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Abstract

End-to-end task-oriented dialog (TOD) sys-
tems have achieved promising performance by
leveraging sophisticated natural language un-
derstanding and natural language generation
capabilities of pre-trained models. This work
enables the TOD systems with higher flexibility
with a simple cache. The cache provides the
flexibility to dynamically update the TOD sys-
tems to disable existing or add new and unseen
domains, intents, slots, etc., without intensive
retraining. Towards this end, we first fine-tune a
retrieval module to retrieve Top-N slot informa-
tion entries from the cache correctly and then
train generative end-to-end TOD models with
the cache. While performing TOD generation,
the models could refer to and ground on both di-
alog history and the retrieved information. The
introduced cache is easy to construct, and the
backbone models of TOD systems are compati-
ble with existing pre-trained generative models.
Extensive experiments demonstrate the supe-
rior performance of our proposed end-to-end
framework over baselines, e.g., the Non-Empty
JAG is improved by 6.67% when compared
with BART-Large.

1 Introduction

Task-oriented dialog (TOD) systems, as assistant
tools in various tasks such as restaurants booking,
alarm setting, and recommendations, have played
an important role in daily life (Gao et al., 2018;
Xie et al., 2022). Currently, the TOD systems can
be categorized into two groups: pipeline-based dia-
log systems, and end-to-end dialog systems. The
pipeline-based dialog systems consist of four differ-
ent modules, i.e., a natural language understanding
(NLU) module to detect user intents, a dialog state
tracking (DST) module to track the belief states
of users across dialog turns, a dialog management
(DM) module to carry out the system actions to in-
teract with users based on the dialog states, as well
as a natural language generation (NLG) module

SYSTEM:

Is there a specific cuisine type you enjoy, such as
Mexican, Italian or something else?

USER:

| usually like eating the American type of food.

RETRIEVAL:

INTENT: FindRestaurants, SLOT: city ;
INTENT: FindRestaurants, SLOT: cuisine ;
INTENT: FindRestaurants, SLOT: has__ live_ music

APICALL:
api_name = FindRestaurants ; city = San Jose ;
cuisine = American

APIRESP:

city = San Jose ; cuisine = American ; has live
music = False ; price_range = moderate ;
restaurant name = 71 Saint Peter ;
serves_alcohol = True ; street address = 71
North San Pedro Street ; phone number = 408-
971-8523

Figure 1: An example of the auto-regressive TOD. We
mainly show the APICALL generation process here,
and the system response generation process is similar.
Here N is set to 3 for the retrieval module.

to generate natural-language responses for users.
However, building such pipeline-based systems
is label-intensive, error-propagated, and hard to
scale (Hosseini-Asl et al., 2020; Peng et al., 2021).

Recently, various approaches have been pro-
posed to generate the dialog states and dialog re-
sponses based on seq2seq models, in an end-to-end
manner (Ham et al., 2020; Lin et al., 2020; Yang
et al., 2021; Gao et al., 2021; Chen et al., 2021;
Peng et al., 2021; Liu et al., 2021; He et al., 2022).
Compared with the pipeline-based methods on sev-
eral public datasets, these methods have shown
effectiveness, with fewer direct annotations such
as user intents and dialog acts. Furthermore, they
can easily benefit from the strong capabilities of
large-scale pre-trained language models (e.g., GPT-
2 (Radford et al., 2019), TS5 (Raffel et al., 2019)
and BART (Lewis et al., 2020a)) in NLU and NLG.
However, they are limited in the flexibility of dy-
namically handling existing, unseen, or emerging
domains, services, slots, etc (Hosseini-Asl et al.,



2020; Peng et al., 2021).

Additionally, another line of work aims to aug-
ment the generative models with retrieved infor-
mation in open-domain question answering and
open-domain dialog systems. In particular, these
models first retrieve information related to the ques-
tion or user query from a database of sentences or
passages, then incorporate such information into
the models to generate answers (Karpukhin et al.,
2020; Izacard and Grave, 2021) or open-domain
dialog responses (Dinan et al., 2018; Lewis et al.,
2020b; Shuster et al., 2021).

In this paper, we resort to combining the both
worlds into end-to-end TOD systems. We train the
end-to-end TOD models by introducing a simply
designed cache, which contains all the accessible
intents, slots, corresponding descriptions, or other
information from the available dataset. Our ap-
proach can reference and ground the retrieved infor-
mation from the cache while performing TOD. Fig-
ure 1 shows a motivating example of our approach,
in which the RETRIEVAL module retrieves slot
information entries from the cache. APICALL is
identical to the dialog states. APIRESP returns in-
formation from external API interactions between
the system and system databases. The cache could
be decoupled from the actual inference, and it has
the flexibility to be dynamically updated to add new
domains, intents, etc., without intensive retraining.
The flexibility would also be helpful to find and
disable the wrong predicted slots in the future.

To build an accurate end-to-end TOD system
with a simple cache, we first fine-tune a retrieval
module to retrieve Top-N slot information entries
from the cache correctly. Then we plug it into
generative models to perform end-to-end TOD gen-
eration. We conduct experiments on the large-scale
schema-guided dialog dataset (SGD) (Rastogi et al.,
2020a) with around half unseen domains and ser-
vices to validate the effectiveness of our approach.

The contributions of this paper are as follows:
(1) We design a simple yet effective end-to-end
TOD framework with a simply designed cache.
The backbone models are compatible with existing
pre-trained generative models. (2) Our approach
provides the flexibility to dynamically update the
cache to disable existing or add new or unseen
domains, slots, APIs, etc., without intensive retrain-
ing. (3) Experimental results demonstrate the supe-
rior performance of our approach when compared
with strong baselines. (4) We conduct extensive

ablation studies and analyses to facilitate further
research on building accurate end-to-end TOD sys-
tems.

2 Related Work

Dialog Systems There are two types of dialog
systems. The first type is the chit-chat system
(i.e., chatbot), which engages with users (Roller
et al., 2020; Xie et al., 2022). Various chatbots
with personalization (Zhang et al., 2018), empa-
thy (Ma et al., 2020) and grounded images (Shus-
ter et al., 2020) are also widely studied. The
second type is the task-oriented dialog system
(TOD), which assists users in completing specific
tasks such as alarms setting and reservations mak-
ing (Gao et al., 2018; Xie et al., 2022). One typ-
ical TOD is pipeline-based, which has individual
modules, including NLU (Zhang et al., 2020a; Xu
et al., 2021), DST (Zhang et al., 2020b; Qian et al.,
2021), DM (Schatzmann et al., 2007; Takanobu
etal., 2019), and NLG (Kale and Rastogi, 2020; Su
et al., 2020). Although the pipeline-based TOD sys-
tems are shown to be effective, they are hindered
by the issue of error propagation from one module
to the subsequent modules, and the difficulty of
deployment at a large scale in practice.

End-to-End TOD Systems Recently, end-to-end
TOD models (Ham et al., 2020; Lin et al., 2020;
Yang et al., 2021; Gao et al., 2021; Chen et al.,
2021; Peng et al., 2021; Liu et al., 2021; He et al.,
2022) have shown promising performance on pub-
lic datasets. From our investigation, these ap-
proaches for TOD systems generally follow the fol-
lowing patterns: (1) Rely on powerful pre-trained
seq2seq models. (2) Directly use language mod-
eling objective to generate NLU and NLG, or add
auxiliary multi-task goals such as DST loss. (3) Di-
rectly fine-tune models on the target dataset or con-
duct pre-training on several TOD dialogue datasets
first. (4) Design or adopt data augmentation tech-
niques such as back-translation and entity replace-
ment to augment training dialogues due to the la-
boriousness to collect many TOD dialog corpora.
Specifically, Hosseini-Asl et al. (2020) design a
simple language model for TOD based on the Dis-
tilGPT2. They generate user belief states and sys-
tem responses in an auto-regressive way. Peng
et al. (2021) build the model based on GPT-2-small,
which includes two auxiliary tasks, i.e., the belief
state prediction, and the grounded response gen-
eration. Yang et al. (2021) incorporate the inter-



mediate information into the context in the dialog
session level, and fine-tune the DistilGPT2 with the
language modeling objective. Gao et al. (2021) en-
able the belief state to interact with both structured
and unstructured knowledge. Some other works
such as Peng et al. (2021); Su et al. (2021); Liu
et al. (2021) pre-train language models on several
task-oriented dialog datasets to further improve the
performance of TOD systems. Hosseini-Asl et al.
(2020) show that the interaction with the system
database does not help to improve performance.
Moreover, these models lack the flexibility to dy-
namically update to disable existing or add new
emerging domains and services.

Retrieval-Augmented Models Our work is also
related to the retrieval-augmented models that are
widely used in open-domain question answering.
Karpukhin et al. (2020) propose a BERT-based (De-
vlin et al., 2019) dual-encoder framework to re-
trieve passages from Wikipedia. They are also
incorporated into open-domain conversations to
reduce hallucination and enrich engagement with
users (Shuster et al., 2021; Komeili et al., 2021).
The retrieval-augmented models could retrieve in-
formation related to the query from a knowledge
base of sentences and ground the generation re-
sponse on this information (Dinan et al., 2018;
Lewis et al., 2020b). Inspired by these previous
work, our work integrates retrieval models into
end-to-end TOD and constructs a simple cache to
enable the TOD with more flexibility. The TOD
can dynamically adjust the cache of available slots
to disable existing or add new domains, intents,
etc., without much retraining.

3 TOD Systems with a Simple Cache

Here we present the end-to-end framework with a
simple cache, where we build our framework based
on BART. In our framework, several generative
models such as GPT-2 and TS5 could also be directly
used as backbone models. Generally, our frame-
work comprises two parts: the first part is a retrieval
model to retrieve slot information entries from the
cache; the second part is an end-to-end TOD that
generates APICALLSs and system responses based
on the dialog history and the retrieved slot infor-
mation. Figure 2 demonstrates one simple variant
of our framework, i.e. “BART+Retriever”, where
the retrieved slot information entries are stacked
together. We also design the other variant (i.e.,
“FiD-TOD”) in Sec. 4.2, where each retrieved slot

is concatenated with the dialog history and then
all the information are concatenated together and
sent to the decoder. Figure 3 shows the “FiD-TOD”
model. To better illustrate the framework, we list
the simpler “BART+Retriever” in the main figure
and this section.

3.1 Construction of Simple Cache

As aforementioned, a cache of slots or other infor-
mation can benefit models’ reference and ground
procedure when performing TOD generation. To
this end, we first build a simple cache, which in-
cludes names and corresponding descriptions of
intents and slots from accessible dialogues. Ex-
plicitly, it incorporates all the intents and slots in-
formation from training dialogues during training
process, and it includes corresponding information
from the validation/test set in the validation/test
phase. Table 1 illustrates several templates for the
cache construction. Specifically, we design “latest
API-description” as one type of cache. It includes
all the intents and relevant slots in a whole dia-
logue; as such, it consists of redundant information
because when the conversation is not finished, a di-
alogue turn may only involves a few active intents
and slots, while the others are not active. Thus it
could help us test whether the model could learn
to ignore irrelevant information. Except the typical
listed templates in Table 1, we also design several
other templates with special tokens such as “/IN-
TENT] intent name [SLOT] slot name”, as well as
those with different orders of intents and slots such
as “intent name, intent description, slot name, slot
description” and “intent name, slot name, intent
description, slot description”. We also discuss the
effects of different types of cache in the experimen-
tal part.

3.2 Retrieval Module

Given a dialog history ¢, the TOD system will
trigger a retrieval module to retrieve Top-/N slots
$1,...,sn from the cache. In detail, based on the
user dialog history until the most recent user turn,
the system first calls the retrieval module to gen-
erate an APICALL which includes relevant active
intents, slots and values. After that, the system con-
tinues to trigger the retrieval module to generate a
system response based on all previous information.

To correctly retrieve information from the cache,
we fine-tune a dense passage retriever (DPR)
model (Karpukhin et al., 2020), which is a BERT-
based dual-encoder framework optimized via con-
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Figure 2: Illustration of the end-to-end framework with a simple cache. The left part is an intermediate step of the
right part, indicating the process of generating an APICALL. The right part is the process of producing a system
response. In general, based on the dialog history until the user turn, the retrieval module retrieves slots or other

information entries from the cache. The dialog history and the retrieved information are sent to the decoder to
generate the APICALL. The system continues to retrieve from the cache based on all previous information, and

finally, it generates a system response.

Simple Templates Examples

INTENT: intent name, SLOT: slot name
intent name, slot name, service description,
intent description, slot description

latest API-descriptions

INTENT: findrestaurants, SLOT: city

findrestaurants, city, a leading provider for restaurant search and reservations,
find a restaurant of a particular cuisine in a city, city in which the restaurant is located

api_name = FindRestaurants; optArg = has_live_music, price_range,
serves_alcohol; reqArg = city, cuisine

Table 1: Several typical templates of the simple cache construction, where each template represents one type of
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cache. With regard to the “latest API-descriptions”,

api_name” denotes the intents for the whole dialogue, and

“optArg” and “reqArg” are all relevant slots in the whole dialogue. Some other templates can be found in Table 4

trastive learning. Specifically, we yield the hidden
representation h. for the dialog history through
an encoder model, e.g., h, = BERT.(c). We use
another BERT encoder to get the feature represen-
tation hy for a slot information entry of the cache,
i.e., hy = BERT(s). We measure the similarity
between the dialog history and the information en-
try as: sim(c, s) = h!' ® h,. There are n relevant
(positive) entries and m irrelevant (negative) en-
tries given one dialog history, where n and m may
vary as each dialog history would contain different
active slots. We aim to learn a function to minimize
the distance between the pairs of relevant dialog
history and slot information entries than the irrele-
vant pairs. Given a specific pair, the corresponding
loss function is as follows:

exp(sim(h., h_4))

2 Sm) = —log = - L .
) g ijl exp(sim(h,, hS; )
)
Note that we only optimize the retrieval module
for generating correct APICALLs. Currently, we
do not further fine-tune the retrieval module for
generating better system responses, and we leave

the optimization to our future work.

+ —
Eapi(c731 78150

Negative Sampling In a training batch, slot in-
formation entries irrelevant to the dialog history
could naturally be formalized as negative pairs. To
improve the robustness and performance of the re-
trieval module, we design some hard negative pairs.
In general, we have two ways: The first way is
manually combining intents and slots; for instance,
given a positive pair “active intent, active slots”, a
natural negative pair could be “inactive intent, inac-
tive slots ”. We further construct hard negative pairs
such as: “active intent name, inactive slots from
the same active intent” and “inactive intent which
are semantically similar to the active intents, active
slots from the active intents”. The second way is
automatically select hard negative pairs during the
training process. Specifically, we treat Top- K rank-
ing slot entries from the cache but not relevant to
the dialog history as hard negative pairs. Currently,
we use the first way to conduct negative sampling
and leave the second way to future work.

3.3 End-to-End TOD Systems

Our end-to-end TOD framework generates the API-
CALL and system response in an auto-regressive
way. Figure 1 shows an example. As mentioned be-



fore, the APICALL is similar to the dialogue states,
and it contains active intent, slots and correspond-
ing slot values (Chen et al., 2021). Given that a
dialogue consists of several turns, the TOD frame-
work triggers the retrieval module twice at a spe-
cific dialogue turn. The system first retrieves slot
information entries from the simple constructed
cache, i.e.,

Top-N slots = Retrieval(c) . 2)

Then it generates an APICALL, i.e.,

APICALL = TOD(c, Top-N slots) . 3)

After that it will continue retrieving another Top-/V
slot information entries from the cache, i.e.,

Top-N slots = Retrieval(c, APICALL, APIRESP),  (4)

where the APIRESP is automatically yielded
through an API interaction with the original system
database when we have an active APICALL and it
does not need to be predicted.

Finally it generates a system response:

Response = TOD(c, APICALL, APIRESP, Top-N slots) .
)]

4 Experimental Settings

4.1 Dataset

Most existing end-to-end TOD works (Hosseini-
Asl et al., 2020; Peng et al., 2021; Lin et al., 2020;
Yang et al., 2021; Su et al., 2021; He et al., 2022)
focus on the MultiwOZ datasets (Budzianowski
et al., 2018; Zang et al., 2020). However, Multi-
WOZ only has five valid domains and around 35
useful slots, and all the domains and slots of the
test set appear in the training set. Instead, we fo-
cus on the Google Schema Guided Dialog (SGD)
dataset (Rastogi et al., 2020b) to better test the
performance of end-to-end TOD systems. SGD in-
cludes over 16k multi-domain conversations across
more than 16 domains and 200 slots. Specifically,
over half of the services are unseen in the test set.
Thus it is a good testbed to test the performance
of TOD systems on various domains and zero-shot
generalization of new services and skills. Table 2
summarizes the statistics of the adopted dataset.

4.2 Models

Our end-to-end TOD framework’s backbone mod-
els are compatible with most pre-trained generated
models, e.g., GPT-2, T5, and BART. These models

Dialogues Domains Services ZS Domains ZS Services
Train 16142 16 26 - -
Dev. 2482 16 17 1 8
Test 4201 18 21 3 11

Table 2: Data Statistics of SGD. ZS: Zero-Shot.

Generate the System Response
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Figure 3: Illustration of the end-to-end FiD-TOD frame-
work with a simple cache. Here we show the system
response generation process, and the APICALL genera-
tion process is similar to that in Figure 2.

have been widely applied to settings of previous
state-of-the-art approaches such as (Chen et al.,
2020; Lin et al., 2020; Su et al., 2021). We follow
them and run primary experiments on SGD, and
we find that BART performs best compared with
other pre-trained models with similar parameters.
We thus use the BART-Large model as a backbone
and baseline model. The implementation process
of BART-sarge model for TOD is similar to that
of (Lin et al., 2020; Chen et al., 2021). Besides,
previous work (Peng et al., 2021; Su et al., 2021;
He et al., 2022) first pre-train models on several
task-oriented dialogue datasets or add multi-task
learning. We instead only train the model on the
SGD dataset, and our goal is to verify our end-
to-end TOD systems with a simple cache and not
claim state-of-the-art performance.

We fine-tune the retrieval module up to 3 epochs
based on open-sourced DPR!. We run our experi-
ments based on the ParLAI platform (Miller et al.,
2017), where we mainly rely the BART model and
the FiD-RAG model®. The FiD model and RAG
model originally come from (Lewis et al., 2020b;
Izacard and Grave, 2021). By default, we use the
RAG-Turn Token setting (Shuster et al., 2021) for
the RAG model. We design two variants for end-
to-end TOD systems: the first variant, termed FiD-
TOD, is based on the FiD-RAG model, as shown in
Figure 3. The second variant is “BART+Retriever”,
as illustrated in the previous Figure 2. FiD-TOD is

]https ://github.com/facebookresearch/
DPR

’https://github.com/facebookresearch/
ParlAI/tree/main/parlai/agents/rag
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PPL JGA  Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large | 2.385 0.8119 0.9901 0.3643 0.8365 0.4970 0.1786
FiD-TOD 2.133 0.8293 0.9878 0.4310 0.8393 0.5013 0.1785

Table 3: Testing results on the SGD dataset. The cache of FiD-TOD uses the second template in Table 1.

Database Type Top-1 Top-2 Top-3 Top-4 Top-5

CINTENT: intent name, SLOT:slotname | 0832608820 09144 0.9447 09602
INTENT: intent name, service description, 0.8871 0.9215 09522 09755 0.9803

intent description, SLOT: slot name, slot description

_ intent name, slot name, intent description, slot description | 0.8349 09055 09276  0.9458 0.9548
intent name, slot name, service description, 09132 0.9431 09652 0.9765 0.9806

intent description, slot description

latest API-descriptions 0.8438 0.9271 0.9557 0.9623 0.9672

Table 4: Top-5 retrieval accuracy on the test set of SGD. We highlight the Top-1 and Top-2 accuracy.

the same as the “BART+Retriever model, except
that the dialog history first concatenates with each
retrieved slot, and then they are sent to the shared
encoder. After that, all information are merged
and sent to the decoder to generate the APICALL
and the system response. The retrieval module
and the TOD generator could be trained jointly or
separately. In our work, we train them separately
as we found it could stabilize the training process
and improve performance, when compared with
the joint training. Similar findings are also found in
open-domain question answering and open-domain
conversations (Lewis et al., 2020b; Izacard and
Grave, 2021; Shuster et al., 2021).

We retrieve Top-5 slot information entries from
the cache and truncate the tokens of dialog history
to 256, unless otherwise stated. We align one hard
negative pair to each positive pair for the DPR fine-
tuning. We fine-tune the end-to-end auto-regressive
TOD model up to 4 epochs with an overall batch
size of 64 on 8 NVIDIA Tesla V100 GPUs, where
each GPU has 16GB memory. The training process
takes around 8 hours.

4.3 Evaluation Metrics

We evaluate the end-en-end TOD framework us-
ing the following metrics: (1) Top-N accuracy: It
evaluates the retrieval module through checking
whether the ground-truth slot appears in the Top-N
predicted candidates (Karpukhin et al., 2020). (2)
Joint Goal Accuracy (JGA): It evaluates whether
the predicted APICALL is correct or not, specifi-
cally. JGA is 1 if the model correctly predicts all
intent,slots and corresponding values in the API-
CALL. Otherwise, JGA is 0. (3) Empty JGA: As
many dialogue turns do not involve an APICALL,

i.e., the APICALL is empty, we employ Empty
JGA to evaluate whether the model should trigger
an API retrieval. (4) Non-Empty JGA: It evalu-
ates whether JGA is correct if the model calls the
API. As most dialogue turns have empty APICALL
and identifying Empty JGA is relevantly easy, we
treat Non-Empty JGA as the most crucial metric
for JGA. (5) Token EM: It evaluates the utterance-
level token accuracy. Roughly corresponds to per-
fection under greedy search (generative only). (6)
Perplexity (PPL) and Token ACC: Both measure
the generative model’s ability to predict individual
tokens. PPL. measures perplexity, and Token ACC
measures the per-token accuracy. (7) BLEU-4: It
measures the BLEU score (Papineni et al., 2002)
between the predicted system response and the ref-
erence response. °

5 Experimental Results

End-to-End TOD Performance Table 3 shows
the overall performance on the test set. FiD-TOD
outperforms BART-Large on most metrics. Specif-
ically, it improves the essential NLU metric, i.e.,
Non-Empty JGA, by 6.67%. The other metrics
related to NLG are also slightly improved. We em-
phasize that due to GPUs resources limits at the
later stage of the project in school, we only fine-
tune the retrieval module to retrieve correct slot
information entries for the APICALL generation.
We did not optimize the retrieval module to retrieve
slot information entries for the system response
generation, i.e., there are noises introduced to the
system response generation. We conjecture that we
could continue to improve NLG performance with

*More details can be found in https://parl.ai/
docs/tutorial metrics.html.
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PPL JGA  Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large 1700 0.8760  0.9918 0.5864 0.8754 05379  0.2205
_INTENT: intent name, SLOT: slotname | 1688 08891 09914 06329  __ 08710 05384 02121
_ Intent name, slot name, intent description, slot description | 1679 08947 09881 0.6610 08716 05409 02145
intent name, slot name, service description, 1679 08939 09918 0.6490 08713 05409 02116
_intent description, slot description |~ o o T T
INTENT: intent name, service description, 1676 0.8968  0.9913 0.6604 0.8726 05440 02172
intent description, SLOT: slot name, slot description

Table 5: Performance of FiD-TOD with variants of cache on the development set.

PPL JGA  Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large 1.700  0.8760 0.9918 0.5864 0.8754 0.5379 0.2205
Latest API-descriptions (N=1) | 1.653 0.8963 0.9914 0.6584 0.8735 0.5428 0.2178
~ Latest API-descriptions (N=5) | 1.655 0.8973  0.9908 0.6634  0.8739 05450 02192
BART + Retriever 1.683 0.8945 0.9909 0.6533 0.8718 0.5425 0.2145
"FiD-TOD | 1676 08968 09913 0.6604 08726 05440 02172

Table 6: Development results on SGD. By default, the retrieval module will retrieve Top-5 slot information entries

from the cache.

a further fine-tuned retrieval module for the system
response generation.

Retrieval Performance We hope the model
could generalize well since there could be lots of
unseen services, domains and slots in real scenar-
ios. Table 4 shows the Top-5 retrieval accuracy
on the test set. We can see that the model han-
dles well both seen and unseen intents and slots.
It has good Top-1 accuracy and above 96% Top-5
accuracy. Compared to only using names, adding
related service and intent descriptions improves
the Top-1 accuracy by more than 5%, which indi-
cates that adding descriptions could help the model
generalize to new unseen domains and services.
Regarding the “latest API-descriptions”, a single
information entry in the cache includes all intents
and slots information for a whole dialogue. We see
that the model has good Top-1 accuracy and high
Top-5 accuracy, i.e., the model has a high potential
to retrieve all the related intents and slots informa-
tion through single-time retrieval. Besides, we test
some other templates, such as switching orders of
intents and slots, and we find no significant differ-
ences. We also find that adding the special tokens
“INTENT” and “SLOT” slightly deteriorates the
Top-1 accuracy.

We experiment with both normal negative and
hard negative pairs, including different numbers of
hard negative pairs, and we do not find significant
differences in w.r.t retrieval performance. One po-
tential reason is that the number of candidates in
the cache is pretty tiny, i.e., the number of queries
(dialog history) is much larger than the number of
candidates. Consequently, the DPR model is easy
overfitting upon one epoch training.

Performance of Variants of Cache on End-to-
End TOD We design various templates for the
cache, where the information entries in the cache
are retrieved by the retrieval module and incorpo-
rated into the end-to-end TOD. We thus want to test
the influence of various cache templates on the end-
to-end TOD. Table 5 shows the development set
results. FiD-TOD with only using names is already
much better than BART-Large, and adding descrip-
tions could further improve the performance, e.g.,
“INTENT: intent name, service description, intent
description, SLOT: slot name, slot description” out-
performs BART-Large and “INTENT: intent name,
SLOT: slot name” by 7.40% and 2.75% on Non-
Empty JGA, respectively.

Influence of Irrelevant Information on the End-
to-End TOD As many emerging and unseen ser-
vices, intents, and slots could appear in real sce-
narios, and it is thus hard to expect a perfect re-
trieval module. In this section, first, we investi-
gate “the TOD'’s ability in learning to ignore ir-
relevant retrieved information”. Table 6 shows
the corresponding results. Note that “latest API-
descriptions” includes all intents and slots for
the whole dialogue, and the retrieval module has
84.38% Top-1 accuracy to all the information in a
single time as shown in Table 4. Recall that Top-5
accuracy measures whether the gold values appear
on the Top-5 retrieved information entry candidates.
If we set N to 5, the retriever will return similar
but irrelevant information, even though the Top-5
accuracy is around 100%. Thus it will incorporate
several irrelevant intents and slots. However, we
find that “latest API-descriptions (N=1)" performs
similar to latest API-descriptions (N=5), as shown



SYSTEM:

Do you want to make a reservation for 2 people in the restaurant?

USER:

Yes, thanks. What’s their phone number?

INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT:
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: time , tentative time of restaurant reservation

INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make

, number of seats to reserve at the restaurant

RETRIEVAL:
(Predicted Top-5)

a table reservation at a restaurant , SLOT: date , tentative date of restaurant reservation

INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: restaurant_name, name of the restaurant

INTENT: ReserveRestaurant, a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT:

, city where the restaurant is located

APICALL: (Gold) restaurant_name = Sino ; time = 11:30

api_name = ReserveRestaurant ; date = 2019-03-01 ;

= San Jose ; =2;

APICALL: (Predicted) restaurant_name = Sino ; time = 11:30

api_name = ReserveRestaurant ; date = 2019-03-01 ; city = San Jose ; party_size =2 ;

APIRESP:

city = San Jose ; cuisine = Asian ; has_live_music = False ; phone_number = 408-247-8880 ;
price_range = moderate ; restaurant_name: Sino; serves_alcohol = False ; street_address = 377 Santana Row

SYSTEM: The phone number is 408-247-8880.

Table 7: A predicted example on the development set. Red colors indicate incorrect predictions and light blue colors

indicate correct slots.

in row 2 and row 3 of Table 6. It indicates that
the TOD can learn to ignore irrelevant retrieved
information.

Second, we investigate “whether the TOD gen-
erator ground more on the retriever if we stack
all retrieved information together”. Here we com-
pare “BART+retriever” and FiD-TOD, and their
difference is on whether we handle the retrieved
information entries together or separately. Row 3
in Table 6 shows that “BART+retriever” performs
slightly worse after stacking the retrieved slots to-
gether. This finding indicates that the generator
may not be able to ground more on the retriever
even if we directly put all the retrieved information
into the dialog history.

Error Analysis The retriever module has a rea-
sonably well Top-5 accuracy, whereas the Non-
Empty JGA is still far from perfect. We are thus cu-
rious what are the potential reasons. Table 7 shows
one most frequently appeared error type, where
the retrieval module could correctly retrieve Top-5
slot information entries from the cache. Regard-
ing the APICALL prediction, the TOD correctly
generates the intent and values. Among the gener-
ated slots,“city” and “party_size” are semantically
similar to “location” and “number_of_seats”, re-
spectively. However, the two generated slots are
incorrect as they are from different services, and
with further check, we find that they are from the
training cache. Which suggests that the TOD gen-
erator does not fully trust the retriever, and it just
memorizes the training slot information entries in

the training cache and requires more generalized
ability. Moreover, we found there are around 20%
dialogue turns with this issue on the development
set, indicating a huge space to further improve the
performance. We conjecture that data augmenta-
tion, such as entity replacements on dialog his-
tory, could be one possible way to mitigate this
issue. Another possible way is dynamically updat-
ing the training cache during the training process.
We leave more study as the future work.

Limitation Our approach needs better retrieval
modules to handle very limited intents, slots, etc.
The retrieval module is easy to overfit in such sce-
narios. In addition, our approach requires further
designs for both the cache and the framework to
integrate retrieved information from the large-scale
cache, e.g., the internet or large-scale knowledge
bases, into the end-to-end TOD systems.

6 Conclusion

This paper proposes to build accurate end-to-end
task-oriented dialog systems with a simple cache.
We first construct a simple cache with intents, slots,
etc., and fine-tune a retrieval module to retrieve
Top-N slot information entries. We then train the
end-to-end TOD, where the TOD can ground and
reference the dialog history and the retrieved infor-
mation while performing TOD generation. Exper-
imental results on a large-scale Google Schema
Guide Dialog dataset show that our end-to-end
TOD framework has superior performance and
zero-shot generalized ability.
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