtained by statistically fusing a vanilla image net-
work and audio network with v = 0.1 (the 1-st row), v = 0.5 (the 2-nd row), and v = 0.9 (the
3-rd row). Mean and Std of 20 repeated experiments are shown by the solid lines and the shaded
regions, respectively. Note that FGSM attack is deterministic, thus there is almost no variance when
repeating experiments.

Perturbation on the image modality Unlike in the main text, here we consider perturbations
on the image modality, while the audio modality is assumed clean. Consequently, we invoke our
Jacobian regularization method for the image modality, while keep the audio modality unchanged.
We have deliberately enlarged the magnitude of the noise/attack, and results are reported in Table[d]

As shown in Table[} confidence-weighted summation still doesn’t outperform purely mean fusion in
all cases. Regards to statistical fusion, the second column demonstrates that this time our Jacobian
regularization might lead to accuracy drop on clean data. The phenomenon that robust network
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is less accurate on clean data might happen as suggested by [Tsipras et al| (2019). However, we
notice that such phenomenon doesn’t occur in Table |I} We believe that such difference might lie
intrinsically in modality difference, and we will explore it in our future work.

Table 4: Accuracies of different models (%) are evaluated on AV-MNIST when image features are
perturbed. Mean accuracies are reported after repeatedly running 20 times.

UM /MM Model Clean wo =25 w23=10,2 ws4=0.07 ws=0.008
0: Aud-regT 83.9 83.9 83.9 83.9 83.9
1: Img-regT 73.4 24.4 37.2 15.6 12.3
UM 2: Img-advT 73.1 33.4 40.5 43.3 34.1
Nets 3: Img-freT 65.1 36.2 40.7 46.7 42.6
4: Img-staT 74.2 29.5 49.0 19.4 14.1
5: Img-mixT 74.1 30.4 37.6 37.3 23.9
Mean-w/o 93.6 71.9 84.6 83.2 80.0
MM Mean-w/ 90.5 78.1 83.5 81.6 7T
0, 1) Stat-w/o 93.6 71.7 84.2 83.1 79.9
Stat-w/ 91.3() 752 86.4 (1) 85.4 (1) 83.3 (1)
Mean-w/o 93.9 83.6 85.4 89.9 88.4
MM Mean-w/ 91.5 82.7 82.0 86.1 83.2
0,2) Stat-w/o 93.9 83.5 85.4 89.9 88.4
Stat-w/ (ours)  90.8 ()  85.0(]) 86.9 (1) 88.1 (1) 87.6 (1)
Mean-w/o 91.4 87.1 88.1 88.8 88.6
MM Mean-w/ 88.3 85.6 85.7 85.9 85.5
0, 3) Stat-w/o 91.4 87.1 88.2 88.8 88.6
Stat-w/ (ours) 90.9(]) 87.0(]) 88.2 (1) 88.6 (1) 88.3 (1)
Mean-w/o 93.7 77.8 89.0 85.1 82.0
MM Mean-w/ 91.1 83.3 86.8 82.3 78.0
0,4) Stat-w/o 93.7 77.8 89.1 85.0 81.8
Stat-w/ (ours) 91.3(}) 79.9() 89.3 (1) 86.4 (1) 84.6 (1)
Mean-w/o 92.6 85.7 86.5 87.2 84.2
MM Mean-w/ 90.1 84.5 84.4 84.3 80.0
0,5) Stat-w/o 92.6 85.7 86.7 87.2 84.1

Stat-w/ (ours)  92.2()  85.7(1) 86.9 (1) 87.1 (1) 84.6 (1)

Noise on both modality We further consider the setting when both image and audio modality are
perturbed by Gaussian noise in Table 5] which differs ours from [Kim & Ghosh| (2019).

B.3 EXTRA RESULTS ON RAVDESS

Impact of hyper-parameters Following Figure[6] we also plot model accuracy versus magnitude
of noise/attack with different gamma values in the emotion recognition experiment. The results
are shown in Figure [/} The multimodal network with our Jacobian regularization invoked (i.e., the
orange line) almost surpasses the network without that invoked (i.e., the blue line) in all cases.

Perturbation on the image modality Here we consider perturbations on the image modality.
Similarly, we have deliberately enlarged the magnitude of the noise/attack, and results are presented
in Table[6] As demonstrated in the table, the mutimodal network enhanced by our method usually
achieves the best accuracy among all models except in few cases. Also, our Jacobian regularization
could usually improve model accuracy except in the clean case. We notice that in some extreme
cases when the image modality is severely perturbed, the multimdoal network might be even worse
than the regular unimodal audio network. This, in turn, implies that multimodal fusion is not always
the winner, especially when large noise/attack is presented.

B.4 EXTRA RESULTS ON VGGSOUND

Impact of hyper-parameters We also plot model accuracy versus magnitude of noise on video
modality with different gamma values in the VGGSound experiment in Figure[§]

Unknown Noise on Single Modality To capture another setting, here we consider that the video
modality (or audio modality) is corrupted, and both modalities are trained with robust add-ons in Ta-
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Table 5: Accuracies of different models (%) are evaluated on AV-MNIST when both modalities are
perturbed by Gaussian noise. Mean accuracies are reported after repeatedly running 20 times.

UM /MM Model Clean wo=10 wy=15 wi=20 wog=25
0: Img-regT 73.4 46.7 35.9 28.8 24.2
1: Aud-regT 83.9 55.0 34.8 25.0 20.4
UM 2: Img-staT 74.4 60.5 47.6 38.2 30.8
Nets 3: Aud-staT 85.1 70.4 51.8 37.6 28.9
4: Img-mixT 74.1 53.0 43.3 36.0 30.4
5: Aud-mixT 87.6 61.2 41.0 28.0 21.1
Mean-w/o 93.6 69.6 46.8 34.0 27.5
MM Mean-w/ 91.0 64.0 43.4 32.0 25.8
©, 1 Stat-w/o 93.6 69.5 46.6 33.8 27.1
Stat-w/ 93.5({) 70.3(1) 479 () 34.6 (1) 27.6 (1)
Mean-w/o 93.0 83.1 65.4 48.5 36.6
MM Mean-w/ 90.6 78.5 60.8 46.0 36.0
2,3) Stat-w/o 93.1 83.0 65.5 48.3 36.8
Stat-w/ (ours) 93.6 (1) 84.4(]) 66.7()) 49.2()) 36.9())
Mean-w/o 95.5 75.4 55.1 40.3 31.6
MM Mean-w/ 94.1 70.5 50.1 37.6 29.8
4,5) Stat-w/o 95.4 75.4 54.9 40.2 31.5
Stat-w/ (ours) 95.4(}) 75.2(]) 54.9 (1) 40.2 (1) 31.6 (1)

Table 6: Accuracies of different models (%) are evaluated on RAVDESS when image features are
perturbed. Mean accuracies are reported after repeatedly running 20 times.

UM /MM Model Clean wo =4.0 w23 =200,—4 w4=0.07 ws=0.008
0: Aud-regT 71.9 71.9 71.9 71.9 71.9
1: Img-regT 82.5 25.9 21.3 21.1 10.7
UM 2: Img-advT 83.3 21.1 29.4 40.0 25.1
Nets 3: Img-freT 76.0 15.3 24.7 50.1 38.7
4: Img-staT 83.7 35.1 23.7 17.0 10.9
5: Img-mixT 85.1 15.7 27.3 8.4 8.5
Mean-w/o 89.8 63.3 40.8 49.2 21.8
MM Mean-w/ 88.5 64.6 40.4 43.3 16.3
©, 1) Stat-w/o 89.9 63.6 41.1 49.4 21.8
Stat-w/ (ours) 88.7(])  66.1(]) 43.4 (1) 54.5 (1) 23.5 (1)
Mean-w/o 89.2 51.8 62.0 78.2 74.0
MM Mean-w/ 87.4 61.9 63.1 69.3 56.4
©,2) Stat-w/o 89.2 51.7 62.3 78.1 74.2
Stat-w/ (ours) 87.7(l) 54.3 () 64.6 (1) 78.9 (1) 75.1 (1)
Mean-w/o 86.9 37.5 63.5 81.3 77.6
MM Mean-w/ 84.1 40.1 62.0 74.6 68.1
©, 3) Stat-w/o 86.9 37.6 63.7 81.1 7.7
Stat-w/ (ours) 84.8(})  40.9 (1) 66.5 (1) 80.6 (J) 78.6(1)
Mean-w/o 89.6 75.7 52.8 55.8 32.0
MM Mean-w/ 86.7 71.8 53.7 51.4 19.8
0, 4) Stat-w/o 89.5 76.3 52.9 55.7 31.7
Stat-w/ (ours) 87.8(]) 76.4(]) 56.2 (1) 60.5 (1) 35.3 (1)
Mean-w/o 83.0 73.1 72.0 66.5 53.8
MM Mean-w/ 82.4 69.5 69.9 66.3 33.2
©,5) Stat-w/o 82.9 73.1 72.1 66.5 54.0
Stat-w/ (ours) 80.3 () 73.7(1) 73.3 (1) 69.4 (1) 58.8 (1)

ble[7]and 8] respectively. We emphasize that this setting is valid because in real-world applications,
we sometimes do not know which modality is corrupted. As shown in these tables, the multimodal
networks fused by our method could usually achieve higher accuracies in most cases, except when
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Figure 7: Accuracies of multimodal networks obtained by statistically fusing a vanilla image net-
work and audio network with v = 0.1 (the 1-st row), v = 0.5 (the 2-nd row), and v = 0.9 (the
3-rd row). Mean and Std of 20 repeated experiments are shown by the solid lines and the shaded
regions, respectively. Note that FGSM attack is deterministic, thus there is almost no variance when
repeating experiments.

both unimodal networks are learned with free-m training EL Moreover, the fact that our Jacobian
regularized multimodal network with a corrupted modality still outperforms the unimodal network
with clean data in all cases demonstrates the positive effect of an extra modality.
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Figure 8: Accuracies of multimodal networks obtained by statistically fusing a vanilla image net-
work and audio network with v = 0.1 (the 1-st column), v = 0.5 (the 2-nd column), and v = 0.99
(the 3-rd column). Mean and Std of 5 repeated experiments are shown by the solid lines and the
shaded regions, respectively.

3We neglect the cases when networks are tested on clean data, since it is possible that a robust network is

less accurate on clean data as suggested by (2019).
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Table 7: Accuracies of different models (%) are evaluated on VGGSound when video features are
perturbed. Mean accuracies are reported after repeatedly running 5 times.

UM /MM Model Clean wo=15 w1 =6 wg=0.03 ws=0.001
0: Img-regT 27.4 5.78 27.4 9.5 9.0
1: Aud-regT 54.4 15.0 49.8 23.0 19.9
2: Img-advT 27.5 5.3 27.4 10.7 10.3
3: Aud-advT 54.8 19.4 50.6 41.8 48.5
UM 4: Img-freT 22.2 4.0 22.2 19.4 20.9
Nets 5: Aud-freT 49.2 32.4 46.6 48.2 49.3
6: Img-staT 27.0 6.9 26.9 10.5 9.6
7: Aud-staT 55.2 18.8 50.0 22.4 20.1
8: Img-mixT 27.2 8.4 27.1 7.3 7.2
9: Aud-mixT 56.3 1.57 50.1 16.9 11.7
Mean-w/o 57.7 45.8 57.6 35.0 25.7
MM Mean-w/ 53.9 48.6 53.8 37.9 20.5
©, 1) Stat-w/o 58.5 46.0 58.4 35.3 26.0
Stat-w/ (ours)  60.1 () 51.2 (1) 60.0 (1) 39.7.(1) 28.5 (1)
Mean-w/o 59.1 45.2 59.9 36.6 26.9
MM Mean-w/ 54.6 48.6 54.6 37.6 21.3
2,3) Stat-w/o 59.6 45.4 59.6 37.1 27.1
Stat-w/ (ours) 61.0(7) 50.0(7) 61.0()) 40.9 (1) 29.7.(1)
Mean-w/o 54.6 42.2 52.5 54.5 54.6
MM Mean-w/ 51.4 37.6 49.1 51.0 51.4
4,5) Stat-w/o 56.4 43.7 54.4 56.3 56.4
Stat-w/ (ours)  45.1 (]) 38.6 () 43.9 () 44.3 (1) 44.7 (1)
Mean-w/o 57.5 47.6 57.4 37.3 30.8
MM Mean-w/ 53.5 49.4 53.4 37.1 23.0
6,7) Stat-w/o 58.2 48.0 58.1 37.7 31.1
Stat-w/ (ours)  60.0(7) 52.2(7) 59.9 (1) 41.3 (1) 34.4 (1)
Mean-w/o 57.6 48.1 57.5 42.8 33.6
MM Mean-w/ 57.8 52.2 57.8 50.9 33.6
(8,9) Stat-w/o 59.7 50.1 59.5 44.2 34.6

Stat-w/ (ours) 604 (1)  57.4()  60.3(1)  543(1)  49.9()
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Table 8: Accuracies of different models (%) are evaluated on VGGSound when audio features are
perturbed. Mean accuracies are reported after repeatedly running 5 times.

UM /MM Model Clean wo=15 wi =6 ws4=0.03 ws=0.001
0: Img-regT 274 5.78 274 9.5 9.0
1: Aud-regT 54.4 15.0 49.8 23.0 19.9
2: Img-advT 27.5 5.3 27.4 10.7 10.3
3: Aud-advT 54.8 19.4 50.6 41.8 48.5
UM 4: Tmg-freT 22.2 4.0 22.2 19.4 20.9
Nets 5: Aud-freT 49.2 324 46.6 48.2 49.3
6: Img-staT 27.0 6.9 26.9 10.5 9.6
7: Aud-staT 55.2 18.8 50.0 22.4 20.1
8: Img-mixT 27.2 8.4 27.1 7.3 7.2
9: Aud-mixT 56.3 1.57 50.1 16.9 11.7
Mean-w/o 57.7 29.5 55.5 36.2 32.7
MM Mean-w/ 53.9 23.4 50.8 29.8 25.2
©, 1) Stat-w/o 58.5 30.5 56.1 36.6 32.9
Stat-w/ (ours) 60.0(7) 31.3(1) 52.6() 38.9 (1) 35.5 (1)
Mean-w/o 59.1 37.5 56.7 53.4 55.9
MM Mean-w/ 54.8 29.7 52.0 43.7 48.5
2,3) Stat-w/o 59.6 38.0 57.1 54.2 56.5
Stat-w/ (ours) 55.4(}) 38.5(1) 53.2() 56.3 (1) 57.9 (1)
Mean-w/o 54.6 39.2 54.6 54.6 54.6
MM Mean-w/ 51.4 45.4 51.3 51.0 51.5
4,5) Stat-w/o 56.5 39.2 58.8 55.8 55.4
Stat-w/ (ours) 46.2(}) 35.5({) 57.3() 55.5 (}) 47.3 ()
Mean-w/o 57.5 36.2 55.7 36.7 35.2
MM Mean-w/ 53.3 36.3 52.0 28.5 37.1
6,7) Stat-w/o 58.2 35.7 55.0 36.9 31.0
Stat-w/ (ours) 54.4 (1)  27.7(1)  50.2(]) 38.8 (1) 25.4 (1)
Mean-w/o 57.5 4.1 54.5 21.1 31.2
MM Mean-w/ 57.8 3.5 53.2 17.8 26.9
8,9) Stat-w/o 53.8 3.6 56.6 21.2 32.6

Stat-w/ (ours) 59.6‘( ) 5.9(1) 52.7.(}) 26.4 (1) 33.3.( )
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