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ABSTRACT

We prove that for a broad class of permutation-equivariant learning rules (includ-
ing SGD, Adam, and others), the training process induces a bi-Lipschitz mapping
of neurons and preserves key topological properties of the neuron distribution.
This result reveals a qualitative difference between small and large learning rates.
Below a critical topological threshold η∗, the training is constrained to preserve
the topological structure of the neurons, whereas above η∗ the process allows
topological simplification, making the neuron manifold progressively coarser and
reducing the model’s expressivity. An important feature of our theory is that it’s
independent of specific architectures or loss functions, enabling universal applica-
tions of topological methods to the study of deep learning.

1 INTRODUCTION

Deep learning has emerged as an extraordinarily powerful tool, yet due to its complexity and inherent
nonlinearity, our understanding of its inner mechanisms remains limited. There is a strong practical
motivation for studying learning dynamics: a unified understanding of learning dynamics could
inform the design of new regularization techniques, learning-rate schedule algorithms and other
training strategies, thereby reducing the reliance on extensive hyperparameter tuning and facilitating
the development of more efficient models (Sutskever et al., 2013; Gotmare et al., 2018; Liu et al.,
2019; Kalra & Barkeshli, 2024). More recently, numerous empirical works have described the
universal aspects of learning dynamics (Zhou et al., 2025; Cohen et al., 2021; Gur-Ari et al., 2018),
yet a unified theoretical framework is still lacking.

A primary difficulty in analyzing the learning dynamics of neural networks lies in their extremely
high dimensionality across diverse architectural details. Modern neural networks, such as GPT-4,
have more than 1012 parameters, inducing such complicated dynamics that conventional tools and
theories of dynamical systems struggle to apply. Lessons from natural science and many fields of
mathematics suggest two primary approaches (Noether, 1918; Mumford et al., 1994): (1) study
what the high-dimensional object is invariant to, and (2) decompose it into simpler parts. The first
approach directly reduces the dimensionality of a problem, while the second allows us to view it
as a composition of low-dimensional objects. Our theory, presented in this paper, aims to offer a
crucial link between the two perspectives and show that due to a universal property, the permutation
invariance (or equivariance) of the model (or learning algorithm), almost any neural network can be
naturally decomposed into a system of interacting “neurons” with much smaller dimensions.

Specifically, under standard regularity conditions, we show that:
1. The permutation equivariance of common learning algorithms imposes strong topological con-

straints on the learning dynamics;1
2. With a small learning rate η, the learning algorithm induces a bi-Lipschitz mapping between

neurons at different time steps, thereby preserving the topological structure of the set formed
by the neurons.

3. With a large η, this topological invariance breaks down: the learning algorithm descends to a
continuous surjection, thereby inducing a simplification process during training.

The core contribution of this paper can be summarized as the theoretical establishment of a critical
point of the topological phase transition (hereinafter referred to as the topological critical point)
for learning processes. Figure 1 illustrates the theory.

1The word “topology” is sometimes used to refer to the model architecture. In our work, it always means
the mathematical topology of sets.
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Figure 1: At a small learning, common learning algorithms induce a homeomorphic transformation of the
neuron distribution (blue shapes in Figure), a mechanism underlying common theories including the NTK / lazy
regime (Jacot et al., 2018; Chizat et al., 2018) and the mean-field / feature-learning regime (Yang & Hu, 2020).
In contrast, most neural networks in real training scenarios are known to move towards the “edge of stability,”
where the discrete-time updates are no longer stable at any first-order stationary point. From the perspective of
topology, what separates these two regimes is the topology invariance in the first regime, where the learning
process is strongly constrained to preserve any topological properties, and the topological breakdown in the
second regime, where the learning ceases to preserve topology and acts as a simplifier that merges neurons and
makes the model more and more constrained in capacity.

A key feature of our theory is that it relies only on several widely satisfied properties of the learning
algorithm and is therefore universal across architectures and optimizers. The system-independence
of our result allows us to establish a key conceptual principle: any permutation-equivariant dynam-
ics induces a topology between its components, and this topology is preserved at a small step size
and reduced at a large step size. This universality lends it good potential to serve as a foundation
for future theories. Moreover, our framework is firmly grounded in mathematical topology and can
be further developed using tools thereof (Milnor & Weaver, 1997). The close connection between
topology and theoretical physics also opens the door for relevant concepts from physics to be applied
here (Qi & Zhang, 2011).

This paper is organized as follows. Section 2 reviews the background. Section 3 introduces the prob-
lems setting. Section 4 presents our main theory. Section 5 applies the theory to common training
algorithms. Section 6 presents empirical results. Finally, Section 7 discusses further implications of
our theory. All proofs of the theoretical results are deferred to the appendix.

2 BACKGROUND

Permutation Symmetry. Permutation symmetry refers to the invariance of a function’s output
under permutations of its inputs. This property is pervasive in neural networks and has been widely
used to analyze their loss landscapes (Entezari et al., 2021; Brea et al., 2019; Ziyin, 2024). For
example, any neural network component (such as a layer) that has the following structure:

f(x;W1,W2) =W2σ (W1x) , (1)
where W1,W2 are learnable parameter matrices, x is the input vector and σ is a scalar activation
function (applied element-wisely), possesses permutation symmetry, as

f(x;W1,W2) = (PW ⊺
2 )
⊺
σ ((PW1)x) = f(x;PW1,W2P

⊺) (2)
for any permutation matrix P . If we pair the i-th row of W2 with the i-th column of W1 together
as a unit (which together form a “neuron” in our theory), then the symmetry can be understood as
that, the model remains unchanged under exchanging two neurons (w1,i,w2,i) ↔ (w1,j ,w2,j).
Structures in the form of eq. (1) are quite common in all types of neural networks, including con-
volutional layers, feed-forward layers, and the QK transformation in the self-attention layers in
transformers. Specifically, the QK transformation in transformers can be represented as

f(X;WQ,WK) = softmax (XWQW
⊺
kX

⊺) , (3)

where X ∈ Rn×d is the input of the self-attention layer, and it is clear that the QK transformation
satisfies the structure defined in eq. (1), with W2 = WQ, Wi = W ⊺

k and σ being the identity
mapping. All those components therefore possess permutation symmetry, and fall within the scope
of our theory. A key consequence of the permutation symmetry is the permutation equivariance of
the learning algorithms, such as (stochastic) gradient descent and Adam, which we will take as the
starting point of our theory.
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Critical Learning Rates. Recent empirical studies suggest that neural networks exhibit qualita-
tively different learning dynamics under small versus large learning rates. Large learning rates often
lead to simpler models (Galanti & Poggio, 2022; Chen et al., 2023; Dohare et al., 2024), while such
dramatic changes seem to be lacking with the use of small learning rates, where the learning dy-
namics are often well-approximated by the NTK or the mean-field theories (Jacot et al., 2018; Yang
& Hu, 2020; Mei et al., 2019). In this work, we establish a topological characterization of these
transitions.

Topology. Topology is the mathematical study of abstract shapes and connectivity, focusing on
properties that remain unchanged under continuous deformations such as stretching or bending (Ku-
ratowski, 2014). It provides a way to talk about local and global structures without relying on exact
distances; a bijective continuous map with a continuous inverse is called a homeomorphism and
preserves the topology of general sets. Manifolds are sets with a local Euclidean structure, and
their smooth structure is preserved under smooth invertible maps, called diffeomorphisms (Lang,
2012). In the context of deep learning, topological perspectives has been widely adopted to under-
stand the properties of neural networks (Bucarelli et al., 2024; Barannikov et al., 2020; Horoi et al.,
2022; Naitzat et al., 2020; Purvine et al., 2023; Nurisso et al., 2024; Birdal et al., 2021). However,
prior studies have largely remained empirical and focused on specific networks, whereas our work
connects the topology of neurons systematically to the training dynamics.

3 PRELIMINARIES

Now, we temporarily set aside considerations of specific neural networks and learning algorithms,
and instead focus on more general and abstract objects. We will consider a (possibly infinite) collec-
tion of high-dimensional particles (corresponding to neurons) and their dynamics (corresponding to
learning algorithms). In the following, we use the terms “particles” and “neurons” interchangeably.

Notations. Let I be an arbitrary potentially uncountable set, which we often refer to as the index
set. Throughout this paper, we focus on a collection ofD-dimensional vectors indexed by I . We use
(RD)I to represent the set of all such collections. We use calligraphic uppercase letters to denote
collections indexed by I (e.g. X ∈ (RD)I ), bold lowercase letters to denote vectors (e.g. x ∈ RD),
and unbold lowercase letters to denote scalars or an entry of a vector or matrix (e.g. xk ∈ R represents
the k-th entry of x). For i ∈ I , and a vector v ∈ RD, we use ei ⋅ v ∈ (RD)

I
to denote a collection of

D-dimensional vectors where only the i-th element is v and other vectors are 0.

Let FSym(I) be the Finitary Permutation Group on I , i.e. the group of all permutation operators on
I with a finite support (Neumann, 1976). For an operator P ∈ FSym(I) and X = {xi}i∈I , we use
PX to represent {xP (i)}i∈I .

For X = {xi}i∈I ∈ (RD)
I

and Y = {yi}i∈I ∈ (RD)
I
, if X and Y only differs in finite many terms,

then we define ∥X − Y∥ =
√
∑i∈I ∥xi − yi∥

2, and ∥X − Y∥ = +∞ if otherwise.

Problem Setting. Formally, we focus on a evolving collection of D-dimensional vectors

X (t) = {x(t)i }i∈I ∈ (R
D)I , (4)

where t ∈ N is the time axis. X (t) is updated by a generic update rule U (t) ∶ (RD)I → (RD)I with
step size η > 0:

x
(t+1)
i = x(t)i + ηU

(t)
i (X

(t)) , (5)

where U (t)i (X) = (U (t)(X))i. Here, each element in X (t) corresponds to the weights of a neuron
of a neural network at training step t, and U (t) corresponds to the learning algorithm at time point t,
which includes regularization terms, and can also depend on other parameters that are not considered
(this is also why the update rule is time-dependent, as other parameters can change over time).

Abstractly, we consider update rules U (t) satisfying the following properties.

• (P1) Equivariance Property: We say U (t) has equivariance property if for any t ∈ N, any
X ∈ (RD)I and P ∈ FSym(I), we have PU (t)(X) = U (t)(PX). In deep learning, this property

3
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is a consequence of running gradient-based algorithms on permutation-symmetric loss functions,
as we will show in Section 5. That many dynamics are naturally equivariant has been studied in
physics Field (1980), but its role in deep learning is not yet clear.

• (P2-K) K-Continuity Property: For K > 0, if for any t ∈ N and any X ,Y ∈ (RD)I ,

∥U (t) (X) −U (t) (Y)∥ ≤K ∥X − Y∥ , (6)

then we say U (t) has K-continuity property. Notice that eq. (6) makes sense only when X
and Y only differ in finite entries. When I is finite and U (t) is gradient descent, the quantity
K is the largest eigenvalue of the Hessian of the loss function, and the K-continuity property
becomes an upper bound of the Lipschitz continuity of the gradient, which is commonly seen in
optimization theory (See details in Section 5.1). We intentionally choose this form to establish
this correspondence; however, it is possible to prove our theory with a weaker version of the
continuity property. See Appendix D for details.

Now, it is important to define the word “neuron.” The equivariance property is actually the most
general way to define a “neuron” (e.g., see Ziyin (2024)), whatever subset of parameters that are
permutationally-equivalent to the learning rule can be called a “neuron.” In case of fully connected
networks trained with GD, this definition of a “neuron” is equivalent to the standard definition (in-
coming plus outgoing weights of an activation unit).

If, beyond topology, we also want to talk about the differentiable manifold structure of the neurons,
we further consider a smoothness property of U .

• (P3) Smoothness Property: For any i ∈ I and t ∈ N, define

∀y,z ∈ RD, g(t)i (y,z) = U
(t)
i (X

(t) + (ei − ej) ⋅ z) , such that y = x(t)j , (7)

where j is arbitrarily chosen when multiple j-s satisfies the condition, and ej is set to 0 if no j
satisfies the condition. If g(t)i isC1 on (RD)2 for any i ∈ I , we say U (t) has the (C1-)smoothness
property. Intuitively, the smoothness property requires that the response of each output entry of
U with respect to a small perturbation of one entry of its input must be C1.

4 TOPOLOGY OF LEARNING

In this section, we present our main theoretical results: the characterization of the change of topol-
ogy and measure structures of X under the update rule. Before diving into the main theorems, we
first establish two critical lemmas. These lemmas show that, a combination of the equivariance and
continuity of the update rule implies that there is an emergent notion of distance between different
neurons. Intuitively, permutation equivariance implies that two infinitesimally close neurons need
to have identical updates, which implies that the motion that changes their difference must be van-
ishing. Thus, equivariance ensures that neurons that start close to each other remain close because
dynamics that would increase or decrease their distance are suppressed.

Lemma 1 (Well-definedness). The following statement holds whenU (t) satisfies P1. For any i, j ∈ I
such that i ≠ j, if at time t we have x

(t)
i = x

(t)
j , then, x(t+1)i = x(t+1)j .

Next, we strengthen the intuition behind Lemma 1 by incorporating the continuity property.

Lemma 2 (No Merging or Splitting). If U (t) satisfies P1 and P2-K, then for any i, j ∈ I such that
i ≠ j,

(1 − ηK) ∥x(t)i −x
(t)
j ∥ ≤ ∥x

(t+1)
i −x(t+1)j ∥ ≤ (1 + ηK) ∥x(t)i −x

(t)
j ∥ . (8)

This lemma implies the bi-Lipschitzness of the update rule between the manifolds formed by neu-
rons at consecutive time steps t and t + 1. The fact that common learning rules induce bi-Lipschitz
mappings is nontrivial, as such maps are known to preserve topological invariants (as we will show
in the subsequent section) and control geometric distortions (Heinonen, 2001).

Moreover, Lemma 2 also identifies a critical learning rate η∗ = 1/K, beyond which the lower bound
becomes vacuous, which we referred to as topological critical point hereinafter. As we will see in
the next section, this marks a phase transition from bijective, homeomorphic dynamics to merely
surjective continuous dynamics.
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4.1 TOPOLOGICAL INVARIANCE

A crucial perspective is implied by the lemmas above: the entirety of the neurons can be seen as a
set (or, manifold) S ⊂ RD, and the evolution of neurons can be viewed as the evolution of S. Of
course, a crucial question is whether such a perspective is meaningful, which is the key question we
answer in this section.

Formally, let S(t) = {x(t)i ∣ i ∈ I} ⊆ RD denote the set formed by all of the neurons inX (t), equipped

with the relative topology inherited from RD. Define function Û (t) ∶ S(t) → S(t+1) by

∀x ∈ I, Û (t) (x(t)i ) = x
(t+1)
i . (9)

Intuitively, Û (t) describes the effect of U (t) on each point of S(t). Lemmas 1 and 2 together ensure
that Û (t) is well-defined and, under small learning rates, a bijection.

Lemma 3. If U (t) satisfies P1 and P2-K, then Û (t) is well-defined, and is a surjection. If addition-
ally ηK < 1, then Û (t) is a bijection.

One can show that, Û (t) is not only a bijective, but also a homeomorphism between S(t) and S(t+1).
This leads to our main theorem.
Theorem 1 (Main). If U (t) satisfies P1 and P2-K, then

i. Û (t) is a continuous surjection from S(t) to S(t+1);
ii. if S(t) is compact, then S(t+1) is also compact, and Û (t) is a quotient map;

iii. if ηK < 1, then Û (t) is a homeomorphism;
iv. if ηK < 1, and U (t) also satisfies P3, and S(t) is an open subset of RD, then S(t+1) is also

open, and Û (t) is a C1-diffeomorphism.

See Appendix A.4 for the proof of Theorem 1. This result shows that when the learning rate is
below the critical threshold η∗ = 1/K, the neuronal set S(t) evolves through homeomorphisms
(or diffeomorphisms if smoothness holds). Consequently, the topology of S(t) remains invariant
across training: if the neurons initially form a space homeomorphic to a circle, torus, or any other
manifold, they will preserve that topological type for all time. If the neurons are initially separated
points that are far away from each other, this statement has a simple interpretation: neurons cannot
merge unless they were identical at initialization, whereas if two neurons are merged, they cannot
be separated. This implies that the learning process can only locally deform the neuron topology,
either by translating, expanding, or contracting local neuron densities.

That a sufficiently smooth learning rule induces a diffeomorphism of the neuron manifold both lends
support to the widespread use of mean-field theories (including the NTK theory) for understanding
neural networks training at a small learning rate (Mei et al., 2019; Jacot et al., 2018), and explains
their breakdown at a large learning rate. The diffeomorphic evolution ensures that the neuron distri-
bution Pt(w) obeys standard change-of-variable formulas, leading to Vlasov-type equations in the
infinite-width limit (Spohn, 2012). Since our theory is independent of the specific architecture of the
neural network, it could lead to the most general type of mean-field theory for deep learning, which
we leave as a future direction.

At large learning rates, by contrast, homeomorphic evolution breaks down. Merging and more
general topological changes become possible so that the learning process can no longer be described
as local interactions and the mean-field theories no longer apply. This transition, from topology-
preserving to topology-changing dynamics, constitutes the topological critical point predicted by
our theory and is verified in our experiments (Section 6). At the same time, the large-learning-rate
phase cannot change topology without bound because the upper bound in Lemma 2 always holds,
and so neuron splitting remains impossible. This is also topologically characterized by the fact that
the induced mapping Ũ is still a quotient map, meaning that it inherits a coarser topology from
the previous neuron distribution. The implication of reaching a coarser topology is that the training
reduces the expressivity/capacity of these neural networks and therefore simplifies them. This can
be understood directly from the perspective of permutation symmetries, where merging (or gluing)
two neurons is the same as transitioning to the symmetric state of the permutation symmetry, which
directly reduces the effective number of parameters of the model by the number of weights in a
neuron (e.g., see Proposition 3 of Ziyin et al. (2025)).

5
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Role of K. So far, we have formally treated the smoothness parameter K as a global quantity,
which leads to the elegant and easy-to-state results above. However, it is much better to conceptually
treat K as a local quantity in a small neighborhood around the current parameter θ: K ≈ K(θ).
When the learning rule is SGD, this K(θ) can be approximated by the largest eigenvalue of the
local Hessian λmax(H(θ)). In this more dynamical perspective, K can be seen as a dynamically
evolving quantity. When viewed with the phenomenon of the edge of stability (Cohen et al., 2021;
Wu et al., 2018), this picture suggests a two-phase perspective of the learning process of common
neural networks, where the first phase of training focuses on optimizing the loss and learning the
task, while the second phase of learning is a simplification process, where the model tends to simpler
and coarser topologies, a process that could be related to phenomena such as grokking (Power et al.,
2022).

4.2 ON A QUANTITATIVE DESCRIPTION

Theorem 1 presents a result regarding the mathematical topology of the neurons, which primarily
addressing the case in which the number of neurons is considered infinite. In this section, we provide
a more practical result that upper-bounds the scale change of the neurons. To formalize this, we first
define the r-expansion of a set.
Definition 1. For a set P ⊆ Rd and a scalar r > 0, the r-expansion of P is defined as

P r = {y ∈ Rd∣∥x − y∥ < r}. (10)

Note that the r-expansion defined here coincides with the standard notion of expansion widely used
in the study of metric spaces. For any set P ⊆ Rd, its r-expansion is naturally an open set and
inherits the relative topology from Rd.

Theorem 2. If U (t) satisfies P1 and P2-K and ηK < 1, then for any r < infx,y∈S(t) ∥x−y∥, we have

(S(t))r is homeomorphic to (S(t+1))(1−ηK)r.

See Appendix A.9 for the proof of Theorem 2. Note that when r = 0, Theorem 2 reduces to Theo-
rem 1.iii. When r > 0, however, it provides an quantitative description of how the scale of the set
changes.

4.3 MEASURE INVARIANCE

Beyond the invariance of topology, one can also ask “how many” neurons are stacked at a single
point of S(t) and how their density evolves over time. Formally speaking, this corresponds to
studying the probability distribution on S(t) obtained by pushing forward a universal probability
distribution defined on the index set I . In this subsection, we show that this distribution is also
preserved under the update rule.

Formally, in this subsection we assume a concrete structure on the index set I . Assume there is
a σ-algebra F on I and a probability measure m ∶ F → [0,1]. At any time t ∈ N, define the
mapping r(t) ∶ i ↦ x

(t)
i , and let it be a measurable function from I to S(t), where S(t) carries the

corresponding Borel σ-algebra.2 For each time t, we define a measure µ(t) on S(t) as the push-
forward of m under r(t), i.e.

∀open set A on S(t), µ(t)(A) =m(r(t)
−1
(A)) . (11)

Clearly, µ(t) is also a probability measure.

Theorem 3. Suppose U (t) satisfies P1 and P2-K, and suppose ηK < 1, then Û (t) is a probability
isomorphism between (S(t), µ(t)) and (S(t+1), µ(t+1)), i.e. Û (t) and Û (t)

−1
are both measure-

preserving bijections.

Theorem 3 shows that the update rule preserves not only the topology of S(t), but also the density
of neurons across it. Theorem 1 and Theorem 3 might remind readers of the topological dynamical

2These assumptions are automatically satisfied with a finite I .
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systems and measure-preserving dynamical systems (Gottschalk & Hedlund, 1955). However, what
we study is more general because in this context the update rule Û (t) as well as the space S(t)
itself are both time-dependent, which violates the definition of the topological/measure-preserving
dynamical systems. Therefore, the classical recurrence theorems in those fields cannot be directly
applied.

5 EXAMPLES: GRADIENT DESCENT AND ADAM

Starting from this section, we connect our abstract theoretical discussions to actual optimization
algorithms, by proving that the properties of the update rule U (t) we have used are satisfied by a
wide range of optimization algorithms. Here we analyze two of the most popular ones, namely
Gradient Descent (GD) and Adam, as illustrative cases.

5.1 GRADIENT DESCENT

Let us assume that there is a loss function L ∶ (RD)I → R that maps the neurons to a scalar loss
value, and the update rule U (t) is the gradient descent update3:

U (t)(X) = −∇L(X). (12)

Now we prove that, the equivariance property of U comes from the permutation symmetry of L and
the continuity property comes from the smoothness of L.
Proposition 1. If L has FSym(I)-symmetry, i.e.

∀X ∈ (RD)I ,∀P ∈ FSym(I), L(X) = L(PX), (13)

then U (t) defined in eq. (12) satisfies P1.

Proposition 2. If there exists a constant K > 0, such that for any X ,Y ∈ (RD)I and any i ∈ I , we
have

∥∇L (X) − ∇L (Y)∥ ≤K ∥X − Y∥ , (14)

then U (t) defined in eq. (12) satisfies P2-K.

Figure 2: An optimization perspective of the
topological critical point. The topological crit-
ical point η∗ = 1/K corresponds to the step size
that reduces the loss optimally, while the criti-
cal step size found by Cohen et al. (2021) cor-
responds to the largest one ensuring loss decay.

Remark. As noted in Section 3, the smoothness con-
dition in eq. (14) is precisely the standard smoothness
assumption widely used in optimization theory (Bot-
tou et al., 2018). Under this assumption, the topo-
logical critical point η∗ = 1

K
in our theory coincides

with the optimal step size suggested by a second-order
Taylor expansion of the loss around x. Specifically,
eq. (14) implies

L(x − η∇L(x)) (15)

≤ L(x) − η ∥∇L(x)∥2 + Kη
2

2
∥∇L(x)∥2 (16)

= L(x) + (K
2
η2 − η) ∥∇L(x)∥2 . (17)

It follows that the optimal decrease in loss occurs at
η∗ = 1

K
, which matches the topological critical point

identified in our framework and differs only by a con-
stant factor from the classical upper bound on stable
step sizes. See Figure 2 for an illustration. This corre-
spondence suggests there might be a hidden connection between neuron topology and optimization,
under the context of gradient descent and the presence of permutation symmetry: The loss can be
stably optimized only when the topology of the neurons is preserved.

3For this case, the right-hand side of eq. (12) is independent of time t, and therefore U (t) is the same
at each time. However, we would love to keep this redundancy of notation, because here we have actually
made a subtle (but harmless) simplification, that we implicitly assume all neurons that are to be updated have
permutation symmetry, while in practice there can be a part of learnable parameters that are not permutation-
invariant, absorbing which into L, although does not affect our discussion here, will make the loss function L
time-dependent and so does the update rule.

7
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(a) Initialization (b) End of training, small η (c) End of training, large η

Figure 3: Topology of a 2D neural network with GD. The neurons are initialized on a genus-2 surface and
optimized with GD. We visualize the topology of 2D and 3D networks before and after training under different
step sizes η. For small step sizes, the training may deform the geometric arrangement of the neurons but the
topology remains unchanged. In contrast, for large step sizes, the topological structure can change substantially.
These results consistently verify our theoretical predictions that while the geometry of the neurons can be
affected by training, the underlying topology is stable under small learning rates but fragile under large ones.

(a) Initialization (b) End of training, small η (c) End of training, large η

Figure 4: Topology of a 3D neural network with GD. The neurons are initialized on a genus-2 surface and
optimized with GD.

5.2 ADAM

Besides GD, other more complicated and modern optimizers are usually stateful – they need to keep
track of some values in the process of training, which at first sight seems incompatible with our
definition of U (t), since our U (t) is stateless by definition. This seemingly difficulty can be resolved
by a small trick: we can view the state of an optimizer as a part of the neurons, thereby rewriting
the update rule in a stateless form. As an illustration, in this section we prove that Adam (Kingma
& Ba, 2015), another widely-used optimizer in deep learning, also fits in our framework.

Specifically, suppose θ(t)i is the i-th neuron in the neural network at time t, the collection of particles
is defined asX (t) = {(θ(t)i ,m

(t)
i ,v

(t)
i )}i∈I , where m(t)

i and v
(t)
i are the first order and second order

moment estimators in Adam. The update rule is then defined as4

U (t) ∶

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⎛
⎜
⎝

θi

mi

vi

⎞
⎟
⎠

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭i∈I

↦

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜
⎜
⎜
⎝

−
mi/(1−β

t
1)

ϵ+
√

vi/(1−β
t
2
)

1−β1
η
[∇iL(Θ) −mi]

1−β2
η
[∇iL(Θ)

2
− vi]

⎞
⎟
⎟
⎟
⎠

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭i∈I

, (18)

where β1 and β2 are the decay rates for the first- and second-order moment estimators, respectively;
Θ = {θi}i∈I is the collection of the neurons; and all scalar operations (square, division, square root)
are taken element-wise. It is straightforward to check that the neuron update in eq. (18) is equivalent
to the standard Adam rule. One can now prove the following theorem.
Proposition 3. If L has FSym(I)-symmetry (eq. (13)), then U (t) defined in eq. (18) satisfies P1.

6 EXPERIMENTS

To illustrate our theoretical results, we conduct experiments using gradient-based methods on real
neural networks and track changes in the topological structure of the neuron-induced point cloud.

4Here and in the appendix, we optionally write the tuple in the tall form for better presentation.
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Our experimental results include both direct visualizations of the topological structure in low-
dimensional networks and quantitative measurements that capture topological properties in networks
trained on standard tasks. The experiments are conducted under a variety of optimizers and settings.
Additional results and detailed experimental settings are in Appendices B and C.

Low-dimensional Distributions. We first train neural networks with low-dimensional neurons
(2- or 3-dimensional) in order to directly visualize their topology. Specifically, consider a two-layer
neural network F ∶ Rd → R with hidden layer size h, defined as

F (z;{(wi, ai)}hi=1) =
h

∑
i=1
aiσ (⟨wi,z⟩) , (19)

where wi ∈ Rd and ai ∈ R are learnable parameters, and σ denotes the sigmoid function. The
network is trained on data generated by a random teacher network (See Appendix C for details). In
this setting, the loss function has the permutation symmetry as described in eq. (13), with I = [h]
and X = {(wi, ai)}i∈I ∈ (Rd+1)I .

For visualization purposes, we focus on d = 1 and d = 2, so that each element in X lies in R2

or R3 (referred to below as 2D and 3D networks, respectively), which enables a straightforward
visualization of their topology. Moreover, we initialize the elements in X with specific topological
structures to highlight potential topological (in)variance. See Figures 3, 4 and 6 for the results with
GD, and Appendix B for extra results with other optimizers.

Topological Invariants. Now, we directly measure topological invariants of high-dimensional
models trained on real tasks. Specifically, we measure the first three Betti numbers b0, b1, b2 of
the point cloud formed by the neurons. Betti numbers are fundamental topological invariants that
count the number of connected components, loops, and higher-dimensional voids in a topological
space; they are widely used in topological data analysis as compact descriptors of shape and struc-
ture (Edelsbrunner & Harer, 2010; Naitzat et al., 2020).

Figure 5: Evolution of Betti numbers during
training with GD. The main panel shows results
for the large learning rate, while the inset shows
results for the small one. Each curve is obtained
by averaging over 10 runs; the shaded regions in-
dicate the standard deviations.

We train a two-layer MLP on the MNIST dataset
(LeCun, 1998) for a classification task using stan-
dard cross-entropy loss, and track the evolution of
Betti numbers. The network is initialized with neu-
rons uniformly sampled from the surface of a 3D
unit sphere, which has Betti numbers (b0, b1, b2) =
(1,0,1). Figure 5 shows the results with both GD
and Adam. These results are consistent with our the-
oretical predictions: with small learning rates, the
model learns without changing the topological struc-
ture of the neurons, while with large learning rates,
the topology can change. Importantly, in all cases
the model can achieve a significant test accuracy, rul-
ing out the possibility that with small step sizes the
model simply stays near initialization without mean-
ingful updates.

7 DISCUSSION

We have investigated the interplay between permutation symmetries, learning rates, and neuron
topology in the training dynamics of neural networks, leading to a universal conceptual message:
permutation symmetry of architecture modules or learning algorithms imposes strong topological
constraints on how learning could happen. These interactions yield a range of insights that shed
light on understanding important empirical phenomena and inspire future algorithm design. A lim-
itation of our work is that it is entirely theoretical and does not test the predictions on large-scale
experiments. Due to the scope limit, we have also only discussed a small subset of all possible
implications of a topological theory of deep learning.

Topology. Our results establish a simple and clear topological characterization of learning, and
clarify a crucial distinction between training with different learning rates: small learning rates pre-
serve the topological structure of the neuron manifold, whereas large learning rates may enable

9
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topological changes. This might provide new insights into learning rate scheduling strategies, such
as learning rate decay: starting with a relatively large learning rate may facilitate exploration across
different topological configurations, while subsequent decay to smaller values can stabilize the train-
ing dynamics within a fixed topology. Our theory also offers a structural viewpoint that complements
existing explanations, such as the “catapult mechanism” (Lewkowycz et al., 2020). While further
work is needed to establish the precise conditions under which such topological transitions occur in
practical settings, this perspective highlights a potentially useful link between learning-rate phases
and topological dynamics.

Phase Transition. From a physics perspective, the change in the topology directly corresponds to
phase transitions. For example, a material with different Chern numbers is in different phases. In
our setting, these topological phase transitions also directly correspond to changes in the symmetry
of the parameters and are thus also phase transitions of the Landau type. Specifically, changing
from a genus-1 topology to a genus-2 topology implies that two neurons have “merged” into one
neuron, and this corresponds to a symmetry-restoration process where the network changes from the
symmetry-broken state to the symmetric state (Ziyin, 2024).

Deep Learning Theory. Our result also highlights the limitations of conventional theories of
learning dynamics. The EOS phenomenon states that GD almost always leads to a solution whose
sharpness is 2/η, and in practice this can happen quite early on in the training. Our result thus sug-
gests a huge difference between dominant theories of learning dynamics such as NTK and mean-field
theories, and the actual learning dynamics that we observe in practice. The topological breakdown
implies that the theories built for a smaller learning rate cannot approximate what happens above
that critical point, and it remains an open problem of how to describe the learning processes in the
topological breakdown regime.

Interdisciplinary link to Neuroscience. An important line of thought in neuroscience is to under-
stand our brain, the biological collection of neurons, as a manifold, whose topological and geomet-
rical properties encode information (Perich et al., 2025). It is no coincidence that artificial neural
networks are used and identified as mathematical models of the brain (for example, the cerebellum
is often modeled as a fully connected feedforward network (Xie et al., 2023)). Therefore, our work
may be further extended to help us understand the biological brain and advance neuroscience.
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Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Johanni Brea, Berfin Simsek, Bernd Illing, and Wulfram Gerstner. Weight-space symmetry in deep
networks gives rise to permutation saddles, connected by equal-loss valleys across the loss land-
scape. arXiv preprint arXiv:1907.02911, 2019.

Maria Sofia Bucarelli, Giuseppe Alessio D’Inverno, Monica Bianchini, Franco Scarselli, and Fab-
rizio Silvestri. A topological description of loss surfaces based on betti numbers. Neural Net-
works, 178:106465, 2024.

Feng Chen, Daniel Kunin, Atsushi Yamamura, and Surya Ganguli. Stochastic collapse: How gradi-
ent noise attracts sgd dynamics towards simpler subnetworks. arXiv preprint arXiv:2306.04251,
2023.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming.
arXiv preprint arXiv:1812.07956, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent
on neural networks typically occurs at the edge of stability. arXiv preprint arXiv:2103.00065,
2021.

Shibhansh Dohare, J Fernando Hernandez-Garcia, Qingfeng Lan, Parash Rahman, A Rupam Mah-
mood, and Richard S Sutton. Loss of plasticity in deep continual learning. Nature, 632(8026):
768–774, 2024.

Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American Mathe-
matical Soc., 2010.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296,
2021.

MJ561832 Field. Equivariant dynamical systems. Transactions of the American Mathematical
Society, 259(1):185–205, 1980.

Tomer Galanti and Tomaso Poggio. Sgd noise and implicit low-rank bias in deep neural networks.
arXiv preprint arXiv:2206.05794, 2022.

Noah Golmant, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph Gonzalez. pytorch-
hessian-eigenthings: efficient pytorch hessian eigendecomposition, October 2018. URL https:
//github.com/noahgolmant/pytorch-hessian-eigenthings.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Walter Helbig Gottschalk and Gustav Arnold Hedlund. Topological dynamics, volume 36. American
Mathematical Soc., 1955.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Allen Hatcher. Algebraic Topology. Cambridge University Press, 2002.

Juha Heinonen. Lectures on analysis on metric spaces. Springer Science & Business Media, 2001.

Stefan Horoi, Jessie Huang, Bastian Rieck, Guillaume Lajoie, Guy Wolf, and Smita Krishnaswamy.
Exploring the geometry and topology of neural network loss landscapes. In International Sympo-
sium on Intelligent Data Analysis, pp. 171–184. Springer, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. arXiv preprint arXiv:1806.07572, 2018.

Dayal Singh Kalra and Maissam Barkeshli. Phase diagram of early training dynamics in deep
neural networks: effect of the learning rate, depth, and width. Advances in Neural Information
Processing Systems, 36:51621–51662, 2023.

Dayal Singh Kalra and Maissam Barkeshli. Why warmup the learning rate? underlying mechanisms
and improvements. Advances in Neural Information Processing Systems, 37:111760–111801,
2024.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

Kazimierz Kuratowski. Topology: Volume I, volume 1. Elsevier, 2014.

Serge Lang. Fundamentals of differential geometry, volume 191. Springer Science & Business
Media, 2012.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

11

https://github.com/noahgolmant/pytorch-hessian-eigenthings
https://github.com/noahgolmant/pytorch-hessian-eigenthings


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Clément Maria, Pawel Dlotko, Vincent Rouvreau, and Marc Glisse. Rips complex. In GUDHI User
and Reference Manual. GUDHI Editorial Board, 3.11.0 edition, 2025. URL https://gudhi.
inria.fr/doc/3.11.0/group__rips__complex.html.

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. arXiv preprint arXiv:1902.06015, 2019.

John Willard Milnor and David W Weaver. Topology from the differentiable viewpoint, volume 21.
Princeton university press, 1997.

David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34.
Springer Science & Business Media, 1994.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. Journal
of Machine Learning Research, 21(184):1–40, 2020.

Peter M Neumann. The structure of finitary permutation groups. Archiv der Mathematik, 27(1):
3–17, 1976.

Emmy Noether. Invariante variationsprobleme. Königlich Gesellschaft der Wissenschaften
Göttingen Nachrichten Mathematik-physik Klasse, 2:235–267, 1918.

Marco Nurisso, Pierrick Leroy, and Francesco Vaccarino. Topological obstruction to the training of
shallow relu neural networks. Advances in Neural Information Processing Systems, 37:35358–
35387, 2024.

Matthew G Perich, Devika Narain, and Juan A Gallego. A neural manifold view of the brain. Nature
Neuroscience, pp. 1–16, 2025.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gener-
alization beyond overfitting on small algorithmic datasets, 2022. URL https://arxiv.org/
abs/2201.02177.

Emilie Purvine, Davis Brown, Brett Jefferson, Cliff Joslyn, Brenda Praggastis, Archit Rathore,
Madelyn Shapiro, Bei Wang, and Youjia Zhou. Experimental observations of the topology of
convolutional neural network activations. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 9470–9479, 2023.

Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and superconductors. Reviews of
modern physics, 83(4):1057–1110, 2011.

Herbert Spohn. Large scale dynamics of interacting particles. Springer Science & Business Media,
2012.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. pmlr, 2013.

Lei Wu, Chao Ma, et al. How sgd selects the global minima in over-parameterized learning: A
dynamical stability perspective. Advances in Neural Information Processing Systems, 31, 2018.

Marjorie Xie, Samuel P Muscinelli, Kameron Decker Harris, and Ashok Litwin-Kumar. Task-
dependent optimal representations for cerebellar learning. Elife, 12:e82914, 2023.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

12

https://gudhi.inria.fr/doc/3.11.0/group__rips__complex.html
https://gudhi.inria.fr/doc/3.11.0/group__rips__complex.html
https://arxiv.org/abs/2201.02177
https://arxiv.org/abs/2201.02177


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhanpeng Zhou, Yongyi Yang, Mahito Sugiyama, and Junchi Yan. New evidence of the two-phase
learning dynamics of neural networks. arXiv preprint arXiv:2505.13900, 2025.

Liu Ziyin. Symmetry induces structure and constraint of learning. In Forty-first International Con-
ference on Machine Learning, 2024.

Liu Ziyin, Yizhou Xu, and Isaac Chuang. Remove symmetries to control model expressivity and
improve optimization. ICLR, 2025.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS OF THEORETICAL RESULTS

In this section, we prove all the theoretical results in the main paper. Before starting, we first define
some additional notation. For a collection, we use subscripts to denote its elements. For example, if
X = {xi}i∈I ∈ (RD)

I
is a collection of D-dimensional vectors, then Xi represents xi by default.

For an operator P on I , and a subset J ⊆ I , we use PJ to denote the operator obtained by constrain-
ing P on J .

For a statement ψ, we use 1{ψ} to represent its indicator, i.e. 1{ψ} = {
1 ψ is true
0 otherwise

.

A.1 PROOF OF LEMMA 1

Let X = X (t) for convenience. Define P ∶ I → I as switching i and j:

∀k ∈ I,P (k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

j k = i
i k = j
k otherwise

. (20)

Obviously P ∈ FSym(I). Since x
(t)
i = x

(t)
j , we have X = PX .

Applying X = PX and the equivariance property, we can obtain that

x
(t+1)
i = x(t)i + ηUi(X) = x

(t)
j + ηUi(PX) = x

(t)
j + η(PU(X))i = x

(t)
j + ηUj(X) = x

(t+1)
j ,

(21)

which proves the proposition.

A.2 PROOF OF LEMMA 2

We first prove a lemma showing that two neurons that are close must remain close.

Lemma 4 (No Splitting). The following statement holds when U has the equivariance property and
K-continuity property. For any t ∈ N and i, j ∈ I such that i ≠ j, we have

∥Ui(X (t)) −Uj(X (t))∥ ≤K ∥x(t)i −x
(t)
j ∥ . (22)

Proof. Let X = X (t) for convenience. Define P ∈ FSym(I) as switching i and j (as in eq. (20)).
Then using the equivariance property, we have

Ui(X) −Uj(X) = Ui(X) − (PU(X))i (23)
= Ui(X) −Ui(PX). (24)

Notice that X and PX only differ in entries i and j. Using the K-continuity property, we have

√
2 ∥Ui(X) −Uj(X)∥ =

√
∥Ui(X) −Uj(X)∥2 + ∥Ui(X) −Uj(X)∥2 (25)

=
√
∥Ui(X) −Ui(PX)∥2 + ∥Uj(X) −Uj(PX)∥2 (26)

≤ ∥U(X) −U(PX)∥ (27)
≤K ∥X − PX∥ (28)

=
√
2K ∥x(t)i −x

(t)
j ∥ . (29)

The proposition is thus proved by shifting the terms.

Next, we prove Lemma 2 using Lemma 4.
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Proof of Lemma 2 Notice that

∥x(t+1)i −x(t+1)j ∥ = ∥x(t)i −x
(t)
j + η (Ui(X

(t)) −Uj(X (t)))∥ (30)

∈ ∥x(t)i −x
(t)
j ∥ + [−η,+η] × ∥Ui(X

(t)) −Uj(X (t))∥ . (31)

The proposition is thus directly proved by applying Lemma 4.

A.3 PROOF OF LEMMA 3

For simplicity in the proof we fix a time t and denote Û (t) by f . From Lemma 1, we have if
x
(t)
i = x

(t)
j then x

(t+1)
i = x(t+1)j , therefore f is well-defined. Moreover, from the definition of S(t)

and S(t+1), it is obvious that f is a surjection.

Now suppose ηK < 1. If x(t)i ≠ x
(t)
j , the left-hand-side of Lemma 2 and the condition that ηK < 1

together shows that x(t+1)i ≠ x(t+1)j , following from which we have f is an injection. Therefore, f
is a bijection.

A.4 PROOF OF THEOREM 1

We fix a time point t and denote Û (t) by f . Lemma 3 has already proved that f is a surjection.
In this proof, we first prove the topological properties (i., ii. and iii.), and then the differentiable
manifold property (iv.).

Topological properties. For any pair of two different points x
(t)
i and x

(t)
j , from the right-hand-

side of Lemma 2, we have

∥f (x(t)i ) − f (x
(t)
j )∥ ≤ (1 + ηK) ∥x

(t)
i −x

(t)
j ∥ , (32)

which shows that f is (1 + ηK)-Lipschitz continuous. Since all Lipschitz continuous functions are
continuous, we have f is also continuous.

If, additionally, S(t) is compact, then from the continuity of f we immediately know S(t+1) =
f (S(t)) is compact. Moreover, since S(t+1) is a metric space, it is automatically Hausdorff, and it
is known that a surjective mapping from a compact space to a Hausdorff space is a quotient map.

Now, suppose ηK < 1 (without the compactness of S(t)). Lemma 3 has proved that f is a bijection.
Consider the inversion of f . Let g = f−1. It is obvious that for any i ∈ I , we have g (x(t+1)i ) = x(t)i .
Using the left-hand-side of Lemma 2, we have

∥g (x(t+1)i ) − g (x(t+1)j )∥ ≤ 1

1 − ηK ∥x
(t+1)
i −x(t+1)j ∥ (33)

for any i, j ∈ I , and therefore g = f−1 is also continuous. This proves that f is a homeomorphism.

Differentiable manifold properties. Now, with the condition that ηK < 1 and U (t) satisfies the
smoothness property (P3), we prove that f is a diffeomorphism from S(t) to S(t+1). The Invariance
of Domain Theorem (See e.g. Theorem 2B.3 in Hatcher (2002)) guarantees that S(t+1) is also an
open set in RD. Therefore, we only need to prove that f and its inverse both have continuous
derivatives.

Fix a point x(t)i ∈ S(t). Since S(t) is open, there must be a scalar ri > 0, such that for any ∆ ∈ Rd

with ∥∆∥ ≤ ri, we have x(t)i +∆ ∈ S(t). Consider such a perturbation ∆, then there must be a j ∈ I
such that x(t)j = x

(t)
i +∆. Let P ∈ FSym(I) be the permutation operator that exchanges i and j (as
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defined in eq. (20)). We have

f(x(t)i +∆) = f (x
(t)
j ) (34)

= Uj (X (t)) (35)

= (PU (X (t)))
i

(36)

= Ui (PX (t)) (Equivariance Property) (37)

= Ui [X (t) + (ei − ej) (x(t)j −x
(t)
i )] (38)

= g(t)i (∆,x
(t)
j ) (39)

= g(t)i (∆,x
(t)
i +∆) (40)

Since from P3 we know g
(t)
i is C1 with respect to its two parameters, from the chain rule we have

g
(t)
i (∆,x

(t)
i +∆) is also C1 with respect of ∆, and therefore f is also C1 at point x(i)i . Since i is

arbitrarily chosen, f is thus C1 on entire S(t).

Next, we prove that f−1 is also C1. Again consider x(t)i ∈ S(t). Since we already know f is C1, let
its gradient at point x(t)i be G and we have for any unit vector v, the directional derivative satisfies

Gv = lim
δ→0
δ≠0

f (x(t)i + δv) − f (x
(t)
i )

δ
. (41)

Let α = 1 − ηK,β = 1 + ηK. From Lemma 2, for any δ < ri we have

α ≤
∥f (x(t)i + δv) − f (x

(t)
i )∥

∣δ∣ ≤ β. (42)

Subtracting the bounds into eq. (41), we get

∥Gv∥ ∈ [α,β], (43)

which further implies that all singular-values of G are in [α,β], which means G is invertible. Since
Û is C1, inverse function theorem therefore shows f−1 is also C1.

A.5 PROOF OF THEOREM 3

We fix a time point t and denote Û (t) by f . Lemma 3 has already proved that f is a bijection. For
any open set A ⊆ S(t+1), we have

µ(t+1)(A) = µ(t+1) {x(t+1)i ∣ i ∈ I,x(t+1)i ∈ A} (44)

=m{i ∈ I ∣x(t+1)i ∈ A} (45)

=m{i ∈ ∣f (x(t)i ) ∈ A} (46)

=m{i ∈ ∣x(t)i ∈ f
−1(A)} (47)

= µ(t)(f−1(A)). (48)

This proves that f is measure-preserving. Following the same process one can easily prove that f−1
is also measure-preserving.

A.6 PROOF OF PROPOSITION 1

In this proof we prove a slightly stronger version of the proposition originally stated in Proposition 1,
without using the condition that I is finite. The result for finite I is thus a direct corollary.
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We only need to prove that for any X ∈ (RD)I and P ∈ FSym(I), we have

P∇L(X) = ∇L(PX). (49)

Now we fix P ∈ FSym(I) and consider any X ∈ (RD)I . Let

J = {i ∈ I ∣Pi ≠ i}, (50)

be the support set of P . Since P is finitary, J is a finite set. Therefore, we only need to prove the
proposition of entries in J . define LJ ∶ (RD)

J → R such that

∀Y = {yj}j∈J , LJ(Y) = L ({1{i∈J}yi + 1{i/∈J}xi}i∈I) . (51)

The symmetry gives us

∀Y ∈ (RD)J , LJ(Y) = LJ(P ∣JY), (52)

where PJ = P ∣J is restriction of P on J . Taking derivative of both sides gives

∇LJ(Y) = P ⊺J∇LJ(PJY), (53)

shifting the terms and eq. (49) is proved.

A.7 PROOF OF PROPOSITION 2

The proposition is directly proved by noticing that

∥U (t)(X) −U (t)(Y)∥ = ∥∇L(Y) − ∇L(X)∥ ≤K∥Y − X∥. (54)

A.8 PROOF OF PROPOSITION 3

We use eq. (49) proved before. Let P ∈ FSym(I). We have

U (t)
⎡⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜
⎝

θP (i)
mP (i)
vP (i)

⎞
⎟
⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭i∈I

⎤⎥⎥⎥⎥⎥⎦
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

− mP (i)/(1−βt
1)

ϵ+
√
PvP (i)/(1−βt

2)
1−β1

η
[∇iL(PΘ) −mP (i)]

1−β2

η
[∇iL(PΘ)2 − vP (i)]

⎞
⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭i∈I

(55)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜
⎝

− mP (i)/(1−βt
1)

ϵ+
√
PvP (i)/(1−βt

2)
1−β1

η
[∇P (i)L(Θ) −mP (i)]

1−β2

η
[∇P (i)L(Θ)2 − vP (i)]

⎞
⎟⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭i∈I

(56)

= P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜
⎝

− mi/(1−βt
1)

ϵ+√Pvi/(1−βt
2)

1−β1

η
[∇iL(Θ) −mi]

1−β2

η
[∇iL(Θ)2 − vi]

⎞
⎟⎟⎟
⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭i∈I

(57)

= PU (t)
⎡⎢⎢⎢⎢⎣

⎧⎪⎪⎨⎪⎪⎩

⎛
⎝

θi
mi

vi

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭i∈I

⎤⎥⎥⎥⎥⎦
. (58)

A.9 PROOF OF THEOREM 2

Let δ = infx,y∈S(t) . When δ = 0, the result is a direct corollary of Theorem 1. Below we assume
δ > 0.

Only need to notice that (S(t))r is a union of open spheres with radius r that are unconnected to each

other. Using Lemma 2, we have (S(t+1))(1−ηK)r is a union of open spheres with radius (1 − ηK)r
that are unconnected to each other. Since any two open spheres are homeomorphic, we have (S(t))r

is homeomorphic to (S(t+1))(1−ηK)r.
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B EXTRA EXPERIMENT RESULTS

In this section, we provide extra experiment results performed with more optimizers, complementing
those in Section 6.

Low Dimensional Neural Networks We extend the low-dimensional experiments to additional
optimizers. Figure 6 presents addition result for the 2D network trained with GD, under a different
initialization. Figures 9 and 10 present the results for 2D and 3D networks trained with Adam, and
Figures 7 and 8 present the corresponding results with momentum gradient descent.

(a) Initialization (b) End of training, small η (c) End of training, large η

Figure 6: Topology of a 2D neural network with GD and disjoint genus-1 initialization. The
neurons are initialized on the disjoint union of two genus-1 surfaces and optimized with GD.

(a) (b) (c)

Figure 7: Topology of a 2D neural network with momentum gradient descent. The neurons are
initialized on a genus-2 surface and optimized with momentum GD.

(a) (b) (c)

Figure 8: Topology of a 3D neural network with momentum gradient descent. The neurons are
initialized on a genus-2 surface and optimized with momentum GD. The camera angle is manually
adjusted to better visualize the structure of the point cloud.

Extra Results Complementing the Experiments on Real Tasks The Betti number results of
two-layer networks on MNIST are presented in Figure 11. Notice that in the small step-size setting
of Figure 11, the topology remains unchanged initially but begins to change after a certain period
of training. We attribute this to a key difference in the dynamics of Adam under small versus large
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(a) (b) (c)

Figure 9: Topology of a 2D neural network with Adam. The neurons are initialized on the disjoint
union of two genus-1 surfaces and optimized with Adam.

(a) (b) (c)

Figure 10: Topology of a 3D neural network with Adam. The neurons are initialized on a genus-2
surface and optimized with Adam. The camera angle is manually adjusted to better visualize the
structure of the point cloud.

learning rates. Specifically, with small learning rates, the network undergoes progressive sharpening:
the sharpness steadily increases and eventually surpasses the topological critical point. Beyond this
point, the step size becomes relatively “large,” and the topology of the neurons starts to change. In
contrast, with large learning rates, the sharpness remains small. Similar phenomena have also been
reported in the literature (Kalra & Barkeshli, 2023).

To verify this explanation, Figure 12 shows the evolution of the sharpness inversion (1/K, where K
denotes the largest eigenvalue of the Hessian matrix5) under Adam. Comparing these results with
those in Figure 11, it is evident that the topology begins to change once 1/K becomes sufficiently
small, matching our theoretical prediction.

Extra Results with Multi-Layer Neural Networks In order to further verify our theoretical re-
sults, we also conduct experiments with multi-layer neural networks. Specifically, we use a four-
layer neural network, where the outputs of the first and third layers are wide (corresponding to the
number of neurons), and the output of the second layer is 1-d (corresponding to the dimensionality
of neurons). In this network, the weights in the first and second layer constitute a set of neurons,
and so do the weights in the third and fourth layer, where the dimensionality of each neuron is 2. In
Figure 13, we plot the initialization and end of training neuron distribution for both layers. Other
than the model, the rest of the settings are the same as those in Appendix C.1. The results clearly
support our theoretical claims.

Extra Results with Loss of Plasticity In order to further verify the effect of neuron topology
simplification on the performance of the neural network, we conduct an extra experiment with multi-
task training. Specifically, we first define a random task-generating process. In each epoch, we
regenerate the data with a new random task and continue training the same model. See Appendix C.3
for the details of the setting. In Figure 14, we present the loss and the number of collapsed neuron

5The sharpness is calculated with the hessian-eigenthings library (Golmant et al., 2018).
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Figure 11: Evolution of Betti numbers during training with Adam. The plots show the first three
Betti numbers b0, b1, and b2 over time. The main panels correspond to large learning rates, while
the insets show the results for small learning rates. Each curve is obtained by averaging over 10
runs with different random seeds; the curves denote the means and the shaded regions indicate the
standard deviations. When the step size is small, the topology eventually changes after a certain
training time. We attribute this to increasing sharpness: as training progresses, the network becomes
sharper and the threshold for topological changes correspondingly decreases.

(a) Small step size (b) Large step size

Figure 12: Evolution of Betti numbers and sharpness inversion under Adam. Here K denotes
the largest eigenvalue of the Hessian matrix. The small step-size setting is trained for a longer time
to ensure convergence.

pairs after each epoch. It is clear that, in the large learning rate setting, the model is not able to
learn, and the number of collapsed neurons is increasing, showing the loss of plasticity of the neural
network; while in the small learning rate setting, there are no collapsed neurons and the model is
able to continually learn the tasks even when they are changed at each epoch.

C EXPERIMENT DETAILS

In this section, we provide the experimental details.

C.1 EXPERIMENTS WITH LOW-DIMENSIONAL NEURAL NETWORKS

As described in Section 6, we use a two-layer neural network with sigmoid activation, with input
dimension d = 1 (referred to as the 2D case) or d = 2 (referred to as the 3D case).

Given input dimension d, the input data are denoted by D = {(zs, y∗s )}
n
s=1 ∈ (Rd ×R)

n
, where

n is the dataset size. Each input zs is sampled from a Gaussian distribution with variance 4, i.e.,
zs,j ∼ N(0,4) for j ∈ {1,2}. The labels y∗s are generated by a teacher model

y∗s = ⟨a∗, σ (W ∗zs)⟩ , (59)
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(a) Initialization (b) End of training, small η (c) End of training, large η

Figure 13: Topology of a multi-layer 2D neural network with gradient descent. The neurons are
initialized on a genus-2 surface and optimized with GD.

where a∗ ∈ Rh∗ , W ∗ ∈ Rh∗×d, and h∗ is the hidden size of the teacher model. Both a∗ and W ∗ are
randomly sampled at the beginning and fixed when constructing the dataset, with a∗j ∼ N(0,1) and
w∗j,k ∼ N(0,0.36). In all experiments, n is set to 5000, with 70% of the data used for training. The
model is trained using mini-batches of size 128. For GD with momentum, the momentum coefficient
is set to 0.9.

Since different methods admit different thresholds for effective learning rates, we manually tuned the
step sizes for each optimizer. The learning rates used to generate the reported results are summarized
in Table 1. In all cases, we train the model until the training loss converges.6

C.2 EXPERIMENTS WITH LARGE NEURAL NETWORKS

In the experiments on MNIST (Section 6), we use a two-layer MLP with sigmoid activation and
hidden size 1024. The model is trained for classification using cross-entropy loss, without any

6Although in some cases the small and large step sizes appear close, we observed that low-dimensional
networks are highly sensitive to the learning rate when trained with GD, possibly due to a degenerated loss
landscape. For instance, in the 2D case, if η = 2 × 10−3 the neurons remain nearly unchanged, whereas for
η = 4 × 10−3 the loss diverges. Thus we must compare within a relatively narrow range of learning rates.
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(a) Large learning rate

(b) Small learning rate

Figure 14: The Multi-task learning results. The neurons are initialized on a genus-2 surface and
optimized with GD. After each epoch, the teacher model is resampled and the data is regenerated.
“# of collapsed neurons” is calculated by counting the number of neuron pairs whose distance are
smaller than 0.01.

Optimizer Network dimension Small learning rate Large learning rate

GD 2D 2.5 × 10−3 3 × 103
GD 3D 8 × 10−4 9 × 10−4

Adam 2D 10−4 10−2

Adam 3D 3 × 10−2 10−1

Momentum 2D 5 × 10−4 4.5 × 10−3
Momentum 3D 10−3 1.25 × 10−3

Multi-Layer N/A 0.01 0.05

Table 1: Learning rates used in the experiments for low-dimensional neural networks.

additional regularization (e.g., weight decay). The batch size is set to 1024. For GD, the small and
large learning rates are 0.02 and 0.5, respectively. For Adam, the corresponding values are 10−5 and
10−3.

The Betti numbers are calculated with the GUDHI library (Maria et al., 2025). When computing
Betti numbers for the neuron-induced point cloud, a minimal distance (i.e. scale) must be chosen to
decide how close two points need to be for them to be considered as neighbors. To ensure robustness
to scale changes during training, we adopt a self-adaptive strategy for deciding the minimal distance:
the minimal distance is set to 1/4 times the diameter of the point cloud.

C.3 EXPERIMENTS WITH LOSS OF PLASTICITY

In the experiment with multi-task training, the input data are i.i.d. standard Gaussian vectors with
dimensionality 8. For each task, we sample a random linear mapping from the input data to a 8-
dimensional space, as the teacher model, that acts on the input data to generate the target data. The
input data and teacher model are resampled every epoch to change the task. Each task contains
50000 training samples and 10000 evaluation samples. The model is trained with GD on the mean-
square-error (MSE) loss. The model structure is the same as that in Appendix C.2, with random
initialization. For large and small learning rate settings, the learning rates are set to 0.25 and 0.01,
respectively, and the weight decay rate is set to 0.01. The first task (with index 0) is viewed as a
warp-up and discarded.
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D A WEAKER VERSION OF CONTINUITY PROPERTY

In Section 3, we mentioned that the specific form of K-continuity property is only for establishing
a correspondence with the smoothness property used in optimization theory, and in our theory this
property can actually be weaker. Specifically, when I is an infinite set, the K-continuity property
defined in Section 3 implicitly requires that U(X) and U(Y) only differ in finite number of entries,
which might not always hold. This condition can be relaxed to the upper bound on each entry of
U(X) −U(Y).
(P2′) Altered K-Continuity Property: If there exists a constant K > 0, such that for any t ∈ N,
X ,Y ∈ (RD)I and i ∈ I , we have

sup
i∈I
∥U (t)i (X) −U

(t)
i (Y)∥ ≤

K

2
∥X − Y∥ , (60)

then we say U (t) has altered K-continuity property.

The proof of the main theories is built upon Lemma 4. Here we prove a variation of Lemma 4 with
the altered K-continuity property.
Lemma 5 (Altered - No Splitting). The following statement holds when U has the equivariance
property and altered K-continuity property. For any t ∈ N and i, j ∈ I such that i ≠ j, we have

∥Ui(X (t)) −Uj(X (t))∥ ≤K ∥x(t)i −x
(t)
j ∥ . (61)

Proof. Let X = X (t) for convenience. Define P ∈ FSym(I) as switching i and j (as in eq. (20)).
Then using the equivariance property, we have

Ui(X) −Uj(X) = Ui(X) − (PU(X))i = Ui(X) −Ui(PX). (62)

Notice that X and PX only differ in entries i and j. Using the K-continuity property, we have

∥Ui(X) −Uj(X)∥ = ∥Ui(X) −Ui(PX)∥ (63)

≤ K
2
∥X − PX∥ (64)

≤K ∥x(t)i −x
(t)
j ∥ . (65)

In all the presented theories, the K-continuity property can be replaced by the altered K-continuity
property. The proofs directly apply by replacing Lemma 4 with Lemma 5.

LARGE LANGUAGE MODEL USAGE

In preparing this submission, we used a large language model (ChatGPT) as an assistive tool for
language polishing. The model did not contribute to the research ideation, experimental design, data
analysis, or the generation of scientific content. All substantive content, results, and conclusions pre-
sented in this paper were conceived, written, and verified by the authors, who take full responsibility
for the work.
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