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ABSTRACT
Ensuring that reinforcement learning (RL) controllers satisfy safety and reliability
constraints in real-world settings remains challenging: state-avoidance and con-
strained Markov decision processes often fail to capture trajectory-level require-
ments or induce overly conservative behavior. Formal specification languages
such as linear temporal logic (LTL) offer correct-by-construction objectives, yet
their rewards are typically sparse, and heuristic shaping can undermine correct-
ness. We introduce, to our knowledge, the first end-to-end framework that inte-
grates LTL with differentiable simulators, enabling efficient gradient-based learn-
ing directly from formal specifications. Our method relaxes discrete automaton
transitions via soft labeling of states, yielding differentiable rewards and state
representations that mitigate the sparsity issue intrinsic to LTL while preserving
objective soundness. We provide theoretical guarantees connecting Büchi accep-
tance to both discrete and differentiable LTL returns and derive a tunable bound
on their discrepancy in deterministic and stochastic settings. Empirically, across
complex, nonlinear, contact-rich continuous-control tasks, our approach substan-
tially accelerates training and achieves up to twice the returns of discrete base-
lines. We further demonstrate compatibility with reward machines, thereby cov-
ering co-safe LTL and LTLf without modification. By rendering automaton-based
rewards differentiable, our work bridges formal methods and deep RL, enabling
safe, specification-driven learning in continuous domains.

1 INTRODUCTION
The growing demand for artificial intelligence (AI) systems to operate in a wide range of envi-
ronments underscores the need for systems that can learn through interaction with their environ-
ments, without relying on human intervention. Reinforcement learning (RL) has emerged as a
powerful tool for training controllers to perform effectively in uncertain settings with intricate,
high-dimensional, and nonlinear dynamics. Despite the promising results in controlled environ-
ments, deploying learned controllers in real-world systems–where malfunctioning can be costly or
hazardous–requires not only high performance but also strict compliance with formally specified
safety and reliability requirements. Therefore, ensuring that learned controllers meet these criti-
cal specifications is essential to fully realize the potential of AI systems in real-world applications.
Safety in learning is often modeled with constrained Markov decision processes (MDPs) (e.g. Ding
et al. (2021)), where the accumulated cost must be within a budget. However, additive cost functions
may not reflect real-world safety, as assigning meaningful costs to harms is challenging. Alterna-
tive approaches define safety by avoiding unsafe states or actions (e.g. Qin et al. (2021)), which is
simpler than designing cost functions. However, this may result in overly conservative policies and
could not capture complex trajectory-level requirements.
Recently, researchers have explored specifying RL objectives using formal languages, which explic-
itly and unambiguously express trajectory-based task requirements, including safety and liveness
properties. Among these, linear temporal logic (LTL) has gained particular popularity (e.g. Hahn
et al. (2019); Bozkurt et al. (2020a); Icarte et al. (2022); Hasanbeig et al. (2023)) due the automaton-
based memory it offers, which ensures history-independence and makes it especially suitable for
long-horizon tasks unlike other languages such as signal temporal logic (STL). Specifying desired
properties in LTL inherently prevents mismatches between the intended behavior and the behavior
learned through reward maximization–one of the most well-known safety challenges in AI (Amodei
et al., 2016). Although these methods are proven to define the correct RL objectives, the sparse
logical rewards make learning extremely difficult, as obtaining a nonzero reward often requires
significant exploration. Denser LTL-based rewards provided through heuristics might accelerate
learning (Kantaros, 2022); however, if not carefully designed, they can compromise the correctness
of the objective and misguide exploration depending on the environment, ultimately reducing learn-
ing efficiency. In this work, we address the challenge of scalable learning with correct objectives
for temporally extended tasks. We adopt LTL as the specification language, leveraging the intu-
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itive high level language and the automaton-based memory it provides. Unlike prior methods, our
approach harnesses gradients from differentiable simulators to facilitate efficient learning directly
from LTL specifications, while preserving the correctness of the objectives. Our contributions can
be summarized as follows:
• We propose, to the best of our knowledge, the first approach that accelerates learning from LTL

specifications using differentiable simulators. Our approach effectively mitigates the inherent is-
sue of the sparse rewards without sacrificing the expressiveness and correctness that LTL provides.

• We introduce soft labeling techniques for continuous environments that yield probabilistic ε-
actions and transitions in the automata derived from LTL, which ensures the differentiability of
rewards and states with respect to actions. We establish formal guarantees connecting automata
acceptance conditions with our differentiable framework, yielding a tunable bound on the discrep-
ancy between discrete and differentiable LTL rewards, including in stochastic settings.

• We demonstrate that our method accelerates learning, achieving up to twice the returns of base-
lines across diverse experiments in complex, nonlinear, contact-rich settings where standard ap-
proaches struggle to learn without handcrafted reward shaping. We further evaluate on reward
machines, showing that our differentiable approach generalizes across formal method frameworks.

2 RELATED WORK
Safe RL. One common perspective in Safe RL defines safety as the guarantee on the cumulative
costs over time within a specified safety budget, which is often modeled using constrained MDPs
and has been widely studied (Garcıa & Fernández, 2015; Chow et al., 2018; Stooke et al., 2020; Ding
et al., 2021), relying on additive cost functions and budgets, which may not adequately capture safety
in many scenarios. In practice, it is often difficult to assign unambiguous scalar costs reflecting trade-
offs between different harmful situations (Skalse et al., 2022). Another approach defines safety in
terms of avoiding unsafe states and focuses on preventing or modifying unsafe actions via shielding
or barrier functions Berkenkamp et al. (2017); Cheng et al. (2019); Qin et al. (2021), which only
require identification of unsafe states and actions and often easier than designing cost functions
(Wang et al., 2023); however, they can lead to overly conservative control policies (Yu et al., 2022).
Moreover, the requirements are often placed over trajectories, which could be more complex than
simply avoiding certain states (Hsu et al., 2021). Our approach avoids these issues by employing
LTL as the specifications language to obtain correct-by-construction RL objectives.
RL with Temporal Logics. There has been increasing interest in using formal specification lan-
guages to encode task objectives that are trajectory-dependent, particularly those involving safety
requirements. LTL has emerged as a widely adopted formalism due to its expressiveness and well-
defined semantics over infinite traces. Initial attempts to combine LTL with RL relied on model-
based approaches (Fu & Topcu, 2014a; Wen & Topcu, 2021), which reduce specification satisfaction
into a reachability problem that can be solvable via RL, by exploiting the MDP transition structure to
construct a product MDP with automata derived from LTL. However, the unavailability of accurate
transition models limits their applicability, especially in deep RL contexts. Thus, model-free RL
methods for LTL emerged, notably reward machines (RMs) (Toro Icarte et al., 2018; Icarte et al.,
2018; Camacho et al., 2019; Icarte et al., 2022) for co-safe LTL and LTLf fragments, which directly
generate rewards based on the acceptance states of the derived automata without explicit knowledge
of transition dynamics. The introduction of LDBAs for MDP model checking (Hahn et al., 2015),
facilitated structured reward design with their simpler acceptance conditions for general LTL formu-
las (Hahn et al., 2019; Bozkurt et al., 2020a). This line of work inspired numerous extensions and
applications across broader domains (Voloshin et al., 2022; 2023; Le et al., 2024; Perez et al., 2024;
Yalcinkaya et al., 2024; Jackermeier & Abate, 2025). Researchers have also explored continuous-
time logics such as STL; whose robustness scores can be used as rewards (Aksaray et al., 2016).
However, these scores typically depend on historical information, violating the Markov assumption
and thereby restricting their use in long-horizon, stochastic, or value-based RL settings. For detailed
explanations and comparisons, see Appx. A.
RL with Differentiable Simulators. Differentiable simulators enable gradient-based policy opti-
mization in RL by computing gradients of states and rewards with respect to actions, using analytic
methods (Carpentier & Mansard, 2018; Geilinger et al., 2020; Qiao et al., 2021; Xu et al., 2021;
Werling et al., 2021) or auto-differentiation (Heiden et al., 2021; Freeman et al., 2021). While Back-
propagation Through Time (BPTT) is commonly used (Zamora et al., 2021; Du et al., 2021; Huang
et al., 2021; Hu et al., 2020; Liang et al., 2019; Hu et al., 2019), it suffers from vanishing or explod-
ing gradients for long horizons as it ignores the Markov property of states (Metz et al., 2021). To
address this, several differentiable RL algorithms have been proposed (Parmas et al., 2018; Suh et al.,
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2022). Short Horizon Actor-Critic (SHAC) (Xu et al., 2022) divides long trajectories into shorter
segments where BPTT is tractable and bootstraps the remaining trajectory using the value function.
Adaptive Horizon Actor-Critic (AHAC) (Georgiev et al., 2024) extends SHAC by dynamically ad-
justing the segment lengths based on contact information from the simulator. Gradient-Informed
PPO (Son et al., 2023) integrates gradient information to the RL framework in an adaptive manner.
Our approach builds a differentiable, Markovian transition function for LTL-derived automata, mak-
ing it compatible with all differentiable RL methods. Unlike prior STL-based efforts (Leung et al.,
2023; Meng & Fan, 2023), which rely on non-Markovian rewards and BPTT, our method supports
efficient long-horizon learning with full differentiability.
3 PRELIMINARIES AND PROBLEM FORMULATION
MDPs. We formalize the interaction between controllers with the environments as MDPs.
Definition 1. A (differentiable) MDP is a tuple M = (S,A, f, p0) such that S is a set of continuous
states; A is a set of continuous actions; f : S ×A 7→ S is a differentiable transition function; p0 is
an initial state distribution where p0(s) denotes the probability density for the state s.

For instance, for a given robotic task, the state space S the positions x and velocities ẋ of relevant
objects, body parts, and joints. The action space A may consist of torques applied to the joints.
The transition function f captures the underlying system dynamics and outputs the next state via
computing the accelerations ẍ by solving Mẍ = JTF(x, ẋ) + C(x, ẋ) + T(x, ẋ, a), for a given state
s = ⟨x, ẋ⟩ ∈ S and action a ∈ A. Here, M is a mass matrix; and F, C, and T are, respectively, force,
Coriolis, and torque functions that can be approximated using differentiable physics simulators.
RL Objective. In RL, a policy π:S+7→A is evaluated based on the expected cumulative reward, i.e.
return, associated with the paths σ:=s0s1 . . . (sequence of visited states) generated by the Markov
chain (MC) Mπ induced by the policy π. We write σ[t], σ[:t], σ[t:] for st, the prefix s0 . . . st and
the suffix stst+1 . . . For given a reward function R:S+ 7→R, a discount factor γ∈(0, 1) and a hori-
zon H , the return of a path σ from time t∈N, the return is defined as Gt:H(σ)=

∑H
i=t γ

iR(σ[:i]).
For simplicity, we denote the infinite-horizon return starting from t=0 as GH(σ):=G0:H(σ), and
further drop the subscript to write G(σ):= limH→∞GH(σ). We note that for Markovian reward
functions (R:S 7→R), memoryless policies (π:S 7→A) suffice. However, the tasks we consider re-
quire finite-memory policies. To address this, we reduce the problem of obtaining a finite-memory
policy to that of learning a memoryless policy by augmenting the state space S with memory states,
as detailed in Sec. 4. The discount factor reduces the value of future rewards to prioritize imme-
diate ones: a reward received after t steps contributes γtR(σ[t]) to the return. The objective in
RL, specifically in policy gradient, is to learn optimal policy parameters θ∗=argmaxθJ(θ) where
J(θ)=Eσ∼Mπθ

[GH(σ)]. In differentiable MDPs, RL can leverage first-order gradients ∇[1]
θ J(θ)

=Eσ∼Mπθ
[∇θGH(σ)] where ∂GH

∂st
= ∂GH

∂st+1

∂f
∂st

, ∂GH

∂at
= ∂GH

∂st+1

∂f
∂at

via BPTT (see also Appx. B, C).

Labels. We define the set of atomic propositions (APs), denoted by A, as properties of interest that
place bounds on functions of the state space. Formally, each AP takes the form a:=‘g(s)>0’, where
g : S 7→ R is assumed to be a differentiable function mapping a given state to a signal. For example,
the function g(⟨x, ẋ⟩) := ẋ2max − ẋ2i can be used to define an AP that specifies that the velocity of
the i-th component must be below an upper bound ẋmax. The labeling function L : S 7→ 2A returns
the set of APs that hold true for a given state. Specifically, an AP a := ‘g(s) > 0’ is included in the
label set L(s) of state s – i.e., s is labeled by a if and only if (iff) g(s) > 0. We also write, with a
slight abuse of notation, L(σ) := L(σ[0])L(σ[1]) . . . to denote the trace (sequences of labels) of a
path σ. Finally, we write M+=(M,L) to denote a labeled MDP.
LTL. LTL provides a high-level formal language for specifying the desired temporal behaviors.
Alongside the standard operators in propositional logic – negation (¬) and conjunction (∧) – LTL
offers two temporal operators, namely next (⃝) and until (U). The formal syntax of LTL is defined
by the following grammar (Baier & Katoen, 2008): φ := true | a | ¬φ | φ1 ∧ φ2 | ⃝φ |
φ1Uφ2, a ∈ A. The semantics of LTL formulas are defined over paths. Specifically, a path σ either
satisfies φ, denoted by σ |= φ, or not (σ ̸|= φ). The satisfaction relation is defined recursively as
follows: σ |= φ; if φ = a and a ∈ L(σ[0]) (i.e., a immediately holds); if φ = ¬φ′ and σ ̸|= φ′; if
φ = φ1 ∧ φ2 and (σ |= φ1) ∧ (σ |= φ2); if φ = φ1Uφ2 and there exists t ≥ 0 such that σ[t:] |= φ2

and for all 0 ≤ i < t, σ[i:] |= φ1. The remaining Boolean and temporal operators can be derived
via the standard equivalences such as eventually (♢φ := true U φ) and always (□φ := ¬(♢¬φ)).
LDBAs. If a path satisfies a given LTL formula φ can be checked by building an LDBA, denoted by
Aφ that is suitable for quantitative model-checking of MDPs (Sickert et al., 2016). An LDBA is a
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tuple Aφ=(Q, q0,Σ, δ, B) where Q is a finite set of states; q0∈Q is the initial state; Σ=2A is the set
of labels; δ : Q×(Σ∪{ε}) 7→ 2Q is a transition function triggered by labels; B ⊆ Q is the accepting
states. An LDBA Aφ accepts a path σ (i.e., σ|=φ), iff its trace L(σ) induces an LDBA execution
visiting some of the accepting states infinitely often, known as the Büchi condition (see Appx. D).
LTL Learning Problem. Our objective is to learn control policies that ensure given path speci-
fications are satisfied by a given labeled MDP. In stochastic environments, this objective translates
to maximizing the probability of satisfying those specifications. We consider specifications given as
LTL formulas since LTL provides a high-level formalism well-suited for expressing safety and other
temporal constraints in robotic systems–and, importantly, finite-memory policies suffice to satisfy
LTL specifications (Chatterjee & Henzinger, 2012). We now formalize the problem as follows:

Problem 1. Given a labeled MDP M+ and a LTL formula φ, find an optimal finite-memory policy
π∗φ that maximizes the probability of satisfying φ, i.e., π∗φ := argmax

π∈Π
Prσ∼M+

π

{
σ | σ |= φ

}
, where

Π is the set of policies and σ is a path drawn from the Markov chain (MC) M+
π induced by π.

4 ACCELERATED LEARNING FROM LTL USING DIFFERENTIABLE REWARDS
In this section, we present our approach for efficiently learning optimal policies that satisfy given
LTL specifications by leveraging differentiable simulators. We first define product MDPs and dis-
cuss their conventional use in generating discrete LTL-based rewards for RL. We then introduce our
method for deriving differentiable rewards using soft labeling, enabling gradient-based optimization
while preserving the logical structure of the specifications. We lastly establish a theorem yielding a
tunable bound on the discrepancy between discrete and differentiable LTL rewards.
Product MDPs. A product MDP is constructed by augmenting the states and actions of the orig-
inal MDP with indicator vectors representing the LDBA states. The state augmentations serve as
memory modes necessary for tracking temporal progress, while the action augmentations, referred
to as ε-actions, capture the nondeterministic ε-moves of the LDBA. The transition function of the
product MDP reflects a synchronous execution of the LDBA and the MDP; i.e., upon taking an
action, the MDP moves to a new state according to its transition probabilities, and the LDBA transi-
tions by consuming the label of the current MDP state.
Definition 2. A product MDP M = (S,A, f ,p0,B) is of a labeled MDP M+ = (S,A, f, p0, A, L)
with an LDBA Aφ = (Q,Σ=2A, δ, q0, B) derived from a given LTL formula φ such that S = S×Q

is the set of product states and A = A ×Q is the set of product actions where Q = [0, 1]|Q| is the
space set for the one-hot indicator vectors of automaton states; f : S × A 7→ S is the transition
function defined as

f(⟨s,qq⟩, ⟨a,qqε⟩) :=
{
⟨s′,qq′⟩ qε ̸∈ δ(q′, ε)

⟨s′,qqε⟩ qε ∈ δ(q′, ε)
(1)

for given s, s′,∈ S, a ∈ A and the indicator vectors qq,qq′ ,qqε ∈ Q for q, q′, qε ∈ Q, respec-
tively, where s′ := f(s, a) and q′ := δ(q, L(s)); p0 is the initial product state distribution where
p×0 (⟨s,qq⟩)[q = q0]; B = {⟨s,qq⟩ ∈ S | q ∈ B} is the set accepting product states. A product
MDP is said to accept a product path σ iff σ satisfies the Büchi condition, denoted as σ |= □♢B,
which is to visit some states in B infinitely often.

By definition, any product path accepted by the product MDP corresponds to a path in the original
MDP that satisfies the acceptance condition of the LDBA. Consequently, the satisfaction of the LTL
specification φ is reduced to ensuring acceptance in the product MDP. This reduces Problem 1 to
maximizing the probability of reaching accepting states infinitely often in the product MDP:
Lemma 1 (from Theorem 3 in (Sickert et al., 2016)). A memoryless product policy π∗φ that max-
imizes the probability of satisfying the Büchi condition in a product MDP M constructed from a
given labeled MDP M+ and the LDBA Aφ derived from a given LTL specification φ, induces a
policy π∗φ with a finite-memory captured by Aφ maximizing the satisfaction probability of φ in M+.

Discrete LTL Rewards. The idea is to derive LTL rewards from the acceptance condition of the
product MDP to train control policies via RL approaches. Specifically, we consider the approach
proposed in (Bozkurt et al., 2024) that uses carefully crafted rewards and state-dependent discount-
ing based on the Büchi condition such that an optimal policy maximizing the expected return is
also an objective policy π∗φ maximizing the satisfaction probabilities as defined in Lemma 1, as
formalized below:
Theorem 1. For a given product MDP M, the expected return for a policy π approaches the
probability of satisfying the Büchi acceptance condition as the discount factor γ goes to 1; i.e.,
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limγ→1− Eσ∼Mπ [G(σ)] = Prσ∼Mπ (σ |= □♢B); if the return G(σ) is defined as follows:

G(σ):=

∞∑
t=0

R(σ[t])

t−1∏
i=0

Γ(σ[i]), R(s):=

{
1−β s∈B
0 s/∈B , Γ(s):=

{
β s∈B
γ s/∈B (2)

where
∏−1

i=0 :=1, β is a function of γ satisfying limγ→1−
1−γ
1−β = 0, R :S 7→ [0, 1) and Γ:S 7→(0, 1)

are state-dependent reward and the discount functions respectively.
The proof can be found in (Bozkurt et al., 2024). The idea is to encourage the agent to repeatedly
visit an accepting state as many times as possible by assigning a larger reward to the accepting
states. Further, the rewards are discounted less in non-accepting states to reflect that the number of
visitations to non-accepting states are not important. The LTL rewards provided this approach is
that the rewards are very sparse; depending on the environment and the structure of the automaton,
the agent might need to blindly explore a large portion of the state space before getting a nonzero
reward, which constitutes the main hurdle in learning from LTL specifications.
Differentiable LTL Rewards. We propose employing differentiable reinforcement learning (RL)
algorithms and simulators to mitigate the sparsity issue and accelerate learning. However, the
standard LTL rewards described earlier are not only sparse but discrete, rendering them non-
differentiable with respect to states and actions. This lack of differentiability primarily stems from
two factors: the binary state-based reward function and discrete automaton transitions. To address
this challenge, we introduce probabilistic ”soft” labels. We start by defining the probability that a
given AP, denoted as a := ‘g(s) > 0’, belongs to the label L(s) of a state s. Formally:

Pr(a ∈ L(s)) = Pr(g(s) > 0) := h(g(s)) =
1

1 + exp(−g(s))
. (3)

Although we use the widely adopted sigmoid function here1, any differentiable cumulative distribu-
tion function (CDF) h : R 7→ [0, 1] could be applied. Building upon these probabilities, we define
the probability associated with a label l as follows:

Pr(L(s) = l) =
∏
a∈l

Pr(a ∈ L(s))
∏
a̸∈l

(1− Pr(a ∈ L(s))). (4)

These probabilistic labels induce probabilistic automaton transitions, causing the controller to ob-
serve automaton states probabilistically. Consequently, instead of modeling automaton states as
deterministic indicator vectors in product MDPs, we represent them as probabilistic superpositions
over all possible automaton states. By doing so, we design differentiable transitions and rewards
within the product MDP. Let fL : S×Q 7→ Q denote the function that updates the automaton state
probabilities based on the LDBA transitions triggered by probabilistic labels, and let q denote the
vector where each element qq is the probability of being in automaton state q, then we can define:

fL(⟨s,q⟩) = q′ where q′q′=
∑
q

qq

∑
l∈Lq,q′

Pr(L(s)=l) and Lq,q′ :={l | q′=δ(q, l)}. (5)

Intuitively, the probability of transitioning to a subsequent automaton state q′ is computed by sum-
ming probabilities across all current automaton states q and labels l ∈ Lq,q′ capable of leading to
state q′. This computation can be efficiently done through differentiable matrix multiplication.

The remaining hurdle is the binary ε-actions available to the controller, which trigger ε-transitions in
the LDBA. Similarly to the soft labels approach, ε-actions can become differentiable by representing
the probabilities of the ε-transitions to be triggered. Let fε : Q ×Q 7→ Q denote the function up-
dating automaton state probabilities based on the ε-action taken, and let qε denote the vector whose
elements indicate the probabilities of taking the ε-actions leading to the corresponding automaton
states, we then define:
fε(q,q

ε) =q′ where q′q′=
∑

q∈Qε,q′

qqq
ε
q′+

∑
q∈Qq′,ε

qq′q
ε
q, Qε,q′:={q | q′∈δ(q,ε)}, Qq′,ε:={q | q ̸∈δ(q′, ε)}. (6)

Conceptually, the probability of transitioning to automaton state q′ involves two scenarios: (the first
summation in (6)) the probability of moving to q′ via valid ε-transitions, and (the second summation
in (6)) the probability of remaining in q′ after trying to leave from q′ via nonexistent ε-transitions.
These vector computations can be efficiently performed in a differentiable manner. We can formulate
the complete transition function f by composing fL, fε, and f as follows:

f(⟨s,q⟩, ⟨a,qε⟩) := ⟨f(s, a), fL(
〈
s, fε(q,q

ε)⟩)
〉
. (7)

1For the correctness of LTL, Pr(g(s) > 0) must be exactly 0 or 1 for values below or above certain thresh-
olds. In practice, this is not an issue, as overflow behavior of sigmoid ensures this condition is satisfied.
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Figure 1: LTL Returns and Derivatives. Left: The parking scenario where the car must brake to stop in the
parking area without entering the grass field (φp). Middle: LTL satisfaction probability and return estimates
from discrete and differentiable LTL formulations as functions of deceleration. Right: LTL return gradients
with respect to deceleration and their standard deviation. The key challenge in learning from LTL arises from
slightly-sloped regions and sharp changes in the returns produced by discrete LTL rewards. Our differentiable
LTL approach not only smooths these abrupt changes but also enables the use of low-variance first-order
gradient estimates essential for effective learning in slightly-sloped regions.

This transition function first executes the ε-actions, then performs the LDBA transitions triggered by
state labels to update the automaton state probabilities, while applying the given action to update the
MDP states. The function f is fully differentiable with respect to s, q, a, and qε. We can now obtain
a reward R : Q 7→ (0, 1) and a discounting function D : Q 7→ (0, 1) that are also differentiable
with respect state and actions as follows:

R(⟨s,q⟩) := (1− β)
∑
q∈B

qq, D(q) := β
∑
q∈B

qq + γ
∑
q ̸∈B

qq (8)

These differentiable reward, discounting and functions allow us to obtain first-order gradient esti-
mates ∇1

θJ(θ) := Eσ∼Mπθ
[∇θGH(σ)] which are known to exhibit lower variance compared to

zeroth-order estimates (Xu et al., 2022). Such first-order estimates can be effectively utilized by dif-
ferentiable RL algorithms to accelerate learning. In the following example, we illustrate employing
these lower-variance gradient estimates is particularly crucial when learning from LTL rewards.
Parking Example. Consider a parking scenario in which the vehicle starts with an initial velocity
of v0 = 10 m/s. The controller applies the brakes with a constant deceleration a ∈ [0 m/s2, 10 m/s2]
over the next 10 seconds, with the goal of bringing the car to rest inside the parking area. For
safety, the vehicle must not enter the grass field before reaching the parking zone on the right-hand
side. We formalize these requirements in LTL as φp=♢□park ∧ □¬grass where the parking
area and the grass field are defined as park := (x>10 m ∧ x<20 m) ∨ (x>30 m ∧ x<40 m) and
grass := x>20 m ∧ x<30 m, respectively.
Fig. 1 illustrates this task, including satisfaction probabilities, returns, and gradients with respect to
deceleration. The satisfaction probability is 1 for deceleration values between 2.5 m/s2 and 5.0 m/s2,
and 0 outside this range. The differentiable LTL returns closely match the discrete ones, except near
the boundaries of the satisfaction region, where the differentiable version produces smoother tran-
sitions. This smoothness is particularly evident in the gradient plots. Although differentiable LTL
rewards yield smoother return curves, learning remains challenging due to the small gradient mag-
nitudes across most of the parameter space except near the satisfaction boundaries. For instance,
in the region between 0.0 m/s2 and 2.5 m/s2, the returns increase with deceleration, but noisy gra-
dient estimates can still lead the learner away from the satisfaction region. Therefore, obtaining
low-variance gradient estimates is especially beneficial when learning from LTL, where most of the
landscape requires sharper gradients for effective optimization. See Appx. E for comparison.
Discrete vs. Differentiable LTL Rewards. We now show that the maximum discrepancy between
the discrete and differentiable values can be upper-bounded for a given tolerance parameter ζ and an
activation function h in the theorem below. Since, by Theorem 1, the discrete values converge to the
satisfaction probabilities, the bound is also valid in the limit for the actual satisfaction probabilities.
Theorem 2. Let ς be the tolerance on the signal bounds of atomic propositions, and let p be the
probability associated with ς (i.e., p := Pr(ς > 0) = h(ς)) as in (3). Let Gdisc. and Gdiff. de-
note the returns obtained via discrete and differentiable rewards, respectively. Then the maximum
discrepancy between them is upper bounded as:

|Gdisc.(σ)−Gdiff.(σ)| < 1

1 + 1−β
(1−p)|A|

=
1

1 + 1−β
(1−h(ς))|A|

(9)
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where β is the discount factor for accepting states, as defined in (8). By linearity of expectation, this
result immediately extends to the expected return (values) in stochastic environments; i.e, the upper
bound above holds for |E[Gdisc.(σ)] − E[Gdiff.(σ)]| where expectations are over trajectories drawn
under any given policy.

Proof. The maximum discrepancy between Gdisc. and Gdiff. occurs when all probabilistic transitions
associated with soft labels yield positive differentiable rewards while their corresponding discrete
rewards are zero (or vice versa). For a given tolerance ς , the probability of incorrectly evaluating
all atomic propositions under soft labels is ρ := (1 − p)|A|, where A denotes the set of all atomic
propositions defined in the LTL grammar. In this worst-case scenario, the differentiable return for a
trajectory σ, where all such transitions lead to accepting states, is:

Gdiff.(σ) ≤
∞∑
t

ρ(1− ρ)tβt =
ρ

1− (1− ρ)β
=

ρ

(1− β) + ρβ
=

1

1 + 1−β
ρ

=
1

1 + 1−β
(1−p)|A|

.

Since Gdisc. = 0, this expression provides the upper bound on the maximum discrepancy.

5 EXPERIMENTS
In this section, through simulated experiments, we show learning from differentiable LTL rewards
offered by our method is significantly faster than learning from discrete LTL rewards.

Algorithm 1 Differentiable RL with LTL
Require: MDP M , LTL formula φ, Policy πθ

Derive LDBA Aφ and APs A from φ
Derive f (7) and R,D (8) from Aφ

while True do
for i = 1, 2, ..., N do

Initialize q(0)∼Aφ, s(0)∼M , G←0
for t = 1, 2, ..., H do

Get action ⟨a,qε⟩ ∼ πθ(⟨s(t-1),q(t-1)⟩)
Execute ε-action q′←fε(q,q

ε)

Execute label transition q(t)←fL(⟨s,q′⟩)
Execute MDP action s(t) ← f(s, a)

Compute reward r ← R(q(t))

Update return G
(i)
t ← G

(i)
t−1 + D(q) · r

end for
end for
Calculate ∇̂[1]

θ J(θ)← 1
N

∑N
i=1∇θG

(i)
H

Train πθ using ∇̂[1]
θ J(θ)

end while

Implementation Details. We implemented our ap-
proach in Python utilizing the PyTorch-based differ-
entiable physics simulator dFlex introduced in (Xu
et al., 2022). We used an NVIDIA GeForce RTX 2080
GPU, 4 Intel(R) Xeon(R) Gold 5218 CPU cores, and
32 gigabytes memory for each experiment. Specifi-
cally, we generate the automaton description using Owl
(Kretı́nský et al., 2018) and parse it using Spot (Duret-
Lutz et al., 2016). We then construct reward and tran-
sition tensors from the automata. We then compute the
probabilities for each observations as explained in the
previous section using a sequence of differentiable vec-
tor operations using PyTorch. Lastly, using the con-
structed transition and reward tensors, we update the
automaton states and provide rewards. The overall ap-
proach is summarized in Algorithm 1.
Baselines. We use two widely adopted and representative state-of-the-art (SOTA) model-free RL
algorithms as our baseline non-differentiable RL methods (̸∂RLs): the on-policy Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and the off-policy Soft Actor-Critic (SAC) (Haarnoja
et al., 2018). For differentiable RL baselines (∂RLs), we employ SHAC and AHAC, which, to the
best of our knowledge, represent the SOTA in this category. For each environment and baseline, we
used the tuned hyperparameters from (Georgiev et al., 2024).
Metric. We evaluate performance in terms of the collected LTL rewards averaged over 5 seeds
since they can serve as proxies for satisfaction probabilities. We considered two criteria: (1) the
maximum return achieved and (2) the speed of convergence. To maintain consistency, we used
differentiable LTL rewards across all baselines as, for non-differentiable baselines, we observed no
performance difference between the differentiable and discrete LTL rewards.
CartPole. The CartPole environment consists of a cart that moves along a one-dimensional track,
with a pole hinged to its top that can be freely rotated by applying torque. The system yields
a 5-dimensional observation space and a 1-dimensional action space. The control objective is to
move the tip of the pole through a sequence of target positions while maintaining the cart within a
desired region as much as possible and ensuring the velocity of the cart always remains within safe
boundaries. We capture these requirements in LTL as follows:
φcartpole=□‘|cart vx|<v0’︸ ︷︷ ︸

safety

∧□♢‘|cart x|<x0’︸ ︷︷ ︸
repetition

∧♢
(
‘|pole z-z0|<∆’∧♢‘|pole z-z1|<∆’

)︸ ︷︷ ︸
reachability & sequencing

.

Here, cart x, cart vx, and pole z represent the cart position, the cart velocity, and the pole
height respectively. This formula demonstrates how LTL can be leveraged to encode both complex
safety constraints and performance objectives. We set x0 = 10 m, v0 = 10 m/s as boundaries,
z0 = −1 m, z1 = 1 m as the target positions, and ∆ = 25 cm as the allowable deviation.
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Figure 2: Comparison Across Environments: Differentiable vs. Discrete LTL Rewards. The wider plots
show the learning curves of all baseline algorithms, while the narrower plots on the right display the maximum
returns achieved after 100 M steps. All results are averaged over 5 random seeds, and the curves are smoothed
using max and uniform filters for visual clarity. The reported returns, bounded between 0 and 1, serve as
proxies for the probability of satisfying the LTL specifications. In all the environments algorithms utilizing
differentiable LTL rewards (SHAC, AHAC) rapidly learn near-optimal policies, whereas those relying on
discrete LTL rewards (PPO, SAC), display high variance, converge slowly, or stuck with sub-optimal/near-
zero-return policies.

Legged Robots. We consider three legged-robot environments: Hopper, Cheetah, and Ant. The
Hopper environment features a one-legged robot with 4 components and 3 joints, resulting in a 10-
dimensional state space and a 3-dimensional action space. The Cheetah environment consists of
a two-legged robot with 8 components and 6 joints, yielding a 17-dimensional state space and a
6-dimensional action space. The Ant environment includes a four-legged robot with 9 components
and 8 joints, producing a 37-dimensional state space and an 8-dimensional action space. In all three
environments, the control task requires always keeping the torso/tip of the robot above a critical
safety height, maintaining a certain distance between the torso/tip and the critical height as often as
possible, and accelerating the robot forward, and then bringing the robot to a full stop. We formalize
this task in LTL as follows:
φlegged=□‘torso z>z0’︸ ︷︷ ︸

safety

∧□♢‘torso z>z1’︸ ︷︷ ︸
repetition

∧♢
(
‘torso vx>v1’∧♢‘torso vx<v0’

)︸ ︷︷ ︸
reachability & sequencing

. (10)

Here, torso z and torso vx denote the height and horizontal velocity of the robots. This for-
mula captures several key aspects of LTL, including, safety, reachability, sequencing, and repetition.
The values of z0 and z1 were chosen based on the torso height of each robot in their referential
system. Specifically, we used z0 = −110 cm, z1 = −105 cm for Hopper; z0 = −75 cm, z1 = −70
cm for Cheetah; and z0 = 0 cm, z1 = 5 cm for Ant, where z0 denotes the critical safety height and
z1 represents a safe margin above it. We set v1 = 1 m/s, v1 = 3 m/s, and v1 = 1.5 m/s for Hopper,
Cheetah, and Ant, respectively, reflecting movement speeds relatively challenging yet achievable for
each of the robot. For deceleration, we set v0 = 0 m/s for all the environments. An illustration of a
policy learned from this specification for Cheetah is provided in Fig. 4 in Appx. F.
Results. Fig. 2 presents our simulation results. Across all environments, ∂RL algorithms that
leverage our differentiable LTL rewards consistently outperform ̸∂RL algorithms in terms of both
maximum return achieved and learning speed from the LTL specifications.
CartPole. The safety specification induces an automaton with three states, each having 64
transitions–but only one of these transitions yields a reward. This extreme sparsity, even in a low-
dimensional state space, severely hinders the learning process for ̸∂RLs, as shown in the leftmost plot
of Fig. 2. In contrast, ∂RL algorithms leverage the gradients provided by differentiable rewards, en-
abling them to efficiently learn policies that nearly satisfy the LTL specification. Specifically, ∂RLs
converge to near-optimal policies (Pr>0.8) within just 20 M steps, whereas ̸∂RLs (SAC: all seeds;
PPO: one seed) fail to learn any policy that achieves meaningful reward, even after 100 M steps.
Legged Robots. As we move to environments with higher-dimensional state spaces–10, 17, and 37
dimensions for Hopper, Cheetah, and Ant, respectively–even relatively simple LTL specifications
pose a significant challenge for ̸∂RLs. The automata derived from the LTL specifications in these
environments consists of four states, each with 16 transitions, of which four transitions in the third
state yield rewards. Reaching this state, however, requires extensive blind exploration of the state
space, making it significantly hard for ̸∂RLs to learn optimal control policies. On the other hand,
∂RLs, guided by LTL reward gradients, quickly identify high-reward regions of the state space and
learn effective policies.

For Hopper, ∂RLs converge to near-optimal policies (Pr>0.8) within 20 M steps, while PPO requires
the full 100 M steps to converge, and one SAC seed gets trapped in a local optimum. For Cheetah,
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∂RLs attain optimal performance (Pr>0.9), whereas PPO converges to a suboptimal policy even
after 100 M steps, and SAC consistently fails by getting stuck in poor local optima. For Ant, ∂RLs
again learn near-optimal policies rapidly, while ̸∂RLs converge only to suboptimal policies.

Generalization to Reward Machines. Our approach renders automaton-based rewards differen-
tiable and can therefore be readily applied to frameworks such as RMs. We conducted analogous
experiments in the Cheetah environment described in (Icarte et al., 2022). Specifically, we used
the same RMs from TASK 1 and TASK 2 and made them differentiable with our method. We then
trained policies using the SHAC algorithm. Table 1 reports the returns obtained with the differen-
tiable RMs alongside the best returns reported in Figure 10 of (Icarte et al., 2022). Our differentiable
RM-based approach significantly outperforms all discrete baselines from (Icarte et al., 2022).

Table 1: Comparison between differentiable RMs and discrete RMs for Cheetah.

TASK 1 TASK 2
Steps (K) SHAC (∂RL) CRM (̸∂RL) SHAC (∂RL) HRM+RS (̸∂RL)

500 7.5± 3.5 K ≈ 5.0± 0.7 K 10.9± 3.5 K ≈ 7.0± 1.6 K
1000 12.2± 1.9 K ≈ 7.0± 0.4 K 16.6± 1.4 K ≈ 8.1± 1.9 K
1500 11.9± 2.8 K ≈ 7.5± 0.3 K 18.6± 1.7 K ≈ 9.1± 2.2 K
2000 13.7± 3.2 K ≈ 8.0± 0.4 K 19.4± 1.9 K ≈ 9.1± 2.0 K
2500 14.5± 2.7 K ≈ 8.2± 0.3 K 21.0± 2.0 K ≈ 8.7± 2.6 K
3000 15.4± 2.5 K ≈ 8.3± 0.3 K 21.1± 1.9 K ≈ 9.1± 2.8 K

Ablation Study. To isolate the impact of differentiability of LTL rewards from inherent environ-
ment properties, we conducted a simple ablation study comparing ∂RLs and ̸∂RLs under simplified
versions of the LTL formulas from our earlier experiments:

φ′cartpole := ♢‘|pole z-z0|<∆’, φ′legged := ♢‘torso vx>v1’ (11)
using z0 = −1 m, ∆ = 25 cm for Cartpole, and v1 = 50 cm/s for all the legged-robot environments.
These simplified formulas yield one-state automata with 4 and 2 transitions, respectively, of which
one is accepting. As such, they lack the complexity that makes learning from LTL challenging.
Each of the baselines, regardless of differentiability, learns an optimal policy (Pr>0.9) for all the
environments after 100 M steps (see Fig. 7 in Appx. G). However, when comparing these results to
those in Fig. 2, we observe only a minor performance drop for ∂RLs, whereas the performance of
̸∂RLs degrades dramatically—for some cases, from near satisfaction to complete failure—as LTL
complexity increases. These results support our hypothesis that the performance advantage of ∂RLs
over ̸∂RLs in Fig. 2 arises primarily from leveraging the differentiability of LTL rewards provided
by our approach, rather than from environment-specific properties utilized by ∂RLs.

6 CONCLUSION
In this work, we tackle the challenge of scalable RL for temporally extended and formally speci-
fied tasks. By adopting LTL as our specification framework, we ensure objective correctness and
avoid the reward-misspecification issues common in conventional RL. To overcome the learning in-
efficiencies caused by sparse logical rewards, we introduce a method that leverages differentiable
simulators, enabling gradient-based learning directly from LTL objectives without compromising
expressiveness or correctness. Our approach employs soft-labeling techniques that preserve differ-
entiability through the transitions of automata derived from LTL formulas, yielding an end-to-end
differentiable learning framework. Across a series of simulated experiments, we show that this
framework substantially accelerates learning compared to state-of-the-art non-differentiable base-
lines, pointing toward more reliable and scalable deployment of autonomous systems in complex
real-world environments.
Our approach accelerates learning from LTL specifications by leveraging differentiable RL algo-
rithms and gradients provided by differentiable simulators. Consequently, the overall performance
of our method is inherently tied to the quality and efficiency of the underlying simulators and RL
algorithms. A further consideration is that our method introduces an additional hyperparameter, the
activation function used for probability estimation, which should be tuned for optimal performance.
Another challenge lies in the formalization of LTL specifications: while LTL offers a more intuitive
and structured way to specify tasks than manual reward engineering, it still requires familiarity with
formal logic and sufficient domain knowledge to define meaningful bounds. An immediate direction
for future work is to design LTL-specific differentiable RL methods that exploit the compositional
structure of the derived automata to enable more efficient exploration, learning, and transfer.
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A REINFORCEMENT LEARNING WITH TEMPORAL LOGICS

Deep RL. The rapid progress in machine learning during the 2010s, particularly in deep learn-
ing (LeCun et al., 2015; Goodfellow et al., 2016; Arulkumaran et al., 2017), facilitated by improved
neural architectures and enhanced computational capabilities, significantly advanced deep reinforce-
ment learning (RL). This enabled solving complex, high-dimensional, and long-horizon sequential
decision-making tasks previously considered infeasible (Mnih et al., 2015; Silver et al., 2016; 2017;
2018; Vinyals et al., 2019). Such achievements have attracted growing interest from the control and
robotics communities. Although deep RL has been effectively employed in structured, task-specific
robotic and autonomous systems (Kober et al., 2013; Levine et al., 2016; Chen et al., 2017; Cui
et al., 2017; Liu et al., 2018; Lu et al., 2018; Hwangbo et al., 2019; Cui et al., 2019; Peng & Shen,
2020; Andrychowicz et al., 2020; Lee et al., 2020; Yu et al., 2021; Kiran et al., 2021; Aradi, 2022),
significant concerns around safety and reliability remain. In response, researchers have explored
integrating RL with formal methods, particularly temporal logics, to enhance system reliability and
verification.

Model-Based RL for LTL. Initial attempts to combine linear temporal logic (LTL) with RL (Fu
& Topcu, 2014b; Brázdil et al., 2014; Wen & Topcu, 2016) relied on model-based approaches.
These methods required precise knowledge of the transition structure of the underlying Markov de-
cision processes (MDPs) to precompute accepting components of a product MDP constructed using
a Deterministic Rabin Automaton (DRA) based on LTL specifications. This approach transformed
satisfying temporal logic constraints into reachability problems solvable via RL. Despite provid-
ing probably approximately correct (PAC) guarantees, the complexity and frequent unavailability of
accurate transition models limit their applicability, especially in deep RL contexts.

Model-Free RL for LTL. To address these limitations, model-free RL methods emerged, such as
reward machines (RMs) (Toro Icarte et al., 2018; Icarte et al., 2018; Camacho et al., 2019; Icarte
et al., 2022) for co-safe LTL and LTLf fragments, which directly generate rewards from the accep-
tance conditions of automata derived without explicit knowledge of transition dynamics. The in-
troduction of limit-deterministic Büchi automata (LDBAs) (Hahn et al., 2015; Sickert et al., 2016),
simplifying model checking by utilizing simpler Büchi conditions instead of Rabin conditions, fur-
ther facilitated structured reward design (Hasanbeig et al., 2019; 2023). These advancements also
resulted in improved correctness (Hahn et al., 2019) and stronger convergence guarantees (Bozkurt
et al., 2020b).

STL and Other Temporal Logics. Researchers have also explored alternative continuous-time
temporal logics to generate informative reward signals such as STL and truncated LTL (TLTL)
(Li et al., 2017; Li et al., 2019). STL and TLTL allow robustness scores to serve as rewards in
finite-horizon tasks (Aksaray et al., 2016). However, these scores typically depend on historical
information, violating the Markov assumption and restricting their use in long-horizon, stochastic,
or value-based RL settings. We note that the syntax our differentiable LTL formalism coincides
with TLTL as well as the STL fragment without time constraints; however, the semantics is defined
based on discrete-time observations, which allows for compact automaton construction rather than
robustness scores, yielding an efficient memory mechanism.

Extended RL for LTL. Building on successful applications of LTL-based rewards in RL, re-
searchers extended these methodologies into broader domains. These include stochastic games
(Hahn et al., 2020; Bozkurt et al., 2021b; 2024), modular deep RL frameworks (Cai et al., 2021a;
Jackermeier & Abate, 2025), reinforcement learning under workspace uncertainties (Cai et al.,
2021b), secure planning against stealthy adversaries (Bozkurt et al., 2021a; Cui et al., 2023), learn-
ing within cluttered environments (Cai et al., 2023a). Additionally, recent developments include
heuristic-driven learning (Kantaros, 2022), policy optimization strategies (Voloshin et al., 2022),
quantum-based action spaces (Cai et al., 2023b), experience replay enhancements (Voloshin et al.,
2023), transformer models (Tian et al., 2023), handling partially known semantics (Verginis et al.,
2024), average reward formulations (Le et al., 2024), PAC guarantees (Perez et al., 2024), and goal-
conditioned LTL-RL (Yalcinkaya et al., 2024). Theoretical analyses have explored computational
intractability (Yang et al., 2022), discounting sensitivity (Xuan et al., 2024), and convergence prop-
erties (Shao & Kwiatkowska, 2023).
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B PATHS AND POLICIES

MDP Paths. An MDP begins in an initial state sampled from the initial state distribution s0 ∼
p0(·) and evolves by transitioning from a current state s to a next state s′ through an action a, as
determined by the transition function: s′ = f(s, a). In each state s, the policy observes a set of
atomic propositions provided by the labeling function L(s). The sequence of visited states is called
a path and is formally defined below:

Definition 3. A path of an MDP M is defined as an infinite sequence of states σ = s0s1 . . . , where
each si ∈ S, such that p0(s0) > 0 and for every t > 0, there exists an action at ∈ A with f(st, at) =
st+1. We denote the t-th state in the sequence as σ[t], the prefix up to t as σ[:t] = s0s1 . . . st, and
the suffix starting from t + 1 as σ[t+1:] = st+1st+2 . . . . The corresponding sequence of labels for
σ is referred to as the trace, defined by L(σ) := L(s0)L(s1) . . . .

See (Bozkurt, 2024) for more details.

Finite-Memory Policies

Definition 4. A finite-memory policy for an MDP M is defined as a tuple π = (M,m0,T, a), where:

• M is a finite set of modes (memory states);

• m0 ∈ M is the initial mode;

• T : M × S × M → [0, 1] is a probabilistic mode transition function such that for any current
mode m and state s, the probabilities over next modes sum to 1, i.e.,

∑
m′∈M T(m′ | m, s) = 1;

• a : M × S × A → [0, 1] is a probabilistic action selection function that assigns a probability to
each action a given the current mode m ∈ M and state s ∈ S.

A finite-memory policy acts as a finite-state machine that updates its internal mode (memory state)
as states are observed, and specifies a distribution over actions based on both the current state and
mode. The action at each step is thus selected according not only the current state but also the
current memory state of the policy. In contrast to standard definitions of finite-memory policies
(e.g., (Chatterjee & Henzinger, 2012; Baier & Katoen, 2008)), which typically assume deterministic
mode transitions, this definition permits probabilistic transitions between modes. For further details,
please refer to (Bozkurt, 2024).

C DIFFERENTIABLE REINFORCEMENT LEARNING

Differentiable Simulators. Deep reinforcement learning (RL) provides a robust framework for
learning control policies directly from high-dimensional, unstructured inputs without explicit hu-
man supervision. However, this flexibility introduces high sample complexity. To mitigate this, re-
searchers developed methods such as distributed RL, massively parallel GPU-based RL, and model-
based RL approaches. Recently, there has been significant interest in accelerating model-based RL
using differentiable simulators, which enable gradient-based optimization by analytically or auto-
matically computing gradients of states and rewards with respect to actions (Carpentier & Mansard,
2018; Geilinger et al., 2020; Qiao et al., 2021; Xu et al., 2021; Werling et al., 2021; Heiden et al.,
2021; Freeman et al., 2021). These simulators can be represented as differentiable transition func-
tions st+1 = f(st, at), where st and at represent the state and action at time step t, respectively, and
st+1 is the next state at time step t+ 1. In the context of reinforcement learning, a common choice
for the differentiable loss function is the negative of the return, defined as the sum of discounted re-
wards: L = −GH(σ) = −

∑H
t=0 γtrt, where H is the time horizon, σ = s0s1 . . . is the trajectory,

rt is the reward at time step t, and γt is the discount factor applied at that step. The backward pass
then computes the gradients as follows:

∂GH

∂st
=

∂GH

∂st+1

∂f

∂st
,

∂GH

∂at
=

∂GH

∂st+1

∂f

∂at
. (12)

By chaining these gradients, the optimization updates propagate effectively throughout trajectories.
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Policy Gradient Objective. In policy gradient RL over a finite horizon H , the goal is to find
optimal parameters θ∗ = argmaxθJ(θ), such that:

J(θ) = Eσ∼Mπθ
[GH(σ)], (13)

where σ ∼ Mπθ
denotes the random trajectory σ drawn from the Markov chain Mπθ

induced by
the policy πθ parameterized by θ. If a differentiable model is available, optimization can leverage
first-order gradients:

∇[1]
θ J(θ) = Eσ∼Mπθ

[∇θGH(σ)], (14)
or employ model-free zeroth-order gradients via the policy gradient theorem:

∇[0]
θ J(θ) = Eσ∼Mπθ

[
GH(σ)

H−1∑
t=0

∇θ log πθ(at|st)

]
. (15)

Both gradients can be approximated through Monte Carlo sampling:

∇̂[1]
θ J(θ) =

1

N

N∑
i=1

∇θGH(σ(i)), (16)

∇̂[0]
θ J(θ) =

1

N

N∑
i=1

GH(σ(i))

H−1∑
t=0

∇θ log πθ(a
(i)
t |s(i)t ). (17)

D ω-AUTOMATA

An LTL formula φ can be translated into a finite-state automaton that operates over infinite paths,
known as an ω-automaton. We denote the automaton corresponding to a specific formula φ by Aφ.
An ω-automaton Aφ accepts a path σ if and only if σ |= φ, and rejects it otherwise. We begin
by formally introducing a general type of ω-automaton, called a nondeterministic Rabin automaton
(NRA), which can be systematically derived from any LTL formula (Baier & Katoen, 2008). We
then focus on specific subclasses of NRAs that are particularly relevant to our work.
Definition 5. A nondeterministic Rabin automaton (NRA) derived from an LTL formula φ is defined
as a tuple Aφ = (Q, q0,Σ, δ,Acc), where:

• Q is a finite set of automaton states;

• q0 ∈ Q is the initial automaton state;

• Σ = 2A is the input alphabet, where A is the set of atomic propositions;

• δ : Q× (Σ∪{ε}) → 2Q is the transition function, which is complete and deterministic on Σ (i.e.,
|δ(q, w)| = 1 for any q ∈ Q and w ∈ Σ), but may include nondeterministic ε-transitions (i.e., it
is possible that |δ(q, ε)| = 0 or |δ(q, ε)| > 1);

• Acc is a set of k accepting pairs {(Bi, Ci)}ki=1 where Bi, Ci ⊆ Q for i ∈ {1, . . . , k}.

Given an infinite word ω = w0w1 . . . , a run of the automaton is a sequence of transitions τω =
(q0, w0, q1), (q1, w1, q2), . . . such that qt+1 ∈ δ(qt, wt) for all t ≥ 0. The word ω is accepted if there
exists such a run and at least one accepting pair (Bt, Ct) satisfying the Rabin condition: the run visits
some states in Bt infinitely often and all states in Ct only finitely often. This acceptance condition
is known as the Rabin condition, which can be formalized as ω |= φ ⇐⇒ ∃t : Inf(τω)∩Bi ̸=∅ ∧
Inf(τω)∩Ci=∅ where Inf(τω) denotes the set of states visited infinitely many times in the run τω .
Similarly, a path σ is considered accepted by the automaton if its trace L(σ) forms a word accepted
by Aφ.

We focus on a specific subclass of NRAs known as limit-deterministic Büchi automata (LDBAs),
which feature a simplified acceptance criterion. Despite their reduced complexity, LDBAs retain the
full expressive power of general NRAs and can be systematically derived from LTL formulas (Hahn
et al., 2015; Sickert et al., 2016).
Definition 6. An LDBA is an NRA defined as Aφ = (Q, q0,Σ, δ,Acc) that satisfies the following:

• The acceptance condition consists of a single pair with an empty second set, i.e., Acc = (B,∅),
meaning that the run must visit some states in B infinitely often. This is known as the Büchi con-
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dition, and for simplicity, we denote this acceptance condition by the set of accepting automaton
states itself, i.e., Acc = B.

• The state space Q is partitioned into two disjoint subsets: an initial component QI and an accept-
ing component QA, satisfying:

– All accepting states are contained in QA, i.e., B ⊆ QA;
– All transitions within QA are deterministic (no ε-transitions), i.e., for any q∈QA, δ(q, ε)=∅;
– Transitions cannot go from QA to QI , i.e., for all q ∈ QA and w ∈ Σ, δ(q, w) ⊆ QA.

The defining feature of LDBAs is that accepting runs must eventually enter the accepting com-
ponent QA and remain there permanently. Once this transition occurs, all subsequent behavior is
deterministic–this property is known as limit-determinism. LDBAs can be constructed such that ev-
ery ε-transition leads directly into QA, which ensures at most one such transition occurs along any
execution path. This construction, combined with limit-determinism, makes LDBAs particularly
well-suited for quantitative model checking in MDPs (Sickert et al., 2016) unlike general nondeter-
ministic automata. Thus, we assume all LDBAs under consideration possess this structure. More
information can be found in (Bozkurt, 2024).

E PARKING EXAMPLE: DIFFERENTIABLE RL VS NON-DIFFERENTIABLE RL
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Figure 3: Convergence speed comparison of stochastic gradient descent algorithms using ∇̄[0]
θ and

∇̄[1]
θ for the parking example (N = 10).

F LTL SPECIFICATIONS AND AUTOMATA

LTL Specifications used in the Experiments.

• CartPole:
G("position_x>-10" & "position_x<10") & G("velocity_x>-10.0" & "velocity_x<10.0")
& F("cos_theta<-0.5" & F"cos_theta>0.5")

• Hopper:
G"torso_height>-11.0" & GF"torso_height>-10.5" & F("torso_velocity_x>1.0" & F"torso_velocity_x<0")

• Cheetah:
G"tip_height>-7.5" & GF"tip_height>-7.0" & F("tip_velocity_x>3.0" & F"tip_velocity_x<0")
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• Ant:
G"torso_height>0.0" & GF"torso_height>0.5" & F("torso_velocity_x>1.5" & F"torso_velocity_x<0")

Illustration of the LTL Specification for Cheetah.

Figure 4: Task Specification with LTL. This figure illustrates a Cheetah policy learned by SHAC
using differentiable rewards derived via our approach from the LTL formula φlegged, which speci-
fies accelerating forward, stopping, and maintaining a safe tip-to-ground distance. Specifying the
desired behaviors of robots using the high-level language LTL provides is an intuitive alternative to
manually designing reward functions, which often require extensive domain expertise and risk un-
intended behaviors. Enabling learning directly from LTL unlocks new possibilities for robust, safe,
and flexible robotic applications. See the supplementary material for the video.

Automata Derived from LTL Specifications for CartPole and Ant.
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Figure 5: The ω-automaton derived from φcartpole.
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Figure 6: The ω-automaton derived from φlegged for the Ant environment.

Other example LTL formulas. LTL can be used to specify temporal properties of a wide range of
robotics tasks:

• safety; e.g., “always avoid obstacles and remain below the joint angle and velocity thresholds”:
φ = □

( ∧
obstaclei

dist to obstaclei > 0
∧

joint anglei

joint anglei < βmax

∧
joint veli

joint veli < β̇max

)
; (18)

• reachability; e.g.; “accelerate to a target velocity in x direction”:
φ = ♢torso velx > vtarget; (19)

• sequencing; e.g.; “move to the position 1, then move to the position 2, and after that move to the
position 3”:

φ = ♢
(

dist to pos1 < δtol ∧ ♢
(
dist to pos2 < δtol ∧ ♢(dist to pos3 < δtol)

))
; (20)

• repetition; e.g.; “repeatedly monitor the region 1 and the region 2”:
φ = □♢dist to region1 < δtol ∧□♢

(
dist to region2 < δtol

)
. (21)

G ABLATION STUDY RESULTS
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Figure 7: Ablation Study for LTL. The maximum returns obtained after 100 M steps for simplified
LTL formulas (11), averaged over 5 seeds. Returns (0 to 1) indicate LTL satisfaction probabilities.
Under these simpler specifications, both ̸∂RLs and ∂RLs successfully learn near-optimal policies.
However, as shown in Fig. 2, the performance of discrete ̸∂RLs degrades dramatically with in-
creasing LTL complexity—unlike differentiable ∂RLs, which maintain reasonable performance by
leveraging the LTL rewards differentiability.
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