
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM UNCONTEXTUALIZED EMBEDDINGS TO
MARGINAL FEATURE EFFECTS: INCORPORATING
INTELLIGIBILITY INTO TABULAR TRANSFORMER
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, deep neural networks have showcased their predictive power
across a variety of tasks. Beyond natural language processing, the transformer
architecture has proven efficient in addressing tabular data problems and challenges
the previously dominant gradient-based decision trees in these areas. However, this
predictive power comes at the cost of intelligibility: Marginal feature effects are
almost completely lost in the black-box nature of deep tabular transformer networks.
Alternative architectures that use the additivity constraints of classical statistical
regression models can maintain intelligible marginal feature effects, but often fall
short in predictive power compared to their more complex counterparts. To bridge
the gap between intelligibility and performance, we propose an adaptation of tabular
transformer networks designed to identify marginal feature effects. We provide
theoretical justifications that marginal feature effects can be accurately identified,
and our ablation study demonstrates that the proposed model efficiently detects
these effects, even amidst complex feature interactions. To demonstrate the model’s
predictive capabilities, we compare it to several interpretable as well as black-box
models and find that it can match black-box performances while maintaining
intelligibility. The source code is vailable at https://anonymous.4open.
science/r/nmfrmr-B086.

1 INTRODUCTION

Interpretability has emerged as one of the core concepts of tabular data analysis. Especially in
high-risk domains such as healthcare, where understanding the data’s underlying effects is of crucial
importance, this leads researchers to commonly rely on identifiable and interpretable generalized
additive models (GAMs) (Hastie, 2017), instead of powerful neural networks or decision trees
(Erfanian et al., 2021; Ravindra et al., 2019; Prata et al., 2020). In applications where predictive
power is a central objective, researchers often resort to model-agnostic methods that try to explain
model predictions via local approximation and feature importance like Locally Interpretable Model
Explanations (LIME) (Ribeiro et al., 2016), or Shapley values (Shapley, 1953) and their extensions
(Sundararajan & Najmi, 2020). While these methods are very effective for, e.g., image classification
tasks, they can be hard to interpret for tabular regression problems.

Although predictive modeling in the domain of tabular data is traditionally dominated by tree-
based bagging and boosting approaches (Breiman, 2001; Chen & Guestrin, 2016; Prokhorenkova
et al., 2018), several relatively recent results show that deep-learning based techniques can be
highly competitive in general or even superior on specific tabular datasets (McElfresh et al., 2024).
In particular models utilizing the transformer architecture stand out in terms of their predictive
power (Gorishniy et al., 2021; 2023; Hollmann et al., 2022). The most performant models, Tabular
(bayesian) prior-fitted transformer models (Hollmann et al., 2022), can only be used for smaller
datasets. However, FT-Transformers have robustly proven to be performant on tabular problems
(Gorishniy et al., 2021; Grinsztajn et al., 2022; McElfresh et al., 2024). Nevertheless, despite the use
of [CLS] tokens, allowing for heuristic interpretability of feature importance, these models remain
black boxes and do not provide insights into marginal feature effects.
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To bridge the gap in performance seen with traditional statistical models while preserving inter-
pretability, recent efforts have focused on enhancing visual interpretability by incorporating additivity
constraints into neural network architectures (Agarwal et al., 2021; Chang et al., 2021; Enouen & Liu,
2022). Similar to GAMs each feature is fit with a separate shape function. Neural additive models
(NAMs) (Agarwal et al., 2021) and their extensions have emerged as a powerful yet interpretable
solution for tabular data problems. Depending on the model, shape functions vary from Multi-layer
Perceptrons (MLPs) (Agarwal et al., 2021; Radenovic et al., 2022; Thielmann et al., 2023) to neural
oblivious decision trees (Chang et al., 2021), splines (Luber et al., 2023; Rügamer et al., 2023; 2021;
Dubey et al., 2022), ensemble decision trees (Nori et al., 2019) or transformer networks (Thielmann
et al., 2024). While these models offer visual interpretability, they come with inherent downsides:
I) There is a performance gap relative to fully connected black-box models and even to simple MLPs.
II) The networks can become parameter-dense, depending on the complexity of the marginal effects,
as each feature is modeled with a distinct shape function (Agarwal et al., 2021; Thielmann et al.,
2023; 2024). III) The complexity of the model structure grows rapidly with the number of features,
especially when accounting for feature interactions, leading not only to a potentially suboptimal
inductive bias, but also a vast hyperparamter space making effective hyperparamter tuning com-
putationally expensive or even impossible. IV) Additionally, higher-order feature interactions can
negatively impact the model’s identifiability and are thus are often simply excluded (Kim et al., 2022;
Siems et al., 2024).

We propose to leverage the existing proven, and highly performant architectures for deep tabular
learning and introduce a new architecture to bridge the gap between high-performing tabular models
and inherently interpretable models using the flexible tabular deep learning architecture from Gorish-
niy et al. (2021). More specifically, we use target-aware embeddings (Gorishniy et al., 2022) and fit
shallow one layer neural networks on uncontextualized embeddings while accounting for all higher
order interaction effects.

Our contributions can be summarized as follows:

I. We introduce the NAMformer, a fully connected tabular deep learning architecture that
combines a powerful FT-Transformer with interpretable feature networks.

II. We demonstrate that this straightforward approach yields intelligible and identifiable
marginal feature effects, while perfectly maintaining the predictive power of FT-
Transformers and adding an almost negligible amount of additional parameters to the
model.

III. We show that identifiability can be achieved by employing strategic feature dropout.

2 METHODOLOGY

The core of the NAMformer architecture is given by an FT-Transformer in combination with a
shallow MLP that both take uncontextualized embeddings as their input. In a nutshell, all numerical
features are encoded and all categorical features are tokenized. Subsequently all features are fed
through data type dependent embedding layers. The embeddings are passed through a stack of
transformer layers, after which the [CLS] token embedding is processed by a task specific model
head. The uncontextualized embeddings, before being passed through the transformer layers, are fed
to shallow, one-layer independent neural networks. The final prediction is gained by summation over
all shallow feature networks as well as the task specific head. The model is trained end-to-end. An
overview over the models structure is given in figure 2. The model architecture, the reasoning for
leveraging the uncontextualized embeddings for intelligibility, as well as the identifiability constraints
are explained in detail below. In summary, we present a model that achieves identical performance
to FT-Transformers (Gorishniy et al., 2021) while maintaining intelligibility with marginally more
trainable parameters.

Feature Encoding and Embedding Let D = {(x(i), y(i))}ni=1 be the training dataset of size n and
let y denote the target variable that can be arbitrarily distributed. Each input x = (x1, x2, . . . , xJ)
contains J features. Let further x ≡ (xcat,xnum) denote the partition of the features into categorical

Please see Appendix A for an in depth literature review.
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and numerical (continuous) features that constitute the whole feature vector x. Further, let x(i)
j(cat)

denote the j-th categorical feature of the i-th observation, and hence x
(i)
j(num) denote the j-th

numerical feature of the i-th observation.
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Figure 1: Feature Encoding. The numerical features are independently encoded (h(xj , y)) and
afterwards passed through an embedding layer. The categorical feature are tokenized and also passed
through an embedding layer.
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(a) Generation of the embeddings. A [CLS] token
is appended to the uncotenxtualized embeddings
before being passed through transformer blocks.
The uncontextualized embeddings are also inputs
to the single-layer shallow feature networks.
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(b) The contextualized [CLS] token is passed
through a task specific MLP head. The output
of the shallow feature networks as well as the
output of the MLP is passed through a dropout
layer and summed to create the model output.

Figure 2: Training procedure of the proposed model structure. The architecture is conceptually
very similar to FT-Transformer but allows to identify for marginal feature effects. Note, that feature
dropout is only applied during training.

To leverage meaningful shallow networks, all elements of the numerical features in xnum are
encoded into a target-aware higher-dimensional space, using either target-aware one-hot encodings
or piecewise linear encodings (PLE) (Gorishniy et al., 2022). Thus, for all numerical features
xj(num) ∈ R, xj(num) is encoded such that it is either an element of NTj (one-hot) or in RTj (PLE),
with a feature specific, target dependent encoding function hj(xj(num), y). Decision trees are used for
all hj(·). We orientate on Gorishniy et al. (2022) and denote the encoded feature as zj(num) with entries

One-hot encoding

ztj(num) =

{
0 if x < bt,

1 if x ≥ bt.

PLE

ztj(num) =


0 if x < bt−1,

1 if x ≥ bt,
x−bt−1

bt−bt−1
else.
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where bt denote the decision boundaries from the decision trees. The dimension of the encoding Tj

depends on the feature, and not all features are necessarily mapped to the same dimension.

Following classical tabular transformer architectures, Ej(·) represents the embedding function
for feature j. Depending on the feature type, Ej embeds into the embedding space as follows:
Ej : RTj → Re for numerical PLE encoded features, Ej : NTj → Re for numerical one-hot encoded
features, and Ej : N → Re for categorical features. Categorical features are fed through standard
embedding layers, and numerical features are passed through single linear layers as also done by
Gorishniy et al. (2021).

It is worth noting that the embedding dimensionality can be chosen arbitrarily and can be smaller or
larger than the dimensionality of the encoded features.

From Uncontextual Embeddings to Marginal Predictions To understand the potential of uncon-
textualized embeddings as direct representations of raw input features in non-textual data settings,
our investigation first examines their role within tabular data models. Importantly, using target aware
encodings for preprocessing introduces non-linearity to numerical features, similar to neural spline
expansions (Luber et al., 2023).

State-of-the-art language models, leveraging the Transformer architecture (Vaswani et al., 2017) first
create context-insensitive input token representations. In Natural Language Processing, these are the
raw, uncontextualized word embeddings. Subsequently, they compute L layers of context-dependent
representations, finally resulting in contextualized embeddings of the raw word representations (Peters
et al., 2018). The proposed NAMformer architecture employs these uncontextualized embeddings
directly to generate identifiable marginal feature predictions in a tabular context, necessitating a
thorough analysis of their capability and effectiveness. By leveraging the uncontextualized embed-
dings, we aim to evaluate their utility in the proposed model architecture. This exploration is critical
as it may reveal that raw, minimally processed embeddings can sufficiently capture and represent
the essential characteristics of the features, potentially simplifying the model architecture while
maintaining high predictive accuracy and interpretability.

Figure 3: Average R2 values over all 9 features. The
decision trees are fit, using either the uncontextualized
or the contextualized embeddings as training data and
the true features as target variables.

In the context of tabular transformer networks,
which do not employ positional encodings, the
nature of context differs significantly from that
in transformer models trained on textual data.
The context that is added in the transformer lay-
ers, consists of the feature interactions (Huang
et al., 2020). The uncontextualized, raw em-
beddings, however, are seldom used and are
merely a byproduct of the model architecture.
Since the input data for numerical features is not
tokenized, token identifiability (Brunner et al.,
2019) directly applies to the tabular input data.
To confirm that the uncontextualized embed-
dings are not compromised by the subsequent
layers during training, a straightforward exper-
iment is conducted: First, we train a tabular
transformer model using the California housing
dataset1. Second, we extract the uncontextual-
ized embeddings and analyze how well the true
feature data can be recognized. We follow Brunner et al. (2019) and train a set of J simple decision
trees dtj : Re → R on the embedding of every feature xj . The true inputs, xj serve as the target
variables, whereas the uncontextualized embeddings Ej(xj) are the training features. To put it
differently, for each feature, we investigate how well it can be predicted with its contextualized or
uncontextualized embedding. We report the R2 values and find that token identifiability directly
transfers to tabular input data and that uncontextualized embeddings are nearly perfect representations
of the true data, with R2 values of ≥ 0.96 for different embedding sizes. For further details on the
experimental setup, see the appendix.

1See Appendix D for details on the used datasets
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Additivity Constraint Since we have verified that the uncontextualized embeddings almost per-
fectly preserve the original single feature information, we use them to include marginal feature
predictions in the model. To achieve this, the uncontextualized embeddings are passed through single
layer neural networks, similar to neural splines (e.g. (Luber et al., 2023; Rügamer et al., 2021).
Subsequently, we make use of a simple additivity constraint following GAMs. Given a link function
g(·) that connects the linear predictor to the expected value of the response variable, accommodating
different types of data distributions, a GAM in its fundamental form can be expressed as follows:

g(E [y|x1, x2, . . . xJ ]) = β0 +

J∑
j=1

fj(xj), (1)

where β0 denotes the global intercept or bias term and fj : R → R denote the univariate shape
functions corresponding to input feature xj and capturing the feature main effects.

Let then f ϵ
j : Re → R represent the shape function for the j-th feature’s uncontextualized embedding.

Let H(·) represent a sequence of transformer layers that take as input a sequence of all the uncon-
textualized embeddings (Ej(xj))

J
j=1 and output a sequence of contextualized embedding, such that

(Ξj)
J
j=1 = H((Ej(xj))

J
j=1). For simplicity, we denote the uncontextualized embeddings as ϵj and

the contextualized embeddings as Ξj , where Ξj = H(ϵ1, ϵ2, . . . ϵJ)j . Appending a [CLS] token to
the uncontextualized embeddings additionally allows for interpreting attention weights and emulating
feature importance (Gorishniy et al., 2021). Let G further represent the MLP for processing the
contextualized embeddings (or the [CLS] token embedding).

The final model combines the individual transformed uncontextualized embeddings ϵj for each
feature, along with the contextual embeddings Ξj . This setup ensures that both individual feature
effects (via shape functions) and global contextual interactions via processing of the contextual
embeddings are accounted for and interpretable in the model’s output

g(E [y|x1, x2, . . . xJ ]) = β0 +

J∑
j=1

f ϵ
j (ϵj) +G(Ξj). (2)

Using target-aware encodings for numerical features allows to use shallow, single-layer networks for
the individual shape function f ϵ

j : Re → R and thus account for interpretable marginal feature effects
by only increasing the total number of parameters by J × e.

2.1 IDENTIFIABILITY VIA FEATURE DROPOUT

For simplicity, we change notation and assume an additive model, such as the NAMformer, that has
the following additive predictor:

η̂ = β0 +

J∑
j=1

fj(xj) + fJ+1(x1, x2, . . . , xJ), (3)

where the marginal effects are modelled in separate networks, fj : R → R and all interaction effects
are jointly modeled in network, fJ+1 : RJ → R. This simplifies our proposed model architecture,
but is transferable one to one.

Further, assume the model is fitted with shape function dropout and a risk of (at most) R. The loss
function L is induced by the choice of the link function g and distributional assumption in 2. Shape
function dropout, introduced by (Agarwal et al., 2021), randomly drops out one or several features
and their predictions in an additive model and is the main mechanism to ensure identifiability for
NAMs. Here, let w ∈ {0, 1}J+1 denote the shape function dropout vector leading to the following
risk:

Ex,y∼PD

Ew∼Pw

L
β0 +

J∑
j=1

wjfj(xj) + wJ+1fJ+1(x1, x2, . . . , xJ), y

 = R, (4)

5
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where PD denotes the distribution of the data and Pw denotes the distribution over feature dropout
weights.

Now, with Kronecker delta δjk, let w̃k = (δjk)
J+1
j=1 be the dropout weight vector that drops out

everything except for the effect of fk, i.e. w̃k has a one exactly at the k-th positions and zeros
everywhere else. Then

R = Ex,y∼PD [L (β0 + fk(xk), y)] p(w̃k) +Rw̃−k
(1− p(w̃k)),

where Rw̃−k
= R−Ex,y∼PD [L (β0 + fk(xk), y)] is difference between the overall risk and the risk

associated with w̃−k. Hence,

Exk,y∼PD [L (β0 + fk(xk), y)] =
R−Rw̃−k

(1− p(w̃k))

p(w̃k)
. (5)

Assuming a general distance-based loss L(y, ŷ) = gL(y − ŷ) for a convex function gL, one obtains
with Jensen’s inequality:

Exk,y∼PD [L (β0 + fk(xk), y)] = Exk,y∼PD [gL (β0 + fk(xk)− y)]

= Exk

[
Ey|xk

[gL (β0 + fk(xk)− y) |xk]
]
≥ Exk

[
gL

(
Ey|xk

[β0 + fk(xk)− y|xk]
)]

= Exk

[
gL

(
β0 + fk(xk)− Ey|xk

[y|xk]
)]

= Exk

[
L
(
β0 + fk(xk),Ey|xk

[y|xk]
)]

. (6)

Most common regression loss-functions such as the Lp losses, the Huber loss or the Pinball loss are
all distance based loss function of the form assumed above. Furthermore, an analogous argument
can be made in the binary classification case with a margin-based binary (classification) loss of the
form L(y, ŝ) = hL(y · ŝ) with labels y ∈ {−1, 1} and ŝ ∈ R the output of a scoring classifier (see
Appendix C).

In summary, it is shown for broad classes of regression and classification losses L that we can identify
the true marginal effect Ey|xk

[y|xk] with the following error, measured in terms of the original loss
function L:

Exk

[
L
(
β0 + fk(xk),Ey|xk

[y|xk]
)]

≤
R−Rw̃−k

(1− p(w̃k))

p(w̃k)
(7)

Our upper bound thus shows that minimizing the ratio between, first, the difference between overall
risk and the risk associated with w̃−k and, second, the dropout probability for only keeping the k-th
vector implies a low risk in identifying marginal effects.

When the risk R is uniformly distributed among all values of w̃k, such that Rw̃−k
= R · (1− p(w̃k)),

one gets the following bound on the expected error with respect to the ground-truth effect:

Exk

[
L
(
β0 + fk(xk),Ey|xk

[y|xk]
)]

≤ R · (1− (1− p(w̃k))
2)

p(w̃k)
= R · (2− p(w̃k)) ≤ 2R (8)

Please note, that the case where the risk is perfectly uniformly distributed among all values of w̃k is
unlikely in practice and represents an upper bound.

3 ABLATION

Simulation Study First, it is analyzed how well the proposed model can identify marginal feature
effects, also when complex feature interactions are present. NAMFormer is compared with other,
neural (Agarwal et al., 2021) and decision tree based intelligible models (Nori et al., 2019), as well as
a simple linear regression model and a GAM (Hastie, 2017). Multiple datasets are simulated with a

6
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normally distributed target variable. Each dataset follows a straightforward data generating process
where y =

∑J
j=1 sj(xj) +

∏
xj + ε, such that sj are the marginal feature effects. See appendix E

for further information on the data generating process. Subsequently, each model is fit on the dataset
and we analyze the marginal feature predictions. Explainable Boosting Machines (EBM) (Nori et al.,
2019) are fit using the default hyperparameters. GAMs are fit using cubic splines with 25 knots each.
NAMs follow the architecture established from Radenovic et al. (2022) and Dubey et al. (2022). For
NAMformer, we use embedding sizes of 32, 4 layers, 2 heads, attention dropout of 0.3 and feed
forward dropout of 0.3. For NAMs and NAMformer we use identical feature dropout probability
of 0.1, since the shown identifiability is also a core feature of NAMs. Additionally, we compare,
target aware one-hot encodings with 150 bins, PLE encodings with 25 bins and standardization of
numerical features for NAMformer2.

Figure 4: Marginal feature predictions for a simple simulated example with 4 variables and the
described data generating process. Over 25 runs, and with only 25 bins, NAMformer accurately
identifies the marginal effects.

Subsequently, we analyze the marginal feature predictions and calculate the R2 values for each
marginal feature prediction with respect to the true data generating function. Table 1 shows the
averaged results over all effects.

Table 1: Average R2 values over marginal feature effects for different datasets. With increasing
index, the number of effects as well as the complexity of the data increase. Larger values are better.
The gray ± values denote the standard deviation among the calculated R2 value for the different
marginal effects. oh denotes one-hot encoded features, st standardized features and ple piecewise
linear encodings.

Number of marginal effects

Model 3 4 5 6 7 8 9

Linear 0.467 ±0.41 0.251 ±0.67 0.220 ±0.62 0.238 ±0.59 0.124 ±0.63 0.034 ±0.68 0.092 ±0.68
GAM 0.800 ±0.37 0.534 ±0.76 0.466 ±0.73 0.500 ±0.69 0.356 ±0.76 0.257 ±0.81 0.299 ±0.79
EBM 0.797 ±0.37 0.531 ±0.76 0.464 ±0.73 0.500 ±0.69 0.371 ±0.73 0.266 ±0.79 0.331 ±0.74
EB2M 0.797 ±0.37 0.531 ±0.76 0.464 ±0.73 0.500 ±0.69 0.371 ±0.73 0.266 ±0.79 0.331 ±0.74
NAM 0.741 ±0.35 0.653 ±0.39 0.611 ±0.39 0.648 ±0.39 0.629 ±0.40 0.477 ±0.61 0.507 ±0.59
Hi-NAM 0.801 ±0.36 0.556 ±0.75 0.577 ±0.63 0.676 ±0.47 0.597 ±0.50 0.526 ±0.64 0.658 ±0.57
NAMformerst 0.865 ±0.23 0.662 ±0.57 0.596 ±0.53 0.781 ±0.28 0.605 ±0.43 0.631 ±0.58 0.770 ±0.56
NAMformeroh 0.826 ±0.11 0.877 ±0.13 0.737 ±0.14 0.837 ±0.09 0.922 ±0.13 0.722 ±0.25 0.826 ±0.23
NAMformerple 0.806 ±0.40 0.918 ±0.15 0.879 ±0.17 0.867 ±0.11 0.909 ±0.10 0.617 ±0.59 0.756 ±0.56

We find that NAMformer can accurately identify marginal effects, even in the presence of higher-
order feature interactions. Interestingly, using target aware encodings is also beneficial for feature
identifiability in the NAMformer. Additionally, while NAMs implementing the same identifiability
regularizer can also identify the marginal effects, their performance diminishes as more interactions
are introduced. Furthermore, NAMs exhibit significantly larger standard deviations among the R2

values for individual effects compared to NAMformer, which identifies all effects with smaller
deviation.

Comparison to FT-Transformer Since the proposed architecture closely follows the FT-
Transformer architecture from Gorishniy et al. (2021), we first compare whether introducing identifi-

2See appendix E for the experimental details.
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Table 2: Comparison between NAMformer and FT-Transformer with identical hyperparameters on
different datasets. 5-fold cross validation was performed. The average performances for both models
are not out of the bounds of the standard deviations over the 5-folds. Hence, we find that NAMformer,
while producing identifiable marginal effects performs as good as FT-Transformer.

Model CH ↓ MU ↓ DM ↓ HS ↓ AD ↑ BA ↑ SH ↑ FI ↑
NAMformerst 0.235 0.798 0.021 0.131 0.908 0.953 0.862 0.788

±0.013 ±0.351 ±0.001 ±0.021 ±0.003 ±0.006 ±0.007 ±0.021
FT-Tst 0.227 0.780 0.023 0.127 0.908 0.960 0.861 0.790

±0.011 ±0.323 ±0.002 ±0.018 ±0.002 ±0.010 ±0.009 ±0.010
NAMformeroh 0.220 0.801 0.022 0.162 0.903 0.901 0.825 0.766

±0.007 ±0.379 ±0.001 ±0.021 ±0.006 ±0.022 ±0.006 ±0.013
FT-Toh 0.225 0.901 0.024 0.158 0.899 0.644 0.820 0.763

±0.007 ±0.417 ±0.002 ±0.029 ±0.007 ±0.144 ±0.010 ±0.010
NAMformerple 0.206 0.642 0.020 0.127 0.912 0.945 0.858 0.789

±0.007 ±0.241 ±0.001 ±0.016 ±0.002 ±0.007 ±0.005 ±0.013
FT-Tple 0.197 0.834 0.023 0.129 0.910 0.944 0.858 0.789

±0.011 ±0.420 ±0.001 ±0.022 ±0.005 ±0.020 ±0.007 ±0.009

able marginal feature networks hampers predictive power compared to classical FT-Transformers.
We fit both models with identical transformer architectures and use the same feature encoding and
preprocessing methods for both models. We perform 5-fold cross-validation and compare mean
squared error values on 4 regression datasets and Area under the curve (AUC) on 4 binary classifi-
cation datasets. See appendix F for details on the experimental setup. Notably, we do not find that
either model performs better or worse, as no model achieves significantly different performances
with respect to the cross validation results. This strengthens our hypothesis, that adding marginally
identifiable networks with minimally more parameters (J × e < 5000 for all datasets) does not harm
predictive performance at all.

4 EXPERIMENTS

NAMformer is compared with several interpretable as well as black-box models using 11 regression
and 4 classification datasets. All data splits and the descriptions can be found in the Appendix D.
Hyperparameters are tuned for all models, orientated on the benchmarks performed by Gorishniy et al.
(2021). See Appendix G for details. Additionally to GAMs, EBMs and NAMs, we fit a Hi-NAM
(Kim et al., 2022), a NAM that incorporates a single MLP fit on all features and thus captures all
(higher-order) feature interactions. Additional results are reported in Appendix B.

Results The results for interpretable models are reported in Table 3. NAMformer performs (shared)
best for 9 out of 15 datasets. Additionally, the results demonstrate strong support for EBMs, with
both, EBMs and EB2Ms performing strongly. While NAMs perform only marginally better than
classical GAMs and on some datasets even worse, Hi-NAMs also perform strongly, especially on
regression tasks. Note, that all models are fine-tuned and hence we achieve different results than for
the identically implemented architectures from table 2.

Computing average ranks among all interpretable models among all tasks also reveals that NAMformer
is the best performing model on average, followed by EB2M. See Table 5 in Appendix B.

For black-box models, NAMformer are compared to classical MLPs, XGBoost and FT-Transformer.
We use standardized preprocessed features for the FT-Transformer since we found them to perform
best in our initial experiment (Table 2) 3. Overall, the experiments confirm the results from Gorishniy
et al. (2021) that FT-Transformer can outperform XGBoost on certain datasets.

3Note, that we tune the hyperparamters of NAMformer and FT-Transformer separately and thus get different
results than those from table 2.
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Table 3: Results for interpretable models. For regression problems (CH, MU, DM, HS, AV, GS, K8,
P32, MH, BH, SG), MSE values are reported. For binary classification problems (AD, BA, SH, FI),
the area under the curve (AUC) as well as the accuracy (in gray) are reported.

Regression Results (MSE ↓)
Model CH ↓ MU ↓ DM ↓ HS ↓ AV ↓ GS ↓ K8 ↓ P32 ↓ MH ↓ BH ↓ SG ↓
Linear 0.370 0.726 0.115 0.333 0.700 0.366 0.580 0.843 0.295 0.025 0.445
GAM 0.288 0.747 0.066 0.267 0.287 0.228 0.557 0.909 0.157 0.023 0.273
EBM 0.195 0.703 0.023 0.205 0.050 0.079 0.411 0.395 0.096 0.033 0.272
EB2M 0.194 0.695 0.023 0.201 0.049 0.079 0.409 0.388 0.099 0.026 0.263
NAM 0.306 0.735 0.069 0.451 0.372 0.235 0.927 1.049 0.181 0.025 0.399
Hi-NAM 0.194 0.718 0.022 0.132 0.135 0.034 0.076 0.435 0.102 0.128 0.278
NAMformer 0.173 0.668 0.022 0.148 0.023 0.051 0.108 0.397 0.095 0.022 0.270

Classification Results (AUC ↑ and Accuracy in gray)
AD ↑ BA ↑ SH ↑ FI ↑

Linear 0.852 82.4% 0.871 88.6% 0.764 81.5% 0.754 69.3%
GAM 0.913 85.9% 0.911 90.1% 0.855 86.4% 0.779 70.9%
EBM 0.927 87.3% 0.931 90.8% 0.868 86.8% 0.783 70.8%
EB2M 0.927 87.3% 0.931 90.8% 0.870 86.3% 0.783 70.8%
NAM 0.910 85.3% 0.901 89.4% 0.853 86.2% 0.776 70.0%
Hi-NAM 0.910 85.4% 0.911 89.7% 0.858 86.5% 0.779 70.3%
NAMformer 0.927 87.2% 0.931 90.8% 0.871 86.5% 0.780 70.7%

Table 4: Results for black-box models. For regression problems (CH, MU, DM, HS) mse values are
reported, for binary classification problems (AD, BA, SH, FI) the area under the curve as well as the
accuracy (in gray) are reported.

Model CH ↓ MU ↓ DM ↓ HS ↓ AD ↑ BA ↑ SH ↑ FI ↑
XGB 0.159 0.728 0.018 0.163 0.927 87.3% 0.933 90.5% 0.868 86.3% 0.781 70.1%
FT-T 0.184 0.688 0.017 0.111 0.915 85.9% 0.929 90.2% 0.870 86.3% 0.777 70.1%
MLP 0.195 0.725 0.018 0.164 0.908 89.8% 0.913 85.5% 0.862 86.5% 0.771 70.0%
NAMformer 0.173 0.668 0.022 0.148 0.927 87.2% 0.931 90.8% 0.871 86.5% 0.780 70.7%

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 CONCLUSION

We present NAMformer, an effective adaptation to the FT-Transformer architecture. We can ef-
fectively incorporate marginal feature effects and show theoretical justification of our approach.
With minimally more parameters compared to the FT-Transformer architecture, NAMformer achieve
identical performance while also generating identifiable marginal feature predictions. The reasoning
for including an additivity constraint and fitting shallow feature networks in tabular transformers is
thus that without loss of generalizability and without loss of performance, we can get an interpretable
model at the cost of - depending on the embedding size and the number of features - marginally more
parameters. Our theoretical justification of identifiable marginal feature effects is also seamlessly
applicable to models incorporating unstructured data (Rügamer et al., 2023; Reuter et al., 2024).
Therefore, the achieved results are a further step into intelligible deep learning models beyond tabular
data analysis.

(a) Latitude (b) Longitude

Figure 5: Marginal feature predictions from 25 trained NAMformer models on the California housing
datasets for the variables "latitude" and "longitude" using PLE encodings.

6 LIMITATIONS

The interpretability of NAMformer, while significantly better than that of black-box models, still
does not match the inherent statistical inference capabilities of classical GAMs. True interpretability
in the form of significance statistics is still a problem for further research.

Additionally, this paper solely focuses on single marginal feature effects. While we account for
high-order feature interactions, we do not explicitly account for, e.g., second order feature interactions
as models like EB2M do. Hence, interesting interaction effects as the ones between, e.g., longitude
and latitude are not specifically accounted for. However, the introduced identifiability constraint
seamlessly enables to account for any amount and order of feature interactions that one wants to
account for. Simple feature interaction networks can be easily incorporated and fit on a combination
of the uncontextualized embeddings.
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A LITERATURE REVIEW

This manuscript can be categorized into two main areas of literature: tabular deep learning and
additive interpretable modeling, the latter being largely inspired by classical statistical models. An
additive model, as the name suggests, learns marginal feature effects and derives its final prediction
by summing over these effects (e.g., see Hastie (2017)). These models originate from simple linear
regression, but instead of relying on linear effects, generalized additive models (GAMs) allow for the
learning of more complex relationships through shape functions, as shown in Equation 1.

A key aspect of additive models is that they allow interpretation of marginal feature effects, which
quantify the isolated impact of each individual feature on the prediction while holding all other
features constant. Marginal effects provide a clear, interpretable mapping of feature-to-outcome
relationships, making them especially valuable in domains such as healthcare, finance, and policy-
making, where understanding why a model makes a specific prediction is critical (e.g. (Hastie &
Tibshirani, 1995; Barrio et al., 2013; Mize et al., 2019)). By offering transparency into the model’s
reasoning, interpretable marginal effects allow practitioners to validate predictions, build trust in the
model, and gain actionable insights for decision-making.

Classical GAMs (e.g., (Hastie, 2017; Wood, 2017)) often use splines for basis expansions. For an
introduction, see (Fahrmeir et al., 2013). This approach offers significant advantages, particularly in
terms of interpretability and intelligibility. However, detecting complex feature effects, especially
those involving interactions, can be challenging for spline-based models. This limitation has motivated
the development of Neural Additive Models (NAMs) (Agarwal et al., 2021), which replace splines
with shape functions modeled via multi-layer perceptrons (MLPs) optimized through gradient descent.

Extensions of NAMs, such as those proposed in (Thielmann et al., 2023; 2024; Luber et al., 2023;
Kim et al., 2022; Chang et al., 2021), build on this simple additive modeling concept. Although these
models outperform classical GAMs, they often lag behind the performance of models like XGBoost
or FT-Transformers (Gorishniy et al., 2021).

Tabular deep learning models, such as the FT-Transformer, do not impose the additivity constraint
from Equation 1. As a result, they can effectively capture higher-order feature interactions. The
underlying approach is straightforward: all features are passed jointly through the architecture. In the
case of FT-Transformers, features are first embedded into a higher-dimensional space via embedding
layers (Gorishniy et al., 2022), then processed through the transformer blocks. Finally, the outputs
are pooled and passed through a task-specific model head to derive the final prediction.

Although tabular deep learning models and (tabular) additive models are closely related, to the best
of our knowledge, no existing model achieves both interpretable marginal effect modeling and the
performance of state-of-the-art models like XGBoost or FT-Transformers.

B ADDITIONAL RESULTS

Average ranks among all models and all 15 datasets. HPO is performed as reported in the main text.

Table 5: Average ranks and rank standard deviations of models.

Model Average Rank Rank Std Dev

NAMformer 1.700 0.678
EB2M 2.467 1.024
EBM 3.100 1.114
Hi-NAM 3.567 1.740
GAM 4.800 1.030
NAM 6.000 0.796
Linear 6.367 1.040

The initial results on 8 datasets, 4 regression and 4 classification, largely inspired from studies such
as Agarwal et al. (2021); Thielmann et al. (2023); Chang et al. (2021) are shown below in table 6
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Table 6: Results for interpretable models. For regression problems (CH, MU, DM, HS) mse values
are reported, for binary classification problems (AD, BA, SH, FI) the area under the curve as well as
the accuracy in gray are reported.

Model CH ↓ MU ↓ DM ↓ HS ↓ AD ↑ BA ↑ SH ↑ FI ↑
Linear 0.370 0.726 0.115 0.333 0.852 82.4% 0.871 88.6% 0.764 81.5% 0.754 69.3%
GAM 0.288 0.747 0.066 0.267 0.913 85.9% 0.911 90.1% 0.855 86.4% 0.779 70.9%
EBM 0.195 0.703 0.023 0.205 0.927 87.3% 0.931 90.8% 0.868 86.8% 0.783 70.8%
EB2M 0.194 0.695 0.023 0.201 0.927 87.3% 0.931 90.8% 0.870 86.3% 0.783 70.8%
NAM 0.306 0.735 0.069 0.451 0.910 85.3% 0.901 89.4% 0.853 86.2% 0.776 70.0%
Hi-NAM 0.194 0.718 0.022 0.132 0.910 85.4% 0.911 89.7% 0.858 86.5% 0.779 70.3%
NAMformer 0.173 0.668 0.022 0.148 0.927 87.2% 0.931 90.8% 0.871 86.5% 0.780 70.7%

Additional benchmarks on 7 additional regression datasets, taken from Fischer et al. (2023) are shown
in table 7.

Table 7: Performance comparison of models across various metrics.

Model AV ↓ GS ↓ K8 ↓ P32 ↓ MH ↓ BH ↓ SG ↓

Linear 0.700 0.366 0.580 0.843 0.295 0.025 0.445
GAM 0.287 0.228 0.557 0.909 0.157 0.023 0.273
EBM 0.050 0.079 0.411 0.395 0.096 0.033 0.272
EB²M 0.049 0.079 0.409 0.388 0.099 0.026 0.263
NAM 0.372 0.235 0.927 1.049 0.181 0.025 0.399
Hi-NAM 0.135 0.034 0.076 0.435 0.102 0.128 0.278
NAMformer 0.023 0.051 0.108 0.397 0.095 0.022 0.270

C SHAPE FUNCTION DROPOUT FOR THE MSE-LOSS AND CLASSIFICATION
LOSSES

In this section, we show how the result in section 2.1 can be made more precise in the case of an
MSE loss and how it can be adapted to the case of margin-based classification losses. In general, we
want to show

Exk

[
L
(
β0 + fk(xk),Ey|xk

[y|xk]
)]

≤ Exk,y∼PD [L (β0 + fk(xk), y)] . (9)

First, one obtains when assuming an MSE-Loss L(y, ŷ) = (y − ŷ)2:

Exk,y∼PD [L (β0 + fk(xk), y)] = Exk,y∼PD

[
(β0 + fk(xk)− y)

2
]
=

Exk

[
Ey|xk

[
(β0 + fk(xk)− y)

2 |xk

]
−

(
Ey|xk

[β0 + fk(xk)− y|xk]
)2

+
(
Ey|xk

[β0 + fk(xk)− y|xk]
)2)

=

Exk
[V [y|xk]] + Exk

[(
β0 + fk(xk)− Ey|xk

[y|xk]
)2]

(10)

Here, Exk
[V [y|xk]] =: Rxk

is the irreducible error in predicting y based on xk. Thus one can obtain
the following explicit expression for the risk:

Exk

[(
β0 + fk(xk)− Ey|xk

[y|xk]
)2]

=
R−Rw̃−k

(1− p(w̃k))

p(w̃k)
−Rxk

For margin-based binary classification losses of the form L(y, ŝ) = hL(y · ŝ), such that y ∈ {−1, 1}
and ŝ ∈ R is the output of a scoring classifier and hL is convex, one obtains:
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Exk,y∼PD [L (β0 + fk(xk), y)] = Exk,y∼PD [hL (y · (β0 + fk(xk))] =

Exk

[
Ey|xk

[hL (y · (β0 + fk(xk)) |xk]
]
≥ Exk

[
hL

(
Ey|xk

[y · (β0 + fk(xk))|xk]
)]

= Exk

[
hL

(
(β0 + fk(xk)) · Ey|xk

[y|xk]
)]

= Exk

[
L
(
β0 + fk(xk),Ey|xk

[y|xk]
)]

. (11)

Note that here Ey|xk
[y|xk] = 2P(y = 1|xk) − 1. Thus for ỹ = y+1

2 ∈ {0, 1}, which is the 0-1
variant of the label y, and therefore L̃(ỹ, ŝ) = hL((2ỹ − 1) · ŝ), one gets

Exk,y∼PD

[
L̃ (β0 + fk(xk), ỹ)

]
≥ Exk

[
L̃
(
β0 + fk(xk),Ey|xk

[ỹ|xk]
)]

, (12)

where Ey|xk
[ỹ|xk] = P(ỹ = 1|xk), showing that the difference of the marginal effect of xk to the

Bayes-Optimal classification model is bounded in this case.

Many common classification loss functions, such as the 0-1-loss, the Log-Loss, the Hinge Loss, the
Exponential Loss can be expressed as a margin-based loss with a convex function hL.

D DATA

D.1 DATASETS

Table 8: Details on datasets used in the experiments. The tasks are abbreviated as reg. for regression
and cls. for (binary) classification.

Abr Name # Total # Train # Val # Test # Num # Cat Task
CH California Housing 20433 13076 3270 4087 8 1 reg.
MU Airbnb Munich 6627 4240 1061 1326 5 4 reg.
AB Abalone 4177 2672 669 836 7 1 reg.
CU CPU small 8192 5242 1311 1639 12 0 reg.
DM Diamonds 53940 34521 8631 10788 6 3 reg.
HS House Sales 21613 13832 3458 4323 10 8 reg.
AD Adult 48842 31258 7815 9769 5 8 cls.
BA Banking 45211 28934 7234 9043 3 12 cls.
SH Churn Modeling 10000 6400 1600 2000 8 2 cls.
FI FICO 10459 6693 1674 2092 16 7 cls.
AV Auction Verification 2043 1225 409 409 5 2 reg.
GS Grid Stability 10000 6000 2000 2000 12 0 reg.
K8 Kin8nm 8192 4915 1638 1639 8 0 reg.
P32 Pumadyn32nh 8192 4915 1638 1639 32 0 reg.
MH Miami Housing 13932 8359 2786 1787 15 0 reg.
BH Brazilian Houses 10692 6415 2138 2139 5 4 reg.
SG Space Ga 3107 1864 621 622 6 0 reg.

D.1.1 REGRESSION DATASETS

California Housing The California Housing (CA Housing) dataset is a popular publicly available
dataset. We obtained it from the UCI machine learning repository (Dua & Graff, 2017). We achieve
similar results concerning the MSE for the models which were used e.g. in Agarwal et al. (2021),
Thielmann et al. (2023) and Gorishniy et al. (2021). The dataset contains the house prices for
California homes from the U.S. census in 1990. The dataset is comprised of 20433 and besides the
target variable contains nine predictors. As described above, we additionally standard normalize the
target variable. All other variables are preprocessed as described above.

Munich For the AirBnB data, we orientate on Rügamer et al. (2023) and Thielmann et al. (2023)
and used the data for the city of Munich. The dataset is publicly available and was taken from
Inside AirBnB (http://insideairbnb.com/get-the-data/) on January 15, 2023. After
cleaning, the dataset consist of 6627 observations. The target variable is the rental price.
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Diamonds The diamonds dataset is also taken from the UCI machine learning repository (Dua &
Graff, 2017). We standard normalized the target variable and dropped out all rows that contained
unknown values. A detailed description of all its features can be found here https://www.
openml.org/search?type=data&sort=runs&id=42225&status=active

House sales The dataset and its description can be found here https://www.openml.org/
search?type=data&status=active&id=42092. We drop all rows that contain unknown
values.

D.1.2 CLASSIFICATION DATASETS

FICO A detailed description of the features and their meaning is available at the
Explainable Machine Learning Challenge (https://community.fico.com/s/
explainable-machine-learning-challenge). The dataset is comprised of 10459
observations. We did not implement any preprocessing steps for the target variable.

Churn This dataset contains information on the customers of a bank and the target variable is a
binary variable reflecting whether the customer has left the bank (closed their account) or remains
a customer. The data set can be found at Kaggle (https://www.kaggle.com/datasets/
shrutimechlearn/churn-modelling) and is introduced by Kaggle (2019). After the pro-
cessing described above, the set consists of 10000 observations, each with 10 features.

Adult The adult dataset is another common benchmark dataset used in studies such as e.g.
Grinsztajn et al. (2022); Arik & Pfister (2021); Ahamed & Cheng (2024). It is taken from
https://archive.ics.uci.edu/dataset/2/adult and a detailed description can be
found there.

Banking A detailed description on the banking dataset can be found here https://www.
openml.org/search?type=data&status=active&id=44234. It is also taken from the
UCI machine learning repository (Dua & Graff, 2017).

E ABLATION STUDY

In the ablation study, we simulate a dataset consisting of 25,000 data points. We utilize a train-test
split of 70% - 30% to evaluate the impact of various shape functions and categorical feature effects
on the model’s performance.

Continuous Features We examine the following set of shape functions to model the continuous
features. All x variables are uniformly distributed between 0 and 1 and independently sampled. The
functions are designed to introduce a variety of nonlinear transformations:

• Linear function: s1(x) = 3x

• Quadratic function: s2(x) = (x− 1)2

• Sinusoidal function: s3(x) = sin(5x)

• Exponential root function: f4(x) =
√

exp(x)

• Absolute deviation: s5(x) = |x− 1|
• Sinusoidal deviation: s6(x) = |x− sin(5x)|

• Signed root function: s7(x) = sign(x) ·
√

|x|

• Exponential-polynomial function: s8(x) = 2x − x2

• Cubic polynomial: s9(x) = x3 − 3x

• Exponential increment: s10(x) = exp(x+ 10−6)

17

https://www.openml.org/search?type=data&sort=runs&id=42225&status=active
https://www.openml.org/search?type=data&sort=runs&id=42225&status=active
https://www.openml.org/search?type=data&status=active&id=42092
https://www.openml.org/search?type=data&status=active&id=42092
https://community.fico.com/s/explainable-machine-learning-challenge
https://community.fico.com/s/explainable-machine-learning-challenge
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
https://www.kaggle.com/datasets/shrutimechlearn/churn-modelling
https://archive.ics.uci.edu/dataset/2/adult
https://www.openml.org/search?type=data&status=active&id=44234
https://www.openml.org/search?type=data&status=active&id=44234


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Categorical Features The dataset includes three categorical features, each with different levels and
associated effects:

• cat_feature_1: Levels = {A, B, C}. Effects = {A: 0.5, B: -0.5, C: 0.0}
• cat_feature_2: Levels = {D, E}. Effects = {D: 1.0, E: -1.0}
• cat_feature_3: Levels = {F, G, H, I}. Effects = {F: 0.2, G: -0.2, H: 0.1, I: -0.1}

Each categorical feature is encoded to reflect its specific impact, which varies depending on the level
present in the dataset. These effects are designed to simulate real-world scenarios where categorical
features may influence the outcome in both positive and negative ways.

Note that the product structure of the considered interaction effects ensures that the true marginal
effects E [y|xk] are given by hk. This is because, first, with independence of the covariates
x1, x2, . . . xJ , and ϵ one has:

E [y|xk] = E

 J∑
j=1

sj(xj) +
∏

xj + ϵ

∣∣∣∣∣∣xk

 = sk(xk)+

J∑
j=1,j ̸=k

E [sj(xj)]+xk

∏
j ̸=k

E[xj ]+E[ϵ]

(13)

Second, assuming zero-centered covariates and effects, as well as a zero-centered error term then
yields E [y|xk] = sk(xk).

E.1 NETWORK ARCHITECTURES

For the ablation study, fixed network architectures are used and orientated on the literature. Note, that
the experiments on real world data are performed with hyperparameter tuning as described in section
G. We use NAM architecture inspired by Radenovic et al. (2022) and Dubey et al. (2022). Hence, we
use simple network with each feature network consisting of [64, 64, 32] hidden neurons respectively
each followed by a 0.1 dropout layer and ReLU activation. For Hi-NAMs we implement the same
architecture for the feature interaction network. For EBM and EB2M we use the default architecture
(Nori et al., 2019). For GAMs we use cubic splines with 25 knots each. For NAMformer we use an
embedding size of 32, 4 layers, 2 heads, 150 one hot encoded bins and dropout of 0.3 throughout all
dropout layers, except for a feature dropout of 0.1. Learning rates of 1e-03, a patience of 20 epochs
and learning rate decay with a patience of 10 epochs regarding the validation loss was used where
applicable.

F COMPARISON TO FT-TRANSFORMER

We use identical model architecture for both, the NAMformer as well as the FT-Transformer for all
datasets. An embedding size of 64, 2 layers, 2 heads, a learning rate of 1e-04, weight decay of 1e-05,
task specific head layer sizes of [64, 32], ReLU activation, feed forward dropout of 0.5 and attention
dropout of 0.1. For the NAMformer we use feature dropout of 0.1. We use a patience of 15 epochs
for early stopping and a learning rate decay with a factor of 0.1 with a patience of 10 epochs with
respect to the validation loss.

All datasets are fit using 5-fold cross validation with a validation split of 0.3. Note that as we are
implementing 5-fold cross validation we are not using the same splits as for the benchmarks and
hence achieve different results.

G HYPERPARAMETER TUNING

We use Bayesian hyperparameter tuning using the Optuna library (Akiba et al., 2019). We use 50
trials for each method, and report the results for the best trial on either the validation mean squared
error or the validation (binary) cross entropy. We use median pruning. For all neural models we
implement early stopping with a patience of 15 epochs based on the validation loss and return the
best model with respect to the validation loss of that time frame. Additionally we implement learning
rate decay with a patience of 10 epochs also based on the validation loss with a factor of 0.1. All
hyperparameter spaces for all models are reported below:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

XGBoost For the XGBoost model, we tune the following hyperparameters:

• n_estimators: Number of trees, varied from 50 to 400.
• max_depth: Maximum depth of each tree, with values ranging from 3 to 20.
• learning_rate: Learning rate, adjusted between 0.001 and 0.2.
• subsample: Subsample ratio of the training instances, from 0.5 to 1.0.
• colsample_bytree: Subsample ratio of features for each tree, ranging from 0.5 to 1.0.

Explainable Boosting Machine (EBM and EB2M) For the EBM model, the following hyperpa-
rameters are tuned to optimize performance:

• Interactions: Set to 0.0 to disable automatic interaction detection.
• Learning Rate: The rate at which the model learns, varied from 0.001 to 0.2.
• Max Leaves: The maximum number of leaves per tree, with choices ranging from 2 to 4.
• Min Samples Leaf: The minimum number of samples required to be at a leaf node, varying

from 2 to 20.
• Max Bins: The maximum number of bins used for discretizing continuous features, sampled

from 512 to 8192.

For EB2M we tune the following:

• Interactions: Set to 0.95 to strongly favor interaction effects among features.
• Learning Rate: Adjusted identically to the EBM, within the range of 0.001 to 0.2.
• Min Samples Leaf: Also ranging from 2 to 20 to control overfitting.
• Max Leaves: From 2 to 4, to define the complexity of the learned models.
• Max Bins: The binning parameter, ranging from 512 to 8192, to optimize the handling of

continuous variables.

Neural Additive Models (NAMs) For Neural Additive Models, we configure a range of hyperpa-
rameters to optimize model performance. The hyperparameter space explored includes dimensions of
hidden layers, dropout rates, learning rates, and more, as specified below:

• Hidden Dimensions: A categorical choice among different layer configurations to adapt the
model capacity, including configurations such as [64, 64], [64, 32, 16], [128,
64], [128, 128, 64], [128, 32], and [128, 64].

• Dropout Rate: Dropout rate for regularization, varied from 0.1 to 0.5.
• Feature Dropout Probability: Probability of dropping a feature to prevent overfitting,

ranged from 0.1 to 0.5, sampled on a logarithmic scale.
• Learning Rate (lr): Learning rate for training, explored on a logarithmic scale between
10−5 and 10−3.

• Weight Decay: Regularization parameter to minimize overfitting, also explored on a
logarithmic scale, with values ranging from 10−6 to 10−4.

• Activation Function: The type of activation function used in the model, selected from
options such as ReLU, Leaky ReLU, GELU, SELU, and Tanh.

• Batch size: Fixed batch size from {32, 64, 128, 256, 512}.

Multi-Layer Perceptron (MLP) For the MLP model, we fine-tune the following hyperparameters:

• Hidden Layer Sizes: Sizes of each hidden layer, where each layer’s size is individually
tuned between 8 and 512 neurons, defined dynamically for each layer during the trials.

• Learning Rate (lr): The optimizer’s learning rate, sampled logarithmically between 10−5

and 10−3.
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• Weight Decay: Regularization parameter to minimize overfitting, explored on a logarithmic
scale from 10−6 to 10−4.

• Batch Normalization: A binary choice to either use or not use batch normalization in each
layer.

• Skip Connections: Option to include skip connections between layers.
• Activation Function: Determines the type of activation function used, options include

ReLU, Leaky ReLU, GELU, SELU, and Tanh.
• Dropout Rate: Dropout rate for each layer to prevent overfitting, adjustable between 0.0

and 0.5.
• Batch size: Fixed batch size from {32, 64, 128, 256, 512}.

FT-Transformer For the FT-Transformer model, we fine-tune the following hyperparameters:

• Embedding Size: Dimensionality of embeddings for categorical features, selected from
{16, 32, 64, 128, 256}.

• Number of Heads (n_head): The number of attention heads in the transformer, chosen
from {1, 2, 4, 8}.

• Number of Layers (n_layers): Configurable number of transformer layers, ranging from 1
to 8.

• Learning Rate (lr): Optimized on a logarithmic scale from 10−5 to 10−3.
• Weight Decay: Regularization parameter explored on a logarithmic scale between 10−6

and 10−4.
• Activation Function: Options include ReLU, Leaky ReLU, GELU, SELU, and Tanh.
• Head Dropout: Dropout rate in the heads, adjustable from 0.0 to 0.5.
• Attention Dropout: Dropout rate specifically for the attention mechanisms, also adjustable

from 0.0 to 0.5.
• Head Layer Sizes: A variety of configurations for layer sizes in the model’s head are tested,

including:
– Single layer configurations: {1}, {32}, {64}
– Dual layer configurations: {64, 64}, {128, 64}, {128, 32}
– Triple layer configurations: {64, 32, 16}, {128, 128, 64}, {128, 64, 32}

• Batch Size: The size of the batches for training, selected from {32, 64, 128, 256, 512}.

NAMformer For the NAMformer model, we fine-tune the following hyperparameters:

• Embedding Size: Dimensionality of embeddings for categorical features, selected from
{16, 32, 64, 128, 256}.

• Number of Heads (n_head): The number of attention heads in the transformer, chosen
from {1, 2, 4, 8}.

• Number of Layers (n_layers): Configurable number of transformer layers, ranging from 1
to 8.

• Learning Rate (lr): Optimized on a logarithmic scale from 10−5 to 10−3.
• Weight Decay: Regularization parameter explored on a logarithmic scale between 10−6

and 10−4.
• Activation Function: Options include ReLU, Leaky ReLU, GELU, SELU, and Tanh.
• Head Dropout: Dropout rate in the heads, adjustable from 0.0 to 0.5.
• Attention Dropout: Dropout rate specifically for the attention mechanisms, also adjustable

from 0.0 to 0.5.
• Feature Dropout: Dropout rate for features, ranging from 0.1 to 0.5.

– Single layer configurations: {1}, {32}, {64}
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Figure 6: Average R2 values over all 9 features in the california housing dataset. The decision trees
are fit, using either the uncontextualized or the contextualized embeddings as training data and the
true features as target variables.

– Dual layer configurations: {64, 64}, {128, 64}, {128, 32}
– Triple layer configurations: {64, 32, 16}, {128, 128, 64}, {128, 64, 32}

• Batch Size: The size of the batches for training, selected from {32, 64, 128, 256, 512}.

H EMBEDDING IDENTIFIABILITY

To demonstrate that the uncontextualized embeddings almost perfectly represent the raw input data,
we conducted the experiment described in the main body of our work. We fitted both a NAMformer
and a FT-Transformer (Gorishniy et al., 2021) to the California housing dataset, with preprocessing
as outlined previously. Our comparison includes both one-hot encoded numerical features and
standardized features.

The models were trained using identical architectures with an embedding size of 64, 4 layers, 4 heads,
and a uniform dropout rate of 0.3; for the NAMformer, feature dropout was set at 0.1. We employed a
learning rate of 1e-04, weight decay of 1e-05, and a patience setting of 15 epochs for early stopping.
The reported results represent the average outcomes from a 5-fold cross-validation.

After the models converged, we fitted simple decision trees—using the default settings from (Pe-
dregosa et al., 2011)—to the uncontextualized embeddings from the training split, treating the true
features as labels. We then computed the R2 on the test data. Subsequently, we performed the same
procedure for the contextualized embeddings. The findings are illustrated in Figure 6.
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