
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATED LEARNING WITH LINEAR TEMPORAL
LOGIC USING DIFFERENTIABLE SIMULATION

Anonymous authors
Paper under double-blind review

ABSTRACT
Ensuring that reinforcement learning (RL) controllers satisfy safety and reliability
constraints in real-world settings remains challenging: state-avoidance and con-
strained Markov decision processes often fail to capture trajectory-level require-
ments or induce overly conservative behavior. Formal specification languages
such as linear temporal logic (LTL) offer correct-by-construction objectives, yet
their rewards are typically sparse, and heuristic shaping can undermine correct-
ness. We introduce, to our knowledge, the first end-to-end framework that inte-
grates LTL with differentiable simulators, enabling efficient gradient-based learn-
ing directly from formal specifications. Our method relaxes discrete automaton
transitions via soft labeling of states, yielding differentiable rewards and state
representations that mitigate the sparsity issue intrinsic to LTL while preserving
objective soundness. We provide theoretical guarantees connecting Büchi accep-
tance to both discrete and differentiable LTL returns and derive a tunable bound
on their discrepancy in deterministic and stochastic settings. Empirically, across
complex, nonlinear, contact-rich continuous-control tasks, our approach substan-
tially accelerates training and achieves up to twice the returns of discrete base-
lines. We further demonstrate compatibility with reward machines, thereby cov-
ering co-safe LTL and LTLf without modification. By rendering automaton-based
rewards differentiable, our work bridges formal methods and deep RL, enabling
safe, specification-driven learning in continuous domains.

1 INTRODUCTION
The growing demand for artificial intelligence (AI) systems to operate in a wide range of envi-
ronments underscores the need for systems that can learn through interaction with their environ-
ments, without relying on human intervention. Reinforcement learning (RL) has emerged as a
powerful tool for training controllers to perform effectively in uncertain settings with intricate,
high-dimensional, and nonlinear dynamics. Despite the promising results in controlled environ-
ments, deploying learned controllers in real-world systems–where malfunctioning can be costly or
hazardous–requires not only high performance but also strict compliance with formally specified
safety and reliability requirements. Therefore, ensuring that learned controllers meet these criti-
cal specifications is essential to fully realize the potential of AI systems in real-world applications.
Safety in learning is often modeled with constrained Markov decision processes (MDPs) (e.g. Ding
et al. (2021)), where the accumulated cost must be within a budget. However, additive cost functions
may not reflect real-world safety, as assigning meaningful costs to harms is challenging. Alterna-
tive approaches define safety by avoiding unsafe states or actions (e.g. Qin et al. (2021)), which is
simpler than designing cost functions. However, this may result in overly conservative policies and
could not capture complex trajectory-level requirements.
Recently, researchers have explored specifying RL objectives using formal languages, which explic-
itly and unambiguously express trajectory-based task requirements, including safety and liveness
properties. Among these, linear temporal logic (LTL) has gained particular popularity (e.g. Hahn
et al. (2019); Bozkurt et al. (2020a); Icarte et al. (2022); Hasanbeig et al. (2023)) due the automaton-
based memory it offers, which ensures history-independence and makes it especially suitable for
long-horizon tasks unlike other languages such as signal temporal logic (STL). Specifying desired
properties in LTL inherently prevents mismatches between the intended behavior and the behavior
learned through reward maximization–one of the most well-known safety challenges in AI (Amodei
et al., 2016). Although these methods are proven to define the correct RL objectives, the sparse
logical rewards make learning extremely difficult, as obtaining a nonzero reward often requires
significant exploration. Denser LTL-based rewards provided through heuristics might accelerate
learning (Kantaros, 2022); however, if not carefully designed, they can compromise the correctness
of the objective and misguide exploration depending on the environment, ultimately reducing learn-
ing efficiency. In this work, we address the challenge of scalable learning with correct objectives
for temporally extended tasks. We adopt LTL as the specification language, leveraging the intu-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

itive high level language and the automaton-based memory it provides. Unlike prior methods, our
approach harnesses gradients from differentiable simulators to facilitate efficient learning directly
from LTL specifications, while preserving the correctness of the objectives. Our contributions can
be summarized as follows:
• We propose, to the best of our knowledge, the first approach that accelerates learning from LTL

specifications using differentiable simulators. Our approach effectively mitigates the inherent is-
sue of the sparse rewards without sacrificing the expressiveness and correctness that LTL provides.

• We introduce soft labeling techniques for continuous environments that yield probabilistic ε-
actions and transitions in the automata derived from LTL, which ensures the differentiability of
rewards and states with respect to actions. We establish formal guarantees connecting automata
acceptance conditions with our differentiable framework, yielding a tunable bound on the discrep-
ancy between discrete and differentiable LTL rewards, including in stochastic settings.

• We demonstrate that our method accelerates learning, achieving up to twice the returns of base-
lines across diverse experiments in complex, nonlinear, contact-rich settings where standard ap-
proaches struggle to learn without handcrafted reward shaping. We further evaluate on reward
machines, showing that our differentiable approach generalizes across formal method frameworks.

2 RELATED WORK
Safe RL. One common perspective in Safe RL defines safety as the guarantee on the cumulative
costs over time within a specified safety budget, which is often modeled using constrained MDPs
and has been widely studied (Garcıa & Fernández, 2015; Chow et al., 2018; Stooke et al., 2020; Ding
et al., 2021), relying on additive cost functions and budgets, which may not adequately capture safety
in many scenarios. In practice, it is often difficult to assign unambiguous scalar costs reflecting trade-
offs between different harmful situations (Skalse et al., 2022). Another approach defines safety in
terms of avoiding unsafe states and focuses on preventing or modifying unsafe actions via shielding
or barrier functions Berkenkamp et al. (2017); Cheng et al. (2019); Qin et al. (2021), which only
require identification of unsafe states and actions and often easier than designing cost functions
(Wang et al., 2023); however, they can lead to overly conservative control policies (Yu et al., 2022).
Moreover, the requirements are often placed over trajectories, which could be more complex than
simply avoiding certain states (Hsu et al., 2021). Our approach avoids these issues by employing
LTL as the specifications language to obtain correct-by-construction RL objectives.
RL with Temporal Logics. There has been increasing interest in using formal specification lan-
guages to encode task objectives that are trajectory-dependent, particularly those involving safety
requirements. LTL has emerged as a widely adopted formalism due to its expressiveness and well-
defined semantics over infinite traces. Initial attempts to combine LTL with RL relied on model-
based approaches (Fu & Topcu, 2014a; Wen & Topcu, 2021), which reduce specification satisfaction
into a reachability problem that can be solvable via RL, by exploiting the MDP transition structure to
construct a product MDP with automata derived from LTL. However, the unavailability of accurate
transition models limits their applicability, especially in deep RL contexts. Thus, model-free RL
methods for LTL emerged, notably reward machines (RMs) (Toro Icarte et al., 2018; Icarte et al.,
2018; Camacho et al., 2019; Icarte et al., 2022) for co-safe LTL and LTLf fragments, which directly
generate rewards based on the acceptance states of the derived automata without explicit knowledge
of transition dynamics. The introduction of LDBAs for MDP model checking (Hahn et al., 2015),
facilitated structured reward design with their simpler acceptance conditions for general LTL formu-
las (Hahn et al., 2019; Bozkurt et al., 2020a). This line of work inspired numerous extensions and
applications across broader domains (Voloshin et al., 2022; 2023; Le et al., 2024; Perez et al., 2024;
Yalcinkaya et al., 2024; Jackermeier & Abate, 2025). Researchers have also explored continuous-
time logics such as STL; whose robustness scores can be used as rewards (Aksaray et al., 2016).
However, these scores typically depend on historical information, violating the Markov assumption
and thereby restricting their use in long-horizon, stochastic, or value-based RL settings. For detailed
explanations and comparisons, see Appx. A.
RL with Differentiable Simulators. Differentiable simulators enable gradient-based policy opti-
mization in RL by computing gradients of states and rewards with respect to actions, using analytic
methods (Carpentier & Mansard, 2018; Geilinger et al., 2020; Qiao et al., 2021; Xu et al., 2021;
Werling et al., 2021) or auto-differentiation (Heiden et al., 2021; Freeman et al., 2021). While Back-
propagation Through Time (BPTT) is commonly used (Zamora et al., 2021; Du et al., 2021; Huang
et al., 2021; Hu et al., 2020; Liang et al., 2019; Hu et al., 2019), it suffers from vanishing or explod-
ing gradients for long horizons as it ignores the Markov property of states (Metz et al., 2021). To
address this, several differentiable RL algorithms have been proposed (Parmas et al., 2018; Suh et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2022). Short Horizon Actor-Critic (SHAC) (Xu et al., 2022) divides long trajectories into shorter
segments where BPTT is tractable and bootstraps the remaining trajectory using the value function.
Adaptive Horizon Actor-Critic (AHAC) (Georgiev et al., 2024) extends SHAC by dynamically ad-
justing the segment lengths based on contact information from the simulator. Gradient-Informed
PPO (Son et al., 2023) integrates gradient information to the RL framework in an adaptive manner.
Our approach builds a differentiable, Markovian transition function for LTL-derived automata, mak-
ing it compatible with all differentiable RL methods. Unlike prior STL-based efforts (Leung et al.,
2023; Meng & Fan, 2023), which rely on non-Markovian rewards and BPTT, our method supports
efficient long-horizon learning with full differentiability.
3 PRELIMINARIES AND PROBLEM FORMULATION
MDPs. We formalize the interaction between controllers with the environments as MDPs.
Definition 1. A (differentiable) MDP is a tuple M = (S,A, f, p0) such that S is a set of continuous
states; A is a set of continuous actions; f : S ×A 7→ S is a differentiable transition function; p0 is
an initial state distribution where p0(s) denotes the probability density for the state s.

For instance, for a given robotic task, the state space S the positions x and velocities ẋ of relevant
objects, body parts, and joints. The action space A may consist of torques applied to the joints.
The transition function f captures the underlying system dynamics and outputs the next state via
computing the accelerations ẍ by solving Mẍ = JTF(x, ẋ) + C(x, ẋ) + T(x, ẋ, a), for a given state
s = ⟨x, ẋ⟩ ∈ S and action a ∈ A. Here, M is a mass matrix; and F, C, and T are, respectively, force,
Coriolis, and torque functions that can be approximated using differentiable physics simulators.
RL Objective. In RL, a policy π:S+7→A is evaluated based on the expected cumulative reward, i.e.
return, associated with the paths σ:=s0s1 . . . (sequence of visited states) generated by the Markov
chain (MC) Mπ induced by the policy π. We write σ[t], σ[:t], σ[t:] for st, the prefix s0 . . . st and
the suffix stst+1 . . . For given a reward function R:S+ 7→R, a discount factor γ∈(0, 1) and a hori-
zon H , the return of a path σ from time t∈N, the return is defined as Gt:H(σ)=

∑H
i=t γ

iR(σ[:i]).
For simplicity, we denote the infinite-horizon return starting from t=0 as GH(σ):=G0:H(σ), and
further drop the subscript to write G(σ):= limH→∞GH(σ). We note that for Markovian reward
functions (R:S 7→R), memoryless policies (π:S 7→A) suffice. However, the tasks we consider re-
quire finite-memory policies. To address this, we reduce the problem of obtaining a finite-memory
policy to that of learning a memoryless policy by augmenting the state space S with memory states,
as detailed in Sec. 4. The discount factor reduces the value of future rewards to prioritize imme-
diate ones: a reward received after t steps contributes γtR(σ[t]) to the return. The objective in
RL, specifically in policy gradient, is to learn optimal policy parameters θ∗=argmaxθJ(θ) where
J(θ)=Eσ∼Mπθ

[GH(σ)]. In differentiable MDPs, RL can leverage first-order gradients ∇[1]
θ J(θ)

=Eσ∼Mπθ
[∇θGH(σ)] where ∂GH

∂st
= ∂GH

∂st+1

∂f
∂st

, ∂GH

∂at
= ∂GH

∂st+1

∂f
∂at

via BPTT (see also Appx. B, C).

Labels. We define the set of atomic propositions (APs), denoted by A, as properties of interest that
place bounds on functions of the state space. Formally, each AP takes the form a:=‘g(s)>0’, where
g : S 7→ R is assumed to be a differentiable function mapping a given state to a signal. For example,
the function g(⟨x, ẋ⟩) := ẋ2max − ẋ2i can be used to define an AP that specifies that the velocity of
the i-th component must be below an upper bound ẋmax. The labeling function L : S 7→ 2A returns
the set of APs that hold true for a given state. Specifically, an AP a := ‘g(s) > 0’ is included in the
label set L(s) of state s – i.e., s is labeled by a if and only if (iff) g(s) > 0. We also write, with a
slight abuse of notation, L(σ) := L(σ[0])L(σ[1]) . . . to denote the trace (sequences of labels) of a
path σ. Finally, we write M+=(M,L) to denote a labeled MDP.
LTL. LTL provides a high-level formal language for specifying the desired temporal behaviors.
Alongside the standard operators in propositional logic – negation (¬) and conjunction (∧) – LTL
offers two temporal operators, namely next (⃝) and until (U). The formal syntax of LTL is defined
by the following grammar (Baier & Katoen, 2008): φ := true | a | ¬φ | φ1 ∧ φ2 | ⃝φ |
φ1Uφ2, a ∈ A. The semantics of LTL formulas are defined over paths. Specifically, a path σ either
satisfies φ, denoted by σ |= φ, or not (σ ̸|= φ). The satisfaction relation is defined recursively as
follows: σ |= φ; if φ = a and a ∈ L(σ[0]) (i.e., a immediately holds); if φ = ¬φ′ and σ ̸|= φ′; if
φ = φ1 ∧ φ2 and (σ |= φ1) ∧ (σ |= φ2); if φ = φ1Uφ2 and there exists t ≥ 0 such that σ[t:] |= φ2

and for all 0 ≤ i < t, σ[i:] |= φ1. The remaining Boolean and temporal operators can be derived
via the standard equivalences such as eventually (♢φ := true U φ) and always (□φ := ¬(♢¬φ)).
LDBAs. If a path satisfies a given LTL formula φ can be checked by building an LDBA, denoted by
Aφ that is suitable for quantitative model-checking of MDPs (Sickert et al., 2016). An LDBA is a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

tuple Aφ=(Q, q0,Σ, δ, B) where Q is a finite set of states; q0∈Q is the initial state; Σ=2A is the set
of labels; δ : Q×(Σ∪{ε}) 7→ 2Q is a transition function triggered by labels; B ⊆ Q is the accepting
states. An LDBA Aφ accepts a path σ (i.e., σ|=φ), iff its trace L(σ) induces an LDBA execution
visiting some of the accepting states infinitely often, known as the Büchi condition (see Appx. D).
LTL Learning Problem. Our objective is to learn control policies that ensure given path speci-
fications are satisfied by a given labeled MDP. In stochastic environments, this objective translates
to maximizing the probability of satisfying those specifications. We consider specifications given as
LTL formulas since LTL provides a high-level formalism well-suited for expressing safety and other
temporal constraints in robotic systems–and, importantly, finite-memory policies suffice to satisfy
LTL specifications (Chatterjee & Henzinger, 2012). We now formalize the problem as follows:

Problem 1. Given a labeled MDP M+ and a LTL formula φ, find an optimal finite-memory policy
π∗φ that maximizes the probability of satisfying φ, i.e., π∗φ := argmax

π∈Π
Prσ∼M+

π

{
σ | σ |= φ

}
, where

Π is the set of policies and σ is a path drawn from the Markov chain (MC) M+
π induced by π.

4 ACCELERATED LEARNING FROM LTL USING DIFFERENTIABLE REWARDS
In this section, we present our approach for efficiently learning optimal policies that satisfy given
LTL specifications by leveraging differentiable simulators. We first define product MDPs and dis-
cuss their conventional use in generating discrete LTL-based rewards for RL. We then introduce our
method for deriving differentiable rewards using soft labeling, enabling gradient-based optimization
while preserving the logical structure of the specifications. We lastly establish a theorem yielding a
tunable bound on the discrepancy between discrete and differentiable LTL rewards.
Product MDPs. A product MDP is constructed by augmenting the states and actions of the orig-
inal MDP with indicator vectors representing the LDBA states. The state augmentations serve as
memory modes necessary for tracking temporal progress, while the action augmentations, referred
to as ε-actions, capture the nondeterministic ε-moves of the LDBA. The transition function of the
product MDP reflects a synchronous execution of the LDBA and the MDP; i.e., upon taking an
action, the MDP moves to a new state according to its transition probabilities, and the LDBA transi-
tions by consuming the label of the current MDP state.
Definition 2. A product MDP M = (S,A, f ,p0,B) is of a labeled MDP M+ = (S,A, f, p0, A, L)
with an LDBA Aφ = (Q,Σ=2A, δ, q0, B) derived from a given LTL formula φ such that S = S×Q

is the set of product states and A = A ×Q is the set of product actions where Q = [0, 1]|Q| is the
space set for the one-hot indicator vectors of automaton states; f : S × A 7→ S is the transition
function defined as

f(⟨s,qq⟩, ⟨a,qqε⟩) :=
{
⟨s′,qq′⟩ qε ̸∈ δ(q′, ε)

⟨s′,qqε⟩ qε ∈ δ(q′, ε)
(1)

for given s, s′,∈ S, a ∈ A and the indicator vectors qq,qq′ ,qqε ∈ Q for q, q′, qε ∈ Q, respec-
tively, where s′ := f(s, a) and q′ := δ(q, L(s)); p0 is the initial product state distribution where
p×0 (⟨s,qq⟩)[q = q0]; B = {⟨s,qq⟩ ∈ S | q ∈ B} is the set accepting product states. A product
MDP is said to accept a product path σ iff σ satisfies the Büchi condition, denoted as σ |= □♢B,
which is to visit some states in B infinitely often.

By definition, any product path accepted by the product MDP corresponds to a path in the original
MDP that satisfies the acceptance condition of the LDBA. Consequently, the satisfaction of the LTL
specification φ is reduced to ensuring acceptance in the product MDP. This reduces Problem 1 to
maximizing the probability of reaching accepting states infinitely often in the product MDP:
Lemma 1 (from Theorem 3 in (Sickert et al., 2016)). A memoryless product policy π∗φ that max-
imizes the probability of satisfying the Büchi condition in a product MDP M constructed from a
given labeled MDP M+ and the LDBA Aφ derived from a given LTL specification φ, induces a
policy π∗φ with a finite-memory captured by Aφ maximizing the satisfaction probability of φ in M+.

Discrete LTL Rewards. The idea is to derive LTL rewards from the acceptance condition of the
product MDP to train control policies via RL approaches. Specifically, we consider the approach
proposed in (Bozkurt et al., 2024) that uses carefully crafted rewards and state-dependent discount-
ing based on the Büchi condition such that an optimal policy maximizing the expected return is
also an objective policy π∗φ maximizing the satisfaction probabilities as defined in Lemma 1, as
formalized below:
Theorem 1. For a given product MDP M, the expected return for a policy π approaches the
probability of satisfying the Büchi acceptance condition as the discount factor γ goes to 1; i.e.,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

limγ→1− Eσ∼Mπ [G(σ)] = Prσ∼Mπ (σ |= □♢B); if the return G(σ) is defined as follows:

G(σ):=

∞∑
t=0

R(σ[t])

t−1∏
i=0

Γ(σ[i]), R(s):=

{
1−β s∈B
0 s/∈B , Γ(s):=

{
β s∈B
γ s/∈B (2)

where
∏−1

i=0 :=1, β is a function of γ satisfying limγ→1−
1−γ
1−β = 0, R :S 7→ [0, 1) and Γ:S 7→(0, 1)

are state-dependent reward and the discount functions respectively.
The proof can be found in (Bozkurt et al., 2024). The idea is to encourage the agent to repeatedly
visit an accepting state as many times as possible by assigning a larger reward to the accepting
states. Further, the rewards are discounted less in non-accepting states to reflect that the number of
visitations to non-accepting states are not important. The LTL rewards provided this approach is
that the rewards are very sparse; depending on the environment and the structure of the automaton,
the agent might need to blindly explore a large portion of the state space before getting a nonzero
reward, which constitutes the main hurdle in learning from LTL specifications.
Differentiable LTL Rewards. We propose employing differentiable reinforcement learning (RL)
algorithms and simulators to mitigate the sparsity issue and accelerate learning. However, the
standard LTL rewards described earlier are not only sparse but discrete, rendering them non-
differentiable with respect to states and actions. This lack of differentiability primarily stems from
two factors: the binary state-based reward function and discrete automaton transitions. To address
this challenge, we introduce probabilistic ”soft” labels. We start by defining the probability that a
given AP, denoted as a := ‘g(s) > 0’, belongs to the label L(s) of a state s. Formally:

Pr(a ∈ L(s)) = Pr(g(s) > 0) := h(g(s)) =
1

1 + exp(−g(s))
. (3)

Although we use the widely adopted sigmoid function here1, any differentiable cumulative distribu-
tion function (CDF) h : R 7→ [0, 1] could be applied. Building upon these probabilities, we define
the probability associated with a label l as follows:

Pr(L(s) = l) =
∏
a∈l

Pr(a ∈ L(s))
∏
a̸∈l

(1− Pr(a ∈ L(s))). (4)

These probabilistic labels induce probabilistic automaton transitions, causing the controller to ob-
serve automaton states probabilistically. Consequently, instead of modeling automaton states as
deterministic indicator vectors in product MDPs, we represent them as probabilistic superpositions
over all possible automaton states. By doing so, we design differentiable transitions and rewards
within the product MDP. Let fL : S×Q 7→ Q denote the function that updates the automaton state
probabilities based on the LDBA transitions triggered by probabilistic labels, and let q denote the
vector where each element qq is the probability of being in automaton state q, then we can define:

fL(⟨s,q⟩) = q′ where q′q′=
∑
q

qq

∑
l∈Lq,q′

Pr(L(s)=l) and Lq,q′ :={l | q′=δ(q, l)}. (5)

Intuitively, the probability of transitioning to a subsequent automaton state q′ is computed by sum-
ming probabilities across all current automaton states q and labels l ∈ Lq,q′ capable of leading to
state q′. This computation can be efficiently done through differentiable matrix multiplication.

The remaining hurdle is the binary ε-actions available to the controller, which trigger ε-transitions in
the LDBA. Similarly to the soft labels approach, ε-actions can become differentiable by representing
the probabilities of the ε-transitions to be triggered. Let fε : Q ×Q 7→ Q denote the function up-
dating automaton state probabilities based on the ε-action taken, and let qε denote the vector whose
elements indicate the probabilities of taking the ε-actions leading to the corresponding automaton
states, we then define:
fε(q,q

ε) =q′ where q′q′=
∑

q∈Qε,q′

qqq
ε
q′+

∑
q∈Qq′,ε

qq′q
ε
q, Qε,q′:={q | q′∈δ(q,ε)}, Qq′,ε:={q | q ̸∈δ(q′, ε)}. (6)

Conceptually, the probability of transitioning to automaton state q′ involves two scenarios: (the first
summation in (6)) the probability of moving to q′ via valid ε-transitions, and (the second summation
in (6)) the probability of remaining in q′ after trying to leave from q′ via nonexistent ε-transitions.
These vector computations can be efficiently performed in a differentiable manner. We can formulate
the complete transition function f by composing fL, fε, and f as follows:

f(⟨s,q⟩, ⟨a,qε⟩) := ⟨f(s, a), fL(
〈
s, fε(q,q

ε)⟩)
〉
. (7)

1For the correctness of LTL, Pr(g(s) > 0) must be exactly 0 or 1 for values below or above certain thresh-
olds. In practice, this is not an issue, as overflow behavior of sigmoid ensures this condition is satisfied.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

p = park ¬grass 0.0 2.5 5.0 7.5 10.0
Deceleration (m/s2)

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn
/P

ro
ba

bi
lit

y

0.0 2.5 5.0 7.5 10.0
Deceleration (m/s2)

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Gr
ad

ie
nt

LTL Satisfaction Probability Return (Discrete LTL) Return (Differentiable LTL)

Figure 1: LTL Returns and Derivatives. Left: The parking scenario where the car must brake to stop in the
parking area without entering the grass field (φp). Middle: LTL satisfaction probability and return estimates
from discrete and differentiable LTL formulations as functions of deceleration. Right: LTL return gradients
with respect to deceleration and their standard deviation. The key challenge in learning from LTL arises from
slightly-sloped regions and sharp changes in the returns produced by discrete LTL rewards. Our differentiable
LTL approach not only smooths these abrupt changes but also enables the use of low-variance first-order
gradient estimates essential for effective learning in slightly-sloped regions.

This transition function first executes the ε-actions, then performs the LDBA transitions triggered by
state labels to update the automaton state probabilities, while applying the given action to update the
MDP states. The function f is fully differentiable with respect to s, q, a, and qε. We can now obtain
a reward R : Q 7→ (0, 1) and a discounting function D : Q 7→ (0, 1) that are also differentiable
with respect state and actions as follows:

R(⟨s,q⟩) := (1− β)
∑
q∈B

qq, D(q) := β
∑
q∈B

qq + γ
∑
q ̸∈B

qq (8)

These differentiable reward, discounting and functions allow us to obtain first-order gradient esti-
mates ∇1

θJ(θ) := Eσ∼Mπθ
[∇θGH(σ)] which are known to exhibit lower variance compared to

zeroth-order estimates (Xu et al., 2022). Such first-order estimates can be effectively utilized by dif-
ferentiable RL algorithms to accelerate learning. In the following example, we illustrate employing
these lower-variance gradient estimates is particularly crucial when learning from LTL rewards.
Parking Example. Consider a parking scenario in which the vehicle starts with an initial velocity
of v0 = 10 m/s. The controller applies the brakes with a constant deceleration a ∈ [0 m/s2, 10 m/s2]
over the next 10 seconds, with the goal of bringing the car to rest inside the parking area. For
safety, the vehicle must not enter the grass field before reaching the parking zone on the right-hand
side. We formalize these requirements in LTL as φp=♢□park ∧ □¬grass where the parking
area and the grass field are defined as park := (x>10 m ∧ x<20 m) ∨ (x>30 m ∧ x<40 m) and
grass := x>20 m ∧ x<30 m, respectively.
Fig. 1 illustrates this task, including satisfaction probabilities, returns, and gradients with respect to
deceleration. The satisfaction probability is 1 for deceleration values between 2.5 m/s2 and 5.0 m/s2,
and 0 outside this range. The differentiable LTL returns closely match the discrete ones, except near
the boundaries of the satisfaction region, where the differentiable version produces smoother tran-
sitions. This smoothness is particularly evident in the gradient plots. Although differentiable LTL
rewards yield smoother return curves, learning remains challenging due to the small gradient mag-
nitudes across most of the parameter space except near the satisfaction boundaries. For instance,
in the region between 0.0 m/s2 and 2.5 m/s2, the returns increase with deceleration, but noisy gra-
dient estimates can still lead the learner away from the satisfaction region. Therefore, obtaining
low-variance gradient estimates is especially beneficial when learning from LTL, where most of the
landscape requires sharper gradients for effective optimization. See Appx. E for comparison.
Discrete vs. Differentiable LTL Rewards. We now show that the maximum discrepancy between
the discrete and differentiable values can be upper-bounded for a given tolerance parameter ζ and an
activation function h in the theorem below. Since, by Theorem 1, the discrete values converge to the
satisfaction probabilities, the bound is also valid in the limit for the actual satisfaction probabilities.
Theorem 2. Let ς be the tolerance on the signal bounds of atomic propositions, and let p be the
probability associated with ς (i.e., p := Pr(ς > 0) = h(ς)) as in (3). Let Gdisc. and Gdiff. de-
note the returns obtained via discrete and differentiable rewards, respectively. Then the maximum
discrepancy between them is upper bounded as:

|Gdisc.(σ)−Gdiff.(σ)| < 1

1 + 1−β
(1−p)|A|

=
1

1 + 1−β
(1−h(ς))|A|

(9)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where β is the discount factor for accepting states, as defined in (8). By linearity of expectation, this
result immediately extends to the expected return (values) in stochastic environments; i.e, the upper
bound above holds for |E[Gdisc.(σ)] − E[Gdiff.(σ)]| where expectations are over trajectories drawn
under any given policy.

Proof. The maximum discrepancy between Gdisc. and Gdiff. occurs when all probabilistic transitions
associated with soft labels yield positive differentiable rewards while their corresponding discrete
rewards are zero (or vice versa). For a given tolerance ς , the probability of incorrectly evaluating
all atomic propositions under soft labels is ρ := (1 − p)|A|, where A denotes the set of all atomic
propositions defined in the LTL grammar. In this worst-case scenario, the differentiable return for a
trajectory σ, where all such transitions lead to accepting states, is:

Gdiff.(σ) ≤
∞∑
t

ρ(1− ρ)tβt =
ρ

1− (1− ρ)β
=

ρ

(1− β) + ρβ
=

1

1 + 1−β
ρ

=
1

1 + 1−β
(1−p)|A|

.

Since Gdisc. = 0, this expression provides the upper bound on the maximum discrepancy.

5 EXPERIMENTS
In this section, through simulated experiments, we show learning from differentiable LTL rewards
offered by our method is significantly faster than learning from discrete LTL rewards.

Algorithm 1 Differentiable RL with LTL
Require: MDP M , LTL formula φ, Policy πθ

Derive LDBA Aφ and APs A from φ
Derive f (7) and R,D (8) from Aφ

while True do
for i = 1, 2, ..., N do

Initialize q(0)∼Aφ, s(0)∼M , G←0
for t = 1, 2, ..., H do

Get action ⟨a,qε⟩ ∼ πθ(⟨s(t-1),q(t-1)⟩)
Execute ε-action q′←fε(q,q

ε)

Execute label transition q(t)←fL(⟨s,q′⟩)
Execute MDP action s(t) ← f(s, a)

Compute reward r ← R(q(t))

Update return G
(i)
t ← G

(i)
t−1 + D(q) · r

end for
end for
Calculate ∇̂[1]

θ J(θ)← 1
N

∑N
i=1∇θG

(i)
H

Train πθ using ∇̂[1]
θ J(θ)

end while

Implementation Details. We implemented our ap-
proach in Python utilizing the PyTorch-based differ-
entiable physics simulator dFlex introduced in (Xu
et al., 2022). We used an NVIDIA GeForce RTX 2080
GPU, 4 Intel(R) Xeon(R) Gold 5218 CPU cores, and
32 gigabytes memory for each experiment. Specifi-
cally, we generate the automaton description using Owl
(Kretı́nský et al., 2018) and parse it using Spot (Duret-
Lutz et al., 2016). We then construct reward and tran-
sition tensors from the automata. We then compute the
probabilities for each observations as explained in the
previous section using a sequence of differentiable vec-
tor operations using PyTorch. Lastly, using the con-
structed transition and reward tensors, we update the
automaton states and provide rewards. The overall ap-
proach is summarized in Algorithm 1.
Baselines. We use two widely adopted and representative state-of-the-art (SOTA) model-free RL
algorithms as our baseline non-differentiable RL methods (̸∂RLs): the on-policy Proximal Policy
Optimization (PPO) (Schulman et al., 2017) and the off-policy Soft Actor-Critic (SAC) (Haarnoja
et al., 2018). For differentiable RL baselines (∂RLs), we employ SHAC and AHAC, which, to the
best of our knowledge, represent the SOTA in this category. For each environment and baseline, we
used the tuned hyperparameters from (Georgiev et al., 2024).
Metric. We evaluate performance in terms of the collected LTL rewards averaged over 5 seeds
since they can serve as proxies for satisfaction probabilities. We considered two criteria: (1) the
maximum return achieved and (2) the speed of convergence. To maintain consistency, we used
differentiable LTL rewards across all baselines as, for non-differentiable baselines, we observed no
performance difference between the differentiable and discrete LTL rewards.
CartPole. The CartPole environment consists of a cart that moves along a one-dimensional track,
with a pole hinged to its top that can be freely rotated by applying torque. The system yields
a 5-dimensional observation space and a 1-dimensional action space. The control objective is to
move the tip of the pole through a sequence of target positions while maintaining the cart within a
desired region as much as possible and ensuring the velocity of the cart always remains within safe
boundaries. We capture these requirements in LTL as follows:
φcartpole=□‘|cart vx|<v0’︸ ︷︷ ︸

safety

∧□♢‘|cart x|<x0’︸ ︷︷ ︸
repetition

∧♢
(
‘|pole z-z0|<∆’∧♢‘|pole z-z1|<∆’

)︸ ︷︷ ︸
reachability & sequencing

.

Here, cart x, cart vx, and pole z represent the cart position, the cart velocity, and the pole
height respectively. This formula demonstrates how LTL can be leveraged to encode both complex
safety constraints and performance objectives. We set x0 = 10 m, v0 = 10 m/s as boundaries,
z0 = −1 m, z1 = 1 m as the target positions, and ∆ = 25 cm as the allowable deviation.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

20 40 60 80
Steps (M)

0

.2

.4

.6

.8

1

Re
tu

rn
 (L

TL
 S

at
. P

ro
b.

 E
st

.) CartPole

20 40 60 80

Hopper

20 40 60 80

Cheetah

20 40 60 80

Ant

Max Max Max Max
SHAC () AHAC () PPO (¬) SAC (¬)

Figure 2: Comparison Across Environments: Differentiable vs. Discrete LTL Rewards. The wider plots
show the learning curves of all baseline algorithms, while the narrower plots on the right display the maximum
returns achieved after 100 M steps. All results are averaged over 5 random seeds, and the curves are smoothed
using max and uniform filters for visual clarity. The reported returns, bounded between 0 and 1, serve as
proxies for the probability of satisfying the LTL specifications. In all the environments algorithms utilizing
differentiable LTL rewards (SHAC, AHAC) rapidly learn near-optimal policies, whereas those relying on
discrete LTL rewards (PPO, SAC), display high variance, converge slowly, or stuck with sub-optimal/near-
zero-return policies.

Legged Robots. We consider three legged-robot environments: Hopper, Cheetah, and Ant. The
Hopper environment features a one-legged robot with 4 components and 3 joints, resulting in a 10-
dimensional state space and a 3-dimensional action space. The Cheetah environment consists of
a two-legged robot with 8 components and 6 joints, yielding a 17-dimensional state space and a
6-dimensional action space. The Ant environment includes a four-legged robot with 9 components
and 8 joints, producing a 37-dimensional state space and an 8-dimensional action space. In all three
environments, the control task requires always keeping the torso/tip of the robot above a critical
safety height, maintaining a certain distance between the torso/tip and the critical height as often as
possible, and accelerating the robot forward, and then bringing the robot to a full stop. We formalize
this task in LTL as follows:
φlegged=□‘torso z>z0’︸ ︷︷ ︸

safety

∧□♢‘torso z>z1’︸ ︷︷ ︸
repetition

∧♢
(
‘torso vx>v1’∧♢‘torso vx<v0’

)︸ ︷︷ ︸
reachability & sequencing

. (10)

Here, torso z and torso vx denote the height and horizontal velocity of the robots. This for-
mula captures several key aspects of LTL, including, safety, reachability, sequencing, and repetition.
The values of z0 and z1 were chosen based on the torso height of each robot in their referential
system. Specifically, we used z0 = −110 cm, z1 = −105 cm for Hopper; z0 = −75 cm, z1 = −70
cm for Cheetah; and z0 = 0 cm, z1 = 5 cm for Ant, where z0 denotes the critical safety height and
z1 represents a safe margin above it. We set v1 = 1 m/s, v1 = 3 m/s, and v1 = 1.5 m/s for Hopper,
Cheetah, and Ant, respectively, reflecting movement speeds relatively challenging yet achievable for
each of the robot. For deceleration, we set v0 = 0 m/s for all the environments. An illustration of a
policy learned from this specification for Cheetah is provided in Fig. 4 in Appx. F.
Results. Fig. 2 presents our simulation results. Across all environments, ∂RL algorithms that
leverage our differentiable LTL rewards consistently outperform ̸∂RL algorithms in terms of both
maximum return achieved and learning speed from the LTL specifications.
CartPole. The safety specification induces an automaton with three states, each having 64
transitions–but only one of these transitions yields a reward. This extreme sparsity, even in a low-
dimensional state space, severely hinders the learning process for ̸∂RLs, as shown in the leftmost plot
of Fig. 2. In contrast, ∂RL algorithms leverage the gradients provided by differentiable rewards, en-
abling them to efficiently learn policies that nearly satisfy the LTL specification. Specifically, ∂RLs
converge to near-optimal policies (Pr>0.8) within just 20 M steps, whereas ̸∂RLs (SAC: all seeds;
PPO: one seed) fail to learn any policy that achieves meaningful reward, even after 100 M steps.
Legged Robots. As we move to environments with higher-dimensional state spaces–10, 17, and 37
dimensions for Hopper, Cheetah, and Ant, respectively–even relatively simple LTL specifications
pose a significant challenge for ̸∂RLs. The automata derived from the LTL specifications in these
environments consists of four states, each with 16 transitions, of which four transitions in the third
state yield rewards. Reaching this state, however, requires extensive blind exploration of the state
space, making it significantly hard for ̸∂RLs to learn optimal control policies. On the other hand,
∂RLs, guided by LTL reward gradients, quickly identify high-reward regions of the state space and
learn effective policies.

For Hopper, ∂RLs converge to near-optimal policies (Pr>0.8) within 20 M steps, while PPO requires
the full 100 M steps to converge, and one SAC seed gets trapped in a local optimum. For Cheetah,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

∂RLs attain optimal performance (Pr>0.9), whereas PPO converges to a suboptimal policy even
after 100 M steps, and SAC consistently fails by getting stuck in poor local optima. For Ant, ∂RLs
again learn near-optimal policies rapidly, while ̸∂RLs converge only to suboptimal policies.

Generalization to Reward Machines. Our approach renders automaton-based rewards differen-
tiable and can therefore be readily applied to frameworks such as RMs. We conducted analogous
experiments in the Cheetah environment described in (Icarte et al., 2022). Specifically, we used
the same RMs from TASK 1 and TASK 2 and made them differentiable with our method. We then
trained policies using the SHAC algorithm. Table 1 reports the returns obtained with the differen-
tiable RMs alongside the best returns reported in Figure 10 of (Icarte et al., 2022). Our differentiable
RM-based approach significantly outperforms all discrete baselines from (Icarte et al., 2022).

Table 1: Comparison between differentiable RMs and discrete RMs for Cheetah.

TASK 1 TASK 2
Steps (K) SHAC (∂RL) CRM (̸∂RL) SHAC (∂RL) HRM+RS (̸∂RL)

500 7.5± 3.5 K ≈ 5.0± 0.7 K 10.9± 3.5 K ≈ 7.0± 1.6 K
1000 12.2± 1.9 K ≈ 7.0± 0.4 K 16.6± 1.4 K ≈ 8.1± 1.9 K
1500 11.9± 2.8 K ≈ 7.5± 0.3 K 18.6± 1.7 K ≈ 9.1± 2.2 K
2000 13.7± 3.2 K ≈ 8.0± 0.4 K 19.4± 1.9 K ≈ 9.1± 2.0 K
2500 14.5± 2.7 K ≈ 8.2± 0.3 K 21.0± 2.0 K ≈ 8.7± 2.6 K
3000 15.4± 2.5 K ≈ 8.3± 0.3 K 21.1± 1.9 K ≈ 9.1± 2.8 K

Ablation Study. To isolate the impact of differentiability of LTL rewards from inherent environ-
ment properties, we conducted a simple ablation study comparing ∂RLs and ̸∂RLs under simplified
versions of the LTL formulas from our earlier experiments:

φ′cartpole := ♢‘|pole z-z0|<∆’, φ′legged := ♢‘torso vx>v1’ (11)
using z0 = −1 m, ∆ = 25 cm for Cartpole, and v1 = 50 cm/s for all the legged-robot environments.
These simplified formulas yield one-state automata with 4 and 2 transitions, respectively, of which
one is accepting. As such, they lack the complexity that makes learning from LTL challenging.
Each of the baselines, regardless of differentiability, learns an optimal policy (Pr>0.9) for all the
environments after 100 M steps (see Fig. 7 in Appx. G). However, when comparing these results to
those in Fig. 2, we observe only a minor performance drop for ∂RLs, whereas the performance of
̸∂RLs degrades dramatically—for some cases, from near satisfaction to complete failure—as LTL
complexity increases. These results support our hypothesis that the performance advantage of ∂RLs
over ̸∂RLs in Fig. 2 arises primarily from leveraging the differentiability of LTL rewards provided
by our approach, rather than from environment-specific properties utilized by ∂RLs.

6 CONCLUSION
In this work, we tackle the challenge of scalable RL for temporally extended and formally speci-
fied tasks. By adopting LTL as our specification framework, we ensure objective correctness and
avoid the reward-misspecification issues common in conventional RL. To overcome the learning in-
efficiencies caused by sparse logical rewards, we introduce a method that leverages differentiable
simulators, enabling gradient-based learning directly from LTL objectives without compromising
expressiveness or correctness. Our approach employs soft-labeling techniques that preserve differ-
entiability through the transitions of automata derived from LTL formulas, yielding an end-to-end
differentiable learning framework. Across a series of simulated experiments, we show that this
framework substantially accelerates learning compared to state-of-the-art non-differentiable base-
lines, pointing toward more reliable and scalable deployment of autonomous systems in complex
real-world environments.
Our approach accelerates learning from LTL specifications by leveraging differentiable RL algo-
rithms and gradients provided by differentiable simulators. Consequently, the overall performance
of our method is inherently tied to the quality and efficiency of the underlying simulators and RL
algorithms. A further consideration is that our method introduces an additional hyperparameter, the
activation function used for probability estimation, which should be tuned for optimal performance.
Another challenge lies in the formalization of LTL specifications: while LTL offers a more intuitive
and structured way to specify tasks than manual reward engineering, it still requires familiarity with
formal logic and sufficient domain knowledge to define meaningful bounds. An immediate direction
for future work is to design LTL-specific differentiable RL methods that exploit the compositional
structure of the derived automata to enable more efficient exploration, learning, and transfer.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. All experiments in this study were conducted
exclusively in simulated environments; therefore, no human participants, sensitive data, or real-
world deployments were involved, thereby eliminating ethical risks associated with those settings.

REPRODUCIBILITY STATEMENT

The source code needed to reproduce the results reported in this manuscript is included in the sup-
plementary material, together with a README.md explaining the required steps. Upon acceptance,
we will make the complete source code publicly available.

REFERENCES

D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta. Q-learning for robust satisfaction of
signal temporal logic specifications. In 2016 IEEE 55th Conference on Decision and Control
(CDC), pp. 6565–6570, Dec 2016. doi: 10.1109/CDC.2016.7799279.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
crete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Szilárd Aradi. Survey of deep reinforcement learning for motion planning of autonomous vehicles.
IEEE Transactions on Intelligent Transportation Systems, 23(2):740–759, 2022.

Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony Bharath. Deep rein-
forcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38, 2017.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, Cambridge, MA,
USA, 2008.

Felix Berkenkamp, Matteo Turchetta, Angela P Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. NIPS, 2017. doi: 10.48550/arxiv.1705.08551.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Control synthesis from linear temporal logic
specifications using model-free reinforcement learning. In International Conference on Robotics
and Automation (ICRA), pp. 10349–10355, 2020a.

A. K. Bozkurt, Y. Wang, and M. Pajic. Secure planning against stealthy attacks via model-free
reinforcement learning. In International Conference on Robotics and Automation (ICRA), pp.
10656–10662. IEEE, 2021a.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Model-free reinforcement learning for
stochastic games with linear temporal logic objectives. In International Conference on Robotics
and Automation (ICRA), pp. 10649–10655. IEEE, 2021b.

A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic. Learning optimal controllers for temporal
logic specifications in stochastic games. Transactions on Automatic Control (TAC), 2024.

Alper Kamil Bozkurt. Toward Assured Autonomy With Model-Free Reinforcement Learning.
PhD thesis, 2024. URL https://www.proquest.com/dissertations-theses/
toward-assured-autonomy-with-model-free/docview/3059112953/se-2.
Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in the
individual underlying works; Last updated - 2024-06-16.

Alper Kamil Bozkurt, Yu Wang, Michael M. Zavlanos, and Miroslav Pajic. Control synthesis from
linear temporal logic specifications using model-free reinforcement learning. In Proceedings of
the 35th International Conference on Robotics and Automation (ICRA), pp. 10349–10355, 2020b.

10

https://www.proquest.com/dissertations-theses/toward-assured-autonomy-with-model-free/docview/3059112953/se-2
https://www.proquest.com/dissertations-theses/toward-assured-autonomy-with-model-free/docview/3059112953/se-2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tomáš Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtěch Forejt, Jan Křetı́nskỳ, Marta
Kwiatkowska, David Parker, and Mateusz Ujma. Verification of Markov decision processes using
learning algorithms. In Proceedings of the 12th International Symposium on Automated Technol-
ogy for Verification and Analysis, pp. 98–114, 2014.

Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan. Mod-
ular deep reinforcement learning for continuous motion planning with temporal logic. RA-L, 6
(4):7973–7980, 2021a. ISSN 2377-3766. doi: 10.1109/lra.2021.3101544.

Mingyu Cai, Shaoping Xiao, Baoluo Li, Zhiliang Li, and Zhen Kan. Reinforcement learning based
temporal logic control with maximum probabilistic satisfaction. ICRA, 00:806–812, 2021b. doi:
10.1109/icra48506.2021.9561903.

Mingyu Cai, Erfan Aasi, Calin Belta, and Cristian-Ioan Vasile. Overcoming exploration: Deep re-
inforcement learning for continuous control in cluttered environments from temporal logic speci-
fications. RA-L, 8(4):2158–2165, 2023a. ISSN 2377-3766. doi: 10.1109/lra.2023.3246844.

Mingyu Cai, Shaoping Xiao, Junchao Li, and Zhen Kan. Safe reinforcement learning under temporal
logic with reward design and quantum action selection. Scientific Reports, 13(1):1925, 2023b.
doi: 10.1038/s41598-023-28582-4.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano, and Sheila A
McIlraith. Ltl and beyond: Formal languages for reward function specification in reinforcement
learning. In IJCAI, volume 19, pp. 6065–6073, 2019.

Justin Carpentier and Nicolas Mansard. Analytical derivatives of rigid body dynamics algorithms.
RSS, 2018. doi: 10.15607/rss.2018.xiv.038.

Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic ω-regular games. Journal
of Computer and System Sciences, 78(2):394–413, 2012.

Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware motion planning with
deep reinforcement learning. In 2017 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 1343–1350. IEEE, 2017.

Richard Cheng, Gabor Orosz, Richard M. Murray, and Joel W. Burdick. End-to-end safe reinforce-
ment learning through barrier functions for safety-critical continuous control tasks. AAAI, 2019.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing sys-
tems, 31, 2018.

Bohan Cui, Keyi Zhu, Shaoyuan Li, and Xiang Yin. Security-aware reinforcement learning under
linear temporal logic specifications. ICRA, 00:12367–12373, 2023. doi: 10.1109/icra48891.2023.
10160753.

Jingjing Cui, Yuanwei Liu, and Arumugam Nallanathan. Multi-agent reinforcement learning-based
resource allocation for uav networks. IEEE Transactions on Wireless Communications, 19(2):
729–743, 2019.

Rongxin Cui, Chenguang Yang, Yang Li, and Sanjay Sharma. Adaptive neural network control
of auvs with control input nonlinearities using reinforcement learning. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 47(6):1019–1029, 2017.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In International conference on
artificial intelligence and statistics, pp. 3304–3312. PMLR, 2021.

Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech
Matusik. DiffPD: Differentiable projective dynamics. TOG, 41(2):1–21, 2021. ISSN 0730-0301.
doi: 10.1145/3490168.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud, Etienne Re-
nault, and Laurent Xu. Spot 2.0—a framework for ltl and-automata manipulation. In Proceed-
ings of the 14th International Symposium on Automated Technology for Verification and Analysis
(ATVA), pp. 122–129, 2016.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation. NeurIPS, 2021.

Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with temporal
logic constraints, 2014a. arXiv:1404.7073 [cs.SY].

Jie Fu and Ufuk Topcu. Probably approximately correct MDP learning and control with temporal
logic constraints. In Robotics: Science and Systems Conference, 2014b.

Javier Garcıa and Fernando Fernández. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437–1480, 2015.

Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bacher, Bernhard Thomaszewski, and Stelian
Coros. ADD: Analytically differentiable dynamics for multi-body systems with frictional contact.
TOG, 2020.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learning in contact-rich differentiable simulation. ICML, 2024. doi: 10.
48550/arxiv.2405.17784.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Ernst Moritz Hahn, Guangyuan Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. Lazy probabilis-
tic model checking without determinisation. In Proceedings of the 26th International Conference
on Concurrency Theory (CONCUR), pp. 354, 2015.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Omega-regular objectives in model-free reinforcement learning. In Proceedings of
the 25th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), pp. 395–412, 2019.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik
Wojtczak. Model-free reinforcement learning for stochastic parity games. In 31st International
Conference on Concurrency Theory (CONCUR 2020). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2020.

Hosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Certified reinforcement learning with
logic guidance. Artificial Intelligence, 322:103949, 2023. ISSN 0004-3702. doi: 10.1016/j.artint.
2023.103949.

Mohammadhosein Hasanbeig, Yiannis Kantaros, Alessandro Abate, Daniel Kroening, George J Pap-
pas, and Insup Lee. Reinforcement learning for temporal logic control synthesis with probabilistic
satisfaction guarantees, 2019. arXiv:1909.05304 [cs.LO].

Eric Heiden, Miles Macklin, Yashraj Narang, Dieter Fox, Animesh Garg, and Fabio Ramos. DiSECt:
A differentiable simulation engine for autonomous robotic cutting. RSS, 2021. doi: 10.15607/rss.
2021.xvii.067.

Kai-Chieh Hsu, Vicenç Rubies-Royo, Claire J Tomlin, and Jaime F Fisac. Safety and liveness
guarantees through reach-avoid reinforcement learning. RSS, 2021.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jia-
jun Wu, Daniela Rus, and Wojciech Matusik. ChainQueen: A real-time differentiable physical
simulator for soft robotics. ICRA, 00:6265–6271, 2019. doi: 10.1109/icra.2019.8794333.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. DiffTaichi: Differentiable programming for physical simulation. ICLR, 2020. doi:
10.48550/arxiv.1910.00935.

Zhiao Huang, Yuanming Hu, Tao Du, Siyuan Zhou, Hao Su, Joshua B Tenenbaum, and Chuang
Gan. PlasticineLab: A soft-body manipulation benchmark with differentiable physics. ICLR,
2021. doi: 10.48550/arxiv.2104.03311.

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

R. T. Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for high-level
task specification and decomposition in reinforcement learning. In International Conference on
Machine Learning (ICML), pp. 2107–2116, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Reward ma-
chines: Exploiting reward function structure in reinforcement learning. JAIR, 2022.

Mathias Jackermeier and Alessandro Abate. Deepltl: Learning to efficiently satisfy complex ltl
specifications for multi-task rl. In International Conference on Learning Representations, 2025.

Yiannis Kantaros. Accelerated reinforcement learning for temporal logic control objectives. IROS,
00:5077–5082, 2022. doi: 10.1109/iros47612.2022.9981759.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Jan Kretı́nský, Tobias Meggendorfer, and Salomon Sickert. Owl: A library for ω-words, automata,
and LTL. In Proceedings of the 16th International Symposium on Automated Technology for
Verification and Analysis (ATVA), volume 11138 of LNCS, pp. 543–550, 2018.

Xuan-Bach Le, Dominik Wagner, Leon Witzman, Alexander Rabinovich, and Luke Ong. Reinforce-
ment learning with LTL and $\ omega$-regular objectives via optimality-preserving translation
to average rewards. NeurIPS, 2024. doi: 10.48550/arxiv.2410.12175.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Karen Leung, Nikos Aréchiga, and Marco Pavone. Backpropagation through signal tempo-
ral logic specifications: Infusing logical structure into gradient-based methods. The Interna-
tional Journal of Robotics Research, 42(6):356–370, 2023. ISSN 0278-3649. doi: 10.1177/
02783649221082115.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

X. Li, C. Vasile, and C. Belta. Reinforcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3834–3839,
Sep. 2017. doi: 10.1109/IROS.2017.8206234.

Xiao Li, Zachary Serlin, Guang Yang, and Calin Belta. A formal methods approach to inter-
pretable reinforcement learning for robotic planning. Science Robotics, 4(37), 2019. doi:
10.1126/scirobotics.aay6276.

Junbang Liang, Ming C. Lin, and Vladlen Koltun. Differentiable cloth simulation for inverse prob-
lems. NeurIPS, pp. 1–22, 2019. ISSN 0066-5452. doi: 10.1007/978-3-319-51658-5 1.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Chi Harold Liu, Zheyu Chen, Jian Tang, Jie Xu, and Chengzhe Piao. Energy-efficient uav control
for effective and fair communication coverage: A deep reinforcement learning approach. IEEE
Journal on Selected Areas in Communications, 36(9):2059–2070, 2018.

Huimin Lu, Yujie Li, Shenglin Mu, Dong Wang, Hyoungseop Kim, and Seiichi Serikawa. Motor
anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet of
Things Journal, 5(4):2315–2322, 2018.

Yue Meng and Chuchu Fan. Signal temporal logic neural predictive control. RAL, 8(11):7719–7726,
2023. ISSN 2377-3766. doi: 10.1109/lra.2023.3315536.

Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you
need. arXiv preprint arXiv:2111.05803, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning, pp.
4065–4074. PMLR, 2018.

Haixia Peng and Xuemin Shen. Multi-agent reinforcement learning based resource management in
mec-and uav-assisted vehicular networks. IEEE Journal on Selected Areas in Communications,
39(1):131–141, 2020.

Mateo Perez, Fabio Somenzi, and Ashutosh Trivedi. A PAC learning algorithm for LTL and omega-
regular objectives in MDPs. AAAI, 38(19):21510–21517, 2024. ISSN 2374-3468. doi: 10.1609/
aaai.v38i19.30148.

Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C Lin. Efficient differentiable simulation
of articulated bodies. ICML, 2021. doi: 10.48550/arxiv.2109.07719.

Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan. Learning safe multi-
agent control with decentralized neural barrier certificates. ICLR, 2021. doi: 10.48550/arxiv.
2101.05436.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Daqian Shao and Marta Kwiatkowska. Sample efficient model-free reinforcement learning from
ltl specifications with optimality guarantees. In Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, IJCAI ’23, 2023. ISBN 978-1-956792-03-4. doi:
10.24963/ijcai.2023/465. URL https://doi.org/10.24963/ijcai.2023/465.

Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Křetı́nský. Limit-deterministic Büchi au-
tomata for linear temporal logic. In Swarat Chaudhuri and Azadeh Farzan (eds.), Computer
Aided Verification, pp. 312–332, Cham, 2016. Springer International Publishing. ISBN 978-3-
319-41540-6.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

14

https://doi.org/10.24963/ijcai.2023/465

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and character-
izing reward gaming. Advances in Neural Information Processing Systems, 35:9460–9471, 2022.

Sanghyun Son, Laura Yu Zheng, Ryan Sullivan, Yi-Ling Qiao, and Ming C. Lin. Gradient informed
proximal policy optimization. NeurIPS, 2023.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning
by pid lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do differentiable simulators
give better policy gradients? In International Conference on Machine Learning, pp. 20668–
20696. PMLR, 2022.

Daiying Tian, Hao Fang, Qingkai Yang, Haoyong Yu, Wenyu Liang, and Yan Wu. Reinforcement
learning under temporal logic constraints as a sequence modeling problem. Robotics and Au-
tonomous Systems, 161:104351, 2023. ISSN 0921-8890. doi: 10.1016/j.robot.2022.104351.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith. Teaching mul-
tiple tasks to an RL agent using LTL. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 452–461. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2018.

Christos K. Verginis, Cevahir Koprulu, Sandeep Chinchali, and Ufuk Topcu. Joint learning of reward
machines and policies in environments with partially known semantics. Artificial Intelligence,
333:104146, 2024. ISSN 0004-3702. doi: 10.1016/j.artint.2024.104146.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Cameron Voloshin, Hoang M Le, Swarat Chaudhuri, and Yisong Yue. Policy optimization with
linear temporal logic constraints. NeurIPS, 2022. doi: 10.48550/arxiv.2206.09546.

Cameron Voloshin, Abhinav Verma, and Yisong Yue. Eventual discounting temporal logic counter-
factual experience replay. ICML, 2023. doi: 10.48550/arxiv.2303.02135.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593–36604. PMLR, 2023.

Min Wen and Ufuk Topcu. Probably approximately correct learning in stochastic games with tem-
poral logic specifications. In Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI’16, pp. 3630–3636. AAAI Press, 2016. ISBN 9781577357704.

Min Wen and Ufuk Topcu. Probably approximately correct learning in adversarial environments
with temporal logic specifications. IEEE Transactions on Automatic Control, pp. 1–1, 2021.

Keenon Werling, Dalton Omens, Jeongseok Lee, Ioannis Exarchos, and C Karen Liu. Fast and
feature-complete differentiable physics for articulated rigid bodies with contact. RSS, 2021. doi:
10.48550/arxiv.2103.16021.

Jie Xu, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and Pulkit
Agrawal. An end-to-end differentiable framework for contact-aware robot design. RSS, 2021.
doi: 10.48550/arxiv.2107.07501.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated policy learning with parallel differentiable simulation. ICLR, 2022.
doi: 10.48550/arxiv.2204.07137.

Zetong Xuan, Alper Bozkurt, Miroslav Pajic, and Yu Wang. On the uniqueness of solution for the
bellman equation of ltl objectives. In 6th Annual Learning for Dynamics & Control Conference,
pp. 428–439. PMLR, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Beyazit Yalcinkaya, Niklas Lauffer, Marcell Vazquez-Chanlatte, and Sanjit Seshia. Compositional
automata embeddings for goal-conditioned reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 37:72933–72963, 2024.

Cambridge Yang, Michael Littman, and Michael Carbin. On the (in)tractability of reinforcement
learning for LTL objectives. IJCAI, 2022. doi: 10.48550/arxiv.2111.12679.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare:
A survey. ACM Computing Surveys (CSUR), 55(1):1–36, 2021.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International conference on machine learning, pp. 25636–25655. PMLR, 2022.

Miguel Zamora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros. PODS: Policy
optimization via differentiable simulation. ICML, 2021.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A REINFORCEMENT LEARNING WITH TEMPORAL LOGICS

Deep RL. The rapid progress in machine learning during the 2010s, particularly in deep learn-
ing (LeCun et al., 2015; Goodfellow et al., 2016; Arulkumaran et al., 2017), facilitated by improved
neural architectures and enhanced computational capabilities, significantly advanced deep reinforce-
ment learning (RL). This enabled solving complex, high-dimensional, and long-horizon sequential
decision-making tasks previously considered infeasible (Mnih et al., 2015; Silver et al., 2016; 2017;
2018; Vinyals et al., 2019). Such achievements have attracted growing interest from the control and
robotics communities. Although deep RL has been effectively employed in structured, task-specific
robotic and autonomous systems (Kober et al., 2013; Levine et al., 2016; Chen et al., 2017; Cui
et al., 2017; Liu et al., 2018; Lu et al., 2018; Hwangbo et al., 2019; Cui et al., 2019; Peng & Shen,
2020; Andrychowicz et al., 2020; Lee et al., 2020; Yu et al., 2021; Kiran et al., 2021; Aradi, 2022),
significant concerns around safety and reliability remain. In response, researchers have explored
integrating RL with formal methods, particularly temporal logics, to enhance system reliability and
verification.

Model-Based RL for LTL. Initial attempts to combine linear temporal logic (LTL) with RL (Fu
& Topcu, 2014b; Brázdil et al., 2014; Wen & Topcu, 2016) relied on model-based approaches.
These methods required precise knowledge of the transition structure of the underlying Markov de-
cision processes (MDPs) to precompute accepting components of a product MDP constructed using
a Deterministic Rabin Automaton (DRA) based on LTL specifications. This approach transformed
satisfying temporal logic constraints into reachability problems solvable via RL. Despite provid-
ing probably approximately correct (PAC) guarantees, the complexity and frequent unavailability of
accurate transition models limit their applicability, especially in deep RL contexts.

Model-Free RL for LTL. To address these limitations, model-free RL methods emerged, such as
reward machines (RMs) (Toro Icarte et al., 2018; Icarte et al., 2018; Camacho et al., 2019; Icarte
et al., 2022) for co-safe LTL and LTLf fragments, which directly generate rewards from the accep-
tance conditions of automata derived without explicit knowledge of transition dynamics. The in-
troduction of limit-deterministic Büchi automata (LDBAs) (Hahn et al., 2015; Sickert et al., 2016),
simplifying model checking by utilizing simpler Büchi conditions instead of Rabin conditions, fur-
ther facilitated structured reward design (Hasanbeig et al., 2019; 2023). These advancements also
resulted in improved correctness (Hahn et al., 2019) and stronger convergence guarantees (Bozkurt
et al., 2020b).

STL and Other Temporal Logics. Researchers have also explored alternative continuous-time
temporal logics to generate informative reward signals such as STL and truncated LTL (TLTL)
(Li et al., 2017; Li et al., 2019). STL and TLTL allow robustness scores to serve as rewards in
finite-horizon tasks (Aksaray et al., 2016). However, these scores typically depend on historical
information, violating the Markov assumption and restricting their use in long-horizon, stochastic,
or value-based RL settings. We note that the syntax our differentiable LTL formalism coincides
with TLTL as well as the STL fragment without time constraints; however, the semantics is defined
based on discrete-time observations, which allows for compact automaton construction rather than
robustness scores, yielding an efficient memory mechanism.

Extended RL for LTL. Building on successful applications of LTL-based rewards in RL, re-
searchers extended these methodologies into broader domains. These include stochastic games
(Hahn et al., 2020; Bozkurt et al., 2021b; 2024), modular deep RL frameworks (Cai et al., 2021a;
Jackermeier & Abate, 2025), reinforcement learning under workspace uncertainties (Cai et al.,
2021b), secure planning against stealthy adversaries (Bozkurt et al., 2021a; Cui et al., 2023), learn-
ing within cluttered environments (Cai et al., 2023a). Additionally, recent developments include
heuristic-driven learning (Kantaros, 2022), policy optimization strategies (Voloshin et al., 2022),
quantum-based action spaces (Cai et al., 2023b), experience replay enhancements (Voloshin et al.,
2023), transformer models (Tian et al., 2023), handling partially known semantics (Verginis et al.,
2024), average reward formulations (Le et al., 2024), PAC guarantees (Perez et al., 2024), and goal-
conditioned LTL-RL (Yalcinkaya et al., 2024). Theoretical analyses have explored computational
intractability (Yang et al., 2022), discounting sensitivity (Xuan et al., 2024), and convergence prop-
erties (Shao & Kwiatkowska, 2023).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B PATHS AND POLICIES

MDP Paths. An MDP begins in an initial state sampled from the initial state distribution s0 ∼
p0(·) and evolves by transitioning from a current state s to a next state s′ through an action a, as
determined by the transition function: s′ = f(s, a). In each state s, the policy observes a set of
atomic propositions provided by the labeling function L(s). The sequence of visited states is called
a path and is formally defined below:

Definition 3. A path of an MDP M is defined as an infinite sequence of states σ = s0s1 . . . , where
each si ∈ S, such that p0(s0) > 0 and for every t > 0, there exists an action at ∈ A with f(st, at) =
st+1. We denote the t-th state in the sequence as σ[t], the prefix up to t as σ[:t] = s0s1 . . . st, and
the suffix starting from t + 1 as σ[t+1:] = st+1st+2 The corresponding sequence of labels for
σ is referred to as the trace, defined by L(σ) := L(s0)L(s1)

See (Bozkurt, 2024) for more details.

Finite-Memory Policies

Definition 4. A finite-memory policy for an MDP M is defined as a tuple π = (M,m0,T, a), where:

• M is a finite set of modes (memory states);

• m0 ∈ M is the initial mode;

• T : M × S × M → [0, 1] is a probabilistic mode transition function such that for any current
mode m and state s, the probabilities over next modes sum to 1, i.e.,

∑
m′∈M T(m′ | m, s) = 1;

• a : M × S × A → [0, 1] is a probabilistic action selection function that assigns a probability to
each action a given the current mode m ∈ M and state s ∈ S.

A finite-memory policy acts as a finite-state machine that updates its internal mode (memory state)
as states are observed, and specifies a distribution over actions based on both the current state and
mode. The action at each step is thus selected according not only the current state but also the
current memory state of the policy. In contrast to standard definitions of finite-memory policies
(e.g., (Chatterjee & Henzinger, 2012; Baier & Katoen, 2008)), which typically assume deterministic
mode transitions, this definition permits probabilistic transitions between modes. For further details,
please refer to (Bozkurt, 2024).

C DIFFERENTIABLE REINFORCEMENT LEARNING

Differentiable Simulators. Deep reinforcement learning (RL) provides a robust framework for
learning control policies directly from high-dimensional, unstructured inputs without explicit hu-
man supervision. However, this flexibility introduces high sample complexity. To mitigate this, re-
searchers developed methods such as distributed RL, massively parallel GPU-based RL, and model-
based RL approaches. Recently, there has been significant interest in accelerating model-based RL
using differentiable simulators, which enable gradient-based optimization by analytically or auto-
matically computing gradients of states and rewards with respect to actions (Carpentier & Mansard,
2018; Geilinger et al., 2020; Qiao et al., 2021; Xu et al., 2021; Werling et al., 2021; Heiden et al.,
2021; Freeman et al., 2021). These simulators can be represented as differentiable transition func-
tions st+1 = f(st, at), where st and at represent the state and action at time step t, respectively, and
st+1 is the next state at time step t+ 1. In the context of reinforcement learning, a common choice
for the differentiable loss function is the negative of the return, defined as the sum of discounted re-
wards: L = −GH(σ) = −

∑H
t=0 γtrt, where H is the time horizon, σ = s0s1 . . . is the trajectory,

rt is the reward at time step t, and γt is the discount factor applied at that step. The backward pass
then computes the gradients as follows:

∂GH

∂st
=

∂GH

∂st+1

∂f

∂st
,

∂GH

∂at
=

∂GH

∂st+1

∂f

∂at
. (12)

By chaining these gradients, the optimization updates propagate effectively throughout trajectories.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Policy Gradient Objective. In policy gradient RL over a finite horizon H , the goal is to find
optimal parameters θ∗ = argmaxθJ(θ), such that:

J(θ) = Eσ∼Mπθ
[GH(σ)], (13)

where σ ∼ Mπθ
denotes the random trajectory σ drawn from the Markov chain Mπθ

induced by
the policy πθ parameterized by θ. If a differentiable model is available, optimization can leverage
first-order gradients:

∇[1]
θ J(θ) = Eσ∼Mπθ

[∇θGH(σ)], (14)
or employ model-free zeroth-order gradients via the policy gradient theorem:

∇[0]
θ J(θ) = Eσ∼Mπθ

[
GH(σ)

H−1∑
t=0

∇θ log πθ(at|st)

]
. (15)

Both gradients can be approximated through Monte Carlo sampling:

∇̂[1]
θ J(θ) =

1

N

N∑
i=1

∇θGH(σ(i)), (16)

∇̂[0]
θ J(θ) =

1

N

N∑
i=1

GH(σ(i))

H−1∑
t=0

∇θ log πθ(a
(i)
t |s(i)t). (17)

D ω-AUTOMATA

An LTL formula φ can be translated into a finite-state automaton that operates over infinite paths,
known as an ω-automaton. We denote the automaton corresponding to a specific formula φ by Aφ.
An ω-automaton Aφ accepts a path σ if and only if σ |= φ, and rejects it otherwise. We begin
by formally introducing a general type of ω-automaton, called a nondeterministic Rabin automaton
(NRA), which can be systematically derived from any LTL formula (Baier & Katoen, 2008). We
then focus on specific subclasses of NRAs that are particularly relevant to our work.
Definition 5. A nondeterministic Rabin automaton (NRA) derived from an LTL formula φ is defined
as a tuple Aφ = (Q, q0,Σ, δ,Acc), where:

• Q is a finite set of automaton states;

• q0 ∈ Q is the initial automaton state;

• Σ = 2A is the input alphabet, where A is the set of atomic propositions;

• δ : Q× (Σ∪{ε}) → 2Q is the transition function, which is complete and deterministic on Σ (i.e.,
|δ(q, w)| = 1 for any q ∈ Q and w ∈ Σ), but may include nondeterministic ε-transitions (i.e., it
is possible that |δ(q, ε)| = 0 or |δ(q, ε)| > 1);

• Acc is a set of k accepting pairs {(Bi, Ci)}ki=1 where Bi, Ci ⊆ Q for i ∈ {1, . . . , k}.

Given an infinite word ω = w0w1 . . . , a run of the automaton is a sequence of transitions τω =
(q0, w0, q1), (q1, w1, q2), . . . such that qt+1 ∈ δ(qt, wt) for all t ≥ 0. The word ω is accepted if there
exists such a run and at least one accepting pair (Bt, Ct) satisfying the Rabin condition: the run visits
some states in Bt infinitely often and all states in Ct only finitely often. This acceptance condition
is known as the Rabin condition, which can be formalized as ω |= φ ⇐⇒ ∃t : Inf(τω)∩Bi ̸=∅ ∧
Inf(τω)∩Ci=∅ where Inf(τω) denotes the set of states visited infinitely many times in the run τω .
Similarly, a path σ is considered accepted by the automaton if its trace L(σ) forms a word accepted
by Aφ.

We focus on a specific subclass of NRAs known as limit-deterministic Büchi automata (LDBAs),
which feature a simplified acceptance criterion. Despite their reduced complexity, LDBAs retain the
full expressive power of general NRAs and can be systematically derived from LTL formulas (Hahn
et al., 2015; Sickert et al., 2016).
Definition 6. An LDBA is an NRA defined as Aφ = (Q, q0,Σ, δ,Acc) that satisfies the following:

• The acceptance condition consists of a single pair with an empty second set, i.e., Acc = (B,∅),
meaning that the run must visit some states in B infinitely often. This is known as the Büchi con-

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

dition, and for simplicity, we denote this acceptance condition by the set of accepting automaton
states itself, i.e., Acc = B.

• The state space Q is partitioned into two disjoint subsets: an initial component QI and an accept-
ing component QA, satisfying:

– All accepting states are contained in QA, i.e., B ⊆ QA;
– All transitions within QA are deterministic (no ε-transitions), i.e., for any q∈QA, δ(q, ε)=∅;
– Transitions cannot go from QA to QI , i.e., for all q ∈ QA and w ∈ Σ, δ(q, w) ⊆ QA.

The defining feature of LDBAs is that accepting runs must eventually enter the accepting com-
ponent QA and remain there permanently. Once this transition occurs, all subsequent behavior is
deterministic–this property is known as limit-determinism. LDBAs can be constructed such that ev-
ery ε-transition leads directly into QA, which ensures at most one such transition occurs along any
execution path. This construction, combined with limit-determinism, makes LDBAs particularly
well-suited for quantitative model checking in MDPs (Sickert et al., 2016) unlike general nondeter-
ministic automata. Thus, we assume all LDBAs under consideration possess this structure. More
information can be found in (Bozkurt, 2024).

E PARKING EXAMPLE: DIFFERENTIABLE RL VS NON-DIFFERENTIABLE RL

100 101 102 103 104

Iterations (log scale)

0

1

2

3

4

5

6

De
ce

le
ra

tio
n

(m
/s

2)

Zeroth Order SGD

100 101 102 103 104

Iterations (log scale)

0

1

2

3

4

5

6

De
ce

le
ra

tio
n

(m
/s

2)

First Order SGD

Figure 3: Convergence speed comparison of stochastic gradient descent algorithms using ∇̄[0]
θ and

∇̄[1]
θ for the parking example (N = 10).

F LTL SPECIFICATIONS AND AUTOMATA

LTL Specifications used in the Experiments.

• CartPole:
G("position_x>-10" & "position_x<10") & G("velocity_x>-10.0" & "velocity_x<10.0")
& F("cos_theta<-0.5" & F"cos_theta>0.5")

• Hopper:
G"torso_height>-11.0" & GF"torso_height>-10.5" & F("torso_velocity_x>1.0" & F"torso_velocity_x<0")

• Cheetah:
G"tip_height>-7.5" & GF"tip_height>-7.0" & F("tip_velocity_x>3.0" & F"tip_velocity_x<0")

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Ant:
G"torso_height>0.0" & GF"torso_height>0.5" & F("torso_velocity_x>1.5" & F"torso_velocity_x<0")

Illustration of the LTL Specification for Cheetah.

Figure 4: Task Specification with LTL. This figure illustrates a Cheetah policy learned by SHAC
using differentiable rewards derived via our approach from the LTL formula φlegged, which speci-
fies accelerating forward, stopping, and maintaining a safe tip-to-ground distance. Specifying the
desired behaviors of robots using the high-level language LTL provides is an intuitive alternative to
manually designing reward functions, which often require extensive domain expertise and risk un-
intended behaviors. Enabling learning directly from LTL unlocks new possibilities for robust, safe,
and flexible robotic applications. See the supplementary material for the video.

Automata Derived from LTL Specifications for CartPole and Ant.

Fin(❷) & (Inf(❶) | Fin(�))
[parity max odd 3]

0

!"cos_theta<-0.5" & "position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"
❷

1

"cos_theta<-0.5" & "cos_theta>0.5" & "position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"
�

2
"cos_theta<-0.5" & !"cos_theta>0.5" & "position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"

� 3
!"position_x<10" | !"position_x>-10" | !"velocity_x<10.0" | !"velocity_x>-10.0"

❷

"position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"
❶

!"position_x<10" | !"position_x>-10" | !"velocity_x<10.0" | !"velocity_x>-10.0"
❷"cos_theta>0.5" & "position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"

�!"cos_theta>0.5" & "position_x<10" & "position_x>-10" & "velocity_x<10.0" & "velocity_x>-10.0"
❷

!"position_x<10" | !"position_x>-10" | !"velocity_x<10.0" | !"velocity_x>-10.0"
❷

1
❷

Figure 5: The ω-automaton derived from φcartpole.

Inf(❶) | Fin(�)
[Streett 1]

0

"torso_height>0.0" & !"torso_velocity_x>1.5"
�

1
"torso_height>0.0" & !"torso_velocity_x<0" & "torso_velocity_x>1.5"

�

2

!"torso_height>0.0"
�

3

"torso_height>0.0" & "torso_velocity_x<0" & "torso_velocity_x>1.5"
�

"torso_height>0.0" & !"torso_velocity_x<0"
�

!"torso_height>0.0"
�

"torso_height>0.0" & "torso_velocity_x<0"
�

1
�

!"torso_height>0.0"
�

"torso_height>0.0" & !"torso_height>0.5"
�

"torso_height>0.0" & "torso_height>0.5"
❶

Figure 6: The ω-automaton derived from φlegged for the Ant environment.

Other example LTL formulas. LTL can be used to specify temporal properties of a wide range of
robotics tasks:

• safety; e.g., “always avoid obstacles and remain below the joint angle and velocity thresholds”:
φ = □

(∧
obstaclei

dist to obstaclei > 0
∧

joint anglei

joint anglei < βmax

∧
joint veli

joint veli < β̇max

)
; (18)

• reachability; e.g.; “accelerate to a target velocity in x direction”:
φ = ♢torso velx > vtarget; (19)

• sequencing; e.g.; “move to the position 1, then move to the position 2, and after that move to the
position 3”:

φ = ♢
(

dist to pos1 < δtol ∧ ♢
(
dist to pos2 < δtol ∧ ♢(dist to pos3 < δtol)

))
; (20)

• repetition; e.g.; “repeatedly monitor the region 1 and the region 2”:
φ = □♢dist to region1 < δtol ∧□♢

(
dist to region2 < δtol

)
. (21)

G ABLATION STUDY RESULTS

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

.97

.98

.99

1.0

Re
tu

rn
 (L

TL
 S

at
. P

ro
b.

 E
st

.) CartPole Hopper Cheetah Ant

SHAC () AHAC () PPO (¬) SAC (¬)

Figure 7: Ablation Study for LTL. The maximum returns obtained after 100 M steps for simplified
LTL formulas (11), averaged over 5 seeds. Returns (0 to 1) indicate LTL satisfaction probabilities.
Under these simpler specifications, both ̸∂RLs and ∂RLs successfully learn near-optimal policies.
However, as shown in Fig. 2, the performance of discrete ̸∂RLs degrades dramatically with in-
creasing LTL complexity—unlike differentiable ∂RLs, which maintain reasonable performance by
leveraging the LTL rewards differentiability.

22

	Introduction
	Related Work
	Preliminaries and Problem Formulation
	Accelerated Learning from LTL using Differentiable Rewards
	Experiments
	Conclusion
	Reinforcement Learning with Temporal Logics
	Paths and Policies
	Differentiable Reinforcement Learning
	-Automata
	Parking Example: Differentiable RL vs Non-Differentiable RL
	LTL Specifications and Automata
	Ablation Study Results

