
Published as a conference paper at ICLR 2025

SEMIALGEBRAIC NEURAL NETWORKS:
FROM ROOTS TO REPRESENTATIONS

S. David Mis
Rice University
dmis@rice.edu

Matti Lassas
University of Helsinki
matti.lassas@helsinki.fi

Maarten V. de Hoop
Rice University
mdehoop@rice.edu

ABSTRACT

Many numerical algorithms in scientific computing—particularly in areas like nu-
merical linear algebra, PDE simulation, and inverse problems—produce outputs
that can be represented by semialgebraic functions; that is, the graph of the com-
puted function can be described by finitely many polynomial equalities and in-
equalities. In this work, we introduce Semialgebraic Neural Networks (SANNs),
a neural network architecture capable of representing any bounded semialgebraic
function, and computing such functions up to the accuracy of a numerical ODE
solver chosen by the programmer. Conceptually, we encode the graph of the
learned function as the kernel of a piecewise polynomial selected from a class of
functions whose roots can be evaluated using a particular homotopy continuation
method. We show by construction that the SANN architecture is able to execute
this continuation method, thus evaluating the learned semialgebraic function. Fur-
thermore, the architecture can exactly represent even discontinuous semialgebraic
functions by executing a continuation method on each connected component of
the target function. Lastly, we provide example applications of these networks
and show they can be trained with traditional deep-learning techniques.

1 INTRODUCTION

Many classical numerical algorithms compute semialgebraic functions—functions whose graphs are
defined by finitely many polynomial equalities and inequalities. Such functions include anything
computable using finitely many real variables and finitely many operations addition, subtraction,
multiplication, division, extraction of roots, and branching if statements with polynomial deci-
sion boundaries. Familiar primitives from numerical linear algebra, such as solving linear systems,
Schur complements, and extraction of real eigenvalues are also semialgebraic, as are the solution op-
erators of optimization problems with polynomial objective functions and constraints (Press et al.,
2007). Polynomial functions of n-th roots n

√
· are widely used in computation of eigenvalues of non-

symmetric matrices and in the perturbation theory of eigenvalues of linear operators (Kato, 1995).
Also, Finite Element approximations of partial differential equations lead to solving linear systems
whose solutions are semialgebraic functions (Beltzer, 1990). Due to their ubiquity, it is likely that
the space of semialgebraic functions provides good inductive bias for operator learning with neu-
ral networks. This ansatz leads to our central question: Is it possible to design a neural network
architecture capable of exactly representing any semialgebraic function?

In this paper, we combine techniques from classical numerical analysis, namely polynomial homo-
topy continuation methods for root finding, with ReLU activation functions to create neural networks
capable of exactly representing any bounded semialgebraic function. The starting point for our idea
is the observation that, under mild conditions, the graph of a semialgebraic function F given by the
relation F (x) = y can be encoded as the kernel of a continuous piecewise polynomial G, i.e., the set
of (x, y) where G(x, y) = 0 (Section 2). Therefore, in principle, we can use a neural network com-
bining polynomials and ReLU activations to learn G, then append a root-finding procedure such as
Newton’s method to compute F (x) = root(G(x, ·)) = y in a manner similar to Bai et al. (2019).
However, this straightforward approach has numerous practical difficulties: there is no guarantee
such a neural network would have a root y for every x, roots may not be unique, the root-finding
procedure may never converge, etc. To remedy these issues, we take inspiration from homotopy con-
tinuation methods for root finding. We construct a function H(x, y, s) that continuously deforms

1

Published as a conference paper at ICLR 2025

from a simple function G0 to the target function G:
H(x, y, 0) = G0(x, y) H(x, y, 1) = G(x, y). (1)

We use H to find a root of G by starting at a root of the simpler function G0 at s = 0, then slowly
increasing s and tracking the motion of the root. In classical homotopy continuation methods, this
procedure is carried out by numerically solving an ODE initial value problem describing the motion
of y as a function of s. With a properly constructed H , this procedure is powerful enough to compute
the roots of G, even if G0 bears little resemblance to G (Theorem 37).

Instead of using a neural network to compute G directly, our Semialgebraic Neural Networks
(SANNs) compute the vector field of an ODE system arising from a homotopy continuation method
to find a root of G (Section 3). We then integrate across the interval s ∈ [0, 1] using an off-the-shelf
ODE solver. This approach is powerful enough to represent all bounded semialgebraic functions
in the sense that F (x) is the exact solution to the ODE initial value problem (Section 4). This ap-
proach always has a well-defined output, avoids costly explicit root-finding procedures, and has fixed
evaluation time when using a non-adaptive ODE solver. To our knowledge, we present the first neu-
ral networks capable of computing arbitrary bounded semialgebraic functions on high-dimensional
data.

1.1 RELATED WORK

Implicit deep learning. SANNs fall within the general framework of “implicit deep learning”
(El Ghaoui et al., 2021; Kolter et al., 2020), particularly as popularized by Neural ODEs (Chen
et al., 2019) and Deep Equilibrium Models (Bai et al., 2019). In particular, SANNs can be trained
using the adjoint sensitivity method (Pontryagin et al., 1962) in a manner similar to Neural ODEs.
Unlike Neural ODEs, where the ODE is fixed (based on network weights) and the initial value is
based on the network input x, SANNs instead define a family of ODEs parameterized by x and the
initial value is fixed. Importantly, Neural ODEs compute diffeomorphisms (Dupont et al., 2019),
while SANNs compute bounded semialgebraic functions, which may not be continuous or differen-
tiable everywhere. Compared to Deep Equilibrium Models, the SANN architecture does not include
an explicit root-finding or fixed-point computation step; instead SANNs directly parameterize a ho-
motopy continuation method for root-finding.

Semialgebraic machine learning. There are many neural network architectures designed to repre-
sent important subsets of semialgebraic functions. For example, polynomials and piecewise poly-
nomials are computed by de Hoop et al. (2022); Chrysos et al. (2021); Oh et al. (2003), and certain
rational functions are computed by Boullé et al. (2020). We are unaware of prior neural networks
designed to represent the entire class of bounded semialgebraic functions as a whole. An exciting
complementary approach to semialgebraic approximation has been developed by Marx et al. (2021),
where they encode semialgebraic functions as the optima of functions constructed from Christoffel–
Darboux polynomials. Their approach is developed within the framework of classical approximation
theory and data analysis rather than neural networks.

1.2 OUR CONTRIBUTION

We introduce the SANN architecture and provide an exact characterization of the functions it repre-
sents. Our key contributions are as follows:

Definition of SANNs: We present the SANN architecture (Algorithm 1), a new object grounded
in classical homotopy continuation methods for root-finding, that is capable of exactly representing
any bounded semialgebraic function.

Exact characterization of expressivity: We rigorously characterize the expressivity of SANNs
(Section 4), proving their ability to represent all continuous bounded semialgebraic functions via a
homotopy continuation argument (Section 4.1).

Extension to discontinuous functions: Building on the homotopy continuation framework, we
extend our results to show that SANNs can also represent discontinuous bounded semialgebraic
functions through constructive proofs (Section 4.2).

We also argue SANNs are naturally suited to a wide variety of difficult problems, with applications
to solving linear systems (Section 5), nonlinear inverse problems (Section F), general optimization

2

Published as a conference paper at ICLR 2025

Figure 1: Computing the Heaviside step function F (plotted in red) using a homotopy method. The
graph of F is a subset of the kernel of a higher-dimensional piecewise polynomial G. In the upper
row, we plot the surface of a homotopy H such that H(x, y, 0) = 0 is trivial to solve (upper left),
and H(x, y, 1) = G (upper right). The kernel of H is shown with a green line (red points are also
on top of the green line). The bottom row shows the projection of H onto to xy-plane. We compute
F (x) = y by following the kernel of H from time t = 0 to t = 1, keeping x fixed. Although the
kernel of G contains points outside the graph of F (the visible parts of the green lines), these points
are never encountered when computing F by following the homotopy. This process captures the
discontinuity exactly, including the isolated point at (0, 0).

problems (Section G.1), and transformers (Section G.3). We also demonstrate through numerical
experiments that SANNs can be trained using standard techniques (Sections 5.2 and F.1), and discuss
future research directions (Section 6).

2 BACKGROUND

2.1 INF-SUP DEFINABLE PIECEWISE POLYNOMIALS

Our networks are constructed from the piecewise polynomials formed by combining polynomials
with ReLU activations. Using these components, we can represent the pointwise minimum and
maximum of any finite collection of polynomials. In mathematical literature, such structures are
referred to as lattices. Instead of “min” and “max,” the terms “inf” and “sup” are traditionally used
in lattice theory; since our constructions rely heavily on lattice theory, we adopt this terminology
here. Notably, we do not use the word “lattice” to refer to a grid-like structure (e.g., Zd), but rather
a set of functions that is closed under the “min” and “max” operations.

We begin by defining the class of functions that form the backbone of our constructions. The notation
R[x1, . . . , xm] refers to the set of polynomials of variables x1, . . . , xm with coefficients from R.
Definition 1 (Inf-sup definable piecewise polynomials). Let D ⊆ Rm. ISD(D) is the lattice
generated by the polynomials R[x1, . . . , xm], viewed as functions D → R, together with the min
and max operations. The vectors of n ISD(D) functions are denoted ISD(D,Rn). For any non-
negative integer k, ISDk(D,Rn) are the k-times differentiable functions in ISD(D,Rn).

The shorthand “f is ISD” means f ∈ ISD(D,Rn) for some appropriate D and n. Our nomencla-
ture is taken from Mahé (1984) and Mahé (2007).

Summarizing, the components fk of a function f ∈ ISD(D,Rn), D ⊂ Rm can be written as

fk(x) = max
i=1,...,I

min
j=1,...,J

(N∑
α1,α2,...,αm=0

ak,i,j,α1,...,αm
xα1
1 xα2

2 . . . xαm
m

)
, x = (x1, x2, . . . , xm).

Later, when we consider fk as a layer of a neural network, the coefficients ak,i,j,α1,...,αm
are used

as the parameters which are optimized in training process.

3

Published as a conference paper at ICLR 2025

Since the min and max operations can be written using the ReLU function, all ISD functions can
be written as a feed forward neural network where in the first hidden layer one has several different
polynomial activation functions followed by fully connected ReLU layers. Furthermore, Henriksen
& Isbell (1962) showed ISD(D,Rk) forms a ring, so the sum and product of any ISD function is
itself ISD (see Theorem 22 in Appendix A). Thus ISD(D,Rk) are precisely the functions D →
Rk that can be represented using finitely many, arbitrarily interleaved vector additions, Hadamard
products, scalar multiplications and ReLU activations on variables from D.

We focus our attention on ISD functions since these are the piecewise polynomials computable using
neural networks that combine polynomials and ReLU activations. There are many ways to construct
such networks; we provide an example based on Operator Recurrent Neural Networks (de Hoop
et al., 2022) in Appendix B, along with proofs of the expressivity of that architecture. Our approach
can be adapted to analyze the expressivity of other polynomial networks with ReLU activations as
well, such as those proposed by Chrysos et al. (2021).

It is currently unknown whether every continuous real piecewise polynomial is ISD; this is the fa-
mous Pierce–Birkhoff conjecture (Bochnak & Efroymson, 1980; Madden, 2011). ISD functions suf-
fice for our purpose to build semialgebraic neural networks, regardless whether the Pierce–Birkhoff
conjecture ultimately holds or not.
Definition 2 (Locally ISD functions). A function f : Rm → Rn is locally ISD, denoted f ∈
ISDloc(Rm,Rn), if for every bounded D ⊂ Rm, f |D ∈ ISD(D,Rn).

Appendix A contains additional background information on lattice theory.

2.2 SEMIALGEBRAIC GEOMETRY

We now present the basic properties of semialgebraic sets relevant to SANNs. A more thorough
introduction to semialgebraic geometry can be found in the first chapters of Bochnak et al. (1998).
Definition 3 (Basic semialgebraic set). A set D ⊂ Rm is a basic semialgebraic set if there exists
J1, J2 ∈ N and finite sets of polynomials P = {pi}J1

i=1, Q = {qi}J2
i=1 ⊂ R[x1, . . . , xm] such that

D = {x ∈ Rm | p(x) = 0, q(x) < 0 for all p ∈ P, q ∈ Q}.
Definition 4 (Semialgebraic set). A set D ⊂ Rm is a semialgebraic set if it is the union of finitely
many basic semialgebraic sets.

Finite unions, finite intersections, complements, projections, closures, and interiors of semialgebraic
sets are all semialgebraic themselves, a result of the famous Tarski–Seidenberg theorem (Tarski,
1951; Seidenberg, 1954) (on the formulation of the Tarski–Seidenberg theorem we use in this paper,
see Appendix E.9). Furthermore, every closed semialgebraic set can be defined using only non-strict
inequalities (Lojasiewicz, 1964).
Definition 5 (Semialgebraic function). f : Rm → Rn is a semialgebraic function if its graph is a
semialgebraic subset of Rm × Rn.

Special cases of semialgebraic functions include (piecewise) polynomials and (piecewise) rational
functions, among others. For example, the graph of x 7→ 1/x is the set {(x, y) ∈ R2 | xy = 1}.
Example 6. Consider the semialgebraic function F : R→ R below.

F (x) =


(x+ 1)

2
+ 1

2 , x < −1
√
1− x2 x ∈ [0, 1]

1
x − 1 x > 1.

−2 −1 0 1 2 3

0

1

F is a polynomial when x < 1, a rational function when x > 1, and neither when x ∈ [0, 1]. It has
a single discontinuity at x = −1, and its graph is not closed there. It is unbounded as x→ −∞, but
becomes bounded whenever the domain is restricted from below.

4

Published as a conference paper at ICLR 2025

2.3 SEMIALGEBRAIC FUNCTIONS AS KERNELS OF ISD FUNCTIONS

In this subsection, we show how to represent semialgebraic sets as the kernel of ISD functions.
This is a semialgebraic analogue to the standard technique in differential geometry of constructing
smooth manifolds from the level sets of smooth functions (Lee, 2013). Proofs for Proposition 7 and
Corollary 8 as well as additional commentary and an illustration can be found in Appendix C.

Proposition 7. S ⊂ Rm is a closed semialgebraic set if and only if there exists f ∈
ISD1(Rm,R≥0) such that ker(f) = S, where ker(f) := {x ∈ Rm : f(x) = 0}.

We extend the above theorem to graphs of vector-valued semialgebraic functions with closed graphs.

Corollary 8. F : Rm → Rn is a semialgebraic function with closed graph if and only if there exists
a G ∈ ISD1(Rm×Rn,Rn

≥0) such that ker(G) = gr(F), where gr(F) := {(x, F (x))} ⊂ Rm×Rn

is the graph of F .

Corollary 8 makes it computationally possible to find points of the graph of the semialgebraic func-
tion F by using a SANN related to an ISD function G, as we will see in Section 4.

3 SEMIALGEBRAIC NEURAL NETWORKS

3.1 ISD NETWORKS

SANNs are built from auxiliary networks capable of computing ISD functions; we call such net-
works “ISD networks”. As discussed in Section 2, there are various ways to design such networks.
An example architecture and its expressivity theorems are provided in Appendix B.

To streamline notation, we define a class of ISD functions that will be used frequently:

Definition 9. ISDnet(m,n, k) := ISD(Rm × Rn+k × R, R(n+k)×(n+k) × Rn+k)

A function in ISDnet(m,n, k) accepts three parameters x ∈ Rm, z ∈ Rn+k, and s ∈ R, and it
returns a matrix M ∈ R(n+k)×(n+k) and vector b ∈ R(n+k). We further decompose z = (y, t),
where y ∈ Rn is the output of the computed semialgebraic function and t ∈ Rk are auxiliary “time”
variables needed for the homotopy continuation constructions in Section 4. Including these auxiliary
variables is analogous to “lifting” (i.e. increasing the width) common in many architectures. Such
lifting is required for narrow ReLU networks to be universal approximators in the infinite-layer limit
(Lu et al., 2017). A similar strategy is used in Dupont et al. (2019) to augment Neural ODEs.

We require only k = 1 in our constructions, but it is easy to extend the arguments to k > 1. Larger
values of k may have practical benefits not captured by the characterization of the range of SANNs
presented here, and we leave that investigation for future work.

3.2 SANN ARCHITECTURE

We define SANNs to be functions of the form fN ,cmax : x 7→ ΠzN , where N ∈ ISDnet(m,n, k),
N ∈ N, cmax > 0, x ∈ Rm, and zN is obtained by an approximation of the solution of an ordinary
differential equation, that is, by setting z0 = 0 and defining for j = 0, 1, . . . , N − 1,

zj+1 = ODE-step
(
żj , zj ,

j

N

)
:= zj +

1

N
żj (2)

where

żj = clamp-sol
(
M
(
x, zj ,

j

N

)
, b
(
x, zj ,

j

N

))
. (3)

Matrix M(x, z, s) and vector b(x, z, s) are the output of an ISD network N (x, z, s). The function
clamp-sol is defined

clamp-sol(M, b) :=

{
clamp(M−1b,−cmax, cmax) if M is invertible
0 otherwise.

(4)

5

Published as a conference paper at ICLR 2025

Figure 2: Architecture diagram for a SANN. The SANN outputs y as a semialgebraic function
of input x. Vectors zj are the current values of an ODE at timestep j. The time-derivative żj is
computed using a neural network N capable of computing ISD piecewise polynomials. N accepts
the current ODE state (zj , j/N), as well as recurrent input x. The output of N is a matrix M and
vector b, from which żj is computed using clamp-sol(M, b) (żi = M−1b in the common case).
ODE-step is a single update of a numerical ODE solver. Finally, Π is a projection operation such
that y is the first n components of z.

The function “clamp” operates component-wise on each element of a vector, and is defined

clamp(a, low, high) :=


a, a ∈ [low, high]

low, a < low

high a > high.

(5)

These functions guarantee the iteration (3) is well-defined even whenN produces singular or nearly-
singular output matrices M . Lastly, Π projects onto the first n components of its input.

The iteration (3) is the Euler finite-difference scheme that approximates the solution of the ODE

ż(s) = clamp-sol(M(x, z(s), s), b(x, z(s), s)), (6)
z(0) = 0. (7)

As N →∞, the output of the finite difference scheme converges to the solution of the ODE. These
limit functions are of the form f lim

N ,cmax
: x 7→ Πz(1) that are defined by the ODE (6)–(7). We call

these functions as the limit functions of SANNs and denote those by SANN lim(N , ·, cmax). We
note that the forward-Euler definition for ODE-step used in (2) can be replaced with other numerical
solvers, such as Runge-Kutta methods.

3.3 SANN ARCHITECTURE: ALGORITHMIC PRESENTATION

The above definition of the SANN architecture is amenable to mathematical analysis. Algorithm 1
is an alternative presentation that closely reflects how a SANN may be implemented in a functional
programming style. It is completely equivalent to the description above.

Algorithm 1 Evaluating a SANN

Require: N ∈ ISDnet(m,n, k)
x ∈ Rm

cmax ∈ R≥0

1: function SANN(N , x, cmax)
2: function ż(z, s)
3: (M, b)← N (x, z, s)
4: if M is singular then
5: return 0
6: else
7: return clamp(M−1b, −cmax, cmax)
8: (y, t)← ODESolve(ż, (0, 0))
9: return y

6

Published as a conference paper at ICLR 2025

In Algorithm 1, ODESolve(ż, z(0)) outputs zN according to the finite difference scheme in for-
mulas (2), or another numerical solver chosen by the programmer. This interface reflects popular
libraries for numerically solving ODEs, e.g. Malengier et al. (2018); Kidger (2021).
Remark. Our expressivity proofs below refer to the true solution z(1) to the ODE (6)–(7) rather
than the numerical solution zN . The numerical ODE solver may introduce approximation error
into SANNs, even for semialgebraic functions, but this approximation error is of a fundamentally
different character than that which normally arises in neural networks, and the mitigation strategies
will be different for SANNs. For example, increasing the number of steps N will decrease the
approximation error without increasing the number of parameters in the network. On the other
hand, increasing the number of parameters in N does not decrease the approximation error, as
it generally would for other architectures. Furthermore, SANNs may be constructed using other
numerical strategies besides the finite-difference scheme (2). Changing this scheme does not affect
our expressivity proofs in this paper, but there may be other implications in practice.

3.4 TRAINING

In the supervised learning regime, we are given training data {(x(ℓ), y(ℓ)) : ℓ = 1, 2, . . . , L},
y(ℓ) = F (x(ℓ)) where F is the target semialgebraic function. The output of a SANN with input x is
yN (x) := ΠzN and the intermediate update directions given in equation (3) are ẏj(x) := Πżj . In our
experiments, we found it helpful to include a “direction loss” term to train each yj for j = 1, . . . , N :

Ldirection(x
(ℓ)) :=

1

N

N∑
j=1

∥∥∥∥y(ℓ) − (yj(x(ℓ)) +

(
1− j

N

)
ẏj(x

(ℓ))
)∥∥∥∥2 , (8)

Laccuracy(x
(ℓ)) :=

∥∥∥y(ℓ) − yN (x(ℓ))
∥∥∥2 , Ltotal :=

L∑
ℓ=1

Laccuracy

(
x(ℓ)
)
+ λLdirection

(
x(ℓ)
)

(9)

where λ > 0 is a small, suitably chosen parameter, e.g. λ = 10−2. Ldirection reflects the accuracy
loss if the direction vector ẏj were held constant for the remainder of the numerical integration.

4 EXPRESSIVITY OF SANNS

In this section, we show that SANNs are capable of exactly representing any bounded semialgebraic
function. We start by showing that every continuous semialgebraic function can be evaluated by a
particular homotopy continuation method that is computable by iteratively solving the ODE (6)–(7)
with different parameter functions N . We then extend this result to cover discontinuous semial-
gebraic functions by first separating each connected component of the graph, applying results for
the continuous case to obtain homotopies that represent each piece, then glueing these homotopies
together in a manner consistent with ODE (6)–(7) to obtain the SANN. Additional details, includ-
ing background in semialgebraic geometry and full proofs of the theorems we present here, are in
Appendices D and E.

4.1 CONTINUOUS SEMIALGEBRAIC FUNCTIONS

This section introduces a family of homotopies Hx,a from which we can construct a continuation
method to evaluate the roots of ISD functions.

Let uF < uH be positive real numbers and UF = (−uF , uF)
n. Consider the family of homotopies

Hx,a : Rn × R→ Rn, parameterized by (x, a) ∈ Rm × UF , defined

Hx,a(y, t) := (1− t)(y − a) + t
(
g(x, y) +G(x, y)

)
(10)

where g ∈ ISD1
loc(Rm×Rn,Rn

≥0) and G ∈ ISD1(Rm×Rn,Rn). Each Hx,a is constructed from
ring operations on locally ISD functions, so it is locally ISD itself.

We always evaluate Hx,a keeping x fixed; to simplify notation, let gx := g(x, ·) and Gx := G(x, ·).
For our construction to work, we require gx to be 0 on UF and grow quickly outside UF . Specifically,
for every x ∈ Rm, we require Gx = o(gx) and idy = o(gx), where we have used Landau “little-o”
notation; e.g. Gx = o(gx) means lim∥y∥→+∞

Gx(y)
gx(y)

= 0.

7

Published as a conference paper at ICLR 2025

The next lemma shows how to construct gx based only on UF .
Lemma 10. There exists g ∈ ISD1

loc(Rm × Rn,Rn) such that gx ≡ 0 on UF and for every
G ∈ ISD1(Rm × Rn,Rn), we have Gx = o(gx).

Proof. Let u0 = uF , uj = uj−1 + 1, Uj = (−uj , uj)
n for j ∈ N. Notice Rn =

⋃∞
j=1 Uj . Define g

piecewise as follows:

g(x, y) =

{
0 y ∈ UF∑J

j=1(ReLU(sign(y)y − uj−11))
j+1 y ∈ UJ \ UJ−1, for each J ∈ N.

(11)

(The exponent j + 1 denotes repeated component-wise multiplication.) This g is not ISD since
it is defined over infinitely many regions, but it is locally ISD. Furthermore, the local degree of g
increases without bound as ∥y∥ → ∞, so g eventually dominates any polynomial. Thus Gx = o(gx)
for any ISD G. Finally, it is straightforward to verify g is continuously differentiable.

The next theorem shows the family of homotopies in equation (10) is capable of representing any
continuous bounded semialgebraic function F for almost every choice of a; more precisely every
a except possibly on a semialgebraic set of dimension less than n (c.f. the Transversality theorem
in D.1). The requirement that F be bounded is always satisfied when the domain of continuous F
is compact, which is a common and reasonable assumption in the context of machine learning with
finite training data. The proof of Theorem 11 is in appendix E.
Theorem 11. Let F : Rm → UF be a given continuous semialgebraic function. For every x ∈ Rm

there exists Hx,a with the form (10) such that for almost every a ∈ UF , the following hold:

1. There exists y ∈ ISD([0, 1],Rn), t ∈ ISD([0, 1],R), such that t(0) = 0, t(1) = 1, and
(y(s), t(s)) ∈ ker(Hx,a) for all s ∈ [0, 1].

2. The kernel of Hx,a(·, 1) is the singleton {F (x)}.

Theorem 11 is used as follows: When t = 0 the function y 7→ Hx,a(y, 0) has the root a. We apply
the curve-tracing algorithm by solving the ODE (30)–(33) (see Appendix D.3) for the function Hx,a

to find roots of the functions Hx,a(·, t) with t ∈ [0, 1]. The root of Hx,a(·, 1) gives y = F (x).

Conclusion 1 guarantees the homotopy Hx,a(y, t) can be solved to time t = 1 for almost every
choice of a; SANNs correspond to the choice a = 0. Conclusion 2 guarantees this solution is indeed
the desired value F (x).

To prove that SANNs can represent any continuous semialgebraic function, we need only show that
the ODE (6)–(7) defining SANNs can recapitulate the ODE (30)–(33) defining the Hx,a homotopy
continuation method. A full proof is in Appendix E.
Theorem 12. Let F : Rm → UF be a given continuous semialgebraic function. Then there exists
N ∈ ISDnet(m,n, 1) and cmax > 0 such that SANN lim(N , ·, cmax) = F .

4.2 DISCONTINUOUS SEMIALGEBRAIC FUNCTIONS

Discontinuities can arise in the ODE (6)–(7) since the value of ż = M−1b can be discontinuous
across a boundary where M is singular. Consider the simple example

M = [abs(x)] b = [x] ż = clamp-sol(M, b) =

{
−1 x < 0

1 x > 0,
(12)

where the clamp-sol operation is defined with cmax = 2. We exploit this behavior to show via
construction that SANNs can exactly represent even discontinuous semialgebraic functions.
Theorem 13. Let F : Rm → Rn be a (possibly discontinuous) bounded semialgebraic function.
Then there exists N ∈ ISDnet(m,n, 1) and cmax ∈ R≥0 such that SANN lim(N , ·, cmax) = F .

Every semialgebraic set has finitely many semialgebraic connected components, so every semialge-
braic function is piecewise continuous on finitely many pieces. Our approach is to first show how we
are able to represent the characteristic function of semialgebraic sets using the ODE (6)–(7). From
these, we can represent a semialgebraic decomposition of the domain Rm, and apply the continuous
homotopy arguments above on each continuous region. We finally glue everything together in a way
consistent with solving the ODE (6)–(7). The full proof is in Appendix E.

8

Published as a conference paper at ICLR 2025

5 NUMERICAL EXAMPLE: SOLVING LINEAR SYSTEMS

In this section, we give an example of a numerical algorithm that can be exactly represented by a
SANN. Specifically, we construct a SANN that exactly computes (to machine precision) the solution
to a linear system Xy = b, something that is not possible for standard neural network architectures.
The parameters for this exact reconstruction are chosen by hand; we also show that SANNs can be
trained from data using traditional techniques to perform comparably to feed-forward networks.

We focus on the Jacobi iteration method for solving dense linear systems Xy = g. Split X into its
diagonal part D, upper-triangular part U , and lower-triangular part L.

X =

d1 U
. . .

L dn

 , D = diag(d1, d2, . . . , dn). (13)

From any initial guess y0, the Jacobi iteration method computes the iteration yj using

yj+1 = D−1
(
g − (L+ U)yj

)
. (14)

Adding yj − yj to the right side and simplifying yields

yj+1 = yj +D−1
(
g −Xyj

)
. (15)

The sequence of iterates (y1, y2, . . .) computed in this way converges to the exact solution y∗ =
X−1b when the spectral radius of D−1(L+ U) is less than 1. It is exactly of the form (2), and thus
computable by a SANN with an appropriate ISD network N .

An additional numerical example addressing a nonlinear inverse problem for electrical resistor net-
works is in Appendix F. The problem is to find the values of an unknown resistivity function on a
graph from the voltage-to-current measurements on a subset of the nodes of the graph. This problem
is encountered in Electrical Impedance Tomography (Borcea, 2002), a medical imaging modality,
and its mathematical treatment is based on a Finite Element approximation of a partial differential
equation (Lassas et al., 2015).

5.1 EXACT INVERSION USING A HAND-CRAFTED NETWORK

To demonstrate the new possibilities afforded by the expressive power of SANNs, we manually
configured the parameters of a SANN to replicate the classical Jacobi iteration for solving linear
systems. With this setup, the SANN is able to solve the system to machine precision—something
standard feed-forward networks, which compute only piecewise-linear functions, cannot achieve.
Figure 3 shows the error of yj = Πzj decrease to machine precision for several inputs (X, g)

0 20 40 60 80 100
Timestep j

10 7

10 5

10 3

10 1

Ac
cu

ra
cy

 (
Xy

j
g

2)

Figure 3: Trajectories of a SANN that solves
linear systems to machine precision. Given a
matrix X ∈ R50×50 and vector b ∈ R50, the
network produces a vector y ∈ R50 such that
Xy = b. Each line shows the trajectory of
the output y for a given input pair (X, g) as
the SANN’s ODE is iteratively solved. At each
timestep, the network performs a single Jacobi
iteration update. The output of the network ex-
actly matches the output of 100 steps of Jacobi
iteration.

5.2 RESULTS OF TRAINING

To demonstrate the feasibility of training SANNs, we trained a SANN to solve 10 × 10 linear
systems; given matrix X ∈ R10×10 and vector g ∈ R10, find vector y ∈ R10 such that Xy = g.

9

Published as a conference paper at ICLR 2025

The SANN uses a 2-layer Matrix-Recurrent Neural Network (see appendix B) as the underlying ISD
network N . We used Adam optimizer to minimize the loss Ltotal from equation (8).

To benchmark SANNs against standard techniques, we trained a two-layer feed-forward neural net-
work with a comparable number of parameters on the same task. Table 1 summarizes the results.
In this experiment, the SANN achieved marginally better accuracy with slightly fewer parameters.

parameters Validation accuracy ∥Xy − g∥2
Feed forward network 306, 140 0.166

SANN 291,720 0.101

Table 1: Results of training a SANN and feed-forward neural network to solve linear systems. Given
a 10× 10 matrix X and and vector g, the networks output y such that Xy ≈ g.

While we refrain from claiming significant numerical advantages for SANNs at this stage, the results
underscore the feasibility of training these architectures.

The input matrices X were sampled from a distribution of strictly diagonally dominant matrices,
ensuring that a SANN theoretically exists that can solve for y to machine precision (as in the hand-
crafted example from the previous subsection). However, further research is needed to determine
how to effectively optimize network parameters to achieve such precision.

6 DISCUSSION AND FUTURE WORK

We consider the SANN architecture presented in this paper to be the most general form of a new
family of neural networks designed to compute semialgebraic functions. In practice, this architecture
can be restricted in various ways to improve performance on specific tasks. This is analogous to
convolutional neural networks (CNNs), which are a subset of standard feed-forward neural networks.
While CNNs have far fewer parameters and cannot compute arbitrary piecewise-linear functions,
they excel at tasks involving translational symmetry (e.g., image classification). Similarly, in future
work, we aim to identify and develop specialized variants of the SANN architecture that compute
subsets of semialgebraic functions tailored to particular tasks.

One interesting modification is to change line 3 of Algorithm 1 to have the ISD networkN output an
LU factorization of M rather than M itself. This change would increase the speed of the networks
since solving two triangular systems LUz = b is significantly faster than solving a general linear
system Mz = b. Furthermore, we could create a continuous variant of SANNs by requiring the
diagonal elements of L and U to be positive and bounded away from 0. Such changes likely have
many practical advantages; however, our expressivity proofs would no longer directly apply. Not
every ISD matrix M has an LU decomposition in terms of ISD L and U , and it is not clear whether
this would be sufficient to apply our homotopy continuation arguments. Regardless, these modified
SANNs compute a large class of semialgebraic functions not possible for most other architectures.

Efficient training of SANNs remains an open challenge. It is currently feasible to train SANNs using
established techniques such as backpropagation when explicit time-stepping is used to evaluate the
network’s ODE (as we have done here). The adjoint sensitivity method (Pontryagin et al., 1962) can
be used when other ODE solvers are employed, as in Neural ODEs (Chen et al., 2019). However,
the unique structure of the SANN architecture offers opportunities for novel training strategies. New
approaches are needed to take full advantage of the expressive power of SANNs.

7 CONCLUSION

We have presented new representation theorems for semialgebraic functions along with a novel neu-
ral network architecture capable of representing all bounded semialgebraic functions. Our methods
are inspired by homotopy continuation methods for root finding, and the architecture is simple to im-
plement using existing machine learning tools. We believe our SANNs build a new bridge between
semialgebraic geometry (also called “real algebraic geometry”) and machine learning, opening new
avenues for both theoretical exploration and practical applications.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

The authors thank the anonymous ICLR reviewers for helpful comments on an ealier version of this
manuscript. M. V. de Hoop and S. D. Mis acknowledge the support of the Simons Foundation under
the MATH + X Program, the Department of Energy under grant DE-SC0020345, the Occidental
Petroleum Corporation and the corporate members of the Geo-Mathematical Imaging Group at Rice
University. M. Lassas was partially supported by a AdG project 101097198 of the European Re-
search Council, Centre of Excellence of Research Council of Finland and the FAME flagship of the
Research Council of Finland (grant 359186). Views and opinions expressed are those of the authors
only and do not necessarily reflect those of the funding agencies or the EU. Neither the European
Union nor the granting authority can be held responsible for them.

REFERENCES

Ralph Abraham and Joel Robbin. Transversal Mappings and Flows. W. A. Benjamin, Inc., 1967.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep Equilibrium Models. Advances in neural
information processing systems, Oct 2019.

Randall Balestriero and Richard G. Baraniuk. Mad Max: Affine Spline Insights Into Deep Learning.
Proceedings of the IEEE, 109(5):704–727, 2021. doi: 10.1109/jproc.2020.3042100.

A. I. Beltzer. Variational and finite element methods. Springer-Verlag, Berlin, 1990. ISBN 3-540-
51598-4. doi: 10.1007/978-3-642-83914-6. A symbolic computation approach.

Garrett Birkhoff. Lattice Theory. Number 25 in Colloquium Publications / American Mathematical
Society. American Mathematical Society, Providence, RI, 2 edition, 1948.

Garrett Birkhoff and R.S. Pierce. Lattice-ordered Rings. Anais da Academia Brasileira de Ciencias.,
28:41–69, 1956.

Jacek Bochnak and Gustave Efroymson. Real algebraic geometry and the 17th Hilbert problem.
Mathematische Annalen, 251(3):213–241, Oct 1980. ISSN 0025-5831, 1432-1807. doi: 10.1007/
bf01428942.

Jacek Bochnak, Michel Coste, and Marie-Francoise Roy. Real Algebraic Geometry. Springer, 1
edition, 1998. ISBN 3-540-64663-9.

Helmut Bölcskei, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. Optimal Approximation
with Sparsely Connected Deep Neural Networks, may 2018.

Liliana Borcea. Electrical impedance tomography. Inverse Problems, 18(6):R99–r136, 2002. ISSN
0266-5611. doi: 10.1088/0266-5611/18/6/201.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks, Sep 2020.

Iacopo Cappellini, Laura Campiglia, Lucia Zamidei, and Guglielmo Consales. Electrical impedance
tomography (eit) to optimize ventilatory management in critically ill patients: A report of two
cases. Anesthesia Research, 1(1):3–7, 2024. ISSN 2813-5806. doi: 10.3390/anesthres1010002.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural Ordinary Dif-
ferential Equations, Dec 2019.

Tianran Chen and Tien-Yien Li. Homotopy continuation method for solving systems of nonlinear
and polynomial equations. Communications in Information and Systems, 15(2):119–307, 2015.

Grigorios Chrysos, Stylianos Moschoglou, Giorgos Bouritsas, Jiankang Deng, Yannis Panagakis,
and Stefanos Zafeiriou. Deep Polynomial Neural Networks. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 44(8):4021–4034, 2021. doi: 10.1109/tpami.2021.3058891.

Edward Curtis and James Morrow. Inverse Problems for Electrical Networks. World Scientific
Publishing Company, 2000.

11

Published as a conference paper at ICLR 2025

Maarten V de Hoop, Matti Lassas, and Christopher A Wong. Deep learning architectures for non-
linear operator functions and nonlinear inverse problems. Mathematical Statistics and Learning,
4(1):1–86, 2022.

Stanislas Ducotterd, Alexis Goujon, Pakshal Bohra, Dimitris Perdios, Sebastian Neumayer, and
Michael Unser. Improving lipschitz-constrained neural networks by learning activation functions.
Journal of Machine Learning Research, 25(65):1–30, 2024.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs, Oct 2019.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit Deep
Learning. SIAM Journal on Mathematics of Data Science, 3(3):930–958, Jan 2021. ISSN 2577-
0187. doi: 10.1137/20m1358517.

Feng-Lei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang. On Interpretability of Artificial Neural
Networks: A Survey. IEEE Transactions on Radiation and Plasma Medical Sciences, 5(6):741–
760, Nov 2021. ISSN 2469-7311, 2469-7303. doi: 10.1109/trpms.2021.3066428.

Stefan Forcey. Circular planar electrical networks, Split systems, and Phylogenetic networks. SIAM
Journal on Applied Algebra and Geometry, 7(1):49–76, 2023.

Takashi Furuya, Maarten V. de Hoop, and Gabriel Peyré. Transformers are Universal In-context
Learners, Oct 2024.

A. W. Hager and D. G. Johnson. Some comments and examples on generation of (hyper-
)archimedean l-groups and f-rings. Annales de la Faculté des sciences de Toulouse :
Mathématiques, 19(S1):75–100, Aug 2010. ISSN 2258-7519. doi: 10.5802/afst.1276.

Melvin Henriksen and John Isbell. Lattice-ordered rings and function rings. Pacific Journal of
Mathematics, 12(2):533–565, Jun 1962. ISSN 0030-8730, 0030-8730. doi: 10.2140/pjm.1962.
12.533.

Tosio Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. ISBN 3-540-58661-x. Reprint of the 1980 edition.

Patrick Kidger. On Neural Differential Equations. PhD thesis, University of Oxford, 2021.

Zico Kolter, David Duvenaud, and Matt Johnson. Deep Implicit Layers - Neural ODEs, Deep
Equilibirum Models, and Beyond. http://implicit-layers-tutorial.org/, 2020.

Steven G. Krantz and Harold R. Parks. The Implicit Function Theorem. Birkhäuser Boston, Boston,
MA, 2003. ISBN 978-1-4612-0059-8. doi: 10.1007/978-1-4612-0059-8.

K. Kurdyka, P. Orro, and S. Simon. Semialgebraic Sard Theorem for Generalized Critical Val-
ues. Journal of Differential Geometry, 56(1), Sep 2000. ISSN 0022-040x. doi: 10.4310/jdg/
1090347525.

Matti Lassas, Mikko Salo, and Leo Tzou. Inverse problems and invisibility cloaking for FEM models
and resistor networks. Math. Models Methods Appl. Sci., 25(2):309–342, 2015. ISSN 0218-2025.
doi: 10.1142/s0218202515500116.

Jean Bernard Lasserre. An Introduction to Polynomial and Semi-Algebraic Optimization. Cambridge
University Press, 1 edition, Feb 2015. ISBN 978-1-107-63069-7 978-1-107-44722-6 978-1-107-
06057-9. doi: 10.1017/cbo9781107447226.

John M. Lee. Introduction to Smooth Manifolds. Number 218 in Graduate Texts in Mathematics.
Springer, New York ; London, 2nd ed edition, 2013. ISBN 978-1-4419-9981-8 978-1-4419-9982-
5.

Stanislaw Lojasiewicz. Ensembles Semi-analytiques, 1964.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

12

Published as a conference paper at ICLR 2025

James J. Madden. Henriksen and Isbell on f-rings. Topology and its Applications, 158(14):1768–
1773, Sep 2011. ISSN 01668641. doi: 10.1016/j.topol.2011.06.011.

Louis Mahé. On the Pierce–Birkhoff conjecture in three variables. Journal of Pure and Applied
Algebra, 211(2):459–470, Nov 2007. ISSN 00224049. doi: 10.1016/j.jpaa.2007.01.012.

Louis Mahé. On the Pierce-Birkhoff conjecture. Rocky Mountain Journal of Mathematics, 14(4),
Dec 1984. ISSN 0035-7596. doi: 10.1216/rmj-1984-14-4-983.

Benny Malengier, Pavol Kišon, James Tocknell, Claas Abert, Florian Bruckner, and Marc-Antonio
Bisotti. ODES: A high level interface to ODE and DAE solvers. The Journal of Open Source
Software, 3(22):165, Feb 2018. doi: 10.21105/joss.00165.

Swann Marx, Edouard Pauwels, Tillmann Weisser, Didier Henrion, and Jean Bernard Lasserre.
Semi-algebraic approximation using Christoffel–Darboux kernel. Constructive Approximation,
pp. 1–39, 2021.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the Number of Linear
Regions of Deep Neural Networks, Jun 2014.

Sung-Kwun Oh, Witold Pedrycz, and Byoung-Jun Park. Polynomial neural networks architecture:
Analysis and design. Computers & Electrical Engineering, 29(6):703–725, Aug 2003. ISSN
00457906. doi: 10.1016/s0045-7906(02)00045-9.

Philipp Petersen, Mones Raslan, and Felix Voigtlaender. Topological properties of the set of func-
tions generated by neural networks of fixed size. Found. Comput. Math., 21(2):375–444, 2021.
ISSN 1615-3375. doi: 10.1007/s10208-020-09461-0.

Lev Semenovich Pontryagin, EF Mishchenko, VG Boltyanskii, and RV Gamkrelidze. The Mathe-
matical Theory of Optimal Processes. John Wiley & Sons, 1962.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical
recipes. Cambridge University Press, Cambridge, third edition, 2007. ISBN 978-0-521-88068-8.
The art of scientific computing.

A. Seidenberg. A New Decision Method for Elementary Algebra. The Annals of Mathematics, 60
(2):365, Sep 1954. ISSN 0003486x. doi: 10.2307/1969640.

Endre Süli and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press,
Cambridge ; New York, 2003. ISBN 978-0-521-81026-5 978-0-521-00794-8.

Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. University of California
Press, 1951.

Dinesh Valluri and Rory Campbell. On the Space of Coefficients of a Feedforward Neural Net-
work. In 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, Gold Coast,
Australia, Jun 2023. Ieee. ISBN 978-1-66548-867-9. doi: 10.1109/ijcnn54540.2023.10191403.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention Is All You Need, Aug 2023.

Zichao Wang, Randall Balestriero, and Richard Baraniuk. A Max-affine Spline Perspective Of
Recurrent Neural Networks. In International Conference on Learning Representations, 2019.

A LATTICE-ORDERED RINGS OF PIECEWISE POLYNOMIALS

This appendix introduces the classical theory of “lattice-ordered” and “function” rings, culminating
in a statement of Henricksen’s and Isbell’s theorem for generating f -rings from subrings. This is the
key lemma in our proof that the space of functions computable by MRNNs is closed under ring and
lattice operations—vector addition, Hadamard product, min and max.

We use the following standard conventions: Group operations are denoted “+”, and ring multipli-
cation operations are denoted “∗”. When there is no ambiguity, the ring multiplication operation

13

Published as a conference paper at ICLR 2025

f ∗ g may be written fg. If R is a given ring, the polynomial ring in n variables with coefficients
in R is denoted R[X1, . . . , Xn]. Direct products are denoted “×”, and we reserve ⊗ for Kronecker
products of matrices. Lattice operations are denoted ∧ for “inf” (“meet”) and ∨ for “sup” (“join”).
We use the shorthand f+ := f ∨ 0, f− := (−f) ∨ 0, and |f | := f ∨ (−f). In this paper,

f ∨ g = max(f, g), and f ∧ g = min(f, g),

although in general there are other choices for the lattice operations. Observe also that

f ∨ g = f + ReLU(g − f), and f ∧ g = f − ReLU(f − g).

Furthermore, f ≤ g means f ∧ g = f and f ∨ g = g, while the obvious dual statement holds for
f ≥ g.

In the terminology of neural networks, f+ is precisely ReLU(f) when the lattice is built over Rn

and the meet/join operations are component-wise min/max.

Definition 14 (ℓ-rings). An ℓ-ring (short for “lattice-ordered ring”) is a tuple (R,+, ∗,∧,∨) that is a
ring with operations +, ∗, a lattice with operations ∧, ∨, and the following compatibility conditions
are satisfied:

f ≤ g ⇒ h+ f ≤ h+ g for all f, g, h ∈ R, (16)

f ≥ 0 and g ≥ 0 ⇒ fg ≥ 0. (17)

We will often refer to an ℓ-ring (R,+, ∗,∧,∨) simply by its underlying set R.

An ℓ-ring homomorphism preserves both ring an lattice operations.
Remark. The original masters did not require ℓ-rings to have commutative addition (i.e. be an
Abelian groups) or have multiplicative identities. These generalizations are not important to us here,
and what we call “ℓ-ring” is often called “ℓ-ring with unity” in the literature. All our ℓ-rings are
abelian groups and have multiplicative identity.

Every ℓ-ring is a distributive lattice1 (Birkhoff, 1948); that is,

f ∨ (g ∧ h) = (f ∨ g) ∧ (f ∨ h) and f ∧ (g ∨ h) = (f ∧ g) ∨ (f ∧ h)

hold for all f, g, h ∈ R. In particular, every lattice polynomial can be written in the form∧
i∈I

∨
j∈Ji

fj

with I, Ji ⊂ N and fj ∈ R.

Garrett Birkhoff demonstrated ℓ-rings can have surprising pathologies; for example, he constructed
an ℓ-ring whose multiplicative identity was both negative and a square (Birkhoff & Pierce, 1956).
The following definition introduces an additional compatibility condition that prevents the most
troublesome pathologies.

Definition 15. An f -ring (short for “function ring”) is a ℓ-ring where

If f, g, h ≥ 0 and g ∧ h = 0, then fg ∧ h = 0 and gf ∧ h = 0. (18)

Condition (18) can be equivalently stated (Madden, 2011)

f+g+ ∧ f− = 0 and g+f+ ∧ f− = 0 for all f, g ∈ R.

Lemma 16. If R is an ℓ-ring (resp. f -ring) and D is any set, then functions F = {f : D → R} form
an ℓ-ring (resp. f -ring) using the operations defined to turn every evaluation map ϕx(f) := f(x),
x ∈ D, into an ℓ-ring homomorphism (stated simply, these are the “component-wise” operations).

Proof. For brevity, we forego the verification of the ring and lattice axioms and focus on the com-
patibility conditions. The first will be treated in detail for illustration, the other two will be more
succinct. Let f, g, h ∈ F .

1Only compatibility condition (16) is required, so in fact every so-called ℓ-group is a distributive lattice.

14

Published as a conference paper at ICLR 2025

• Condition (16): Suppose f ≤ g, which means f(x) ≤ g(x) for all x ∈ D:

f(x) = (f ∧ g)(x) = ϕx(f ∧ g) = ϕx(f) ∧ ϕx(g) = f(x) ∧ g(x).

Since R is ℓ-ring, a+f(x) ≤ a+g(x) for all a ∈ R and x ∈ D. In particular, h(x)+f(x) ≤
h(x) + g(x), and thus

ϕx(h+ f) = h(x) + f(x) =
(
h(x) + f(x)

)
∧
(
h(x) + g(x)

)
=

ϕx(h+ f) ∧ ϕx(h+ g) = ϕx

(
(h+ f) ∧ (h+ g)

)
Since ∧ in F is defined precisely to turn every ϕx into a homomorphism, we conclude
h+ f = (h+ f) ∧ (h+ g).

• Condition (17): Suppose f, g ≥ 0, meaning f(x), g(x) ≥ 0 for all x ∈ D. Then
f(x)g(x) ≥ 0 since R is an ℓ-ring.

For the last condition, we now suppose R is an f -ring.

• Condition (18): Suppose f, g, h ≥ 0 and f ∧ h = 0, meaning f(x), g(x), h(x) ≥ 0 and
f(x) ∧ h(x) = 0 for all x ∈ D. Then

(fg ∧ h)(x) = f(x)g(x) ∧ h(x) = 0

since R is an f -ring, and we conclude fg ∧ h = 0. Likewise gf ∧ h = 0.

Example 17. Continuous real-valued functions with component-wise +/∗/min/max operations form
an f -ring.
Lemma 18. The direct product of ℓ-rings (resp. f -rings) is an ℓ-ring (resp. f -ring).

Proof. The direct product of two ℓ-rings or f -rings is clearly both a ring and a lattice, and the
relevant compatibility conditions hold in the product since they hold in each component.

In particular, vector-valued functions D → Rn form an f -ring when each component forms an
f -ring.
Lemma 19. If R is an ℓ-ring (resp. f -ring) and R1 ⊆ R is both a subring and sublattice, then R1

is also an ℓ-ring (resp. f -ring).

Proof. We need only verify the compatibility conditions (16), (17) and (18). But since these condi-
tions hold in R, they clearly hold in R1 as well.

The requirement that R1 ⊆ R form a sublattice in addition to a subring (rather than just a subring)
is a small oversight in (Birkhoff & Pierce, 1956). For example, polynomials form a subring of the
f -ring of continuous real functions, but they are not a lattice (x and −x are both polynomials, but
x ∨ −x = |x| is not), so polynomials do not themselves form an f -ring. Indeed, this fact will be
relevant below to us below.
Definition 20 (Totally ordered ℓ ring). An ℓ-ring R is totally ordered if both f ∧ g and f ∨ g are in
{f, g} for all f, g ∈ R.

In other words, the lattice of a totally ordered ring induces a total order relation.
Lemma 21. Every totally ordered ring R is an f -ring.

Proof. Given f, g, h ∈ R such that f, g, h ≥ 0 and g ∧ h = 0, we need to show fg ∧ h = 0 and
gf ∧ h = 0. Since R is totally ordered, g ∧ h = 0 implies either g = 0 or h = 0.

• Case g = 0: We have fg = gf = 0 and fg ∧ h = 0 ∧ h = 0 since h ≥ 0. Identical logic
shows gf ∧ h = 0.

15

Published as a conference paper at ICLR 2025

• Case h = 0: From the ℓ-ring compatibility condition (17), fg ≥ 0 and gf ≥ 0. Thus
fg ∧ h = fg ∧ 0 = 0, likewise gf ∧ h = gf ∧ 0 = 0.

We can now state the key theorem of this section, which will allow us to generate f -rings of neural
networks by bootstrapping from a subring.
Theorem 22 (Henricksen and Isbell). If R is an f -ring and R1 ⊂ R is a subring (not necessarily a
sublattice), then the lattice generated by R1 is a subring of R.

This theorem first appeared in Henriksen & Isbell (1962). The proof is surprisingly non-trivial, and
while the key insights were provided by Henricksen and Isbell, they left the proof as an exercise to
the reader. The first full proof appears to have been recorded in Hager & Johnson (2010).

A.1 INF-SUP DEFINABLE PIECEWISE POLYNOMIALS AND THE PIERCE–BIRKHOFF
CONJECTURE

Definition 23 (Piecewise polynomial). Let k, n, J ∈ N, and D ⊂ Rn. Then f : D → R is piecewise
polynomial, or f ∈ PWP (D), if there exists a collection of semialgebraic sets {Si}Ji=1 such that
D ⊂

⋃J
i=1 Si, and a collection of polynomials {pi}Ji=1 ⊂ R[X1, . . . , Xn] such that f |Si = pi for

all i = 1, . . . , J .

A vector-valued function f : D → Rk is piecewise polynomial, or f ∈ PWP (D,Rk), if every
component function is piecewise polynomial.

A piecewise polynomial is continuous if and only if there exists a collection of closed semialgebraic
sets {Si}Ji=1 satisfying Definition 23.
Lemma 24. Let n ∈ N, and D ⊂ Rn. Then PWP (D) equipped with component-wise operations
is an f -ring.

Proof. We need only show PWP (D) is both a subring and sublattice of the f -ring of functions
D → R, then the conclusion follows from Lemma 16. But it is elementary to verify the pointwise
sum, product, min and max of two piecewise polynomials is also a pointwise polynomial.

Corollary 25. Let k, n ∈ N, and D ⊂ Rn. Then PWP (D,Rk) is an f -ring.

Proof. PWP (D,Rk) is a direct product of PWP (D,R), so the conclusion follows from
Lemma 18.

We apply Theorem 22 to the subring of PWP (D,Rk) consisting of the polynomials D → Rk.

We obtain the following important theorem:
Theorem 26. ISD(Rn) is an f -ring for any n ∈ N.

Both PWP (Rn) and ISD(Rn) are f -rings, and clearly ISD(Rn) ⊆ PWP (Rn). Whether the
opposite inclusion holds is the famous Pierce–Birkhoff conjecture.
Conjecture 27 (Pierce–Birkhoff). ISD(Rn) = PWP (Rn).

If the Pierce–Birkhoff conjecture holds, then every piecewise polynomial g can be written
g = min

i∈I
max
j∈Ji

fij

for some polynomials fij and finite indexing sets I , Ji.

The case n = 2 was proved by Jacek Bochnak and Gustave Efroymson (Bochnak et al., 1998),
and then again by Louis Mahé (Mahé, 1984). Mahé has also shown that the conjecture holds when
n = 3 up to arbitrarily small neighborhoods of finitely many points. See Madden (2011) for further
discussion of the Pierce–Birkhoff conjecture and related problems.

Later, we will show that the neural network architecture introduced in the next section can exactly
compute any continuous piecewise polynomial if and only if the Pierce–Birkhoff conjecture holds.

16

Published as a conference paper at ICLR 2025

B MATRIX-RECURRENT NEURAL NETWORKS

Semialgebraic Neural Networks (SANNs) are built on top of a related architecture called Matrix-
Recurrent Neural Networks (MRNNs), a type of polynomial network with ReLU activations. This
chapter introduces MRNNs and exactly characterize their range as inf-sup definable (ISD) piecewise
polynomials. Our analysis of the expressivity of MRNNs is inspired by Balestriero & Baraniuk
(2021).

B.1 ARCHITECTURE

A standard feed-forward neural network is a function f : Rn → Rk defined as an alternating
composition of affine transformations and nonlinear activation functions σ:

h0 = x (19)
hℓ = σ (bℓ +Aℓhℓ−1) for ℓ = 1, . . . , L− 1 (20)

f(x) = bL +ALhL−1. (21)

Perhaps the most popular activation functions used in practice are variations of the rectified linear
unit (ReLU) σ(x) = max(0, x). This activation results in networks whose ranges are conceptually
simple; they are multivariate linear splines. Although such networks can uniformly approximate
any continuous function, they are extremely limited in the types of functions that can be represented
exactly. For example, the product of two linear splines is in general not a linear spline itself, so
computing such a function by a neural network will require a number of weights proportional to the
desired accuracy of the approximation.

In this work, we study a type of Operator Recurrent Neural Network (ORNN) (de Hoop et al., 2022)
where the input to the network is a matrix X ∈ Rn×m and the output is a vector f(X) ∈ Rkout . To
emphasize that our results hold specifically for matrix inputs rather than general operators, we call
this subset of ORNN’s the Matrix Recurrent Neural Networks (MRNNs). The architecture of an
L-layer MRNN is defined

h0 = 0 (22)
hℓ = bℓ,0 +Aℓ,0hℓ−1 +Bℓ,0(I ⊗X)hℓ−1+

σ (bℓ,1 +Aℓ,1hℓ−1 +Bℓ,1(I ⊗X)hℓ−1) for ℓ = 1, . . . , L (23)
f(X) = hL (24)

where (I ⊗X) denotes a Kronecker product with an identity matrix I whose size may vary in each
layer. Notice in particular that the input matrix X is inserted multiplicatively into each layer. Our
definition of an MRNN matches the original definition of a width-expanded ORNN with matrix
input presented in de Hoop et al. (2022). As noted in that paper, the restriction on h0 does not affect
the range of f since h1 will invariably equal b1,0, which is learned.

We formally define the space of functions representable by an MRNN.
Definition 28 (MRNN). Let k, L ∈ N, and D be a subset of Rm×n. Then f : D → Rk is in
MRNNL(D,Rk) if f can be computed via equations (22-24).

When the number of layers in a network is not specified, we define

MRNN(D,Rk) =

∞⋃
L=0

MRNNL(D,Rk).

In contrast to standard ReLU networks, we will show that MRNNs form a ring of piecewise poly-
nomial functions. The kernels of these functions—that is, the set of points X such that f(X)
vanishes—form semialgebraic sets in Rm×n.

B.2 RANGE

Numerous authors have observed that linear ReLU networks compute multivariate linear splines,
where each linear region is a polyhedron defined by the combination of active neurons—that is,

17

Published as a conference paper at ICLR 2025

where bℓ + Aℓhℓ−1 ≥ 0 (see, for example, Montúfar et al. (2014) and Wang et al. (2019)). Like-
wise, de Hoop et al. (2022) showed that MRNNs (or rather ORNNS in general) compute piecewise
polynomials, where the semialgebraic decomposition of the domain is similarly defined by the com-
bination of active neurons

bℓ,1 +Aℓ,1hℓ−1 +Bℓ,1(I ⊗X)hℓ−1 ≥ 0, ℓ = 1, . . . , L

at each point. Thus MRNN(Rn×m,Rk) is isomorphic to a subset of PWP (Rnm,Rk). The con-
verse question, whether every piecewise polynomial is computable by an MRNN, was not addressed.
In this subsection, we refine their observation to show that MRNNs compute precisely the ISD func-
tions.

Let vec : Rn×m → Rnm be the column-major matrix vectorization operator. It is clearly bijective,
and its inverse is the matrixization operator denoted vec−1. We first show every ISD function can be
computed by and MRNN.

Lemma 29. Let m,n,∈ N. For every f ∈ ISD(Rmn), there exists N ∈ MRNN(Rm×n) such
that f = N ◦ vec−1.

Proof. By definition of ISD(Rmn), f is a lattice polynomial q of some {p1, . . . , pJ} ⊂
R[X1, . . . , Xmn]. An easy construction shows there exists networks N1, . . . ,NJ computing the
polynomials Nj = pj ◦ vec−1. Another easy construction shows that MRNN(Rm×n) is closed
under the lattice operations, so the lattice polynomial q can be computed by a network. In particular,
N = q (N1, . . . ,NJ) is the desired network.

We now generalize the previous lemma to vector-valued functions.

Lemma 30. Let m,n, k ∈ N. For every f ∈ ISD(Rmn,Rk), there exists N ∈
MRNN(Rm×n,Rk) such that f = N ◦ vec−1.

Proof. ISD(Rmn,Rk) is the k-times direct product of ISD(Rmn), so f = f1 × · · · × fk for some
f1, . . . , fk ∈ ISD(Rmn). By the previous lemma, there existN1, . . . ,Nk ∈MRNN(Rm×n) such
that fj = Nj ◦ vec−1 for j = 1, . . . , k. Since MRNN(Rm×n,Rk) is the k-times direct product of
MRNN(Rm×n), N = N1 × · · · × Nk is the desired network.

The next two lemmas prove the dual inclusion—every MRNN is indeed ISD.

Lemma 31. Let m,n ∈ N. For every N ∈ MRNN(Rm×n), there exists f ∈ ISD(Rmn) such
that N = f ◦ vec.

Proof. Fix a network computing N , and use induction on the number of layers L. The base case
L = 0 is trivial since a 0 layer network is a constant. Assume the condition holds for L− 1 layers,
and consider the final layer in the network computing N (X):

hL = bL,0 +AL,0hL−1 +BL,0(I ⊗X)hL−1+

σ (bL,1 +AL,1hL−1 +BL,1(I ⊗X)hL−1) .
(25)

Notice hL−1 is a vector-valued function of X and can be decomposed into its component functions

hL−1 = g1 × · · · × gN

for some N ∈ N corresponding to the width of this layer. For every j = 1, . . . , N , gj(X) is
computed by an L − 1 network, so the inductive hypothesis states there exists fj ∈ ISD(Rmn)
such that gj = fj ◦ vec. We now rewrite each term of equation (25) using these fj . Let i ∈ {0, 1}.

• The constant terms bL,i ∈ R are clearly isomorphic to constant functions in ISD(Rmn).

• The linear terms AL,ihL−1 are linear combinations of f1, . . . , fN ∈ ISD(Rmn). Since
ISD(Rmn) is an f -ring (Theorem 26), there exists fA,i ∈ ISD(Rmn) such that fA,i =
(AL,ihL−1) ◦ vec.

18

Published as a conference paper at ICLR 2025

• For the quadratic terms, note (I ⊗ X) ∈ Rrm×N . The k’th component of (I ⊗ X)hL−1

equals
m∑

α=1

X(k%n,α)g(⌊k/n⌋+α) =

(
m∑

α=1

X(k%n,α)f(⌊k/n⌋+α)

)
◦ vec(X) (26)

where % denotes modular division, ⌊·⌋ is the floor operation, and X(a,b) is entry a, b of matrix X .
In particular, each term in the sum on the right-hand-side is the product of a monomial and an ISD
function, so

fB,i,k :=

m∑
α=1

X(k%n,α)f(⌊k/n⌋+α)

is in ISD(Rmn) for k = 1, . . . , rm. The full quadratic terms BL,i(I⊗X)hL−1 are thus isomorphic
to linear combinations of ISD functions fB,i,1, . . . , fB,i,rm, so there exists fB,i ∈ ISD(Rmn) such
that fB,i = (BL,i(I ⊗X)hL−1) ◦ vec.

We can thus rewrite (25) in the equivalent form

hL =
[
bL,0 + fA,0 + fB,0 + σ(bL,1 + fA,1 + fB,1)

]
◦ vec. (27)

The term in square brackets is constructed from elements of the f -ring ISD(Rmn) using only
addition and the lattice operation σ = max{0, ·}, so it is itself in ISD(Rmn) and the lemma is
proved.

Lemma 32. Let m,n, k ∈ N. For every N ∈ MRNN(Rm×n,Rk), there exists f ∈
ISD(Rmn,Rk) such that N = f ◦ vec.

Proof. We pass through the direct products in an identical manner to the proof of Lemma 30.

Combining Lemmas Lemma 30 and Lemma 32 lets us conclude MRNN(Rn×m,Rk) is isomorphic
to ISD(Rnm,Rk); that is, there exists a bijective ring-homomorphism between them. Informally,
the two rings are identical up to a relabeling of the elements.
Theorem 33. For all n,m, k ∈ N, the rings MRNN(Rn×m,Rk) and ISD(Rnm,Rk) are home-
omorphic, that is,

MRNN(Rn×m,Rk) ∼= ISD(Rnm,Rk).

Theorems 33 and 22 allow us to conclude that MRNN(Rn×m,Rk) forms a unital, associative
algebra over R; that is, every scalar multiple, sum, and Hadamard product of a MRNNs is com-
putable by an MRNN. Associativity and existence of a multiplicative identity, as well as the ability
to compute scalar multiples and sums are obvious and hold for linear ReLU networks as well. What
distinguishes MRNNs from linear ReLU networks is the ability to compute Hadamard products. We
require this property to build SANNs capable of computing any semialgebraic function.

While the proofs above are not explicitly constructive, they can be made constructive using the
identities in Henriksen & Isbell (1962) or Hager & Johnson (2010). Unfortunately, representing the
Hadamard product of two MRNNs as an MRNN requires exponentially many parameters, which
limits the practical usefulness of a direct application of these constructions in code.

In their original paper introducing the architecture, de Hoop et al. (2022) note that the range of an
MRNN is a multivariate piecewise polynomial; we have refined this result to show that MRNNs are
ISD. We now ask the natural question, is every piecewise polynomial representable by an MRNN?
As noted previously, this question is the famous Pierce–Birkhoff conjecture, a long-standing open
problem in real algebraic geometry. MRNNs can represent every piecewise polynomials if and only
if the Pierce–Birkhoff conjecture is true.

C SEMIALGEBRAIC FUNCTIONS AS KERNELS OF ISD FUNCTIONS

This appendix contains proofs of Proposition 7 and Corollary 8 from the main text.
Proposition 7. S ⊂ Rm is a closed semialgebraic set if and only if there exists f ∈
ISD1(Rm,R≥0) such that ker(f) = S.

19

Published as a conference paper at ICLR 2025

Figure 4: Encoding the graph of a semialgebraic function (red line) F (x) = |x| as the kernel of a
continuously differentiable piecewise polynomial (purple and yellow surface)

G(x, y) =
(
(x+ y)(x− y)

)2
+max(0,−y)2.

Proof. Clearly the kernel of a piecewise polynomial f is a closed semialgebraic set, so we focus on
the converse.

First, suppose S is a closed basic semialgebraic set described by the system

p1(x), . . . , pJ1
(x) = 0 and q1(x), . . . , qJ2

(x) ≥ 0.

The desired ISD piecewise polynomial is

f(x) =

J1∑
i=1

p2i (x) +

J2∑
i=1

(
max{0,−qi(x)}

)2

.

Each term p2i (x) (resp. max{0,−qi(x)}2) is zero precisely when the corresponding condition
pi(x) = 0 (resp. qi(x) ≥ 0) is satisfied. Also, the function q 7→ max{0, q}2 is in C1 and has
the continuous derivative q 7→ 2max{0, q}. Moreover, each term is non-negative, so the sum is
non-negative and zero if and only if every term is zero, meaning every condition is satisfied simulta-
neously. Finally, f is ISD since it is constructed using the ISD lattice-ring operations on polynomials
(see Appendix A), and it is C1 since each term in the sum is C1.

Now let S be an arbitrary closed semialgebraic set; i.e., the union of basic semialgebraic sets. We
may take the basic sets to be closed, since

cl

(
n⋃

i=1

si

)
=

n⋃
i=1

cl(si)

for finitely many sets s1, . . . , sn. Since, ker(fg) = ker(f) ∪ ker(g) for any real-valued functions f
and g, the desired ISD function can be constructed as the product of piecewise polynomials corre-
sponding to each closed basic semialgebraic set.

Corollary 8. F : Rm → Rn is a semialgebraic function with closed graph if and only if there exists
a G ∈ ISD1(Rm×Rn,Rn

≥0) such that ker(G) = gr(F), where gr(F) := {(x, F (x))} ⊂ Rm×Rn

is the graph of F .

Proof. If F is semialgebraic and has a closed graph, then Proposition 7 guarantees there exists a C1

ISD piecewise polynomial g : Rm × Rn → R≥0 such that gr(F) = ker(g). An Rn-valued function
G can be obtained by defining each component function to be g.

Now suppose for a given F , there exists an ISD G such that ker(G) = gr(F). Then gr(F) is closed
since kernels of continuous functions are closed, and F is a semialgebraic function since ker(G) is
clearly a semialgebraic set.

20

Published as a conference paper at ICLR 2025

Remark. The hypothesis in Corollary 8 that F has a closed graph covers all continuous semialge-
braic functions, as well as some unbounded discontinuous functions like

y =

{
0, x ≤ 0

1/x, x > 0.
(28)

For an example of a semialgebraic function whose graph is not closed, consider the characteristic
function of (0,+∞):

y =

{
0, x ≤ 0

1, x > 0.
(29)

The graph does not contain the limit point (0, 1).

D HOMOTOPY CONTINUATION METHODS

This appendix contains additional background material on homotopy continuation methods for root
finding. Subsection D.1 states semialgebraic variants of two important theorems from geometry that
are the foundation for our proofs. Subsection D.2 gives sufficient conditions for the existence of a
homotopy H whose kernel can be traced from time 0 to time 1 in order evaluate the roots of a given
function. Finally, D.3 builds the system of ODEs that is solved in order to execute the homotopy
continuation method, and we prove this ODE system can be represented by a SANN.

D.1 SEMIALGEBRAIC SARD’S AND TRANSVERSALITY THEOREMS

We present semialgebraic variations on two classic theorems from differential topology.
Theorem 34 (Semialgebraic Sard’s theorem). The set of critical values of a continuously differen-
tiable semialgebraic function has measure zero.

In the “textbook” Sard’s theorem, the smoothness requirements on the function depend on the dimen-
sion of the range (Abraham & Robbin, 1967). In contrast, for semialgebraic functions continuous
differentiability is sufficient for the theorem to hold. A proof can be found in Kurdyka et al. (2000).

Next, we use the previous theorem to adapt the Thom transversality theorem to C1 semialgebraic
functions.
Theorem 35 (Semialgebraic transversality theorem). If F : X × A → Y is continuously differen-
tiable semialgebraic function and 0 is a regular value of F , then 0 is a regular value of F (·, a) for
almost every a ∈ A.

A proof can be found in (Abraham & Robbin, 1967), substituting the semialgebraic Sard’s theorem
for Smale’s theorem as required.

D.2 HOMOTOPY EXISTENCE

We now state a standard result in the theory of homotopy continuation for solving nonlinear equa-
tions. Theorem 37 is adapted from Krantz & Parks (2003) with small modifications using the theo-
rems from Appendix D.1 to specialize to ISD1 and avoid any C∞ assumptions. It provides suffi-
cient conditions under which we are guaranteed to be able to evaluate a homotopy from t = 0 until
t = 1.
Definition 36 (Regular value). Let U ⊂ Rm be open. Given f : U → Rn, y ∈ Rn is a regular
value of f if the Jacobian matrix Df(x) has rank n for all x ∈ f−1(y).

In particular, 0 is a regular value of f : Rn → Rn if and only if the Jacobian matrix is nonsingular
for every x ∈ ker(f).
Theorem 37. Let UH be a bounded open subset of Rn, and H ∈ ISD1(Rn × R,Rn). Further
suppose

A.1 H(·, 0) = 0 has a unique solution y0 in UH . That is, kerH(·, 0) ∩ UH = {y0}.

A.2 The connected component of kerH containing (y0, 0) does not intersect ∂UH × [0, 1].

21

Published as a conference paper at ICLR 2025

A.3 0 is a regular value of H .

A.4 ∂1H(y0, 0) is nonsingular.

Then there exists t ∈ ISD([0, 1],R), y ∈ ISD([0, 1],Rn) such that t(0) = 0, t(1) = 1, and
(y(s), t(s)) ∈ ker(H) for all s ∈ [0, 1].

D.3 CURVE TRACING

Let z(s) :=
(
y(s), t(s)

)
, and H ∈ ISD1(Rn × R,Rn) satisfy the hypotheses of Theorem 37.

Then (y, 1) ∈ kerH can be computed by solving the ODE initial-value problem defined by the
“arc-length parameterization” (Chen & Li, 2015):

DH(z) · ż = 0 (30)

sgn det

[
DH(z)

ż

]
= σ0 (31)

∥ż∥ = β (32)
z(0) = (y0, 0). (33)

where σ0 is the sign of the determinant of that matrix at z(0) and β > 0 is a constant chosen so that
t(1) = 1.

With proper choice of N and cmax, the curve-tracing ODE system (30)–(33) can be written in the
form of the ODE system (6)–(7) that define SANNs. At time s = 0, write

DH(y0, 0) =
[
M̂ b̂

]
. (34)

That is, M̂ is the n× n submatrix of DH(y0, 0) that does not contain the rightmost columns b̂. By
assumption A.4, M̂ is invertible. Thus a vector ż satisfying (30)–(33) can be obtained by solving

Mż :=

[
M̂ 0
0 α

]
ż =

[
b̂
1

]
=: b (35)

where α is a constant chosen to satisfy (31) and (32). The M and b defined above appear in the ODE
(6)–(7). Thus we have shown for H satisfying the hypotheses of Theorem 37, y0 = 0, and large
enough cmax, there is an N ∈ ISDnet(m,n, k) such that the integral curve traced in solving the
ODE (6)–(7) is “correct” at time s = 0; i.e. it is tangent to the integral curve defined by ż solving
the IVP (30)–(33).

For time s > 0, we are no longer guaranteed that the first n columns of DH form an invertible
submatrix. However, by assumption A.3, DH always has rank n, so every s belongs to some
interval where we can choose a column of DH to be b̂, and the remaining columns to be M̂ . The
computations in each of these intervals can be glued together in a way consistent with the ODE
(6)–(7) used to compute the entire integral curve. The details can be found in the proof of Theorem
12 in Appendix E.

E SANN EXPRESSIVITY PROOFS

In this appendix, we prove via construction that SANNs are able to represent both continuous and
discontinuous bounded semialgebraic functions F .

E.1 NOTATION

The theorems in this section require us to show the existence of ISD N generating certain initial
value problems for (6)–(7). In Algorithm 1, ż implicitly depends on the inputs N , cmax, and x, and
ODESolve always runs from time s = 0 to s = 1. For this section, we make the dependence on all
variables explicit by using the signature

ODESolve(N , cmax, x, (y0, t0, s0), sfinal)

22

Published as a conference paper at ICLR 2025

where N ∈ ISDnet(m,n, 1) is the trainable ISD network, cmax ∈ R≥0 bounds the output of the
SANN, x ∈ Rm is the input to the SANN, (y0, t0, s0) ∈ Rn × R × R is the initial condition, and
sfinal ∈ R is the final time. We assume that ODESolve exactly solves the ODE system defined by ż
in Algorithm 1 from time s = s0 to time s = sfinal. To avoid repetition, N , cmax, x, y0, t0, s0, and
sfinal will always be in their respective spaces above. Furthermore, for Nα with any subscript α, we
use Mα and bα to be the associated projections as in line 3 of Algorithm 1.

We use Πn+1 to denote the projection operator selecting tout from (yout, tout).

E.2 GLUEING

We require two different ways to combine ISD networks N1 and N2. For “s-glueing,” we build N3

that first imitates N1 on an interval s ∈ [s0, s1/2], then behaves as N2 when s ∈ [s1/2, sfinal]. We
require an additional lemma that modifies N1 and N2 to guarantee ẏ, ṫ can be forced to be 0 in an
open set around s1/2 without affecting the output of ODESolve. We accomplish this with an ISD
change of variables.

For “t-glueing,” we build N3 to interpolate between N1 and N2 in disjoint closed t intervals [t0, t1]
and [t2, t3]. We use t-glueing when we can guarantee the integral curve traced by ODESolve will
never enter the region (t1, t2), so the value of N3 may be arbitrary here. We are free to use this
interval to interpolate between N1 and N2.

Our first lemma allows a particular change of variables for s-glueing.

Lemma 38 (Change-of-variables). Given N1, c1, y0, t0, and s0 < s1 < s2 < sfinal, there exists
N2, c2 such that for all x,

ODESolve(N1, c1, x, (y0, t0, s0), sfinal) = ODESolve(N2, c2, x, (y0, t0, s0), sfinal) (36)

and
b2(x, y, t, s) = 0 when s /∈ [s1, s2]. (37)

Proof. Let v : R→ R be defined

v(s) =


s0 s < s1
u(s) s ∈ [s1, s2]

sfinal s > s2

(38)

where u is the Hermite interpolant (Süli & Mayers, 2003) such that

u(s1) = s0 u̇(s1) = 0 (39)
u(s2) = sfinal u̇(s2) = 0. (40)

v is continuously differentiable and v̇ ∈ ISD(R), v̇(s) = 0 for all s /∈ [s1, s2]. Since s 7→
v̇(s)b(x, z(s)) is the product of ISD functions, it is itself ISD. Likewise the composition of an ISD
function with a polynomial is ISD. Thus we can define

M2(x, y, t, s) = M1(x, y(v(s)), t(v(s)), v(s)) (41)
b2(x, y, t, s) = v̇(s)b1(x, y(v(s)), t(v(s)), v(s)). (42)

Simple calculus verifies conclusion (36), and conclusion (37) holds since v̇(s) = 0 outside [s1, s2].

Lemma 39 (s-glueing). Given N1, N2, c1, c2 y0, t0, s0 < s1 < sfinal, let

(yout(x), tout(x)) = ODESolve(N1, c1, x, (y0, t0, s0), s1). (43)

There exists N3, c3 such that for all x,

ODESolve(N3, c3, x, (y0, t0, s0), sfinal) = ODESolve(N2, c2, x, (yout(x), tout(x), s1), sfinal).
(44)

23

Published as a conference paper at ICLR 2025

Proof. Choose ϵ > 0 such that s0 < s1 − ϵ < s1 + ϵ < sfinal, and apply Lemma 38 to N1 and N2

so that both b1 and b2 are identically 0 in the region (s1 − ϵ, s1 + ϵ). No matter the value of M1 and
M2, both ẏ and ṫ are identically 0 here. Let λ(s) = (s− (s1 − ϵ))/(2ϵ). Define

M3(x, y, t, s) =


M1(x, y, t, s) s ≤ s1 − ϵ

(1− λ(s))M1(x, y, t, s) + λ(s)M2(x, y, t, s) s ∈ (s1 − ϵ, s1 + ϵ)

M2(x, y, t, s) s ≥ s1 + ϵ

(45)

and

b3(x, y, t, s) =

{
b1(x, y, t, s) s ≤ s1
b2(x, y, t, s) s > s1.

(46)

M3 is clearly continuous, and b3 is continuous since b1 and b2 are both 0 when s = s1. The con-
structed N3 is ISD and satisfies conclusion (44).

Remark. Strictly speaking, we have not written M3 and b3 in ISD form in the proof above, but this
is not difficult to remedy. For example, we could use

λ(s) := min(max((s− (s1 − ϵ))/(2ϵ), 0), 1), (47)

then define

M3 = (1− λ(s))M1 + λ(s)M2 (48)
b3 = (1− λ(s))b1 + λ(s)b2 (49)

over the entire domain.

Lemma 40 (t-glueing). Given N1, N2, c1, c2, y1, y2, t1, t2,s0, sfinal, let

Tj := {Πn+1ODESolve(Nj , cj , x, (yj , tj , s0), s) | s ∈ [s0, sfinal], x ∈ Rm}. (50)

Suppose T1 ∩ T2 = ∅. Then there exists N3, c3 such that

ODESolve(N3, c3, x, (yj , tj , s0), sfinal) = ODESolve(Nj , cj , x, (yj , tj , s0), sfinal) (51)

for j = 1, 2 and x ∈ Rm.

Proof. Sets Tj contain the integral curves for the t output of ODESolve, so they are connected
and closed. Since they are disjoint, we can assume WLOG max T1 < min T2. Then there exists
tmid, ϵ ∈ R such that

max T1 < tmid − ϵ < tmid + ϵ < min T2. (52)

The integral curves traced by ODESolve do not enter the t-region (tmid− ϵ, tmid + ϵ), so we are free
to define N3 to interpolate between N1 and N2 there. Let λ(t) = (t− (tmid − ϵ))/(2ϵ). Define

M3 =


M1 t ≤ tmid − ϵ

λ(t)M1 + (1− λ(t))M2 t ∈ (tmid − ϵ, tmid + ϵ)

M2 t ≥ tmid − ϵ

(53)

b3 =


b1 t ≤ tmid − ϵ

λ(t)b1 + (1− λ(t))b2 t ∈ (tmid − ϵ, tmid + ϵ)

b2 t ≥ tmid − ϵ

(54)

c3 = max{c1, c2}. (55)

E.3 PROOF OF THEOREM 11

Theorem 11. Let F : Rm → UF be a given continuous semialgebraic function. For every x ∈ Rm

there exists Hx,a with the form (10) such that for almost every a ∈ UF , the following hold:

1. There exists y ∈ ISD([0, 1],Rn), t ∈ ISD([0, 1],R), such that t(0) = 0, t(1) = 1, and
(y(s), t(s)) ∈ ker(Hx,a) for all s ∈ [0, 1].

24

Published as a conference paper at ICLR 2025

2. The kernel of Hx,a(·, 1) is the singleton {F (x)}.

Proof. To specify Hx,a, we need to choose g and G. Let g be constructed according to Lemma 10.
Let G be constructed such that kerG = gr(F) using Corollary 8.

For conclusion 1, we will use Theorem 37. We first specify a bounded, open UH ⊂ Rn containing
UF with an additional property that is relevant for A.2. Let C denote the connected component of
ker(Hx,a) containing (y0, 0) (i.e. the curve to be traced), and assume for the moment A.3 (which
does not depend on choice of UH) has been verified. Then for almost every a, there exists t0 ∈ (0, 1)
such that C ∩ (Rn × [0, t0]) = C ∩ (UF × [0, t0]); in other words, the curve remains in UF until
at least time t0. Now, using Lemma 10, we conclude there exists bounded open UH containing UF

such that Hx,a(t, y) > 0 for all (y, t) ∈ U c
H × [t0, 1].

We now consider each hypothesis of Theorem 37 in turn:

A.1 The unique solution to Hx,a(y, 0) = y − a = 0 is y0 = a.

A.2 From the construction of UH above, the curve C does not intersect ∂UH during the interval
t ∈ [0, t0], and the entire kernel of Hx,a is disjoint from ∂UH for t > t0.

A.3 We will show that 0 is a regular value of Hx,a for almost every a using the Semialgebraic
Transversality Theorem (see Theorem 35 in appendix D.1). Consider H̃x : Rn×R×Rn →
Rn obtained from Hx,a by treating a as a variable: H̃x(y, t, a) := Hx,a(y, t). Then

∂3H̃x = −(1− t)In,

which is invertible for t ̸= 1, so 0 is a regular value of H̃ . Apply the Theorem 35 to H̃x to
conclude 0 is a regular value of Hx,a for almost every a.

A.4 (y0, 0) is in the region UF × UF , so ∂1Hx,a(y0, 0) = In, which is nonsingular.

For conclusion 2, we have shown in A.2 that y(1) ∈ UF where g vanishes, so Hx,a(y(1), 1) =
G(x, y(1)). The conclusion follows since kerG = gr(F).

E.4 PROOF OF THEOREM 12

Theorem 12. Let F : Rm → UF be a given continuous semialgebraic function. Then there exists
N ∈ ISDnet(m,n, 1) and cmax > 0 such that SANN lim(N , ·, cmax) = F .

Proof. In Section D.3, we showed how to constructN0 ∈ ISDnet(m,n, 1) to compute the required
integral curve using Algorithm 1 at time s = 0. N0 can be chosen in this manner to compute the
integral curve until some time s1 > 0, when M̂(s1), the first n columns of DH(y(s1), t(s1)),
no longer form an invertible submatrix. However, by assumption A.3, we can choose a different
invertible submatrix and left-over column, say M̂1 and b̂1. By the continuity of DH , M̂1 is invertible
over some interval s ∈ (s1/2, s2) with 0 < s1/2 < s1 < s2. Using the same approach, we can
construct N1 ∈ ISDnet(m,n, 1) to compute the integral curve over s ∈ (s1/2, s2). We can now
s-glue N0 and N1 (Lemma 39) to construct N computing the integral curve across s ∈ [0, s2).

All that remains it to prove this procedure can be repeated until time s = 1 is reached. Due to
the clamping in line 7 of Algorithm 1, z remains in [−cmax, cmax]

n+1 for time s ∈ [0, 1]. Since
N ∈ ISDnet(m,n, 1) is a piecewise polynomial, it is Lipschitz on the compact domain {x} ×
[−cmax, cmax], which means there exists ϵ > 0 such that for each step τ of the s-glueing procedure
above, we can choose sτ+1 such that sτ + ϵ < sτ+1, and the conclusion follows.

E.5 DISCONTINUOUS FUNCTIONS

We are now ready to directly tackle discontinuous semialgebraic functions. Our strategy is to split
the computation into two distinct phases.

25

Published as a conference paper at ICLR 2025

1. First, we utilize the fact that ż can be discontinuous across a boundary where M is singular
to separate the domain Rm into the connected components of the graph of F . Every point
in the j’th connected component is mapped to (yout, tout) = (0, j).

2. Then, using the homotopy continuation arguments from Section 4.1, we construct continu-
ous ISD phase vector fields that map from (0, j) to (F (x), tout), which was desired.

Furthermore, we carefully construct each piece of the computation to lie in disjoint (t, s)-space, so
they can be glued together in a way consistent with a single continuous ISD network N . This N
computes F while solving the ODE (6)–(7). Ensuring that the requiredN is indeed an ISD network
(rather than an arbitrary continuous one) is one of the primary challenges in these constructions.

E.6 CHARACTERISTIC FUNCTIONS

Given S ⊆ Rm, a function χS : Rm → R is the characteristic function of a set S if χS(x) = 1 for
x ∈ S, and χS(x) = 0 otherwise. We now show that SANNs can represent characteristic functions
on semialgebraic sets.

Lemma 41 (Scalar multiplication). Given N , cmax, y0, t0, s0, sfinal and α ∈ R, there exists N1 ∈
ISDnet(m,n, 1) such that for all x,

ODESolve(N1, c1, x, (y0, t0, s0), sfinal) = αODESolve(N , cmax, x, (y0, t0, s0), sfinal) (56)

where c1 = αcmax.

Proof. When α = 0, we simply use M1 = M , b1 = 0. Otherwise, we dilate and scale the phase
vector field by α, which we accomplish by setting

M1(x, y, t, s) = M(x, α−1y, α−1t, s) (57)

b1(x, y, t, s) = αb(x, α−1y, α−1t, s). (58)

Lemma 42 (Changing s bounds sfinal). Given N1, c1, y0, t0, s0, s′0, sfinal, s′final, there exists N2 and
c2 such that for all x,

ODESolve(N2, c2, x, (y0, t0, s
′
0), s

′
final) = ODESolve(N1, c1, x, (y0, t0, s0), sfinal). (59)

Proof. Let λ(s) = (s′final − s)/(s′final − s′0) and α = (sfinal − s0)/(s
′
final − s′0). Dilate, scale, and

translate the phase vector field:

M2(x, y, t, s) = M1(x, y, t, s0 + λ(s)(sfinal − s0)) (60)
b2(x, y, t, s) = αb1(x, y, t, s0 + λ(s)(sfinal − s0)). (61)

Set c2 = αc1.

Lemma 43 (Shifting initial conditions). Given N1, c1, y0, y′0, t0, t′0, s0, and sfinal, there exists N2

such that for all x,

ODESolve(N2, c1, x, (y
′
0, t

′
0, s0), sfinal) = (y′0, t

′
0) + ODESolve(N1, c1, x, (y0, t0, s0), sfinal).

(62)

Proof. Let δy = y′0 − y0 and δt = t′0 − t0.

M2(x, y, t, s) = M1(x, y − δy, t− δt, s) (63)
b2(x, y, t, s) = b1(x, y − δy, t− δt, s). (64)

The next lemma allows for a limited form of addition in the t output.

26

Published as a conference paper at ICLR 2025

Lemma 44 (Addition in t). Given N1, N2, c1, c2, y0, t0, s0, sfinal, suppose the image of

x 7→ Πn+1ODESolve(N1, c1, x, (y0, t0, s0), sfinal) (65)

has only finitely many points (t1out, . . . , t
J
out). Further suppose

diam{Πn+1ODESolve(N2, c2, x, (y0, t0, s0), s) | s ∈ (s0, sfinal)} <
1

2
min
i,j
|tiout − tjout|. (66)

Then there exists N3, c3 such that

Πn+1ODESolve(N3, c3, x, (y0, t0, s0), sfinal) = (67)
Πn+1 (ODESolve(N1, c1, x, (y0, t0, s0), sfinal) + ODESolve(N2, c2, x, (y0, t0, s0), sfinal)) .

(68)

Proof. Let s1/2 = s0 + (sfinal − s0)/2. From Lemma 42, there exists N ′
1 and c′1 such that

ODESolve(N ′
1, c

′
1, x, (y0, t0, s0), s1/2) = ODESolve(N1, c1, x, (y0, t0, s0), sfinal). (69)

Likewise, from Lemmas 42 and 43, for each j = 1, . . . , J, there exists N j
2 and cj2 such that

ODESolve(N j
2 , c

j
2, x, (y

j
out, t

j
out, s1/2), sfinal) = (70)

(yjout, t
j
out) + ODESolve(N2, c2, x, (y0, t0, s0), sfinal). (71)

Hypothesis 66 guarantees the sets

{Πn+1ODESolve(N j
2 , c

j
2, x, (y

j
out, t

j
out, s1/2), s) | s ∈ [s1/2, sfinal]} (72)

are pairwise disjoint for each j, so the N j
2 can be t-glued (Lemma 40) into a single N ′

3 such that

ODESolve(N ′
3, c

′
3, x, (y

j
out, t

j
out, s1/2), sfinal) = (yjout, t

j
out)+ODESolve(N2, c2, x, (y0, t0, s0), sfinal)

(73)
for j = 1, . . . , J . Finally, using Lemma 39, s-glue N ′

1 and N ′
3 at s = s1/2 to obtain the desired

N3.

We are now ready to construct SANNs that represent characteristic functions of arbitrary semialge-
braic sets.
Proposition 45. Let S ⊂ Rm be a semialgebraic set. Then there exists N and C ∈ N such that for
all c ≥ C,

ODESolve(N , c, x, (0, 0, 0), 1) = (0, χS(x)). (74)

Proof. First, suppose S is open. Then Sc is a closed semialgebraic set, and from Proposition 7 we
conclude there exists g ∈ ISD(Rm,R≥0) such that ker(g) = Sc. Define

M(x, y, t, s) = g(x)I (75)
b(x, y, t, s) = g(x)(0, 1). (76)

M is singular iff x ∈ ker(g), so ż always returns 0 in this case. Otherwise, (ẏ, ṫ) = M−1b = (0, 1).
Integrating from time s0 = 0 to sfinal = 1 yields

ODESolve(N , c, x, (0, 0, 0), 1) =

{
(0, 1), x /∈ ker g

(0, 0), otherwise,
(77)

which proves the proposition for open S.

For closed S, recall Sc is open and χS = 1− χc
S , so Lemmas 41 and 44 yield the result.

Next, assume we can represent the characteristic function for S1 and S2. We will show how to
represent the characteristic function of their intersection; equivalently, we show how to represent
χS1∩Sc

2
. Let Nj be such that

ODESolve(Nj , c, x, (0, 0, 0), 1) = (0, χSj (x)) (78)

27

Published as a conference paper at ICLR 2025

for j = 1, 2. Using Lemma 42, there exists N ′
1 such that

ODESolve(N ′
1, c, x, (0, 0, 0), 1/2) = (0, χS1(x)). (79)

Using Lemmas 42, 43, and 41, there exists N ′
2 such that

ODESolve(N ′
2, c, x, (0, 1, 1/2), 1) = (0, 1)− (0, χS2

(x)). (80)

Now t-glue N ′
2 with a trivial ISD network so that

ODESolve(N ′
2, c, x, (0, 0, 1/2), 1) = (0, 0), (81)

and s-glue N ′
1 with N ′

2 at s = 1/2 to obtain the desired network.

We can now handle the case of an arbitrary semialgebraic set S. The key is to exploit the “cylindrical
decomposition” of S: every semialgebraic set in Rm is the union of finitely many disjoint sets
homeomorphic to (−1, 1)d, d ≤ m (Bochnak et al., 1998). In particular, it is the union of finitely
many disjoint locally closed sets. Since locally closed sets are the intersection of an open and
a closed set, we have already shown how to represent their characteristic functions with SANNs.
Furthermore, since these locally compact sets are disjoint, the characteristic function of their union
can be represented by summing the individual characteristic functions with s-glueing.

Remark. Note that, although M = g(x)I is in some sense “nearly singular” close to the kernel of
g, it is still in fact an orthogonal matrix. No numerical instabilities arise from the conditioning of M
when solving Mż = b.

E.7 PROOF OF THEOREM 13

Theorem 13. Let F : Rm → Rn be a (possibly discontinuous) bounded semialgebraic function.
Then there exists N ∈ ISDnet(m,n, 1) and cmax ∈ R≥0 such that SANN lim(N , ·, cmax) = F .

Proof. Every semialgebraic function has finitely many connected components (Bochnak et al.,
1998), so let {Sj}Kj=1 be a semialgebraic decomposition of Rm such that F is continuous on each
Si.

Using Proposition 45, we can construct scaled characteristic functions on each connected compo-
nent, and using Lemmas 41 and 44, we scale and add these functions to obtain N0, c0 such that

ODESolve(N0, c0, x, (0, 0, 0), 1/2) = (0, 3j) where x ∈ Sj . (82)

Using Theorem 12, let Nj , cj be such that

SANN(Nj , ·, cj)|Sj = F |Sj (83)

for each j = 1, . . . ,K. Furthermore, by the construction in the proof of that theorem, Ni can be
chosen such that t(0) = 0 and t(1) = 1. In particular,

ODESolve(Nj , cj , x, (0, 0, 0), 1) = (F |Sj
(x), 1) when x ∈ Sj . (84)

Using Lemma 42, modify each Ni, ci, so that integration occurs in the interval s ∈ [1/2, 1]. Fur-
thermore, using Lemma 43, modify each Ni, ci to begin integration at (0, 3j). Finally, t-glue these
modified Nj , and s-glue the result to N0 at s = 1/2.

E.8 SEMIALGEBRAIC FUNCTIONS WITH UNBOUNDED IMAGE

Parameter cmax provides an upper bound on the ℓ∞-norm of the output of SANN, so the image of
every SANN-representable function is bounded. However, the same is not true for all semialgebraic
functions, even those with compact domain, such as F (x) : [−1, 1]→ R defined by

F (x) =

{
1/x, x ̸= 0,

0 x = 0.
(85)

Such functions can not be represented by SANNs.

28

Published as a conference paper at ICLR 2025

E.9 SANNS ALWAYS COMPUTE SEMIALGEBRAIC FUNCTIONS

In our considerations, we use the Tarski–Seidenberg theorem, which has several equivalent formu-
lations. We use the following:

Theorem 46 (Tarski–Seidenberg). When X ⊂ Rn×Rk is a semialgebraic set and π : Rn×Rk →
Rn is the projection map π(x′, x′′) = x′, then the set π(X) is a semialgebraic set in Rn.

So far, we have shown that SANNs are able to represent any bounded semialgebraic function. For
completeness, we now prove a partial converse; that is, SANNs always compute semialgebraic
functions provided the numerical ODE solver is semialgebraic. Common ODE solvers, such as
Euler and Runge-Kutta methods, are semialgebraic. The proposition below focuses specifically on
the case of Forward Euler timestepper given in Section 3.2, but it can be easily modified for other
methods.

Proposition 47. For all N ∈ ISDnet(m,n, k), x ∈ Rm, and cmax > 0, the function fN ,cmax : x 7→
ΠzN , where zN is given by the iteration (2), is semialgebraic.

Proof. The operation iteration steps (x, j, zj) 7→ zj+1 are a composition of ISD-function and the
function (M, b) 7→ (det (M),Mc, b), where Mc is the co-factor matrix of M , the function

(det (M),Mc, b) 7→ (1det (M)>0 + 1det (M)<0) (det (M))−1Mcb)

that implements Cramer’s rule, and another ISD-function given by the time-step formula

(zj , żj)→ zj +
1

N
żj .

This makes the function x 7→ zN semialgebraic; including the projection Πn results in a semialge-
braic function due to the Tarski–Seidenberg theorem.

F NUMERICAL EXAMPLE: INVERSE PROBLEM FOR ELECTRICAL RESISTOR
NETWORKS

This section demonstrates the feasibility of training SANNs to solve a difficult non-linear inverse
problem.

Suppose we are given an electrical network Γ = (V,E) with vertices V and edges E ⊂ V × V.
Physically, an electrical network is a system of connected resistors, and it is modeled by a graph
where every edge is a resistor. An inverse problem for an electrical network is to find one or all
graphs and resistors on the edges when the outcome of all possible voltage and current measurements
in some of vertices of the graph (called the boundary nodes) are given, see Figure 5.

We partition V into boundary nodes VB and interior nodes VI . Let γ : E → R≥0 be the edge
conductivities. The network response matrix (i.e. Dirichlet-to-Neumann map) Λ ∈ R|VB |×|VB |

computes the current at the boundary nodes resulting from applying voltages on VB . Our task is to
recover the conductivites γ from measurements Λ of voltage-response on the boundary. See Curtis
& Morrow (2000) for a thorough treatment of this inverse problem, and Forcey (2023) for recent
developments.

Equivalently, we wish to recover the Kirchhoff matrix K ∈ R|V |×|V | where

Kij =


γ(i, j) if (i, j) ∈ E

−
∑

k ̸=i γ(i, k) if i = j

0 otherwise.
(86)

K is a symmetric matrix with conductivities on off-diagonals and that satisfies Kirchhoff’s Law—
the sum of entries in each row is 0. Curtis & Morrow (2000) showed that Λ is the Schur complement
of a particular submatrix of the Kirchhoff matrix. Precisely, we write

K =

[
A B
BT D

]
(87)

29

Published as a conference paper at ICLR 2025

where A corresponds to boundary nodes VB and D corresponds to interior nodes I . If we letK(Γ) ⊂
R|V |×|V | denote the set of valid Kirchhoff matrices on Γ (a semialgebraic set), then the forward
map (mapping a graph and the values of the resistors to the values of the measurements) is the
semialgebraic function F : K(Γ)→ R|VB |×|VB | defined

F (K) := A−BD−1BT = Λ (88)

The inverse problem is to recover an element of the preimage F−1({Λ}). Since preimages of semi-
algebraic sets (in this case the single point {Λ}) of semialgebraic functions (F) are themselves
semialgebraic (Bochnak et al., 1998), we conclude F−1({Λ}) is a semialgebraic set.

In certain special network topologies, such as for rectangular networks (Figure 5), the preimage of
F−1({Λ}) is a singleton, that is, the values γ(i, j), (i, j) ∈ E of the resistors on the graph (V,E)
are uniquely determined by the voltage-to-current map Λ (Curtis & Morrow, 2000).

Figure 5: A 3 × 3 rectangular electrical network. Each edge in the graph represents a resistor with
unknown conductance.

This inverse problem has had a wide impact in several fields. In medical imaging it has led to new
imaging modalities, for example, in monitoring lung function. Recently, EIT is used in monitoring
the lungs of the COVID-19 patients, see Cappellini et al. (2024).

F.1 NUMERICAL RESULTS FROM TRAINING.

We demonstrate the feasibility of training SANNs to perform non-trivial tasks using the network
EIT problem as an example. Specifically, given a voltage-response map Λ for a 2 × 2 rectangular
electrical network, the task is to recover the non-zero, off-diagonal entries of the Kirchhoff matrix
K. We trained a 4-layer SANN to minimize the loss Ltotal from equation (9). We compare this
against a feed-forward neural network trained to minimize Laccuracy from equation (9) on the same
data. Both networks were trained using the Adam optimizer. We also compare against a known
reconstruction algorithm from Curtis & Morrow (2000) that is exact for noiseless data. The results
are shown in Table 2 below. Let us shortly discuss these results: The Curtis and Morrow (C&M)
algorithm is an analytical method that solves the problem using the theory of planar graphs, and
therefore it is provably correct for all inputs, including inputs outside the training data used for the
other algorithms, such as exceptional resistor networks with very small or large resistors. However,
the algorithm is very sensitive to noise. The algorithm based on a feed forward network is used
in our tests as a black-box algorithm and it works well with noisy data. The SANN is between
these two algorithms—it is explainable in the sense that SANN can represent the rational matrix
functions, and it works moderately well with noisy data. We note that in the numerical tests the
training of SANNs was not fine tuned and by improving the training methods, it is possible that the
results could be improved.

As in the linear inverse problem example from Section 5.2, a trained SANN performs comparably
to a standard feed-forward neural network of the same size, demonstrating the feasibility of training
these networks. We do not claim to demonstrate numerical advantages of SANNs at this stage;
further research is necessary to develop new techniques that fully leverage their expressive power.

Both networks outperform the C&M algorithm on noisy input data. The C&M algorithm recon-
structs conductances edge-by-edge, starting from the boundary and working inward; this causes

30

Published as a conference paper at ICLR 2025

parameters Relative error (noiseless) Relative error (1% noise))
Feed forward network 17, 712 0.0157 0.0180

SANN 17, 640 0.0234 0.0273
C&M — 2.49e− 07 0.0469

Table 2: Results of training neural networks from data to solve the network EIT problem on 2 × 2
rectangular electrical networks. The last row (C&M) shows the reconstruction algorithm from Curtis
& Morrow (2000).

errors to accumulate rapidly for interior edges. In contrast, neural networks incorporate learned
prior knowledge of the expected distribution of conductances, making them more robust to noisy
measurements within the data distribution.

F.2 CONTINUOUS EIT PROBLEM (PDES)

The inverse problem for electrical networks described above is a discrete version of the medical
imaging problem encountered in Electrical Impedance Tomography (Borcea, 2002), an inverse prob-
lem for finite element models for the (anisotropic) conductivity equation. If Ω ⊂ R2 is the interior
of a simple polygon, and if one is given a triangulation of Ω, then the Finite Element Method (FEM)
model for the Dirichlet problem for an elliptic partial differential equation,

∇ · (σ(x)∇u(x)) = 0, x ∈ Ω, u|∂Ω = F, (89)

for a given matrix or scalar valued conductivity function σ(x), is the matrix equation(
IB 0
L′ L′′

)
u =

(
f
0

)
where u = (u1 · · ·uN)t corresponds to values of the FEM solution at the vertices of the triangula-
tion, f = (f1 · · · fB)t corresponds to the boundary value f at the boundary vertices, and the matrix
(L′ L′′) depends on σ and the triangulation and has rows whose elements add up to zero.

If one considers the triangulation of Ω as a graph, and if to each edge of the graph one assigns a
resistor with a given conductivity, then the Dirichlet problem for this resistor network is to find a
solution u = (u1 · · ·uN)t, corresponding to voltages at each vertex, of the matrix equation(

IB 0
K ′ K ′′

)
u =

(
f
0

)
(90)

where f = (f1 · · · fB)t corresponds to voltages at the boundary vertices. Also here, the rows of the
matrix (K ′ K ′′), which depends on the resistors, add up to zero.

Thus, formally, the FEM model for an elliptic partial differential equation and resistor networks lead
to the same kind of equation, see Lassas et al. (2015) for details.

Electrical Impedance Tomography (EIT) is a method proposed for medical and industrial imaging,
where the objective is to determine the electrical conductivity or impedance in a medium by making
voltage to current measurements on its boundary (Borcea, 2002). It has led to new imaging modal-
ities, for example the Pulmovista500 device by Draeger AG & Co. used to monitor lung function.
Recently, EIT is being used to monitor the lungs of COVID-19 patients (Cappellini et al., 2024).

The boundary measurements are modeled by the Dirichlet-to-Neumann map Λa, which maps the
boundary value f of the electric voltage to the electric current through the boundary (i.e., the conor-
mal derivative) Λa(f) = ν · σu|∂Ω.

In FEM, let Ω be the interior of a simple polygon, and fix a triangulation of Ω with vertices
{x1, . . . , xN} of which {x1, . . . , xB} lie on ∂Ω. Let A(Ω) be the set of continuous functions
Ω → R which are affine on each triangle. If vk is the unique function in A(Ω) which is 1 at xk

and 0 at all the other vertices, then A(Ω) = {
∑N

k=1 ckvk ; ck ∈ C}.

There is a voltage-to-current map ΛFEM
σ related to the FEM model that is a discrete version of the

Dirichlet-to-Neumann map. To define this map, let us consider the space A(∂Ω) = A(Ω)|∂Ω =

31

https://www.draeger.com/en_uk/Hospital/Products/Ventilation-and-Respiratory-Monitoring/ICU-Ventilation-and-Respiratory-Monitoring/PulmoVista-500

Published as a conference paper at ICLR 2025

{
∑B

j=1 cjvj |∂Ω; cj ∈ R}, and a quadratic form Qσ on A(∂Ω) that is given for f ∈ A(∂Ω) by

Qσ(f, f) = min
u

∫
Ω

σ(x)∇u(x) · ∇u(x) dx,

where the minimum is taken over u ∈ A(Ω) satisfying the boundary condition u|∂Ω = f . The
voltage-to-current map ΛFEM

σ is a symmetric matrix ΛFEM
σ : RB → RB determined by the formula

f⃗ · ΛFEM
σ f⃗ = Qσ(f, f)

where f =
∑B

j=1 fjvj |∂Ω is the boundary current corresponding to a vector f⃗ = (fj)
B
j=1.

The solution of the matrix equation (90) can be found using Cramer’s formula as a meromorphic
function. This implies that there is a SANN that solves the FEM approximation problem (90) for
the partial differential equation (89) and another SANN that represents the voltage-to-current map.

G ADDITIONAL APPLICATIONS

G.1 SEMIALGEBRAIC OPTIMIZATION

Consider the general class of optimization problems

f(θ) = arginf
θ∗

g(θ∗, θ) subject to the condition θ∗ ∈ S(θ) ⊂ Rn (91)

where θ ∈ Rm, and both g : Rn × Rm → R and S : Rm → P(Rn) are semialgebraic functions.
Here, P(Rn) := {x | x ⊂ Rn} is the power set of Rn, and S(θ) is a semialgebraic constraint set
that is allowed to vary based on θ. Using the Tarski–Seidenberg theorem, we can show that f is a
(possibly set-valued) semialgebraic function. Indeed, the graph of f is{(

θ,Πn∂
(
epi(g) ∩ (S(θ)× Rm × R)

))
| θ ∈ Rm

}
(92)

where Πn projects onto the first n coordinates, ∂ is the boundary operation, and epi(g) is the closure
of the epigraph epi(g) = {(θ∗, θ, t) ∈ (Rn × Rm × R) | t ≥ g(θ∗, θ)} of g. Since this is a
semialgebraic set, f is a semialgebraic function. If we impose the additional assumption that f is
bounded (which holds if S is bounded, for example), then by Theorem 13 it can be represented by a
SANN.
Remark. Optimization problem (91) includes as special cases polynomial optimization and
quadratic/linear/mixed-integer programming. It is at least NP-hard; there is no general polynomial-
time algorithm to compute f from a description of g and S (Lasserre, 2015).

Many interesting problems can be formulated in terms of (91). Below, we give a new potential
application using SANNs as a hypernetwork to sparsify ReLU networks.

G.2 SANNS AS HYPERNETWORKS

In this section, we demonstrate how SANNs can be used as hypernetworks to optimize various
properties of target ReLU networks.

To connect the general class of optimization problems (91) to hypernetworks, suppose we have a
fixed target architecture Ntarget with trained weights θ ∈ Rm. Let S(θ) ⊂ Rm be the set of all
weights generating equivalent networks (Petersen et al., 2021); i.e. every choice of weights from
S(θ) produces the same input-output pairs as θ when used in architecture Ntarget. When Ntarget is a
feed-forward ReLU network, S(θ) is a semialgebraic set (Valluri & Campbell, 2023).

Now, different choices of objective function g optimize various properties of the target network.
For example, when g counts the number of non-zero elements of θ∗ (the “L0 norm”), f returns
the sparsest-possible equivalent network. Using sparse θ∗ is both more memory-efficient (Bölcskei
et al., 2018) and interpretable (Fan et al., 2021) than using θ. Likewise, f can return a “nearly-
equivalent” network with small Lipschitz constant by relaxing S and using g that computes the
Lipschitz constant of Ntarget with weights θ∗. Reducing the Lipschitz constant of the target network
improves its robustness, interpretability, and generalization performance (see Ducotterd et al. (2024)
and references therein).

32

Published as a conference paper at ICLR 2025

G.3 SEMIALGEBRAIC TRANSFORMER

In this section, we demonstrate how a variation of the transformer architecture (Vaswani et al., 2023)
is expressible as a SANN. Our presentation of the transformer architecture is inspired by Furuya
et al. (2024).

We start with the SoftMax attention mechanism at the heart of the transformer architecture.
SoftMax : Rn×n → Rn×n

+ operates row-wise on its input matrix:

SoftMax(X)i,j :=
exp(Xi,j)∑n
ℓ=1 exp(Xi,ℓ)

. (93)

SoftMax is a continuous approximation to the row-wise function argmax : Rn → Rn

(argmaxx)i :=

{
1/s if xi ≥ xj for all j = 1 . . . n,

0 otherwise.
(94)

where s is the number of indices j such that xj = maxx. It is not a semialgebraic function since
exp : R → R is not semialgebraic; however, for our purposes we can use the following piecewise-
rational function saxp : R→ R instead:

saxp(x) =

{
x2 + x+ 1 x ≥ 0

1/(x2 − x+ 1) x < 0.
(95)

saxp shares the following properties with exp:

• Im(saxp) = Im(exp) = (0,+∞)

• saxp(0) = exp(0) and saxp′(0) = exp′(0)

• limx→−∞ saxp(x) = 0, and limx→+∞ saxp(x) = +∞.

−2 −1 1 2

2

4

6

8

ex
p

sa
xp

Figure 6: saxp (black) is a semialgebraic approximation to exp (red). It is simple, accurate near 0,
and has the correct asymptotic behavior as x→ ±∞.

saxp is a good approximation of exp near 0, but saxp = o(exp) as x → ∞. In fact this is true for
every semialgebraic function since every semialgebraic function is bounded above by a polynomial
(Bochnak & Efroymson, 1980). This is not a concern for our transformers since layer normalization
will keep the input to saxp near 0.

By using saxp in place of exp in equation (93), we define SArgMax (“Semialgebraic ArgMax”):

SArgMax(X)i,j :=
saxp(Xi,j)∑n
ℓ=1 saxp(Xi,ℓ)

. (96)

Like SoftMax, every entry of SArgMax(X) lies in the interval (0, 1), and every row sums to 1.
This yields the semialgebraic attention mechanism

Attθh(X) := V X SArgMax(XTQTKX/
√
k) (97)

where θh := (K,Q, V) ∈ Rk×din ×Rk×din ×Rdhead×din (“Key”, “Query”, and “Value”) are learnable
parameters. A multi-head attention mechanism with a skip connection is simply a linear combination
of attention blocks:

MAttθ(X) := X +

H∑
h=1

WhAttθh(X) (98)

33

Published as a conference paper at ICLR 2025

where θ := (Wh, θh), h = 1, . . . H are the learnable parameters specific to each attention head.

Transformers are constructed by composing multi-head attention, MLP, and layer normalization
blocks. MLP blocks with ReLU activation are simply

MLPθ(X) := ReLU(WX +B) (99)

with parameters θ := (W,B). Row-wise layer normalization is

LayerNorm(X)i,j :=
Xi,j − µi

σi
where (100)

µi :=
1

n

n∑
ℓ=1

Xi,ℓ (101)

σi :=

√√√√ 1

n

n∑
ℓ=1

(Xi,ℓ − µi)2. (102)

Recall that every function defined piecewise on a semialgebraic decomposition of Rm using only
addition, subtraction, multiplication, division, and extraction of roots is a semialgebraic function.
From this, it is clear that MAtt, MLP, and LayerNorm in equations (98), (99), and (100) are
semialgebraic. Furthermore, they are all continuous, so they are bounded when their domain is
restricted to be compact, such as after a tokenization step. Finally, note that the composition of
semialgebraic functions is itself a semialgebraic function.

Transformers with semialgebraic attention are built as compositions of equations (98), (99), and
(100), so they are bounded semialgebraic functions and thus representable by a SANN by Theorem
13.

We emphasize that our only change to the transformer was to replace exp with the semialgebraic
approximation saxp. This modified transformer is naturally expressible as a SANN without further
modification of our architecture.

34

	Introduction
	Related work
	Our contribution

	Background
	Inf-sup definable piecewise polynomials
	Semialgebraic geometry
	Semialgebraic functions as kernels of ISD functions

	Semialgebraic Neural Networks
	ISD networks
	SANN architecture
	SANN architecture: Algorithmic presentation
	Training

	Expressivity of SANNs
	Continuous semialgebraic functions
	Discontinuous semialgebraic functions

	Numerical example: Solving linear systems
	Exact inversion using a hand-crafted network
	Results of training

	Discussion and future work
	Conclusion
	Lattice-ordered rings of piecewise polynomials
	Inf-sup definable piecewise polynomials and the Pierce–Birkhoff conjecture

	Matrix-recurrent neural networks
	Architecture
	Range

	Semialgebraic Functions as Kernels of ISD Functions
	Homotopy continuation methods
	Semialgebraic Sard's and Transversality Theorems
	Homotopy existence
	Curve tracing

	SANN Expressivity Proofs
	Notation
	Glueing
	Proof of Theorem 11
	Proof of Theorem 12
	Discontinuous functions
	Characteristic functions
	Proof of Theorem 13
	Semialgebraic functions with unbounded image
	SANNs always compute semialgebraic functions

	Numerical example: Inverse problem for electrical resistor networks
	Numerical results from training.
	Continuous EIT problem (PDEs)

	Additional applications
	Semialgebraic optimization
	SANNs as hypernetworks
	Semialgebraic transformer

