

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOPOLOGICAL INVARIANCE AND BREAKDOWN IN LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We prove that for a broad class of permutation-equivariant learning rules (including SGD, Adam, and others), the training process induces a bi-Lipschitz mapping of neurons and preserves key topological properties of the neuron distribution. This result reveals a qualitative difference between small and large learning rates. Below a critical topological threshold η^* , the training is constrained to preserve the topological structure of the neurons, whereas above η^* the process allows topological simplification, making the neuron manifold progressively coarser and reducing the model’s expressivity. An important feature of our theory is that it’s independent of specific architectures or loss functions, enabling universal applications of topological methods to the study of deep learning.

1 INTRODUCTION

Deep learning has emerged as an extraordinarily powerful tool, yet due to its complexity and inherent nonlinearity, our understanding of its inner mechanisms remains limited. There is a strong practical motivation for studying learning dynamics: a unified understanding of learning dynamics could inform the design of new regularization techniques, learning-rate schedule algorithms and other training strategies, thereby reducing the reliance on extensive hyperparameter tuning and facilitating the development of more efficient models (Sutskever et al., 2013; Gotmare et al., 2018; Liu et al., 2019; Kalra & Barkeshli, 2024). More recently, numerous empirical works have described the universal aspects of learning dynamics (Zhou et al., 2025; Cohen et al., 2021; Gur-Ari et al., 2018), yet a unified theoretical framework is still lacking.

A primary difficulty in analyzing the learning dynamics of neural networks lies in their extremely high dimensionality across diverse architectural details. Modern neural networks, such as GPT-4, have more than 10^{12} parameters, inducing such complicated dynamics that conventional tools and theories of dynamical systems struggle to apply. Lessons from natural science and many fields of mathematics suggest two primary approaches (Noether, 1918; Mumford et al., 1994): (1) study what the high-dimensional object is invariant to, and (2) decompose it into simpler parts. The first approach directly reduces the dimensionality of a problem, while the second allows us to view it as a composition of low-dimensional objects. Our theory, presented in this paper, aims to offer a crucial link between the two perspectives and show that due to a universal property, the permutation invariance (or equivariance) of the model (or learning algorithm), almost any neural network can be naturally decomposed into a system of interacting “neurons” with much smaller dimensions.

Specifically, under standard regularity conditions, we show that:

1. The permutation equivariance of common learning algorithms imposes strong topological constraints on the learning dynamics;¹
2. With a small learning rate η , the learning algorithm induces a bi-Lipschitz mapping between neurons at different time steps, thereby preserving the topological structure of the set formed by the neurons.
3. With a large η , this topological invariance breaks down: the learning algorithm descends to a continuous surjection, thereby inducing a simplification process during training.

The core contribution of this paper can be summarized as the theoretical establishment of a critical point of the topological phase transition (hereinafter referred to as the **topological critical point**) for learning processes. Figure 1 illustrates the theory.

¹The word “topology” is sometimes used to refer to the model architecture. In our work, it always means the mathematical topology of sets.

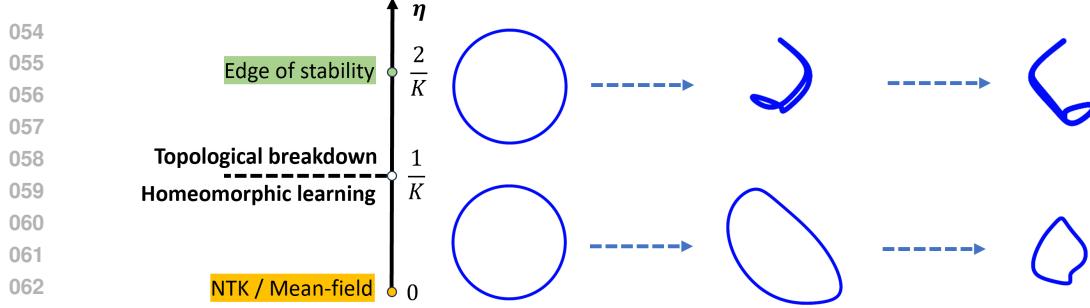


Figure 1: At a small learning rate, common learning algorithms induce a homeomorphic transformation of the neuron distribution (blue shapes in Figure), a mechanism underlying common theories including the NTK / lazy regime (Jacot et al., 2018; Chizat et al., 2018) and the mean-field / feature-learning regime (Yang & Hu, 2020). In contrast, most neural networks in real training scenarios are known to move towards the “edge of stability,” where the discrete-time updates are no longer stable at any first-order stationary point. From the perspective of topology, what separates these two regimes is the **topology invariance** in the first regime, where the learning process is strongly constrained to preserve any topological properties, and the **topological breakdown** in the second regime, where the learning ceases to preserve topology and acts as a simplifier that merges neurons and makes the model more and more constrained in capacity.

A key feature of our theory is that it relies only on several widely satisfied properties of the learning algorithm and is therefore universal across architectures and optimizers. The system-independence of our result allows us to establish a key conceptual principle: *any permutation-equivariant dynamics induces a topology between its components, and this topology is preserved at a small step size and reduced at a large step size.* This universality lends it good potential to serve as a foundation for future theories. Moreover, our framework is firmly grounded in mathematical topology and can be further developed using tools thereof (Milnor & Weaver, 1997). The close connection between topology and theoretical physics also opens the door for relevant concepts from physics to be applied here (Qi & Zhang, 2011).

This paper is organized as follows. Section 2 reviews the background. Section 3 introduces the problems setting. Section 4 presents our main theory. Section 5 applies the theory to common training algorithms. Section 6 presents empirical results. Finally, Section 7 discusses further implications of our theory. All proofs of the theoretical results are deferred to the appendix.

2 BACKGROUND

Permutation Symmetry. Permutation symmetry refers to the invariance of a function’s output under permutations of its inputs. This property is pervasive in neural networks and has been widely used to analyze their loss landscapes (Entezari et al., 2021; Brea et al., 2019; Ziyin, 2024). For example, any neural network component (such as a layer) that has the following structure:

$$f(\mathbf{x}; \mathbf{W}_1, \mathbf{W}_2) = \mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x}), \quad (1)$$

where $\mathbf{W}_1, \mathbf{W}_2$ are learnable parameter matrices, \mathbf{x} is the input vector and σ is a scalar activation function (applied element-wisely), possesses permutation symmetry, as

$$f(\mathbf{x}; \mathbf{W}_1, \mathbf{W}_2) = (\mathbf{P} \mathbf{W}_2^\top)^\top \sigma((\mathbf{P} \mathbf{W}_1) \mathbf{x}) = f(\mathbf{x}; \mathbf{P} \mathbf{W}_1, \mathbf{W}_2 \mathbf{P}^\top) \quad (2)$$

for any permutation matrix \mathbf{P} . If we pair the i -th row of \mathbf{W}_2 with the i -th column of \mathbf{W}_1 together as a unit (which together form a “neuron” in our theory), then the symmetry can be understood as that, the model remains unchanged under exchanging two neurons $(\mathbf{w}_{1,i}, \mathbf{w}_{2,i}) \leftrightarrow (\mathbf{w}_{1,j}, \mathbf{w}_{2,j})$.

Structures in the form of eq. (1) are quite common in all types of neural networks, including convolutional layers, feed-forward layers, and the QK transformation in the self-attention layers in transformers. Specifically, the QK transformation in transformers can be represented as

$$f(\mathbf{X}; \mathbf{W}_Q, \mathbf{W}_K) = \text{softmax}(\mathbf{X} \mathbf{W}_Q \mathbf{W}_K^\top \mathbf{X}^\top), \quad (3)$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the input of the self-attention layer, and it is clear that the QK transformation satisfies the structure defined in eq. (1), with $\mathbf{W}_2 = \mathbf{W}_Q$, $\mathbf{W}_i = \mathbf{W}_K^\top$ and σ being the identity mapping. All those components therefore possess permutation symmetry, and fall within the scope of our theory. A key consequence of the permutation symmetry is the *permutation equivariance* of the learning algorithms, such as (stochastic) gradient descent and Adam, which we will take as the starting point of our theory.

108 **Critical Learning Rates.** Recent empirical studies suggest that neural networks exhibit qualitatively different learning dynamics under small versus large learning rates. Large learning rates often
 109 lead to simpler models (Galanti & Poggio, 2022; Chen et al., 2023; Dohare et al., 2024), while such
 110 dramatic changes seem to be lacking with the use of small learning rates, where the learning dynamics
 111 are often well-approximated by the NTK or the mean-field theories (Jacot et al., 2018; Yang & Hu, 2020; Mei et al., 2019). In this work, we establish a topological characterization of these
 112 transitions.
 113

114 **Topology.** Topology is the mathematical study of abstract shapes and connectivity, focusing on
 115 properties that remain unchanged under continuous deformations such as stretching or bending (Ku-
 116 ratowski, 2014). It provides a way to talk about local and global structures without relying on exact
 117 distances; a bijective continuous map with a continuous inverse is called a homeomorphism and
 118 preserves the topology of general sets. Manifolds are sets with a local Euclidean structure, and
 119 their smooth structure is preserved under smooth invertible maps, called diffeomorphisms (Lang,
 120 2012). In the context of deep learning, topological perspectives has been widely adopted to under-
 121 stand the properties of neural networks (Bucarelli et al., 2024; Barannikov et al., 2020; Horoi et al.,
 122 2022; Naitzat et al., 2020; Purvine et al., 2023; Nurisso et al., 2024; Birdal et al., 2021). However,
 123 prior studies have largely remained empirical and focused on specific networks, whereas our work
 124 connects the topology of neurons systematically to the training dynamics.
 125

126 3 PRELIMINARIES

127 Now, we temporarily set aside considerations of specific neural networks and learning algorithms,
 128 and instead focus on more general and abstract objects. We will consider a (possibly infinite) collec-
 129 tion of high-dimensional particles (corresponding to neurons) and their dynamics (corresponding to
 130 learning algorithms). In the following, we use the terms “particles” and “neurons” interchangeably.
 131

132 **Notations.** Let I be an arbitrary potentially uncountable set, which we often refer to as the index
 133 set. Throughout this paper, we focus on a collection of D -dimensional vectors indexed by I . We use
 134 $(\mathbb{R}^D)^I$ to represent the set of all such collections. We use calligraphic uppercase letters to denote
 135 collections indexed by I (e.g. $\mathcal{X} \in (\mathbb{R}^D)^I$), bold lowercase letters to denote vectors (e.g. $\mathbf{x} \in \mathbb{R}^D$),
 136 and unbold lowercase letters to denote scalars or an entry of a vector or matrix (e.g. $x_k \in \mathbb{R}$ represents
 137 the k -th entry of \mathbf{x}). For $i \in I$, and a vector $\mathbf{v} \in \mathbb{R}^D$, we use $\mathbf{e}_i \cdot \mathbf{v} \in (\mathbb{R}^D)^I$ to denote a collection of
 138 D -dimensional vectors where only the i -th element is \mathbf{v} and other vectors are $\mathbf{0}$.
 139

140 Let $\text{FSym}(I)$ be the Finitary Permutation Group on I , i.e. the group of all permutation operators on
 141 I with a finite support (Neumann, 1976). For an operator $P \in \text{FSym}(I)$ and $\mathcal{X} = \{\mathbf{x}_i\}_{i \in I}$, we use
 142 $P\mathcal{X}$ to represent $\{\mathbf{x}_{P(i)}\}_{i \in I}$.

143 For $\mathcal{X} = \{\mathbf{x}_i\}_{i \in I} \in (\mathbb{R}^D)^I$ and $\mathcal{Y} = \{\mathbf{y}_i\}_{i \in I} \in (\mathbb{R}^D)^I$, if \mathcal{X} and \mathcal{Y} only differs in finite many terms,
 144 then we define $\|\mathcal{X} - \mathcal{Y}\| = \sqrt{\sum_{i \in I} \|\mathbf{x}_i - \mathbf{y}_i\|^2}$, and $\|\mathcal{X} - \mathcal{Y}\| = +\infty$ if otherwise.
 145

146 **Problem Setting.** Formally, we focus on a evolving collection of D -dimensional vectors

$$147 \mathcal{X}^{(t)} = \left\{ \mathbf{x}_i^{(t)} \right\}_{i \in I} \in (\mathbb{R}^D)^I, \quad (4)$$

148 where $t \in \mathbb{N}$ is the time axis. $\mathcal{X}^{(t)}$ is updated by a generic update rule $U^{(t)} : (\mathbb{R}^D)^I \rightarrow (\mathbb{R}^D)^I$ with
 149 step size $\eta > 0$:

$$150 \mathbf{x}_i^{(t+1)} = \mathbf{x}_i^{(t)} + \eta U_i^{(t)}(\mathcal{X}^{(t)}), \quad (5)$$

151 where $U_i^{(t)}(\mathcal{X}) = (U^{(t)}(\mathcal{X}))_i$. Here, each element in $\mathcal{X}^{(t)}$ corresponds to the weights of a neuron
 152 of a neural network at training step t , and $U^{(t)}$ corresponds to the learning algorithm at time point t ,
 153 which includes regularization terms, and can also depend on other parameters that are not considered
 154 (this is also why the update rule is time-dependent, as other parameters can change over time).
 155

156 Abstractly, we consider update rules $U^{(t)}$ satisfying the following properties.
 157

158 • **(P1) Equivariance Property:** We say $U^{(t)}$ has equivariance property if for any $t \in \mathbb{N}$, any
 159 $\mathcal{X} \in (\mathbb{R}^D)^I$ and $P \in \text{FSym}(I)$, we have $PU^{(t)}(\mathcal{X}) = U^{(t)}(P\mathcal{X})$. In deep learning, this property

162 is a consequence of running gradient-based algorithms on permutation-symmetric loss functions,
 163 as we will show in Section 5. That many dynamics are naturally equivariant has been studied in
 164 physics Field (1980), but its role in deep learning is not yet clear.

165 • **(P2-K) K-Continuity Property:** For $K > 0$, if for any $t \in \mathbb{N}$ and any $\mathcal{X}, \mathcal{Y} \in (\mathbb{R}^D)^I$,

$$167 \quad \|U^{(t)}(\mathcal{X}) - U^{(t)}(\mathcal{Y})\| \leq K \|\mathcal{X} - \mathcal{Y}\|, \quad (6)$$

168 then we say $U^{(t)}$ has K -continuity property. Notice that eq. (6) makes sense only when \mathcal{X}
 169 and \mathcal{Y} only differ in finite entries. When I is finite and $U^{(t)}$ is gradient descent, the quantity
 170 K is the largest eigenvalue of the Hessian of the loss function, and the K -continuity property
 171 becomes an upper bound of the Lipschitz continuity of the gradient, which is commonly seen in
 172 optimization theory (See details in Section 5.1). We intentionally choose this form to establish
 173 this correspondence; however, it is possible to prove our theory with a weaker version of the
 174 continuity property. See Appendix D for details.

175 Now, it is important to define the word “neuron.” The equivariance property is actually the most
 176 general way to define a “neuron” (e.g., see Ziyin (2024)), whatever subset of parameters that are
 177 permutationally-equivalent to the learning rule can be called a “neuron.” In case of fully connected
 178 networks trained with GD, this definition of a “neuron” is equivalent to the standard definition (in-
 179 coming plus outgoing weights of an activation unit).

180 If, beyond topology, we also want to talk about the differentiable manifold structure of the neurons,
 181 we further consider a smoothness property of U .

183 • **(P3) Smoothness Property:** For any $i \in I$ and $t \in \mathbb{N}$, define

$$184 \quad \forall \mathbf{y}, \mathbf{z} \in \mathbb{R}^D, g_i^{(t)}(\mathbf{y}, \mathbf{z}) = U_i^{(t)}(\mathcal{X}^{(t)} + (\mathbf{e}_i - \mathbf{e}_j) \cdot \mathbf{z}), \text{ such that } \mathbf{y} = \mathbf{x}_j^{(t)}, \quad (7)$$

186 where j is arbitrarily chosen when multiple j -s satisfies the condition, and \mathbf{e}_j is set to $\mathbf{0}$ if no j
 187 satisfies the condition. If $g_i^{(t)}$ is C^1 on $(\mathbb{R}^D)^2$ for any $i \in I$, we say $U^{(t)}$ has the (C^1 -)smoothness
 188 property. Intuitively, the smoothness property requires that the response of each output entry of
 189 U with respect to a small perturbation of one entry of its input must be C^1 .

191 4 TOPOLOGY OF LEARNING

193 In this section, we present our main theoretical results: the characterization of the change of topol-
 194 ogy and measure structures of \mathcal{X} under the update rule. Before diving into the main theorems, we
 195 first establish two critical lemmas. These lemmas show that, a combination of the equivariance and
 196 continuity of the update rule implies that there is an emergent notion of distance between different
 197 neurons. Intuitively, permutation equivariance implies that two infinitesimally close neurons need
 198 to have identical updates, which implies that the motion that changes their difference must be van-
 199 ishing. Thus, equivariance ensures that neurons that start close to each other remain close because
 dynamics that would increase or decrease their distance are suppressed.

200 **Lemma 1** (Well-definedness). *The following statement holds when $U^{(t)}$ satisfies P1. For any $i, j \in I$
 201 such that $i \neq j$, if at time t we have $\mathbf{x}_i^{(t)} = \mathbf{x}_j^{(t)}$, then, $\mathbf{x}_i^{(t+1)} = \mathbf{x}_j^{(t+1)}$.*

203 Next, we strengthen the intuition behind Lemma 1 by incorporating the continuity property.

204 **Lemma 2** (No Merging or Splitting). *If $U^{(t)}$ satisfies P1 and P2-K, then for any $i, j \in I$ such that
 205 $i \neq j$,*

$$207 \quad (1 - \eta K) \|\mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)}\| \leq \|\mathbf{x}_i^{(t+1)} - \mathbf{x}_j^{(t+1)}\| \leq (1 + \eta K) \|\mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)}\|. \quad (8)$$

209 This lemma implies the bi-Lipschitzness of the update rule between the manifolds formed by neu-
 210 rons at consecutive time steps t and $t + 1$. The fact that common learning rules induce bi-Lipschitz
 211 mappings is nontrivial, as such maps are known to preserve topological invariants (as we will show
 212 in the subsequent section) and control geometric distortions (Heinonen, 2001).

213 Moreover, Lemma 2 also identifies a critical learning rate $\eta^* = 1/K$, beyond which the lower bound
 214 becomes vacuous, which we referred to as *topological critical point* hereinafter. As we will see in
 215 the next section, this marks a phase transition from bijective, homeomorphic dynamics to merely
 surjective continuous dynamics.

216 4.1 TOPOLOGICAL INVARIANCE
217

218 A crucial perspective is implied by the lemmas above: the entirety of the neurons can be seen as a
219 set (or, manifold) $S \subset \mathbb{R}^D$, and the evolution of neurons can be viewed as the evolution of S . Of
220 course, a crucial question is whether such a perspective is meaningful, which is the key question we
221 answer in this section.

222 Formally, let $S^{(t)} = \{x_i^{(t)} \mid i \in I\} \subseteq \mathbb{R}^D$ denote the set formed by all of the neurons in $\mathcal{X}^{(t)}$, equipped
223 with the relative topology inherited from \mathbb{R}^D . Define function $\widehat{U}^{(t)} : S^{(t)} \rightarrow S^{(t+1)}$ by

$$224 \quad 225 \quad \forall x \in I, \widehat{U}^{(t)}(x_i^{(t)}) = x_i^{(t+1)}. \quad (9)$$

226 Intuitively, $\widehat{U}^{(t)}$ describes the effect of $U^{(t)}$ on each point of $S^{(t)}$. Lemmas 1 and 2 together ensure
227 that $\widehat{U}^{(t)}$ is well-defined and, under small learning rates, a bijection.

228 **Lemma 3.** *If $U^{(t)}$ satisfies P1 and P2-K, then $\widehat{U}^{(t)}$ is well-defined, and is a surjection. If additionally $\eta K < 1$, then $\widehat{U}^{(t)}$ is a bijection.*

229 One can show that, $\widehat{U}^{(t)}$ is not only a bijective, but also a homeomorphism between $S^{(t)}$ and $S^{(t+1)}$.
230 This leads to our main theorem.

231 **Theorem 1** (Main). *If $U^{(t)}$ satisfies P1 and P2-K, then*

- 232 i. $\widehat{U}^{(t)}$ is a continuous surjection from $S^{(t)}$ to $S^{(t+1)}$;
- 233 ii. if $S^{(t)}$ is compact, then $S^{(t+1)}$ is also compact, and $\widehat{U}^{(t)}$ is a quotient map;
- 234 iii. if $\eta K < 1$, then $\widehat{U}^{(t)}$ is a homeomorphism;
- 235 iv. if $\eta K < 1$, and $U^{(t)}$ also satisfies P3, and $S^{(t)}$ is an open subset of \mathbb{R}^D , then $S^{(t+1)}$ is also
236 open, and $\widehat{U}^{(t)}$ is a C^1 -diffeomorphism.

237 See Appendix A.4 for the proof of Theorem 1. This result shows that when the learning rate is
238 below the critical threshold $\eta^* = 1/K$, the neuronal set $S^{(t)}$ evolves through homeomorphisms
239 (or diffeomorphisms if smoothness holds). Consequently, the topology of $S^{(t)}$ remains invariant
240 across training: if the neurons initially form a space homeomorphic to a circle, torus, or any other
241 manifold, they will preserve that topological type for all time. If the neurons are initially separated
242 points that are far away from each other, this statement has a simple interpretation: neurons cannot
243 merge unless they were identical at initialization, whereas if two neurons are merged, they cannot
244 be separated. This implies that the learning process can only locally deform the neuron topology,
245 either by translating, expanding, or contracting local neuron densities.

246 That a sufficiently smooth learning rule induces a diffeomorphism of the neuron manifold both lends
247 support to the widespread use of mean-field theories (including the NTK theory) for understanding
248 neural networks training at a small learning rate (Mei et al., 2019; Jacot et al., 2018), and explains
249 their breakdown at a large learning rate. The diffeomorphic evolution ensures that the neuron distribution
250 $P_t(w)$ obeys standard change-of-variable formulas, leading to Vlasov-type equations in the
251 infinite-width limit (Spohn, 2012). Since our theory is independent of the specific architecture of the
252 neural network, it could lead to the most general type of mean-field theory for deep learning, which
253 we leave as a future direction.

254 At large learning rates, by contrast, homeomorphic evolution breaks down. Merging and more
255 general topological changes become possible so that the learning process can no longer be described
256 as local interactions and the mean-field theories no longer apply. This transition, from topology-
257 preserving to topology-changing dynamics, constitutes the *topological critical point* predicted by
258 our theory and is verified in our experiments (Section 6). At the same time, the large-learning-rate
259 phase cannot change topology without bound because the upper bound in Lemma 2 always holds,
260 and so neuron splitting remains impossible. This is also topologically characterized by the fact that
261 the induced mapping \widehat{U} is still a quotient map, meaning that it inherits a *coarser* topology from
262 the previous neuron distribution. The implication of reaching a coarser topology is that the training
263 reduces the expressivity/capacity of these neural networks and therefore simplifies them. This can
264 be understood directly from the perspective of permutation symmetries, where merging (or gluing)
265 two neurons is the same as transitioning to the symmetric state of the permutation symmetry, which
266 directly reduces the effective number of parameters of the model by the number of weights in a
267 neuron (e.g., see Proposition 3 of Ziyin et al. (2025)).

270 **Role of K .** So far, we have formally treated the smoothness parameter K as a global quantity,
 271 which leads to the elegant and easy-to-state results above. However, it is much better to conceptually
 272 treat K as a local quantity in a small neighborhood around the current parameter θ : $K \approx K(\theta)$.
 273 When the learning rule is SGD, this $K(\theta)$ can be approximated by the largest eigenvalue of the
 274 local Hessian $\lambda_{\max}(H(\theta))$. In this more dynamical perspective, K can be seen as a dynamically
 275 evolving quantity. When viewed with the phenomenon of the edge of stability (Cohen et al., 2021;
 276 Wu et al., 2018), this picture suggests a two-phase perspective of the learning process of common
 277 neural networks, where the first phase of training focuses on optimizing the loss and learning the
 278 task, while the second phase of learning is a simplification process, where the model tends to simpler
 279 and coarser topologies, a process that could be related to phenomena such as grokking (Power et al.,
 280 2022).

281 4.2 ON A QUANTITATIVE DESCRIPTION

283 Theorem 1 presents a result regarding the mathematical topology of the neurons, which primarily
 284 addressing the case in which the number of neurons is considered infinite. In this section, we provide
 285 a more practical result that upper-bounds the scale change of the neurons. To formalize this, we first
 286 define the r -expansion of a set.

287 **Definition 1.** For a set $P \subseteq \mathbb{R}^d$ and a scalar $r > 0$, the r -expansion of P is defined as

$$289 \quad P^r = \left\{ y \in \mathbb{R}^d \mid \|x - y\| < r \right\}. \quad (10)$$

292 Note that the r -expansion defined here coincides with the standard notion of expansion widely used
 293 in the study of metric spaces. For any set $P \subseteq \mathbb{R}^d$, its r -expansion is naturally an open set and
 294 inherits the relative topology from \mathbb{R}^d .

295 **Theorem 2.** If $U^{(t)}$ satisfies P1 and P2- K and $\eta K < 1$, then for any $r < \inf_{x,y \in S^{(t)}} \|x - y\|$, we have
 296 $(S^{(t)})^r$ is homeomorphic to $(S^{(t+1)})^{(1-\eta K)r}$.

298 See Appendix A.9 for the proof of Theorem 2. Note that when $r = 0$, Theorem 2 reduces to Theorem 1.iii. When $r > 0$, however, it provides an quantitative description of how the scale of the set
 300 changes.

301 4.3 MEASURE INVARIANCE

303 Beyond the invariance of topology, one can also ask “how many” neurons are stacked at a single
 304 point of $S^{(t)}$ and how their density evolves over time. Formally speaking, this corresponds to
 305 studying the probability distribution on $S^{(t)}$ obtained by pushing forward a universal probability
 306 distribution defined on the index set I . In this subsection, we show that this distribution is also
 307 preserved under the update rule.

308 Formally, in this subsection we assume a concrete structure on the index set I . Assume there is
 309 a σ -algebra \mathcal{F} on I and a probability measure $m : \mathcal{F} \rightarrow [0, 1]$. At any time $t \in \mathbb{N}$, define the
 310 mapping $r^{(t)} : i \mapsto x_i^{(t)}$, and let it be a measurable function from I to $S^{(t)}$, where $S^{(t)}$ carries the
 311 corresponding Borel σ -algebra.² For each time t , we define a measure $\mu^{(t)}$ on $S^{(t)}$ as the push-
 312 forward of m under $r^{(t)}$, i.e.

$$314 \quad \forall \text{open set } A \text{ on } S^{(t)}, \mu^{(t)}(A) = m\left(r^{(t)}(A)\right). \quad (11)$$

316 Clearly, $\mu^{(t)}$ is also a probability measure.

317 **Theorem 3.** Suppose $U^{(t)}$ satisfies P1 and P2- K , and suppose $\eta K < 1$, then $\widehat{U}^{(t)}$ is a probability
 318 isomorphism between $(S^{(t)}, \mu^{(t)})$ and $(S^{(t+1)}, \mu^{(t+1)})$, i.e. $\widehat{U}^{(t)}$ and $\widehat{U}^{(t)}{}^{-1}$ are both measure-
 319 preserving bijections.

321 Theorem 3 shows that the update rule preserves not only the topology of $S^{(t)}$, but also the density
 322 of neurons across it. Theorem 1 and Theorem 3 might remind readers of the topological dynamical

323 ²These assumptions are automatically satisfied with a finite I .

systems and measure-preserving dynamical systems (Gottschalk & Hedlund, 1955). However, what we study is more general because in this context the update rule $\widehat{U}^{(t)}$ as well as the space $S^{(t)}$ itself are both time-dependent, which violates the definition of the topological/measure-preserving dynamical systems. Therefore, the classical recurrence theorems in those fields cannot be directly applied.

5 EXAMPLES: GRADIENT DESCENT AND ADAM

Starting from this section, we connect our abstract theoretical discussions to actual optimization algorithms, by proving that the properties of the update rule $U^{(t)}$ we have used are satisfied by a wide range of optimization algorithms. Here we analyze two of the most popular ones, namely Gradient Descent (GD) and Adam, as illustrative cases.

5.1 GRADIENT DESCENT

Let us assume that there is a loss function $L : (\mathbb{R}^D)^I \rightarrow \mathbb{R}$ that maps the neurons to a scalar loss value, and the update rule $U^{(t)}$ is the gradient descent update³:

$$U^{(t)}(\mathcal{X}) = -\nabla L(\mathcal{X}). \quad (12)$$

Now we prove that, the equivariance property of U comes from the permutation symmetry of L and the continuity property comes from the smoothness of L .

Proposition 1. *If L has $\text{FSym}(I)$ -symmetry, i.e.*

$$\forall \mathcal{X} \in (\mathbb{R}^D)^I, \forall P \in \text{FSym}(I), L(\mathcal{X}) = L(P\mathcal{X}), \quad (13)$$

then $U^{(t)}$ defined in eq. (12) satisfies P1.

Proposition 2. *If there exists a constant $K > 0$, such that for any $\mathcal{X}, \mathcal{Y} \in (\mathbb{R}^D)^I$ and any $i \in I$, we have*

$$\|\nabla L(\mathcal{X}) - \nabla L(\mathcal{Y})\| \leq K \|\mathcal{X} - \mathcal{Y}\|, \quad (14)$$

then $U^{(t)}$ defined in eq. (12) satisfies P2-K.

Remark. As noted in Section 3, the smoothness condition in eq. (14) is precisely the standard smoothness assumption widely used in optimization theory (Bottou et al., 2018). Under this assumption, the topological critical point $\eta^* = \frac{1}{K}$ in our theory coincides with the optimal step size suggested by a second-order Taylor expansion of the loss around \mathcal{X} . Specifically, eq. (14) implies

$$L(\mathcal{X} - \eta \nabla L(\mathcal{X})) \quad (15)$$

$$\leq L(\mathcal{X}) - \eta \|\nabla L(\mathcal{X})\|^2 + \frac{K\eta^2}{2} \|\nabla L(\mathcal{X})\|^2 \quad (16)$$

$$= L(\mathcal{X}) + \left(\frac{K}{2}\eta^2 - \eta\right) \|\nabla L(\mathcal{X})\|^2. \quad (17)$$

It follows that the optimal decrease in loss occurs at $\eta^* = \frac{1}{K}$, which matches the topological critical point identified in our framework and differs only by a constant factor from the classical upper bound on stable step sizes. See Figure 2 for an illustration. This correspondence suggests there might be a hidden connection between neuron topology and optimization, under the context of gradient descent and the presence of permutation symmetry: *The loss can be stably optimized only when the topology of the neurons is preserved.*

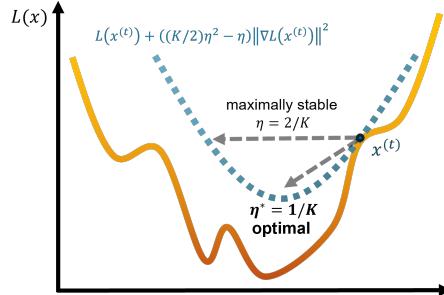


Figure 2: An optimization perspective of the topological critical point. The topological critical point $\eta^* = 1/K$ corresponds to the step size that reduces the loss optimally, while the critical step size found by Cohen et al. (2021) corresponds to the largest one ensuring loss decay.

³For this case, the right-hand side of eq. (12) is independent of time t , and therefore $U^{(t)}$ is the same at each time. However, we would love to keep this redundancy of notation, because here we have actually made a subtle (but harmless) simplification, that we implicitly assume all neurons that are to be updated have permutation symmetry, while in practice there can be a part of learnable parameters that are not permutation-invariant, absorbing which into L , although does not affect our discussion here, will make the loss function L time-dependent and so does the update rule.

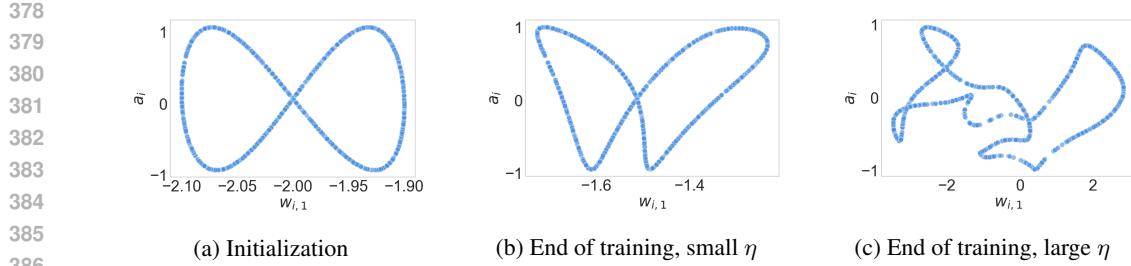


Figure 3: **Topology of a 2D neural network with GD.** The neurons are initialized on a genus-2 surface and optimized with GD. We visualize the topology of 2D and 3D networks before and after training under different step sizes η . For small step sizes, the training may deform the geometric arrangement of the neurons but the topology remains unchanged. In contrast, for large step sizes, the topological structure can change substantially. These results consistently verify our theoretical predictions that while the geometry of the neurons can be affected by training, the underlying topology is stable under small learning rates but fragile under large ones.

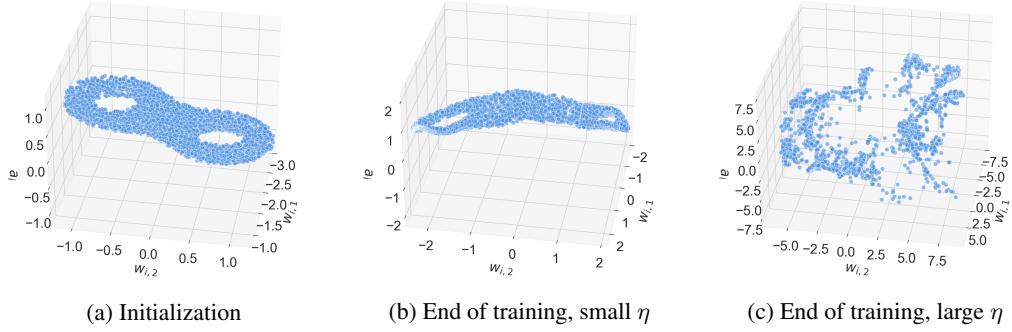


Figure 4: **Topology of a 3D neural network with GD.** The neurons are initialized on a genus-2 surface and optimized with GD.

5.2 ADAM

Besides GD, other more complicated and modern optimizers are usually stateful – they need to keep track of some values in the process of training, which at first sight seems incompatible with our definition of $U^{(t)}$, since our $U^{(t)}$ is stateless by definition. This seemingly difficulty can be resolved by a small trick: we can view the state of an optimizer as a part of the neurons, thereby rewriting the update rule in a stateless form. As an illustration, in this section we prove that Adam (Kingma & Ba, 2015), another widely-used optimizer in deep learning, also fits in our framework.

Specifically, suppose $\theta_i^{(t)}$ is the i -th neuron in the neural network at time t , the collection of particles is defined as $\mathcal{X}^{(t)} = \left\{ \left(\theta_i^{(t)}, \mathbf{m}_i^{(t)}, \mathbf{v}_i^{(t)} \right) \right\}_{i \in I}$, where $\mathbf{m}_i^{(t)}$ and $\mathbf{v}_i^{(t)}$ are the first order and second order moment estimators in Adam. The update rule is then defined as⁴

$$U^{(t)} : \left\{ \begin{pmatrix} \theta_i \\ \mathbf{m}_i \\ \mathbf{v}_i \end{pmatrix} \right\}_{i \in I} \mapsto \left\{ \begin{pmatrix} -\frac{\mathbf{m}_i / (1 - \beta_1^t)}{\epsilon + \sqrt{\mathbf{v}_i / (1 - \beta_2^t)}} \\ \frac{1 - \beta_1}{1 - \beta_2} [\nabla_i L(\Theta) - \mathbf{m}_i] \\ \frac{\eta}{1 - \beta_2} [\nabla_i L(\Theta)^2 - \mathbf{v}_i] \end{pmatrix} \right\}_{i \in I}, \quad (18)$$

where β_1 and β_2 are the decay rates for the first- and second-order moment estimators, respectively; $\Theta = \{\theta_i\}_{i \in I}$ is the collection of the neurons; and all scalar operations (square, division, square root) are taken element-wise. It is straightforward to check that the neuron update in eq. (18) is equivalent to the standard Adam rule. One can now prove the following theorem.

Proposition 3. *If L has $\text{FSym}(I)$ -symmetry (eq. (13)), then $U^{(t)}$ defined in eq. (18) satisfies P1.*

6 EXPERIMENTS

To illustrate our theoretical results, we conduct experiments using gradient-based methods on real neural networks and track changes in the topological structure of the neuron-induced point cloud.

⁴Here and in the appendix, we optionally write the tuple in the tall form for better presentation.

Our experimental results include both direct visualizations of the topological structure in low-dimensional networks and quantitative measurements that capture topological properties in networks trained on standard tasks. The experiments are conducted under a variety of optimizers and settings. Additional results and detailed experimental settings are in Appendices B and C.

Low-dimensional Distributions. We first train neural networks with low-dimensional neurons (2- or 3-dimensional) in order to directly visualize their topology. Specifically, consider a two-layer neural network $F : \mathbb{R}^d \rightarrow \mathbb{R}$ with hidden layer size h , defined as

$$F(\mathbf{z}; \{(\mathbf{w}_i, a_i)\}_{i=1}^h) = \sum_{i=1}^h a_i \sigma(\langle \mathbf{w}_i, \mathbf{z} \rangle), \quad (19)$$

where $\mathbf{w}_i \in \mathbb{R}^d$ and $a_i \in \mathbb{R}$ are learnable parameters, and σ denotes the sigmoid function. The network is trained on data generated by a random teacher network (See Appendix C for details). In this setting, the loss function has the permutation symmetry as described in eq. (13), with $I = [h]$ and $\mathcal{X} = \{(\mathbf{w}_i, a_i)\}_{i \in I} \in (\mathbb{R}^{d+1})^I$.

For visualization purposes, we focus on $d = 1$ and $d = 2$, so that each element in \mathcal{X} lies in \mathbb{R}^2 or \mathbb{R}^3 (referred to below as 2D and 3D networks, respectively), which enables a straightforward visualization of their topology. Moreover, we initialize the elements in \mathcal{X} with specific topological structures to highlight potential topological (in)variance. See Figures 3, 4 and 6 for the results with GD, and Appendix B for extra results with other optimizers.

Topological Invariants. Now, we directly measure topological invariants of high-dimensional models trained on real tasks. Specifically, we measure the first three Betti numbers b_0, b_1, b_2 of the point cloud formed by the neurons. Betti numbers are fundamental topological invariants that count the number of connected components, loops, and higher-dimensional voids in a topological space; they are widely used in topological data analysis as compact descriptors of shape and structure (Edelsbrunner & Harer, 2010; Naitzat et al., 2020).

We train a two-layer MLP on the MNIST dataset (LeCun, 1998) for a classification task using standard cross-entropy loss, and track the evolution of Betti numbers. The network is initialized with neurons uniformly sampled from the surface of a 3D unit sphere, which has Betti numbers $(b_0, b_1, b_2) = (1, 0, 1)$. Figure 5 shows the results with both GD and Adam. These results are consistent with our theoretical predictions: with small learning rates, the model learns without changing the topological structure of the neurons, while with large learning rates, the topology can change. Importantly, in all cases the model can achieve a significant test accuracy, ruling out the possibility that with small step sizes the model simply stays near initialization without meaningful updates.

7 DISCUSSION

We have investigated the interplay between permutation symmetries, learning rates, and neuron topology in the training dynamics of neural networks, leading to a universal conceptual message: permutation symmetry of architecture modules or learning algorithms imposes strong topological constraints on how learning could happen. These interactions yield a range of insights that shed light on understanding important empirical phenomena and inspire future algorithm design. A limitation of our work is that it is entirely theoretical and does not test the predictions on large-scale experiments. Due to the scope limit, we have also only discussed a small subset of all possible implications of a topological theory of deep learning.

Topology. Our results establish a simple and clear topological characterization of learning, and clarify a crucial distinction between training with different learning rates: small learning rates preserve the topological structure of the neuron manifold, whereas large learning rates may enable

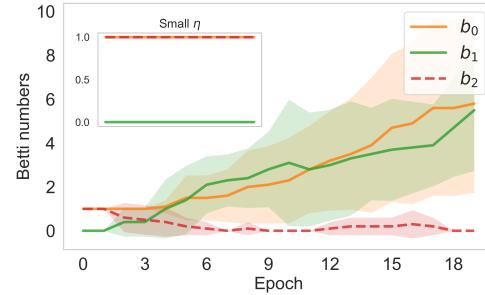


Figure 5: Evolution of Betti numbers during training with GD. The main panel shows results for the large learning rate, while the inset shows results for the small one. Each curve is obtained by averaging over 10 runs; the shaded regions indicate the standard deviations.

486 topological changes. This might provide new insights into learning rate scheduling strategies, such
 487 as learning rate decay: starting with a relatively large learning rate may facilitate exploration across
 488 different topological configurations, while subsequent decay to smaller values can stabilize the training
 489 dynamics within a fixed topology. Our theory also offers a structural viewpoint that complements
 490 existing explanations, such as the “catapult mechanism” (Lewkowycz et al., 2020). While further
 491 work is needed to establish the precise conditions under which such topological transitions occur in
 492 practical settings, this perspective highlights a potentially useful link between learning-rate phases
 493 and topological dynamics.

494 **Phase Transition.** From a physics perspective, the change in the topology directly corresponds to
 495 phase transitions. For example, a material with different Chern numbers is in different phases. In
 496 our setting, these topological phase transitions also directly correspond to changes in the symmetry
 497 of the parameters and are thus also phase transitions of the Landau type. Specifically, changing
 498 from a genus-1 topology to a genus-2 topology implies that two neurons have “merged” into one
 499 neuron, and this corresponds to a symmetry-restoration process where the network changes from the
 500 symmetry-broken state to the symmetric state (Ziyin, 2024).

501 **Deep Learning Theory.** Our result also highlights the limitations of conventional theories of
 502 learning dynamics. The EOS phenomenon states that GD almost always leads to a solution whose
 503 sharpness is $2/\eta$, and in practice this can happen quite early on in the training. Our result thus sug-
 504 gests a huge difference between dominant theories of learning dynamics such as NTK and mean-field
 505 theories, and the actual learning dynamics that we observe in practice. The topological breakdown
 506 implies that the theories built for a smaller learning rate cannot approximate what happens above
 507 that critical point, and it remains an open problem of how to describe the learning processes in the
 508 topological breakdown regime.

510 **Interdisciplinary link to Neuroscience.** An important line of thought in neuroscience is to under-
 511 stand our brain, the biological collection of neurons, as a manifold, whose topological and geomet-
 512 rical properties encode information (Perich et al., 2025). It is no coincidence that artificial neural
 513 networks are used and identified as mathematical models of the brain (for example, the cerebellum
 514 is often modeled as a fully connected feedforward network (Xie et al., 2023)). Therefore, our work
 515 may be further extended to help us understand the biological brain and advance neuroscience.

516 REFERENCES

517
 518 Serguei Barannikov, Daria Voronkova, Ilya Trofimov, Alexander Korotin, Grigorii Sotnikov,
 519 and Evgeny Burnaev. Topological obstructions in neural networks learning. *arXiv preprint*
 520 *arXiv:2012.15834*, 2020.

521
 522 Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
 523 homology and generalization in neural networks. *Advances in neural information processing*
 524 *systems*, 34:6776–6789, 2021.

525
 526 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
 527 learning. *SIAM review*, 60(2):223–311, 2018.

528
 529 Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep
 530 networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-
 531 scape. *arXiv preprint arXiv:1907.02911*, 2019.

532
 533 Maria Sofia Bucarelli, Giuseppe Alessio D’Inverno, Monica Bianchini, Franco Scarselli, and Fab-
 534 rizio Silvestri. A topological description of loss surfaces based on betti numbers. *Neural Net-*
 535 *works*, 178:106465, 2024.

536
 537 Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradi-
 538 ent noise attracts sgd dynamics towards simpler subnetworks. *arXiv preprint arXiv:2306.04251*,
 539 2023.

540
 541 Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable program-
 542 ming. *arXiv preprint arXiv:1812.07956*, 2018.

540 Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
 541 on neural networks typically occurs at the edge of stability. *arXiv preprint arXiv:2103.00065*,
 542 2021.

543 Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
 544 mood, and Richard S Sutton. Loss of plasticity in deep continual learning. *Nature*, 632(8026):
 545 768–774, 2024.

546 Herbert Edelsbrunner and John Harer. *Computational topology: an introduction*. American Mathe-
 547 matical Soc., 2010.

548 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
 549 invariance in linear mode connectivity of neural networks. *arXiv preprint arXiv:2110.06296*,
 550 2021.

551 MJ561832 Field. Equivariant dynamical systems. *Transactions of the American Mathematical
 552 Society*, 259(1):185–205, 1980.

553 Tomer Galanti and Tomaso Poggio. Sgd noise and implicit low-rank bias in deep neural networks.
 554 *arXiv preprint arXiv:2206.05794*, 2022.

555 Noah Golmant, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez. pytorch-
 556 hessian-eigenthings: efficient pytorch hessian eigendecomposition, October 2018. URL <https://github.com/noahgolmant/pytorch-hessian-eigenthings>.

557 Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
 558 at deep learning heuristics: Learning rate restarts, warmup and distillation. *arXiv preprint
 559 arXiv:1810.13243*, 2018.

560 Walter Helbig Gottschalk and Gustav Arnold Hedlund. *Topological dynamics*, volume 36. American
 561 Mathematical Soc., 1955.

562 Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. *arXiv
 563 preprint arXiv:1812.04754*, 2018.

564 Allen Hatcher. *Algebraic Topology*. Cambridge University Press, 2002.

565 Juha Heinonen. *Lectures on analysis on metric spaces*. Springer Science & Business Media, 2001.

566 Stefan Horoi, Jessie Huang, Bastian Rieck, Guillaume Lajoie, Guy Wolf, and Smita Krishnaswamy.
 567 Exploring the geometry and topology of neural network loss landscapes. In *International Sympo-
 568 sium on Intelligent Data Analysis*, pp. 171–184. Springer, 2022.

569 Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
 570 eralization in neural networks. *arXiv preprint arXiv:1806.07572*, 2018.

571 Dayal Singh Kalra and Maissam Barkeshli. Phase diagram of early training dynamics in deep
 572 neural networks: effect of the learning rate, depth, and width. *Advances in Neural Information
 573 Processing Systems*, 36:51621–51662, 2023.

574 Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
 575 and improvements. *Advances in Neural Information Processing Systems*, 37:111760–111801,
 576 2024.

577 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
 578 and Yann LeCun (eds.), *3rd International Conference on Learning Representations, ICLR 2015,
 579 San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings*, 2015.

580 Kazimierz Kuratowski. *Topology: Volume I*, volume 1. Elsevier, 2014.

581 Serge Lang. *Fundamentals of differential geometry*, volume 191. Springer Science & Business
 582 Media, 2012.

583 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

594 Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
 595 learning rate phase of deep learning: the catapult mechanism. *arXiv preprint arXiv:2003.02218*,
 596 2020.

597 Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
 598 Han. On the variance of the adaptive learning rate and beyond. *arXiv preprint arXiv:1908.03265*,
 599 2019.

600 Clément Maria, Paweł Dlotko, Vincent Rouvreau, and Marc Glisse. Rips complex. In *GUDHI User
 601 and Reference Manual*. GUDHI Editorial Board, 3.11.0 edition, 2025. URL https://gudhi.inria.fr/doc/3.11.0/group__rips__complex.html.

601 Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
 602 networks: dimension-free bounds and kernel limit. *arXiv preprint arXiv:1902.06015*, 2019.

603 John Willard Milnor and David W Weaver. *Topology from the differentiable viewpoint*, volume 21.
 604 Princeton university press, 1997.

605 David Mumford, John Fogarty, and Frances Kirwan. *Geometric invariant theory*, volume 34.
 606 Springer Science & Business Media, 1994.

607 Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. *Journal
 608 of Machine Learning Research*, 21(184):1–40, 2020.

609 Peter M Neumann. The structure of finitary permutation groups. *Archiv der Mathematik*, 27(1):
 610 3–17, 1976.

611 Emmy Noether. Invariante variationsprobleme. *Königlich Gesellschaft der Wissenschaften
 612 Göttingen Nachrichten Mathematik-physik Klasse*, 2:235–267, 1918.

613 Marco Nurisso, Pierrick Leroy, and Francesco Vaccarino. Topological obstruction to the training of
 614 shallow relu neural networks. *Advances in Neural Information Processing Systems*, 37:35358–
 615 35387, 2024.

616 Matthew G Perich, Devika Narain, and Juan A Gallego. A neural manifold view of the brain. *Nature
 617 Neuroscience*, pp. 1–16, 2025.

618 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
 619 alization beyond overfitting on small algorithmic datasets, 2022. URL <https://arxiv.org/abs/2201.02177>.

620 Emilie Purvine, Davis Brown, Brett Jefferson, Cliff Joslyn, Brenda Praggastis, Archit Rathore,
 621 Madelyn Shapiro, Bei Wang, and Youjia Zhou. Experimental observations of the topology of
 622 convolutional neural network activations. In *Proceedings of the AAAI Conference on Artificial
 623 Intelligence*, volume 37, pp. 9470–9479, 2023.

624 Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. *Reviews of
 625 modern physics*, 83(4):1057–1110, 2011.

626 Herbert Spohn. *Large scale dynamics of interacting particles*. Springer Science & Business Media,
 627 2012.

628 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
 629 ization and momentum in deep learning. In *International conference on machine learning*, pp.
 630 1139–1147. pmlr, 2013.

631 Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
 632 dynamical stability perspective. *Advances in Neural Information Processing Systems*, 31, 2018.

633 Marjorie Xie, Samuel P Muscinelli, Kameron Decker Harris, and Ashok Litwin-Kumar. Task-
 634 dependent optimal representations for cerebellar learning. *Elife*, 12:e82914, 2023.

635 Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. *arXiv preprint
 636 arXiv:2011.14522*, 2020.

648 Zhanpeng Zhou, Yongyi Yang, Mahito Sugiyama, and Junchi Yan. New evidence of the two-phase
649 learning dynamics of neural networks. *arXiv preprint arXiv:2505.13900*, 2025.
650

651 Liu Ziyin. Symmetry induces structure and constraint of learning. In *Forty-first International Con-*
652 *ference on Machine Learning*, 2024.

653 Liu Ziyin, Yizhou Xu, and Isaac Chuang. Remove symmetries to control model expressivity and
654 improve optimization. *ICLR*, 2025.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOFS OF THEORETICAL RESULTS**
 703

704 In this section, we prove all the theoretical results in the main paper. Before starting, we first define
 705 some additional notation. For a collection, we use subscripts to denote its elements. For example, if
 706 $\mathcal{X} = \{\mathbf{x}_i\}_{i \in I} \in (\mathbb{R}^D)^I$ is a collection of D -dimensional vectors, then \mathcal{X}_i represents \mathbf{x}_i by default.
 707

708 For an operator P on I , and a subset $J \subseteq I$, we use P_J to denote the operator obtained by constraining
 709 P on J .

710 For a statement ψ , we use $\mathbb{1}_{\{\psi\}}$ to represent its indicator, i.e. $\mathbb{1}_{\{\psi\}} = \begin{cases} 1 & \psi \text{ is true} \\ 0 & \text{otherwise} \end{cases}$.
 711

713 **A.1 PROOF OF LEMMA 1**
 714

715 Let $\mathcal{X} = \mathcal{X}^{(t)}$ for convenience. Define $P : I \rightarrow I$ as switching i and j :
 716

$$717 \quad 718 \quad 719 \quad 720 \quad \forall k \in I, P(k) = \begin{cases} j & k = i \\ i & k = j \\ k & \text{otherwise} \end{cases}. \quad (20)$$

721 Obviously $P \in \text{FSym}(I)$. Since $\mathbf{x}_i^{(t)} = \mathbf{x}_j^{(t)}$, we have $\mathcal{X} = P\mathcal{X}$.
 722

723 Applying $\mathcal{X} = P\mathcal{X}$ and the equivariance property, we can obtain that
 724

$$725 \quad \mathbf{x}_i^{(t+1)} = \mathbf{x}_i^{(t)} + \eta U_i(\mathcal{X}) = \mathbf{x}_j^{(t)} + \eta U_i(P\mathcal{X}) = \mathbf{x}_j^{(t)} + \eta (PU(\mathcal{X}))_i = \mathbf{x}_j^{(t)} + \eta U_j(\mathcal{X}) = \mathbf{x}_j^{(t+1)}, \quad (21)$$

727 which proves the proposition.
 728

729 **A.2 PROOF OF LEMMA 2**
 730

731 We first prove a lemma showing that two neurons that are close must remain close.
 732

733 **Lemma 4** (No Splitting). *The following statement holds when U has the equivariance property and
 734 K -continuity property. For any $t \in \mathbb{N}$ and $i, j \in I$ such that $i \neq j$, we have*

$$735 \quad 736 \quad \left\| U_i(\mathcal{X}^{(t)}) - U_j(\mathcal{X}^{(t)}) \right\| \leq K \left\| \mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)} \right\|. \quad (22)$$

738 *Proof.* Let $\mathcal{X} = \mathcal{X}^{(t)}$ for convenience. Define $P \in \text{FSym}(I)$ as switching i and j (as in eq. (20)).
 739 Then using the equivariance property, we have
 740

$$741 \quad U_i(\mathcal{X}) - U_j(\mathcal{X}) = U_i(\mathcal{X}) - (PU(\mathcal{X}))_i \quad (23)$$

$$742 \quad = U_i(\mathcal{X}) - U_i(P\mathcal{X}). \quad (24)$$

743 Notice that \mathcal{X} and $P\mathcal{X}$ only differ in entries i and j . Using the K -continuity property, we have
 744

$$745 \quad 746 \quad \sqrt{2} \left\| U_i(\mathcal{X}) - U_j(\mathcal{X}) \right\| = \sqrt{\left\| U_i(\mathcal{X}) - U_j(\mathcal{X}) \right\|^2 + \left\| U_i(\mathcal{X}) - U_j(\mathcal{X}) \right\|^2} \quad (25)$$

$$747 \quad 748 \quad = \sqrt{\left\| U_i(\mathcal{X}) - U_i(P\mathcal{X}) \right\|^2 + \left\| U_j(\mathcal{X}) - U_j(P\mathcal{X}) \right\|^2} \quad (26)$$

$$749 \quad \leq \left\| U(\mathcal{X}) - U(P\mathcal{X}) \right\| \quad (27)$$

$$750 \quad \leq K \left\| \mathcal{X} - P\mathcal{X} \right\| \quad (28)$$

$$751 \quad 752 \quad = \sqrt{2} K \left\| \mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)} \right\|. \quad (29)$$

753 The proposition is thus proved by shifting the terms. \square
 754

755 Next, we prove Lemma 2 using Lemma 4.

756 **Proof of Lemma 2** Notice that
 757

$$\|x_i^{(t+1)} - x_j^{(t+1)}\| = \|x_i^{(t)} - x_j^{(t)} + \eta(U_i(\mathcal{X}^{(t)}) - U_j(\mathcal{X}^{(t)}))\| \quad (30)$$

$$\in \|x_i^{(t)} - x_j^{(t)}\| + [-\eta, +\eta] \times \|U_i(\mathcal{X}^{(t)}) - U_j(\mathcal{X}^{(t)})\|. \quad (31)$$

762 The proposition is thus directly proved by applying Lemma 4. \square
 763

764 A.3 PROOF OF LEMMA 3
 765

766 For simplicity in the proof we fix a time t and denote $\widehat{U}^{(t)}$ by f . From Lemma 1, we have if
 767 $x_i^{(t)} = x_j^{(t)}$ then $x_i^{(t+1)} = x_j^{(t+1)}$, therefore f is well-defined. Moreover, from the definition of $S^{(t)}$
 768 and $S^{(t+1)}$, it is obvious that f is a surjection.
 769

770 Now suppose $\eta K < 1$. If $x_i^{(t)} \neq x_j^{(t)}$, the left-hand-side of Lemma 2 and the condition that $\eta K < 1$
 771 together shows that $x_i^{(t+1)} \neq x_j^{(t+1)}$, following from which we have f is an injection. Therefore, f
 772 is a bijection.
 773

774 A.4 PROOF OF THEOREM 1
 775

776 We fix a time point t and denote $\widehat{U}^{(t)}$ by f . Lemma 3 has already proved that f is a surjection.
 777 In this proof, we first prove the topological properties (i., ii. and iii.), and then the differentiable
 778 manifold property (iv.).
 779

780 **Topological properties.** For any pair of two different points $x_i^{(t)}$ and $x_j^{(t)}$, from the right-hand-
 781 side of Lemma 2, we have
 782

$$\|f(x_i^{(t)}) - f(x_j^{(t)})\| \leq (1 + \eta K) \|x_i^{(t)} - x_j^{(t)}\|, \quad (32)$$

783 which shows that f is $(1 + \eta K)$ -Lipschitz continuous. Since all Lipschitz continuous functions are
 784 continuous, we have f is also continuous.
 785

786 If, additionally, $S^{(t)}$ is compact, then from the continuity of f we immediately know $S^{(t+1)} =$
 787 $f(S^{(t)})$ is compact. Moreover, since $S^{(t+1)}$ is a metric space, it is automatically Hausdorff, and it
 788 is known that a surjective mapping from a compact space to a Hausdorff space is a quotient map.
 789

790 Now, suppose $\eta K < 1$ (without the compactness of $S^{(t)}$). Lemma 3 has proved that f is a bijection.
 791 Consider the inversion of f . Let $g = f^{-1}$. It is obvious that for any $i \in I$, we have $g(x_i^{(t+1)}) = x_i^{(t)}$.
 792 Using the left-hand-side of Lemma 2, we have
 793

$$\|g(x_i^{(t+1)}) - g(x_j^{(t+1)})\| \leq \frac{1}{1 - \eta K} \|x_i^{(t+1)} - x_j^{(t+1)}\| \quad (33)$$

794 for any $i, j \in I$, and therefore $g = f^{-1}$ is also continuous. This proves that f is a homeomorphism.
 795

801 **Differentiable manifold properties.** Now, with the condition that $\eta K < 1$ and $U^{(t)}$ satisfies the
 802 smoothness property (P3), we prove that f is a diffeomorphism from $S^{(t)}$ to $S^{(t+1)}$. The Invariance
 803 of Domain Theorem (See e.g. Theorem 2B.3 in Hatcher (2002)) guarantees that $S^{(t+1)}$ is also an
 804 open set in \mathbb{R}^D . Therefore, we only need to prove that f and its inverse both have continuous
 805 derivatives.
 806

807 Fix a point $x_i^{(t)} \in S^{(t)}$. Since $S^{(t)}$ is open, there must be a scalar $r_i > 0$, such that for any $\Delta \in \mathbb{R}^d$
 808 with $\|\Delta\| \leq r_i$, we have $x_i^{(t)} + \Delta \in S^{(t)}$. Consider such a perturbation Δ , then there must be a $j \in I$
 809 such that $x_j^{(t)} = x_i^{(t)} + \Delta$. Let $P \in \text{FSym}(I)$ be the permutation operator that exchanges i and j (as

810 defined in eq. (20)). We have
 811

$$812 \quad f(\mathbf{x}_i^{(t)} + \Delta) = f(\mathbf{x}_j^{(t)}) \quad (34)$$

$$813 \quad = U_j(\mathcal{X}^{(t)}) \quad (35)$$

$$814 \quad = (PU(\mathcal{X}^{(t)}))_i \quad (36)$$

$$815 \quad = U_i(P\mathcal{X}^{(t)}) \quad (\text{Equivariance Property}) \quad (37)$$

$$816 \quad = U_i[\mathcal{X}^{(t)} + (\mathbf{e}_i - \mathbf{e}_j)(\mathbf{x}_j^{(t)} - \mathbf{x}_i^{(t)})] \quad (38)$$

$$817 \quad = g_i^{(t)}(\Delta, \mathbf{x}_j^{(t)}) \quad (39)$$

$$818 \quad = g_i^{(t)}(\Delta, \mathbf{x}_i^{(t)} + \Delta) \quad (40)$$

819 Since from P3 we know $g_i^{(t)}$ is C^1 with respect to its two parameters, from the chain rule we have
 820 $g_i^{(t)}(\Delta, \mathbf{x}_i^{(t)} + \Delta)$ is also C^1 with respect of Δ , and therefore f is also C^1 at point $\mathbf{x}_i^{(i)}$. Since i is
 821 arbitrarily chosen, f is thus C^1 on entire $S^{(t)}$.
 822

823 Next, we prove that f^{-1} is also C^1 . Again consider $\mathbf{x}_i^{(t)} \in S^{(t)}$. Since we already know f is C^1 , let
 824 its gradient at point $\mathbf{x}_i^{(t)}$ be \mathbf{G} and we have for any unit vector \mathbf{v} , the directional derivative satisfies
 825

$$826 \quad \mathbf{G}\mathbf{v} = \lim_{\substack{\delta \rightarrow 0 \\ \delta \neq 0}} \frac{f(\mathbf{x}_i^{(t)} + \delta\mathbf{v}) - f(\mathbf{x}_i^{(t)})}{\delta}. \quad (41)$$

827 Let $\alpha = 1 - \eta K$, $\beta = 1 + \eta K$. From Lemma 2, for any $\delta < r_i$ we have
 828

$$829 \quad \alpha \leq \frac{\|f(\mathbf{x}_i^{(t)} + \delta\mathbf{v}) - f(\mathbf{x}_i^{(t)})\|}{|\delta|} \leq \beta. \quad (42)$$

830 Subtracting the bounds into eq. (41), we get
 831

$$832 \quad \|\mathbf{G}\mathbf{v}\| \in [\alpha, \beta], \quad (43)$$

833 which further implies that all singular-values of \mathbf{G} are in $[\alpha, \beta]$, which means \mathbf{G} is invertible. Since
 834 \widehat{U} is C^1 , inverse function theorem therefore shows f^{-1} is also C^1 .
 835

836 A.5 PROOF OF THEOREM 3

837 We fix a time point t and denote $\widehat{U}^{(t)}$ by f . Lemma 3 has already proved that f is a bijection. For
 838 any open set $A \subseteq S^{(t+1)}$, we have
 839

$$840 \quad \mu^{(t+1)}(A) = \mu^{(t+1)}\left\{\mathbf{x}_i^{(t+1)} \mid i \in I, \mathbf{x}_i^{(t+1)} \in A\right\} \quad (44)$$

$$841 \quad = m\left\{i \in I \mid \mathbf{x}_i^{(t+1)} \in A\right\} \quad (45)$$

$$842 \quad = m\left\{i \in I \mid f\left(\mathbf{x}_i^{(t)}\right) \in A\right\} \quad (46)$$

$$843 \quad = m\left\{i \in I \mid \mathbf{x}_i^{(t)} \in f^{-1}(A)\right\} \quad (47)$$

$$844 \quad = \mu^{(t)}(f^{-1}(A)). \quad (48)$$

845 This proves that f is measure-preserving. Following the same process one can easily prove that f^{-1}
 846 is also measure-preserving.
 847

848 A.6 PROOF OF PROPOSITION 1

849 In this proof we prove a slightly stronger version of the proposition originally stated in Proposition 1,
 850 without using the condition that I is finite. The result for finite I is thus a direct corollary.
 851

864 We only need to prove that for any $\mathcal{X} \in (\mathbb{R}^D)^I$ and $P \in \text{FSym}(I)$, we have
 865

$$866 P\nabla L(\mathcal{X}) = \nabla L(P\mathcal{X}). \quad (49)$$

867 Now we fix $P \in \text{FSym}(I)$ and consider any $\mathcal{X} \in (\mathbb{R}^D)^I$. Let
 868

$$869 J = \{i \in I \mid P_i \neq i\}, \quad (50)$$

870 be the support set of P . Since P is finitary, J is a finite set. Therefore, we only need to prove the
 871 proposition of entries in J . define $L_J : (\mathbb{R}^D)^J \rightarrow \mathbb{R}$ such that
 872

$$873 \forall \mathcal{Y} = \{\mathbf{y}_j\}_{j \in J}, L_J(\mathcal{Y}) = L\left(\left\{\mathbb{1}_{\{i \in J\}}\mathbf{y}_i + \mathbb{1}_{\{i \notin J\}}\mathbf{x}_i\right\}_{i \in I}\right). \quad (51)$$

875 The symmetry gives us

$$876 877 \forall \mathcal{Y} \in (\mathbb{R}^D)^J, L_J(\mathcal{Y}) = L_J(P|_J \mathcal{Y}), \quad (52)$$

878 where $P_J = P|_J$ is restriction of P on J . Taking derivative of both sides gives
 879

$$880 \nabla L_J(\mathcal{Y}) = P_J^\top \nabla L_J(P_J \mathcal{Y}), \quad (53)$$

881 shifting the terms and eq. (49) is proved.

883 A.7 PROOF OF PROPOSITION 2

885 The proposition is directly proved by noticing that

$$886 887 \|U^{(t)}(\mathcal{X}) - U^{(t)}(\mathcal{Y})\| = \|\nabla L(\mathcal{Y}) - \nabla L(\mathcal{X})\| \leq K \|\mathcal{Y} - \mathcal{X}\|. \quad (54)$$

888 A.8 PROOF OF PROPOSITION 3

890 We use eq. (49) proved before. Let $P \in \text{FSym}(I)$. We have

$$891 892 U^{(t)} \left[\begin{pmatrix} \boldsymbol{\theta}_{P(i)} \\ \mathbf{m}_{P(i)} \\ \mathbf{v}_{P(i)} \end{pmatrix}_{i \in I} \right] = \left\{ \begin{pmatrix} -\frac{\mathbf{m}_{P(i)}/(1-\beta_1^t)}{\epsilon + \sqrt{P\mathbf{v}_{P(i)}/(1-\beta_2^t)}} \\ \frac{1-\beta_1}{\eta} [\nabla_i L(P\Theta) - \mathbf{m}_{P(i)}] \\ \frac{1-\beta_2}{\eta} [\nabla_i L(P\Theta)^2 - \mathbf{v}_{P(i)}] \end{pmatrix}_{i \in I} \right\} \quad (55)$$

$$893 894 895 896 897 898 899 900 = \left\{ \begin{pmatrix} -\frac{\mathbf{m}_{P(i)}/(1-\beta_1^t)}{\epsilon + \sqrt{P\mathbf{v}_{P(i)}/(1-\beta_2^t)}} \\ \frac{1-\beta_1}{\eta} [\nabla_{P(i)} L(\Theta) - \mathbf{m}_{P(i)}] \\ \frac{1-\beta_2}{\eta} [\nabla_{P(i)} L(\Theta)^2 - \mathbf{v}_{P(i)}] \end{pmatrix}_{i \in I} \right\} \quad (56)$$

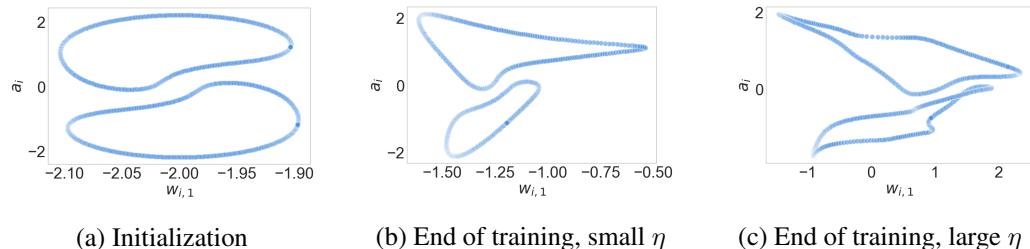
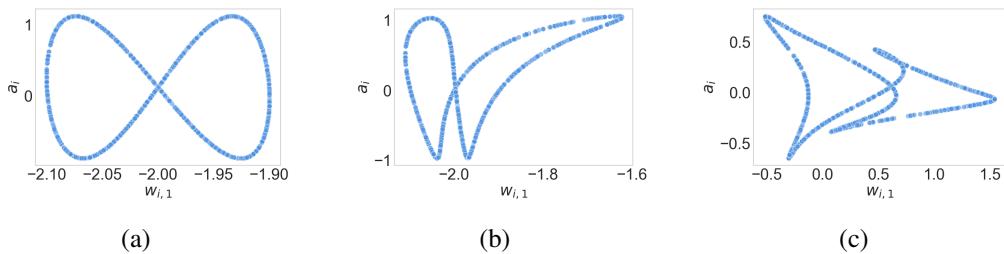
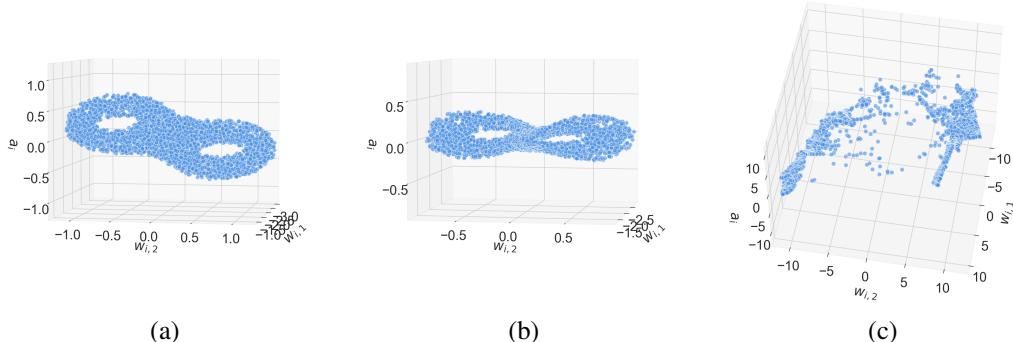
$$901 902 903 904 = P \left\{ \begin{pmatrix} -\frac{\mathbf{m}_i/(1-\beta_1^t)}{\epsilon + \sqrt{P\mathbf{v}_i/(1-\beta_2^t)}} \\ \frac{1-\beta_1}{\eta} [\nabla_i L(\Theta) - \mathbf{m}_i] \\ \frac{1-\beta_2}{\eta} [\nabla_i L(\Theta)^2 - \mathbf{v}_i] \end{pmatrix}_{i \in I} \right\} \quad (57)$$

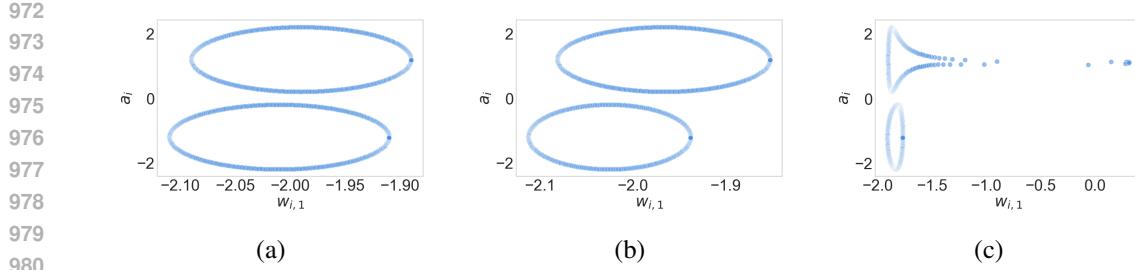
$$905 906 907 = PU^{(t)} \left[\begin{pmatrix} \boldsymbol{\theta}_i \\ \mathbf{m}_i \\ \mathbf{v}_i \end{pmatrix}_{i \in I} \right]. \quad (58)$$

909 A.9 PROOF OF THEOREM 2

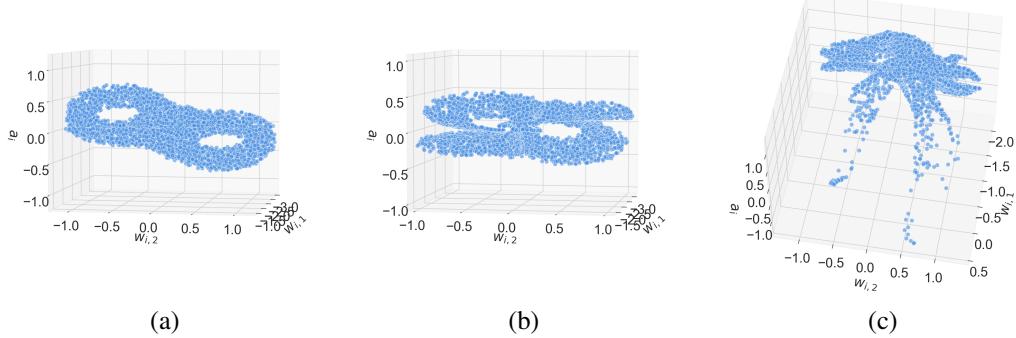
911 Let $\delta = \inf_{x, y \in S^{(t)}}$. When $\delta = 0$, the result is a direct corollary of Theorem 1. Below we assume
 912 $\delta > 0$.

913 Only need to notice that $(S^{(t)})^T$ is a union of open spheres with radius r that are unconnected to each
 914 other. Using Lemma 2, we have $(S^{(t+1)})^{(1-\eta K)r}$ is a union of open spheres with radius $(1-\eta K)r$
 915 that are unconnected to each other. Since any two open spheres are homeomorphic, we have $(S^{(t)})^T$
 916 is homeomorphic to $(S^{(t+1)})^{(1-\eta K)r}$.

918 **B EXTRA EXPERIMENT RESULTS**
919920 In this section, we provide extra experiment results performed with more optimizers, complementing
921 those in Section 6.
922923 **Low Dimensional Neural Networks** We extend the low-dimensional experiments to additional
924 optimizers. Figure 6 presents addition result for the 2D network trained with GD, under a different
925 initialization. Figures 9 and 10 present the results for 2D and 3D networks trained with Adam, and
926 Figures 7 and 8 present the corresponding results with momentum gradient descent.
927935 **Figure 6: Topology of a 2D neural network with GD and disjoint genus-1 initialization.** The
936 neurons are initialized on the disjoint union of two genus-1 surfaces and optimized with GD.
937949 **Figure 7: Topology of a 2D neural network with momentum gradient descent.** The neurons are
950 initialized on a genus-2 surface and optimized with momentum GD.
951944 **Figure 8: Topology of a 3D neural network with momentum gradient descent.** The neurons are
945 initialized on a genus-2 surface and optimized with momentum GD. The camera angle is manually
946 adjusted to better visualize the structure of the point cloud.
947948 **Extra Results Complementing the Experiments on Real Tasks** The Betti number results of
949 two-layer networks on MNIST are presented in Figure 11. Notice that in the small step-size setting
950 of Figure 11, the topology remains unchanged initially but begins to change after a certain period
951 of training. We attribute this to a key difference in the dynamics of Adam under small versus large
952



981 **Figure 9: Topology of a 2D neural network with Adam.** The neurons are initialized on the disjoint
982 union of two genus-1 surfaces and optimized with Adam.
983
984
985
986
987
988
989
990
991
992
993
994
995



1026 **Figure 10: Topology of a 3D neural network with Adam.** The neurons are initialized on a genus-2
1027 surface and optimized with Adam. The camera angle is manually adjusted to better visualize the
1028 structure of the point cloud.
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
222100
222101
222102
222103
222104
222105
222106
222107
222108
222109
222110
222111
222112
222113
222114
222115
222116
222117
222118
222119
222120
222121
222122
222123
222124
222125
222126
222127
222128
222129
222130
222131
222132
222133
222134
222135
222136
222137
222138
222139
222140
222141
222142
222143
222144
222145
222146
222147
222148
222149
222150
222151
222152
222153
222154
222155
222156
222157
222158
222159
222160
222161
222162
222163
222164
222165
222166
222167
222168
222169
222170
222171
222172
222173
222174
222175
222176
222177
222178
222179
222180
222181
222182
222183
222184
222185
222186
222187
222188
222189
222190
222191
222192
222193
222194
222195
222196
222197
222198
222199
222200
222201
222202
222203
222204
222205
222206
222207
222208
222209
222210
222211
222212
222213
222214
222215
222216
222217
222218
222219
222220
222221
222222
222223
222224
222225
222226
222227
222228
222229
222230
222231
222232
222233
222234
222235
222236
222237
222238
222239
222240
222241
222242
222243
222244
222245
222246
222247
222248
222249
222250
222251
222252
222253
222254
222255
222256
222257
222258
222259
222260
222261
222262
222263
222264
222265
222266
222267
222268
222269
222270
222271
222272
222273
222274
222275
222276
222277
222278
222279
222280
222281
222282
222283
222284
222285
222286
222287
222288
222289
222290
222291
222292
222293
222294
222295
222296
222297
222298
222299
2222100
2222101
2222102
2222103
2222104
2222105
2222106
2222107
2222108
2222109
2222110
2222111
2222112
2222113
2222114
2222115
2222116
2222117
2222118
2222119
2222120
2222121
2222122
2222123
2222124
2222125
2222126
2222127
2222128
2222129
2222130
2222131
2222132
2222133
2222134
2222135
2222136
2222137
2222138
2222139
2222140
2222141
2222142
2222143
2222144
2222145
2222146
2222147
2222148
2222149
2222150
2222151
2222152
2222153
2222154
2222155
2222156
2222157
2222158
2222159
2222160
2222161
2222162
2222163
2222164
2222165
2222166
2222167
2222168
2222169
2222170
2222171
2222172
2222173
2222174
2222175
2222176
2222177
2222178
2222179
2222180
2222181
2222182
2222183
2222184
2222185
2222186
2222187
2222188
2222189
2222190
2222191
2222192
2222193
2222194
2222195
2222196
2222197
2222198
2222199
2222200
2222201
2222202
2222203
2222204
2222205
2222206
2222207
2222208
2222209
2222210
2222211
2222212
2222213
2222214
2222215
2222216
2222217
2222218
2222219
2222220
2222221
2222222
2222223
2222224
2222225
2222226
2222227
22222

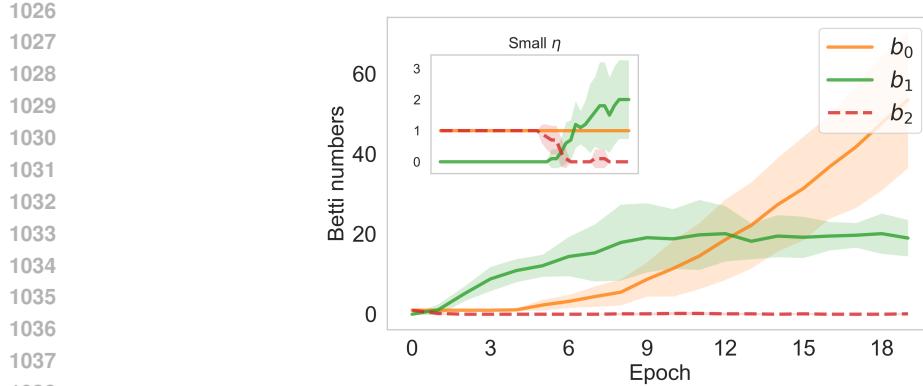


Figure 11: **Evolution of Betti numbers during training with Adam.** The plots show the first three Betti numbers b_0 , b_1 , and b_2 over time. The main panels correspond to large learning rates, while the insets show the results for small learning rates. Each curve is obtained by averaging over 10 runs with different random seeds; the curves denote the means and the shaded regions indicate the standard deviations. When the step size is small, the topology eventually changes after a certain training time. We attribute this to increasing sharpness: as training progresses, the network becomes sharper and the threshold for topological changes correspondingly decreases.

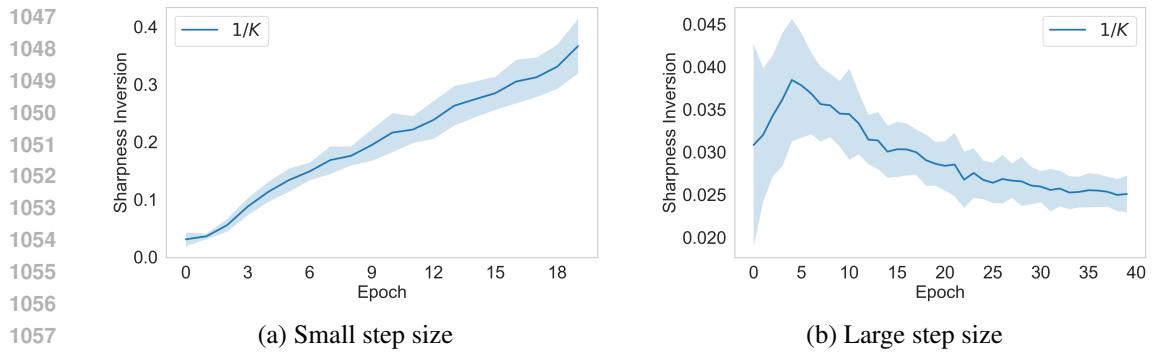


Figure 12: **Evolution of Betti numbers and sharpness inversion under Adam.** Here K denotes the largest eigenvalue of the Hessian matrix. The small step-size setting is trained for a longer time to ensure convergence.

pairs after each epoch. It is clear that, in the large learning rate setting, the model is not able to learn, and the number of collapsed neurons is increasing, showing the loss of plasticity of the neural network; while in the small learning rate setting, there are no collapsed neurons and the model is able to continually learn the tasks even when they are changed at each epoch.

C EXPERIMENT DETAILS

In this section, we provide the experimental details.

C.1 EXPERIMENTS WITH LOW-DIMENSIONAL NEURAL NETWORKS

As described in Section 6, we use a two-layer neural network with sigmoid activation, with input dimension $d = 1$ (referred to as the 2D case) or $d = 2$ (referred to as the 3D case).

Given input dimension d , the input data are denoted by $\mathcal{D} = \{(z_s, y_s^*)\}_{s=1}^n \in (\mathbb{R}^d \times \mathbb{R})^n$, where n is the dataset size. Each input z_s is sampled from a Gaussian distribution with variance 4, i.e., $z_{s,j} \sim \mathcal{N}(0, 4)$ for $j \in \{1, 2\}$. The labels y_s^* are generated by a teacher model

$$y_s^* = \langle \mathbf{a}^*, \sigma(\mathbf{W}^* \mathbf{z}_s) \rangle, \quad (59)$$

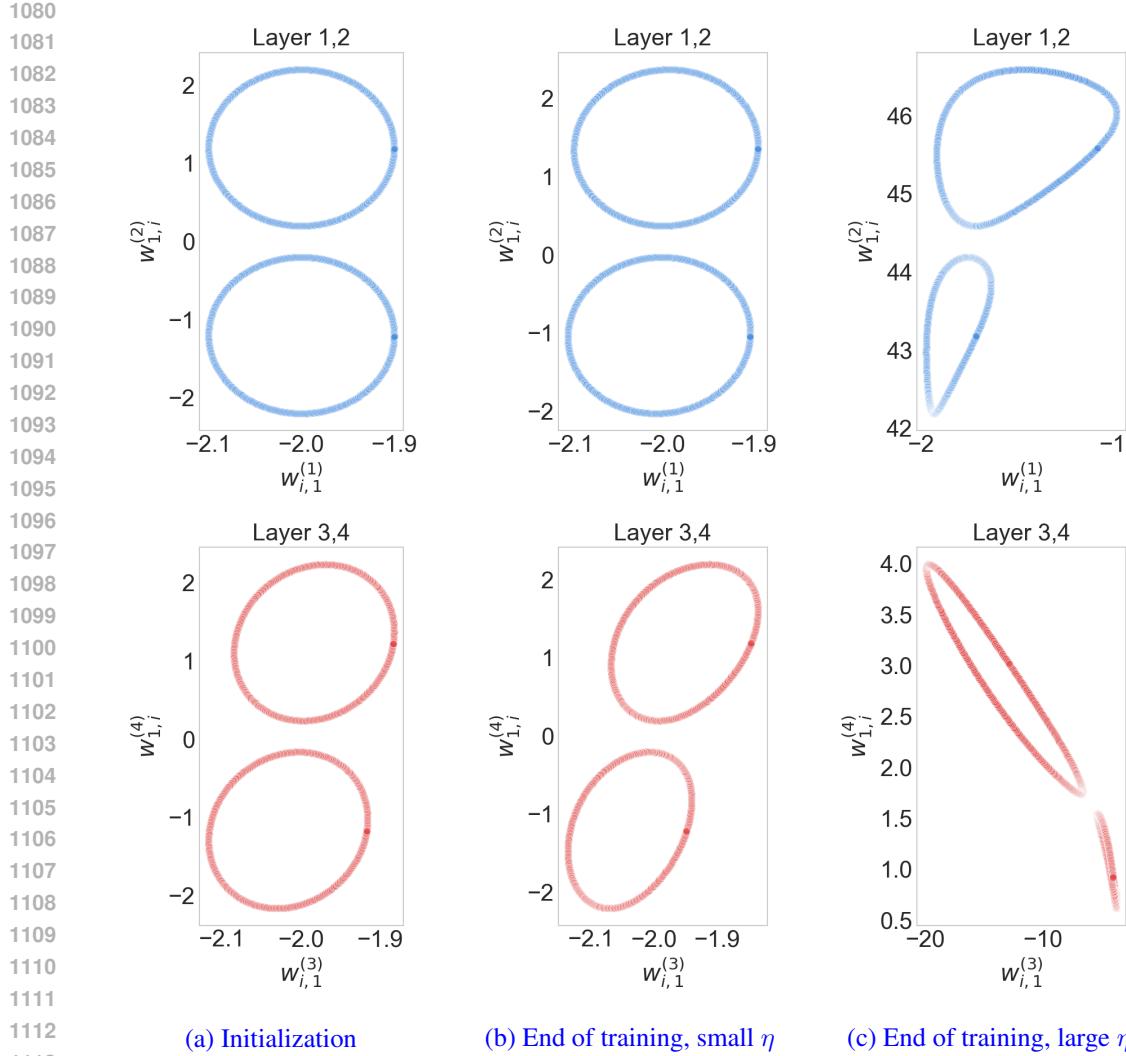


Figure 13: **Topology of a multi-layer 2D neural network with gradient descent.** The neurons are initialized on a genus-2 surface and optimized with GD.

where $\mathbf{a}^* \in \mathbb{R}^{h^*}$, $\mathbf{W}^* \in \mathbb{R}^{h^* \times d}$, and h^* is the hidden size of the teacher model. Both \mathbf{a}^* and \mathbf{W}^* are randomly sampled at the beginning and fixed when constructing the dataset, with $a_j^* \sim \mathcal{N}(0, 1)$ and $w_{j,k}^* \sim \mathcal{N}(0, 0.36)$. In all experiments, n is set to 5000, with 70% of the data used for training. The model is trained using mini-batches of size 128. For GD with momentum, the momentum coefficient is set to 0.9.

Since different methods admit different thresholds for effective learning rates, we manually tuned the step sizes for each optimizer. The learning rates used to generate the reported results are summarized in Table 1. In all cases, we train the model until the training loss converges.⁶

C.2 EXPERIMENTS WITH LARGE NEURAL NETWORKS

In the experiments on MNIST (Section 6), we use a two-layer MLP with sigmoid activation and hidden size 1024. The model is trained for classification using cross-entropy loss, without any

⁶ Although in some cases the small and large step sizes appear close, we observed that low-dimensional networks are highly sensitive to the learning rate when trained with GD, possibly due to a degenerated loss landscape. For instance, in the 2D case, if $\eta = 2 \times 10^{-3}$ the neurons remain nearly unchanged, whereas for $\eta = 4 \times 10^{-3}$ the loss diverges. Thus we must compare within a relatively narrow range of learning rates.

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

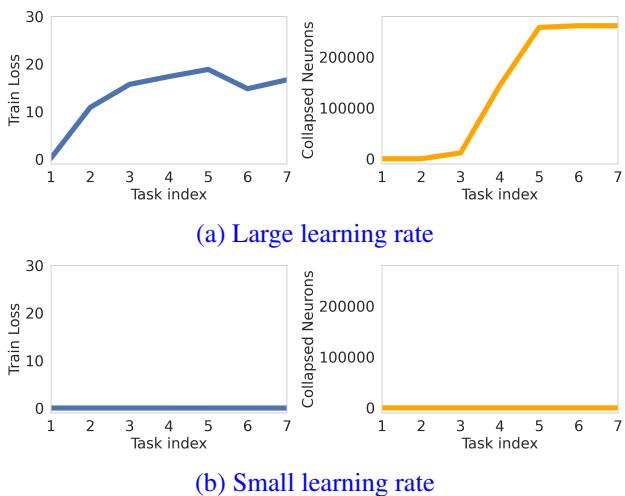


Figure 14: **The Multi-task learning results.** The neurons are initialized on a genus-2 surface and optimized with GD. After each epoch, the teacher model is resampled and the data is regenerated. “# of collapsed neurons” is calculated by counting the number of neuron pairs whose distance are smaller than 0.01.

Optimizer	Network dimension	Small learning rate	Large learning rate
GD	2D	2.5×10^{-3}	3×10^3
GD	3D	8×10^{-4}	9×10^{-4}
Adam	2D	10^{-4}	10^{-2}
Adam	3D	3×10^{-2}	10^{-1}
Momentum	2D	5×10^{-4}	4.5×10^{-3}
Momentum	3D	10^{-3}	1.25×10^{-3}
Multi-Layer	N/A	0.01	0.05

Table 1: Learning rates used in the experiments for low-dimensional neural networks.

additional regularization (e.g., weight decay). The batch size is set to 1024. For GD, the small and large learning rates are 0.02 and 0.5, respectively. For Adam, the corresponding values are 10^{-5} and 10^{-3} .

The Betti numbers are calculated with the GUDHI library (Maria et al., 2025). When computing Betti numbers for the neuron-induced point cloud, a minimal distance (i.e. scale) must be chosen to decide how close two points need to be for them to be considered as neighbors. To ensure robustness to scale changes during training, we adopt a self-adaptive strategy for deciding the minimal distance: the minimal distance is set to 1/4 times the diameter of the point cloud.

C.3 EXPERIMENTS WITH LOSS OF PLASTICITY

In the experiment with multi-task training, the input data are i.i.d. standard Gaussian vectors with dimensionality 8. For each task, we sample a random linear mapping from the input data to a 8-dimensional space, as the teacher model, that acts on the input data to generate the target data. The input data and teacher model are resampled every epoch to change the task. Each task contains 50000 training samples and 10000 evaluation samples. The model is trained with GD on the mean-square-error (MSE) loss. The model structure is the same as that in Appendix C.2, with random initialization. For large and small learning rate settings, the learning rates are set to 0.25 and 0.01, respectively, and the weight decay rate is set to 0.01. The first task (with index 0) is viewed as a warp-up and discarded.

1188 D A WEAKER VERSION OF CONTINUITY PROPERTY
1189

1190 In Section 3, we mentioned that the specific form of K -continuity property is only for establishing
1191 a correspondence with the smoothness property used in optimization theory, and in our theory this
1192 property can actually be weaker. Specifically, when I is an infinite set, the K -continuity property
1193 defined in Section 3 implicitly requires that $U(\mathcal{X})$ and $U(\mathcal{Y})$ only differ in finite number of entries,
1194 which might not always hold. This condition can be relaxed to the upper bound on each entry of
1195 $U(\mathcal{X}) - U(\mathcal{Y})$.

1196 **(P2') Altered K -Continuity Property:** If there exists a constant $K > 0$, such that for any $t \in \mathbb{N}$,
1197 $\mathcal{X}, \mathcal{Y} \in (\mathbb{R}^D)^I$ and $i \in I$, we have

$$1199 \sup_{i \in I} \|U_i^{(t)}(\mathcal{X}) - U_i^{(t)}(\mathcal{Y})\| \leq \frac{K}{2} \|\mathcal{X} - \mathcal{Y}\|, \quad (60)$$

1202 then we say $U^{(t)}$ has altered K -continuity property.

1203 The proof of the main theories is built upon Lemma 4. Here we prove a variation of Lemma 4 with
1204 the altered K -continuity property.

1205 **Lemma 5** (Altered - No Splitting). *The following statement holds when U has the equivariance
1206 property and altered K -continuity property. For any $t \in \mathbb{N}$ and $i, j \in I$ such that $i \neq j$, we have*

$$1208 \|U_i(\mathcal{X}^{(t)}) - U_j(\mathcal{X}^{(t)})\| \leq K \|\mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)}\|. \quad (61)$$

1210 *Proof.* Let $\mathcal{X} = \mathcal{X}^{(t)}$ for convenience. Define $P \in \text{FSym}(I)$ as switching i and j (as in eq. (20)).
1211 Then using the equivariance property, we have

$$1213 U_i(\mathcal{X}) - U_j(\mathcal{X}) = U_i(\mathcal{X}) - (PU(\mathcal{X}))_i = U_i(\mathcal{X}) - U_i(P\mathcal{X}). \quad (62)$$

1214 Notice that \mathcal{X} and $P\mathcal{X}$ only differ in entries i and j . Using the K -continuity property, we have

$$1216 \|U_i(\mathcal{X}) - U_j(\mathcal{X})\| = \|U_i(\mathcal{X}) - U_i(P\mathcal{X})\| \quad (63)$$

$$1217 \leq \frac{K}{2} \|\mathcal{X} - P\mathcal{X}\| \quad (64)$$

$$1219 \leq K \|\mathbf{x}_i^{(t)} - \mathbf{x}_j^{(t)}\|. \quad (65)$$

□

1223 In all the presented theories, the K -continuity property can be replaced by the altered K -continuity
1224 property. The proofs directly apply by replacing Lemma 4 with Lemma 5.

1226 LARGE LANGUAGE MODEL USAGE
1227

1228 In preparing this submission, we used a large language model (ChatGPT) as an assistive tool for
1229 language polishing. The model did not contribute to the research ideation, experimental design, data
1230 analysis, or the generation of scientific content. All substantive content, results, and conclusions pre-
1231 sented in this paper were conceived, written, and verified by the authors, who take full responsibility
1232 for the work.

1233
1234
1235
1236
1237
1238
1239
1240
1241