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Abstract

End-to-end task-oriented dialog (TOD) sys-001
tems have achieved promising performance by002
leveraging sophisticated natural language un-003
derstanding and natural language generation004
capabilities of pre-trained models. This work005
enables the TOD systems with higher flexibility006
with a simple cache. The cache provides the007
flexibility to dynamically update the TOD sys-008
tems to disable existing or add new and unseen009
domains, intents, slots, etc., without intensive010
retraining. Towards this end, we first fine-tune a011
retrieval module to retrieve Top-N slot informa-012
tion entries from the cache correctly and then013
train generative end-to-end TOD models with014
the cache. While performing TOD generation,015
the models could refer to and ground on both di-016
alog history and the retrieved information. The017
introduced cache is easy to construct, and the018
backbone models of TOD systems are compati-019
ble with existing pre-trained generative models.020
Extensive experiments demonstrate the supe-021
rior performance of our proposed end-to-end022
framework over baselines, e.g., the Non-Empty023
JAG is improved by 6.67% when compared024
with BART-Large.025

1 Introduction026

Task-oriented dialog (TOD) systems, as assistant027

tools in various tasks such as restaurants booking,028

alarm setting, and recommendations, have played029

an important role in daily life (Gao et al., 2018;030

Xie et al., 2022). Currently, the TOD systems can031

be categorized into two groups: pipeline-based dia-032

log systems, and end-to-end dialog systems. The033

pipeline-based dialog systems consist of four differ-034

ent modules, i.e., a natural language understanding035

(NLU) module to detect user intents, a dialog state036

tracking (DST) module to track the belief states037

of users across dialog turns, a dialog management038

(DM) module to carry out the system actions to in-039

teract with users based on the dialog states, as well040

as a natural language generation (NLG) module041

Figure 1: An example of the auto-regressive TOD. We
mainly show the APICALL generation process here,
and the system response generation process is similar.
Here N is set to 3 for the retrieval module.

to generate natural-language responses for users. 042

However, building such pipeline-based systems 043

is label-intensive, error-propagated, and hard to 044

scale (Hosseini-Asl et al., 2020; Peng et al., 2021). 045

046

Recently, various approaches have been pro- 047

posed to generate the dialog states and dialog re- 048

sponses based on seq2seq models, in an end-to-end 049

manner (Ham et al., 2020; Lin et al., 2020; Yang 050

et al., 2021; Gao et al., 2021; Chen et al., 2021; 051

Peng et al., 2021; Liu et al., 2021; He et al., 2022). 052

Compared with the pipeline-based methods on sev- 053

eral public datasets, these methods have shown 054

effectiveness, with fewer direct annotations such 055

as user intents and dialog acts. Furthermore, they 056

can easily benefit from the strong capabilities of 057

large-scale pre-trained language models (e.g., GPT- 058

2 (Radford et al., 2019), T5 (Raffel et al., 2019) 059

and BART (Lewis et al., 2020a)) in NLU and NLG. 060

However, they are limited in the flexibility of dy- 061

namically handling existing, unseen, or emerging 062

domains, services, slots, etc (Hosseini-Asl et al., 063
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2020; Peng et al., 2021).064

Additionally, another line of work aims to aug-065

ment the generative models with retrieved infor-066

mation in open-domain question answering and067

open-domain dialog systems. In particular, these068

models first retrieve information related to the ques-069

tion or user query from a database of sentences or070

passages, then incorporate such information into071

the models to generate answers (Karpukhin et al.,072

2020; Izacard and Grave, 2021) or open-domain073

dialog responses (Dinan et al., 2018; Lewis et al.,074

2020b; Shuster et al., 2021).075

In this paper, we resort to combining the both076

worlds into end-to-end TOD systems. We train the077

end-to-end TOD models by introducing a simply078

designed cache, which contains all the accessible079

intents, slots, corresponding descriptions, or other080

information from the available dataset. Our ap-081

proach can reference and ground the retrieved infor-082

mation from the cache while performing TOD. Fig-083

ure 1 shows a motivating example of our approach,084

in which the RETRIEVAL module retrieves slot085

information entries from the cache. APICALL is086

identical to the dialog states. APIRESP returns in-087

formation from external API interactions between088

the system and system databases. The cache could089

be decoupled from the actual inference, and it has090

the flexibility to be dynamically updated to add new091

domains, intents, etc., without intensive retraining.092

The flexibility would also be helpful to find and093

disable the wrong predicted slots in the future.094

To build an accurate end-to-end TOD system095

with a simple cache, we first fine-tune a retrieval096

module to retrieve Top-N slot information entries097

from the cache correctly. Then we plug it into098

generative models to perform end-to-end TOD gen-099

eration. We conduct experiments on the large-scale100

schema-guided dialog dataset (SGD) (Rastogi et al.,101

2020a) with around half unseen domains and ser-102

vices to validate the effectiveness of our approach.103

The contributions of this paper are as follows:104

(1) We design a simple yet effective end-to-end105

TOD framework with a simply designed cache.106

The backbone models are compatible with existing107

pre-trained generative models. (2) Our approach108

provides the flexibility to dynamically update the109

cache to disable existing or add new or unseen110

domains, slots, APIs, etc., without intensive retrain-111

ing. (3) Experimental results demonstrate the supe-112

rior performance of our approach when compared113

with strong baselines. (4) We conduct extensive114

ablation studies and analyses to facilitate further 115

research on building accurate end-to-end TOD sys- 116

tems. 117

2 Related Work 118

Dialog Systems There are two types of dialog 119

systems. The first type is the chit-chat system 120

(i.e., chatbot), which engages with users (Roller 121

et al., 2020; Xie et al., 2022). Various chatbots 122

with personalization (Zhang et al., 2018), empa- 123

thy (Ma et al., 2020) and grounded images (Shus- 124

ter et al., 2020) are also widely studied. The 125

second type is the task-oriented dialog system 126

(TOD), which assists users in completing specific 127

tasks such as alarms setting and reservations mak- 128

ing (Gao et al., 2018; Xie et al., 2022). One typ- 129

ical TOD is pipeline-based, which has individual 130

modules, including NLU (Zhang et al., 2020a; Xu 131

et al., 2021), DST (Zhang et al., 2020b; Qian et al., 132

2021), DM (Schatzmann et al., 2007; Takanobu 133

et al., 2019), and NLG (Kale and Rastogi, 2020; Su 134

et al., 2020). Although the pipeline-based TOD sys- 135

tems are shown to be effective, they are hindered 136

by the issue of error propagation from one module 137

to the subsequent modules, and the difficulty of 138

deployment at a large scale in practice. 139

End-to-End TOD Systems Recently, end-to-end 140

TOD models (Ham et al., 2020; Lin et al., 2020; 141

Yang et al., 2021; Gao et al., 2021; Chen et al., 142

2021; Peng et al., 2021; Liu et al., 2021; He et al., 143

2022) have shown promising performance on pub- 144

lic datasets. From our investigation, these ap- 145

proaches for TOD systems generally follow the fol- 146

lowing patterns: (1) Rely on powerful pre-trained 147

seq2seq models. (2) Directly use language mod- 148

eling objective to generate NLU and NLG, or add 149

auxiliary multi-task goals such as DST loss. (3) Di- 150

rectly fine-tune models on the target dataset or con- 151

duct pre-training on several TOD dialogue datasets 152

first. (4) Design or adopt data augmentation tech- 153

niques such as back-translation and entity replace- 154

ment to augment training dialogues due to the la- 155

boriousness to collect many TOD dialog corpora. 156

Specifically, Hosseini-Asl et al. (2020) design a 157

simple language model for TOD based on the Dis- 158

tilGPT2. They generate user belief states and sys- 159

tem responses in an auto-regressive way. Peng 160

et al. (2021) build the model based on GPT-2-small, 161

which includes two auxiliary tasks, i.e., the belief 162

state prediction, and the grounded response gen- 163

eration. Yang et al. (2021) incorporate the inter- 164
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mediate information into the context in the dialog165

session level, and fine-tune the DistilGPT2 with the166

language modeling objective. Gao et al. (2021) en-167

able the belief state to interact with both structured168

and unstructured knowledge. Some other works169

such as Peng et al. (2021); Su et al. (2021); Liu170

et al. (2021) pre-train language models on several171

task-oriented dialog datasets to further improve the172

performance of TOD systems. Hosseini-Asl et al.173

(2020) show that the interaction with the system174

database does not help to improve performance.175

Moreover, these models lack the flexibility to dy-176

namically update to disable existing or add new177

emerging domains and services.178

Retrieval-Augmented Models Our work is also179

related to the retrieval-augmented models that are180

widely used in open-domain question answering.181

Karpukhin et al. (2020) propose a BERT-based (De-182

vlin et al., 2019) dual-encoder framework to re-183

trieve passages from Wikipedia. They are also184

incorporated into open-domain conversations to185

reduce hallucination and enrich engagement with186

users (Shuster et al., 2021; Komeili et al., 2021).187

The retrieval-augmented models could retrieve in-188

formation related to the query from a knowledge189

base of sentences and ground the generation re-190

sponse on this information (Dinan et al., 2018;191

Lewis et al., 2020b). Inspired by these previous192

work, our work integrates retrieval models into193

end-to-end TOD and constructs a simple cache to194

enable the TOD with more flexibility. The TOD195

can dynamically adjust the cache of available slots196

to disable existing or add new domains, intents,197

etc., without much retraining.198

3 TOD Systems with a Simple Cache199

Here we present the end-to-end framework with a200

simple cache, where we build our framework based201

on BART. In our framework, several generative202

models such as GPT-2 and T5 could also be directly203

used as backbone models. Generally, our frame-204

work comprises two parts: the first part is a retrieval205

model to retrieve slot information entries from the206

cache; the second part is an end-to-end TOD that207

generates APICALLs and system responses based208

on the dialog history and the retrieved slot infor-209

mation. Figure 2 demonstrates one simple variant210

of our framework, i.e. “BART+Retriever”, where211

the retrieved slot information entries are stacked212

together. We also design the other variant (i.e.,213

“FiD-TOD”) in Sec. 4.2, where each retrieved slot214

is concatenated with the dialog history and then 215

all the information are concatenated together and 216

sent to the decoder. Figure 3 shows the “FiD-TOD” 217

model. To better illustrate the framework, we list 218

the simpler “BART+Retriever” in the main figure 219

and this section. 220

3.1 Construction of Simple Cache 221

As aforementioned, a cache of slots or other infor- 222

mation can benefit models’ reference and ground 223

procedure when performing TOD generation. To 224

this end, we first build a simple cache, which in- 225

cludes names and corresponding descriptions of 226

intents and slots from accessible dialogues. Ex- 227

plicitly, it incorporates all the intents and slots in- 228

formation from training dialogues during training 229

process, and it includes corresponding information 230

from the validation/test set in the validation/test 231

phase. Table 1 illustrates several templates for the 232

cache construction. Specifically, we design “latest 233

API-description” as one type of cache. It includes 234

all the intents and relevant slots in a whole dia- 235

logue; as such, it consists of redundant information 236

because when the conversation is not finished, a di- 237

alogue turn may only involves a few active intents 238

and slots, while the others are not active. Thus it 239

could help us test whether the model could learn 240

to ignore irrelevant information. Except the typical 241

listed templates in Table 1, we also design several 242

other templates with special tokens such as “[IN- 243

TENT] intent name [SLOT] slot name”, as well as 244

those with different orders of intents and slots such 245

as “intent name, intent description, slot name, slot 246

description” and “intent name, slot name, intent 247

description, slot description”. We also discuss the 248

effects of different types of cache in the experimen- 249

tal part. 250

3.2 Retrieval Module 251

Given a dialog history c, the TOD system will 252

trigger a retrieval module to retrieve Top-N slots 253

s1, . . . , sN from the cache. In detail, based on the 254

user dialog history until the most recent user turn, 255

the system first calls the retrieval module to gen- 256

erate an APICALL which includes relevant active 257

intents, slots and values. After that, the system con- 258

tinues to trigger the retrieval module to generate a 259

system response based on all previous information. 260

To correctly retrieve information from the cache, 261

we fine-tune a dense passage retriever (DPR) 262

model (Karpukhin et al., 2020), which is a BERT- 263

based dual-encoder framework optimized via con- 264
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Figure 2: Illustration of the end-to-end framework with a simple cache. The left part is an intermediate step of the
right part, indicating the process of generating an APICALL. The right part is the process of producing a system
response. In general, based on the dialog history until the user turn, the retrieval module retrieves slots or other
information entries from the cache. The dialog history and the retrieved information are sent to the decoder to
generate the APICALL. The system continues to retrieve from the cache based on all previous information, and
finally, it generates a system response.

Simple Templates Examples
INTENT: intent name, SLOT: slot name INTENT: findrestaurants, SLOT: city
intent name, slot name, service description,
intent description, slot description

findrestaurants, city, a leading provider for restaurant search and reservations,
find a restaurant of a particular cuisine in a city, city in which the restaurant is located

latest API-descriptions
api name = FindRestaurants; optArg = has live music, price range,
serves alcohol; reqArg = city, cuisine

Table 1: Several typical templates of the simple cache construction, where each template represents one type of
cache. With regard to the “latest API-descriptions”, “api name” denotes the intents for the whole dialogue, and
“optArg” and “reqArg” are all relevant slots in the whole dialogue. Some other templates can be found in Table 4

trastive learning. Specifically, we yield the hidden265

representation hc for the dialog history through266

an encoder model, e.g., hc = BERTc(c). We use267

another BERT encoder to get the feature represen-268

tation hs for a slot information entry of the cache,269

i.e., hs = BERTs(s). We measure the similarity270

between the dialog history and the information en-271

try as: sim(c, s) = hT
c ⊙ hs. There are n relevant272

(positive) entries and m irrelevant (negative) en-273

tries given one dialog history, where n and m may274

vary as each dialog history would contain different275

active slots. We aim to learn a function to minimize276

the distance between the pairs of relevant dialog277

history and slot information entries than the irrele-278

vant pairs. Given a specific pair, the corresponding279

loss function is as follows:280

Lapi(c, s
+
1 , s

−
1 , . . . , s

−
m) = − log

exp(sim(hc,hs+1
))∑m

j=1 exp(sim(hc,hs−j
))

.

(1)281

Note that we only optimize the retrieval module282

for generating correct APICALLs. Currently, we283

do not further fine-tune the retrieval module for284

generating better system responses, and we leave285

the optimization to our future work.286

Negative Sampling In a training batch, slot in- 287

formation entries irrelevant to the dialog history 288

could naturally be formalized as negative pairs. To 289

improve the robustness and performance of the re- 290

trieval module, we design some hard negative pairs. 291

In general, we have two ways: The first way is 292

manually combining intents and slots; for instance, 293

given a positive pair “active intent, active slots”, a 294

natural negative pair could be “inactive intent, inac- 295

tive slots ”. We further construct hard negative pairs 296

such as: “active intent name, inactive slots from 297

the same active intent” and “inactive intent which 298

are semantically similar to the active intents, active 299

slots from the active intents”. The second way is 300

automatically select hard negative pairs during the 301

training process. Specifically, we treat Top-K rank- 302

ing slot entries from the cache but not relevant to 303

the dialog history as hard negative pairs. Currently, 304

we use the first way to conduct negative sampling 305

and leave the second way to future work. 306

3.3 End-to-End TOD Systems 307

Our end-to-end TOD framework generates the API- 308

CALL and system response in an auto-regressive 309

way. Figure 1 shows an example. As mentioned be- 310
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fore, the APICALL is similar to the dialogue states,311

and it contains active intent, slots and correspond-312

ing slot values (Chen et al., 2021). Given that a313

dialogue consists of several turns, the TOD frame-314

work triggers the retrieval module twice at a spe-315

cific dialogue turn. The system first retrieves slot316

information entries from the simple constructed317

cache, i.e.,318

Top-N slots = Retrieval(c) . (2)319

Then it generates an APICALL, i.e.,320

APICALL = TOD(c,Top-N slots) . (3)321

After that it will continue retrieving another Top-N322

slot information entries from the cache, i.e.,323

Top-N slots = Retrieval(c,APICALL,APIRESP) , (4)324

where the APIRESP is automatically yielded325

through an API interaction with the original system326

database when we have an active APICALL and it327

does not need to be predicted.328

Finally it generates a system response:329

Response = TOD(c, APICALL, APIRESP, Top-N slots) .
(5)330

4 Experimental Settings331

4.1 Dataset332

Most existing end-to-end TOD works (Hosseini-333

Asl et al., 2020; Peng et al., 2021; Lin et al., 2020;334

Yang et al., 2021; Su et al., 2021; He et al., 2022)335

focus on the MultiWOZ datasets (Budzianowski336

et al., 2018; Zang et al., 2020). However, Multi-337

WOZ only has five valid domains and around 35338

useful slots, and all the domains and slots of the339

test set appear in the training set. Instead, we fo-340

cus on the Google Schema Guided Dialog (SGD)341

dataset (Rastogi et al., 2020b) to better test the342

performance of end-to-end TOD systems. SGD in-343

cludes over 16k multi-domain conversations across344

more than 16 domains and 200 slots. Specifically,345

over half of the services are unseen in the test set.346

Thus it is a good testbed to test the performance347

of TOD systems on various domains and zero-shot348

generalization of new services and skills. Table 2349

summarizes the statistics of the adopted dataset.350

4.2 Models351

Our end-to-end TOD framework’s backbone mod-352

els are compatible with most pre-trained generated353

models, e.g., GPT-2, T5, and BART. These models354

Dialogues Domains Services ZS Domains ZS Services
Train 16142 16 26 - -
Dev. 2482 16 17 1 8
Test 4201 18 21 3 11

Table 2: Data Statistics of SGD. ZS: Zero-Shot.

Figure 3: Illustration of the end-to-end FiD-TOD frame-
work with a simple cache. Here we show the system
response generation process, and the APICALL genera-
tion process is similar to that in Figure 2.

have been widely applied to settings of previous 355

state-of-the-art approaches such as (Chen et al., 356

2020; Lin et al., 2020; Su et al., 2021). We follow 357

them and run primary experiments on SGD, and 358

we find that BART performs best compared with 359

other pre-trained models with similar parameters. 360

We thus use the BART-Large model as a backbone 361

and baseline model. The implementation process 362

of BART-sarge model for TOD is similar to that 363

of (Lin et al., 2020; Chen et al., 2021). Besides, 364

previous work (Peng et al., 2021; Su et al., 2021; 365

He et al., 2022) first pre-train models on several 366

task-oriented dialogue datasets or add multi-task 367

learning. We instead only train the model on the 368

SGD dataset, and our goal is to verify our end- 369

to-end TOD systems with a simple cache and not 370

claim state-of-the-art performance. 371

We fine-tune the retrieval module up to 3 epochs 372

based on open-sourced DPR1. We run our experi- 373

ments based on the ParLAI platform (Miller et al., 374

2017), where we mainly rely the BART model and 375

the FiD-RAG model2. The FiD model and RAG 376

model originally come from (Lewis et al., 2020b; 377

Izacard and Grave, 2021). By default, we use the 378

RAG-Turn Token setting (Shuster et al., 2021) for 379

the RAG model. We design two variants for end- 380

to-end TOD systems: the first variant, termed FiD- 381

TOD, is based on the FiD-RAG model, as shown in 382

Figure 3. The second variant is “BART+Retriever”, 383

as illustrated in the previous Figure 2. FiD-TOD is 384

1https://github.com/facebookresearch/
DPR

2https://github.com/facebookresearch/
ParlAI/tree/main/parlai/agents/rag
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PPL JGA Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large 2.385 0.8119 0.9901 0.3643 0.8365 0.4970 0.1786
FiD-TOD 2.133 0.8293 0.9878 0.4310 0.8393 0.5013 0.1785

Table 3: Testing results on the SGD dataset. The cache of FiD-TOD uses the second template in Table 1.

Database Type Top-1 Top-2 Top-3 Top-4 Top-5
INTENT: intent name, SLOT: slot name 0.8326 0.8820 0.9144 0.9447 0.9602
INTENT: intent name, service description,
intent description, SLOT: slot name, slot description

0.8871 0.9215 0.9522 0.9755 0.9803

intent name, slot name, intent description, slot description 0.8349 0.9055 0.9276 0.9458 0.9548
intent name, slot name, service description,
intent description, slot description

0.9132 0.9431 0.9652 0.9765 0.9806

latest API-descriptions 0.8438 0.9271 0.9557 0.9623 0.9672

Table 4: Top-5 retrieval accuracy on the test set of SGD. We highlight the Top-1 and Top-2 accuracy.

the same as the “BART+Retriever“ model, except385

that the dialog history first concatenates with each386

retrieved slot, and then they are sent to the shared387

encoder. After that, all information are merged388

and sent to the decoder to generate the APICALL389

and the system response. The retrieval module390

and the TOD generator could be trained jointly or391

separately. In our work, we train them separately392

as we found it could stabilize the training process393

and improve performance, when compared with394

the joint training. Similar findings are also found in395

open-domain question answering and open-domain396

conversations (Lewis et al., 2020b; Izacard and397

Grave, 2021; Shuster et al., 2021).398

We retrieve Top-5 slot information entries from399

the cache and truncate the tokens of dialog history400

to 256, unless otherwise stated. We align one hard401

negative pair to each positive pair for the DPR fine-402

tuning. We fine-tune the end-to-end auto-regressive403

TOD model up to 4 epochs with an overall batch404

size of 64 on 8 NVIDIA Tesla V100 GPUs, where405

each GPU has 16GB memory. The training process406

takes around 8 hours.407

4.3 Evaluation Metrics408

We evaluate the end-en-end TOD framework us-409

ing the following metrics: (1) Top-N accuracy: It410

evaluates the retrieval module through checking411

whether the ground-truth slot appears in the Top-N412

predicted candidates (Karpukhin et al., 2020). (2)413

Joint Goal Accuracy (JGA): It evaluates whether414

the predicted APICALL is correct or not, specifi-415

cally. JGA is 1 if the model correctly predicts all416

intent,slots and corresponding values in the API-417

CALL. Otherwise, JGA is 0. (3) Empty JGA: As418

many dialogue turns do not involve an APICALL,419

i.e., the APICALL is empty, we employ Empty 420

JGA to evaluate whether the model should trigger 421

an API retrieval. (4) Non-Empty JGA: It evalu- 422

ates whether JGA is correct if the model calls the 423

API. As most dialogue turns have empty APICALL 424

and identifying Empty JGA is relevantly easy, we 425

treat Non-Empty JGA as the most crucial metric 426

for JGA. (5) Token EM: It evaluates the utterance- 427

level token accuracy. Roughly corresponds to per- 428

fection under greedy search (generative only). (6) 429

Perplexity (PPL) and Token ACC: Both measure 430

the generative model’s ability to predict individual 431

tokens. PPL measures perplexity, and Token ACC 432

measures the per-token accuracy. (7) BLEU-4: It 433

measures the BLEU score (Papineni et al., 2002) 434

between the predicted system response and the ref- 435

erence response. 3 436

5 Experimental Results 437

End-to-End TOD Performance Table 3 shows 438

the overall performance on the test set. FiD-TOD 439

outperforms BART-Large on most metrics. Specif- 440

ically, it improves the essential NLU metric, i.e., 441

Non-Empty JGA, by 6.67%. The other metrics 442

related to NLG are also slightly improved. We em- 443

phasize that due to GPUs resources limits at the 444

later stage of the project in school, we only fine- 445

tune the retrieval module to retrieve correct slot 446

information entries for the APICALL generation. 447

We did not optimize the retrieval module to retrieve 448

slot information entries for the system response 449

generation, i.e., there are noises introduced to the 450

system response generation. We conjecture that we 451

could continue to improve NLG performance with 452

3More details can be found in https://parl.ai/
docs/tutorial metrics.html.
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PPL JGA Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large 1.700 0.8760 0.9918 0.5864 0.8754 0.5379 0.2205
INTENT: intent name, SLOT: slot name 1.688 0.8891 0.9914 0.6329 0.8710 0.5384 0.2121
intent name, slot name, intent description, slot description 1.679 0.8947 0.9881 0.6610 0.8716 0.5409 0.2145
intent name, slot name, service description,
intent description, slot description

1.679 0.8939 0.9918 0.6490 0.8713 0.5409 0.2116

INTENT: intent name, service description,
intent description, SLOT: slot name, slot description

1.676 0.8968 0.9913 0.6604 0.8726 0.5440 0.2172

Table 5: Performance of FiD-TOD with variants of cache on the development set.

PPL JGA Empty JGA Non-Empty JGA Token ACC Token EM BLEU-4
BART-Large 1.700 0.8760 0.9918 0.5864 0.8754 0.5379 0.2205
Latest API-descriptions (N=1) 1.653 0.8963 0.9914 0.6584 0.8735 0.5428 0.2178
Latest API-descriptions (N=5) 1.655 0.8973 0.9908 0.6634 0.8739 0.5450 0.2192
BART + Retriever 1.683 0.8945 0.9909 0.6533 0.8718 0.5425 0.2145
FiD-TOD 1.676 0.8968 0.9913 0.6604 0.8726 0.5440 0.2172

Table 6: Development results on SGD. By default, the retrieval module will retrieve Top-5 slot information entries
from the cache.

a further fine-tuned retrieval module for the system453

response generation.454

Retrieval Performance We hope the model455

could generalize well since there could be lots of456

unseen services, domains and slots in real scenar-457

ios. Table 4 shows the Top-5 retrieval accuracy458

on the test set. We can see that the model han-459

dles well both seen and unseen intents and slots.460

It has good Top-1 accuracy and above 96% Top-5461

accuracy. Compared to only using names, adding462

related service and intent descriptions improves463

the Top-1 accuracy by more than 5%, which indi-464

cates that adding descriptions could help the model465

generalize to new unseen domains and services.466

Regarding the “latest API-descriptions”, a single467

information entry in the cache includes all intents468

and slots information for a whole dialogue. We see469

that the model has good Top-1 accuracy and high470

Top-5 accuracy, i.e., the model has a high potential471

to retrieve all the related intents and slots informa-472

tion through single-time retrieval. Besides, we test473

some other templates, such as switching orders of474

intents and slots, and we find no significant differ-475

ences. We also find that adding the special tokens476

“INTENT” and “SLOT” slightly deteriorates the477

Top-1 accuracy.478

We experiment with both normal negative and479

hard negative pairs, including different numbers of480

hard negative pairs, and we do not find significant481

differences in w.r.t retrieval performance. One po-482

tential reason is that the number of candidates in483

the cache is pretty tiny, i.e., the number of queries484

(dialog history) is much larger than the number of485

candidates. Consequently, the DPR model is easy486

overfitting upon one epoch training.487

Performance of Variants of Cache on End-to- 488

End TOD We design various templates for the 489

cache, where the information entries in the cache 490

are retrieved by the retrieval module and incorpo- 491

rated into the end-to-end TOD. We thus want to test 492

the influence of various cache templates on the end- 493

to-end TOD. Table 5 shows the development set 494

results. FiD-TOD with only using names is already 495

much better than BART-Large, and adding descrip- 496

tions could further improve the performance, e.g., 497

“INTENT: intent name, service description, intent 498

description, SLOT: slot name, slot description” out- 499

performs BART-Large and “INTENT: intent name, 500

SLOT: slot name” by 7.40% and 2.75% on Non- 501

Empty JGA, respectively. 502

Influence of Irrelevant Information on the End- 503

to-End TOD As many emerging and unseen ser- 504

vices, intents, and slots could appear in real sce- 505

narios, and it is thus hard to expect a perfect re- 506

trieval module. In this section, first, we investi- 507

gate “the TOD’s ability in learning to ignore ir- 508

relevant retrieved information”. Table 6 shows 509

the corresponding results. Note that “latest API- 510

descriptions” includes all intents and slots for 511

the whole dialogue, and the retrieval module has 512

84.38% Top-1 accuracy to all the information in a 513

single time as shown in Table 4. Recall that Top-5 514

accuracy measures whether the gold values appear 515

on the Top-5 retrieved information entry candidates. 516

If we set N to 5, the retriever will return similar 517

but irrelevant information, even though the Top-5 518

accuracy is around 100%. Thus it will incorporate 519

several irrelevant intents and slots. However, we 520

find that “latest API-descriptions (N=1)” performs 521

similar to latest API-descriptions (N=5), as shown 522
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... ...
SYSTEM: Do you want to make a reservation for 2 people in the restaurant?
USER: Yes, thanks. What’s their phone number?

INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: number of seats , number of seats to reserve at the restaurant
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: time , tentative time of restaurant reservation
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: date , tentative date of restaurant reservation
INTENT: ReserveRestaurant , a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: restaurant name, name of the restaurant

RETRIEVAL:
(Predicted Top-5)

INTENT: ReserveRestaurant, a popular restaurant search and reservation service , make
a table reservation at a restaurant , SLOT: location , city where the restaurant is located

APICALL: (Gold)
api name = ReserveRestaurant ; date = 2019-03-01 ; location = San Jose ; number of seats = 2 ;
restaurant name = Sino ; time = 11:30

APICALL: (Predicted)
api name = ReserveRestaurant ; date = 2019-03-01 ; city = San Jose ; party size = 2 ;
restaurant name = Sino ; time = 11:30

APIRESP:
city = San Jose ; cuisine = Asian ; has live music = False ; phone number = 408-247-8880 ;
price range = moderate ; restaurant name: Sino; serves alcohol = False ; street address = 377 Santana Row

SYSTEM: The phone number is 408-247-8880.

Table 7: A predicted example on the development set. Red colors indicate incorrect predictions and light blue colors
indicate correct slots.

in row 2 and row 3 of Table 6. It indicates that523

the TOD can learn to ignore irrelevant retrieved524

information.525

Second, we investigate “whether the TOD gen-526

erator ground more on the retriever if we stack527

all retrieved information together”. Here we com-528

pare “BART+retriever” and FiD-TOD, and their529

difference is on whether we handle the retrieved530

information entries together or separately. Row 3531

in Table 6 shows that “BART+retriever” performs532

slightly worse after stacking the retrieved slots to-533

gether. This finding indicates that the generator534

may not be able to ground more on the retriever535

even if we directly put all the retrieved information536

into the dialog history.537

Error Analysis The retriever module has a rea-538

sonably well Top-5 accuracy, whereas the Non-539

Empty JGA is still far from perfect. We are thus cu-540

rious what are the potential reasons. Table 7 shows541

one most frequently appeared error type, where542

the retrieval module could correctly retrieve Top-5543

slot information entries from the cache. Regard-544

ing the APICALL prediction, the TOD correctly545

generates the intent and values. Among the gener-546

ated slots,“city” and “party size” are semantically547

similar to “location” and “number of seats”, re-548

spectively. However, the two generated slots are549

incorrect as they are from different services, and550

with further check, we find that they are from the551

training cache. Which suggests that the TOD gen-552

erator does not fully trust the retriever, and it just553

memorizes the training slot information entries in554

the training cache and requires more generalized 555

ability. Moreover, we found there are around 20% 556

dialogue turns with this issue on the development 557

set, indicating a huge space to further improve the 558

performance. We conjecture that data augmenta- 559

tion, such as entity replacements on dialog his- 560

tory, could be one possible way to mitigate this 561

issue. Another possible way is dynamically updat- 562

ing the training cache during the training process. 563

We leave more study as the future work. 564

Limitation Our approach needs better retrieval 565

modules to handle very limited intents, slots, etc. 566

The retrieval module is easy to overfit in such sce- 567

narios. In addition, our approach requires further 568

designs for both the cache and the framework to 569

integrate retrieved information from the large-scale 570

cache, e.g., the internet or large-scale knowledge 571

bases, into the end-to-end TOD systems. 572

6 Conclusion 573

This paper proposes to build accurate end-to-end 574

task-oriented dialog systems with a simple cache. 575

We first construct a simple cache with intents, slots, 576

etc., and fine-tune a retrieval module to retrieve 577

Top-N slot information entries. We then train the 578

end-to-end TOD, where the TOD can ground and 579

reference the dialog history and the retrieved infor- 580

mation while performing TOD generation. Exper- 581

imental results on a large-scale Google Schema 582

Guide Dialog dataset show that our end-to-end 583

TOD framework has superior performance and 584

zero-shot generalized ability. 585
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