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LARA: A Light and Anti-overfitting Retraining Approach for
Unsupervised Anomaly Detection

Anonymous Author(s)

ABSTRACT
Most of current anomaly detection models assume that the normal
pattern remains the same all the time. However, the normal patterns
of web services can change dramatically and frequently over time.
The model trained on old-distribution data becomes outdated and
ineffective after such changes. Retraining the whole model when-
ever the pattern is changed is computationally expensive. Further,
at the beginning of normal pattern changes, there is not enough
observation data from the new distribution. Retraining a large neu-
ral network model with limited data is vulnerable to overfitting.
Thus, we propose a Light Anti-overfitting Retraining Approach
(LARA) based on deep variational auto-encoders for time series
anomaly detection. In LARA we make the following three major
contributions: 1) the retraining process is designed as a convex
problem and can prevent overfitting as well as converge at a fast
rate; 2) a novel ruminate block is introduced, which can leverage
the historical data without the need to store them; 3) we mathemat-
ically and experimentally prove that when fine-tuning the latent
vector and reconstructed data, the linear formations can achieve
the least adjusting errors between the ground truths and the fine-
tuned ones. Moreover, we have performed many experiments to
verify that retraining LARA with even limited amount of data from
new distribution can achieve competitive F1 Score in comparison
with the state-of-the-art anomaly detection models trained with
sufficient data. Besides, we verify its light computational overhead.

CCS CONCEPTS
• Computing methodologies→ Anomaly detection; • Infor-
mation systems→Web log analysis.
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Anomaly detection, Time series, Light overhead, Anti-overfitting
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(a) The reconstructed data samples (b) The latent vectors

Figure 1: LARA vs. the other two approaches. The figures
show the (a) reconstructed data samples and (b) latent vectors
outputted by three different approaches: the model trained
on historical data only (i.e. outdated model), the model re-
trained by whole dataset, and the model retrained by LARA.

1 INTRODUCTION
Anomaly detection could dramatically improve the robustness of
web services since it can spot various server failures and their root
cause efficiently [29, 34]. However, the environment of web services
and web servers is highly dynamic [17], where the normal patterns
evolve over time, which makes many prominent anomaly detection
methods inefficient and inapplicable in this scenario. For example,
Recurrent Auto-encoder with Multi-resolution Ensemble Decoding
(RAMED) [27] and many other methods achieve remarkable detec-
tion accuracy, but they premise that the normal patterns remain
the same all the time, which is contradictory to the realistic situa-
tion. To keep the high accuracy, these models need to be updated
frequently in this scenario, which is inefficient and computational-
expensive. Moreover, at the beginning of the distribution shifts, the
amount of observed data of new distribution is small, which makes
these large networks vulnerable to overfitting. Thus, it calls for a
data-efficient and lightweight retraining method.

The existing methods to deal with this problem can be roughly
divided into three categories: the signal-processing-based methods,
the transfer-learning-based methods, and the few-shot-learning-
based methods. Among them, the signal-processing-based methods
suffer from heavy inference time overhead and struggle to copewith
the high traffic peaks of web services in real time. The transfer-
learning-based methods [13] do not consider the chronological
order of multiple historical distributions (i.e. the closer histori-
cal distribution generally contains more useful knowledge for the
newly observed distribution, compared with farther ones). The few-
shot-learning-based methods [33] need to store lots of data from
historical distributions and also ignore the chronological orders.

To overcome these drawbacks, we propose a Light and Anti-
overfitting Retraining Approach (LARA) for deep variational Auto-
Encoder-based unsupervised anomaly detection models (VAEs),
considering the VAEs are one of the most popular unsupervised

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

anomaly detection methods. The VAE-based methods learn a la-
tent vector for each input data sample and use the latent vector
to regenerate it. The main idea of LARA is to fine-tune the latent
vectors with historical and newly observed data without storing
the historical data and adapt the reconstructed data samples to the
new distribution. This enables LARA to adapt the reconstructed
data samples to the center of the new distribution (see Fig.1(a)) and
looses the boundary of latent vectors moderately according to the
historical and newly observed data (see Fig.1(b)) to enhance the abil-
ity of VAEs to deal with unseen distributions. LARA achieves this
via three prominent components: the ruminate block, the adjusting
functions𝑀𝑧 and𝑀𝑥 , and a principle of loss function designing.

The ruminate block1 leverages the historical data and newly-
observed data to guide the fine-tuning of latent vectors, without
storing the historical data. The main idea here is that the model
trained on historical distributions is an abstraction of their data.
Thus, the ruminate block can restore the historical data from the
old model and use them with the newly observed data to guide the
fine-tuning of the latent vector. There are three advantages of using
the ruminate block: 1) it saves storage space as there is no need to
store data from historical distributions; 2) it chooses the historical
data similar to the new distribution to restore, which would contain
more useful knowledge than the others; and 3) with the guidance of
the ruminate block, the latent vector generator inherits from the old
model and is fine-tuned recurrently, which takes the chronological
order of historical distributions into account.

The adjusting functions 𝑀𝑧 and 𝑀𝑥 are devised to adapt the
latent vector and the reconstructed data sample to approximate the
latent vector recommended by the ruminate block and the newly
observed data respectively. We mathematically prove that linear
formations can achieve the least gap between the adjusted ones and
the ground truth. It is interesting that the adjusting formations with
the least error are amazingly simple and cost light computational
and memory overhead. Furthermore, we propose a principle of loss
function designing for the adjusting formations, which ensures the
convexity of the adjusting process. It is proven that the convex-
ity is only related to the adjusting functions 𝑀𝑧 and 𝑀𝑥 without
bothering the model structure, which makes loss function design
much easier. The convexity guarantees the 𝑂 ( 1

𝑘
) converging rate

(where 𝑘 denotes the number of iteration steps) and a global unique
optimal point which helps avoid overfitting, since overfitting is
caused by the suboptimal-point-trapping.

Accordingly, this work makes the following novel and unique
contributions to the field of anomaly detection:

1) We propose a novel retraining approach called LARA, which is
designed as a convex problem. This guarantees a quick converging
rate and prevents overfitting.

2) We propose a ruminate block to restore historical data from the
old model, which enables the model to leverage historical data
without storing them and provides guidance to the fine-tuning of
latent vectors of VAEs.

3) We mathematically and experimentally prove that the linear
adjusting formations of the latent vector and reconstructed data

1The ruminate block is named after the rumination of cows, which chews the past-fed
data and extracts general knowledge.

samples can achieve the least adjusting error. These adjusting forma-
tions are simple and require only light time and memory overhead.

In addition, we conduct extensive experiments on four real-world
datasets with evolving normal patterns to show that LARA can
achieve the best F1 score with limited new samples only, com-
pared with the state-of-the-art (SOTA) methods. Moreover, it is
also verified that LARA requires light memory and time overhead
for retraining. Furthermore, we substitute𝑀𝑧 and𝑀𝑥 with other
nonlinear formations and empirically prove the superiority of our
linear formation over the nonlinear ones.

2 RELATEDWORK
Anomaly detection is to find the outlier of a distribution. We first
overview popular anomaly detection approaches for static normal
patterns. We then summarize transfer learning, few-shot learning,
statistical learning and signal-processing-based methods, which
can be used to solve a normal pattern changing problem. There may
be a concern that online learning is also a counterpart of LARA.
However, the peak traffic of web services is extremely high, and
online learning is inefficient and struggles to deal with it in real
time.

Anomaly detection for static normal pattern. The current
popular anomaly detection methods can be divided into classifier-
based [7, 9, 14, 23, 24, 26] and reconstructed-based ones [27, 28,
30, 36] roughly. Though these methods achieve high F1 scores for
a static normal pattern, their performance decays as the normal
pattern changes.

Transfer learning for anomaly detection. One solution for
the normal pattern changing problem is transfer learning [3, 10, 15,
16, 20, 25]. These methods transfer knowledge from source domains
to a target domain, which enables a high accuracy with few data in
the target domain. However, these methods do not work well when
the distance between source and target domain is large. Moreover,
transfer learning mainly transfers knowledge of different observing
objects and there is no chronological order of these observations,
while the different distributions in this work are observations at
different times of the same observing object. The nearer historical
distribution is usually more similar to the present one and contains
more useful knowledge. But transfer learning ignores this aspect.

Few-shot learning for anomaly detection. Few-shot learning
determines to extract general knowledge from different tasks and
improve the performance on the target task with few data samples.
Metaformer [33] is one of the recently prominent few-shot learning
based anomaly detection methods, which uses MAML [6] to find an
ideal initialization. However, few-shot learning has a similar prob-
lem as transfer learning (i.e. it overlooks the chronological orders).
Moreover, it needs to store lots of outdated historical-distributed
data and costs lots of storage space.

Statistics-based anomaly detection. Traditional statistics-
based methods [5, 8, 22] do not need training data and have light
overhead, which are not bothered by a normal pattern changing
problem. However, these methods rely on certain assumptions and
are not robust in practice [17].

Signal-processing-based anomaly detection. Fourier trans-
form [37] can only capture global information, while wavelet anal-
ysis [1] can capture local patterns but is very time-consuming. PCA
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Table 1: The definition of symbols used in this paper.

Symbol Meaning Symbol Meaning
𝐷𝑖 The 𝑖th distribution 𝑉𝑖 The model for 𝐷𝑖

𝑋𝑖 The data samples for 𝐷𝑖 𝑋𝑖 [ 𝑗] The 𝑗th sample in 𝑋𝑖
𝑍𝑖,𝑘 The latent vectors of 𝑋𝑖 obtained by 𝑉𝑘 𝑍𝑖,𝑘 [ 𝑗] The latent vectors of 𝑋𝑖 [ 𝑗] obtained by 𝑉𝑘
𝑋̃𝑖,𝑘 The reconstructed data of 𝑋𝑖 obtained by 𝑉𝑘 𝑋̃𝑖,𝑘 [ 𝑗] The reconstructed data of 𝑋𝑖 [ 𝑗] obtained by 𝑉𝑘
𝑍𝑖 The latent vector of 𝑋𝑖 estimated by ruminate block 𝑍𝑖 [ 𝑗] The latent vector of 𝑋𝑖 [ 𝑗] estimated by ruminate block
𝑀𝑥 The adjusting function of reconstructed data 𝑀𝑧 The reconstructed data of latent vector
P𝑥 The trainable parameters of𝑀𝑥 P𝑧 The trainable parameters of𝑀𝑧

and Kalman Filtering [21] are the most classical signal-processing
techniques but are not competitive in detecting anomalies in vari-
ational time series. JumpStarter [17] is a recent SOTA method in
this category, but it suffers from heavy inferring time overhead and
can not deal with a heavy traffic load in real time.

3 PROPOSED METHOD
Preliminary. VAE-based methods are among the most popular
anomaly detection models, such as omniAnomaly [28], ProS [13],
DeepVariational GraphConvolutional Recurrent Network (DVGCRN)
[4]. These methods are usually divided into two parts: encoder and
decoder. An encoder is designed to learn the posterior distribution
𝑝 (𝑧 |𝑥), where 𝑥 is observed data, and 𝑧 is a latent vector [12]. A
decoder is designed to learn the distribution 𝑝 (𝑥 |𝑧). Please refer to
Tab.1 for the definitions of symbols used in this paper.

3.1 Overview
The overview of LARA is given in Fig. 2. On the whole, LARA
leverages the data from historical distribution and newly-observed
data to adjust the latent vector of VAEs and only uses the newly-
observed data to adapt the reconstructed data sample. Whenever a
retraining process is triggered, LARA firstly uses the ruminate block
to restore historical distributed data from the latest model. Then,
the ruminate block uses the restored data and newly-observed data
to estimate the latent vector for each newly-observed data. Then,
LARA employs a latent vector adjusting function 𝑀𝑧 to map the
latent vector generated by the encoder to the one estimated by
the ruminate block. To further adapt the model, LARA also applies
an adjusting function𝑀𝑥 to adjust the reconstructed data sample.
After that, LARA uses a loss function to fit the trainable parameters
in 𝑀𝑥 and 𝑀𝑧 , which guarantees the convexity of the adjusting
process.

For each newly-observed data, the ruminate block retrieves 𝑛
historical data which is similar to the newly-observed data from the
latest model. Then, the ruminate block estimates the latent vector
for each newly-observed data by Online Bayesian Learning [19],
where the restored data and the newly-observed data are regarded
as the historical data and the present data in Online Bayesian Learn-
ing respectively. The details are given in Sec. 3.2.

The adjusting functions 𝑀𝑧 and𝑀𝑥 are mathematically proven
to achieve the least adjusting error. Besides, there is an interesting
finding that the best formations of 𝑀𝑧 and 𝑀𝑥 are linear, which
are surprisingly simple and require low retraining overhead. The
formulation of adjusting error and the mathematical proof is given
in Sec. 3.3.

The simple formations of 𝑀𝑧 and 𝑀𝑥 make it possible to skill-
fully design a convex loss function for trainable parameters in𝑀𝑧

and𝑀𝑥 . The convexity not only prevents the overfitting problem,
as there is a unique global optimal point for the convex problem,
but also guarantees a fast convergence rate for the retraining pro-
cess, which contributes to the light time overhead. However, in
general, designing such a loss function requires sophisticated tech-
niques and knowledge of convex optimization. Thus, we propose
the principles of designing such a convex loss function in Sec. 3.4
to make the designing process easy and convenient. It is found in
Sec. 3.4 that the convexity is not related to the model structure but
only related to the designing of the loss function, which makes
the designing process much easier, without considering the model
structure. Any formations that satisfy the principles can guaran-
tee convexity. According to Occam’s razor principle [32], LARA
chooses one of the simplest as its loss function.

The following subsections illustrate each module, assuming that
the retraining process is triggered by newly-observed distribution
𝐷𝑖+1 and the latest model is 𝑉𝑖 .

3.2 Ruminate block
For each newly-observed sample𝑋𝑖+1 [ 𝑗], the ruminate block firstly
obtains the conditional distribution 𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗] |𝑍𝑖+1,𝑖 [ 𝑗]) from 𝑉𝑖 .
Then, it generates 𝑛 data samples from the distribution as the his-
torical data. There are two reasons to restore the historical data in
this way: 1) the latest model 𝑉𝑖 contains the knowledge of histori-
cal distribution and its reconstructed data represents the model’s
understanding of the historical normal patterns; and 2) the histor-
ical data is reconstructed from the newly observed data, which
selectively reconstructs data similar to the new one among all the
historical distributions.

Furthermore, the ruminate block uses the restored historical
data 𝑋𝑖 and newly-observed data 𝑋𝑖+1 to estimate the latent vector
for each newly-observed data. Inspired by the Online Bayesian
Learning [19], the expectation and variance of the estimated latent
vector, when given a specific 𝑋𝑖+1 [ 𝑗], is shown in Eq.1-2, where
E𝑧 = E(𝑍𝑖+1 [ 𝑗]𝑇𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]), 𝑝 (𝑧) follows the normal distri-

bution, and E𝑧𝑇 𝑧 =
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1 )𝑧𝑇 𝑧 ]
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1 ) ]

. The proof is

given in Appendix. D. The expectations in Eq.1-Eq.2 are computed
by the Monte Carlo Sampling [18] and the conditional distributions
are given by the decoder of 𝑉𝑖 .

E(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) =
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑧 ]
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 ) ]

, (1)
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Figure 2: Overview of LARA. When there is a new distribution shift, LARA retrieves historical data from the latest model and
uses them with a few newly observed data to estimate the latent vector for each new sample by the ruminate block. Then, LARA
uses two adjusting functions –𝑀𝑧 and𝑀𝑥 – to make two adaptations: adapting the latent vector to the estimated one by the
ruminate block, and adapting the reconstructed sample yielded by the latest model to the sample from the new distribution.

Var(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) = E𝑇𝑧 E𝑧 − E𝑧𝑇 𝑧 . (2)

In the following, we provide an intuitive explanation of the Eq.1-
Eq.2. We take the E(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) as an example to illustrate
it and the variance can be understood in a similar way. When
using Monte Carlo Sampling to compute it, the expectation can be
transformed into Eq.3, where 𝛼𝑠 = 𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗] |𝑧𝑠 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 ) and
𝑧𝑠 is the 𝑠th sampling of 𝑧 from 𝑝 (𝑧):

E(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) =
∑𝑁
𝑠=1

𝛼𝑠∑𝑁
𝑘=1 𝛼𝑘

𝑧𝑠 . (3)

It is now obvious that E(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) is a weighted summa-
tion of different 𝑧𝑠 throughout the distribution 𝑝 (𝑧). Next, we look
into the value of the weight 𝛼𝑠 to figure out under which condi-
tions it assumes higher or lower values. It depends on both the
distributions of 𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗] |𝑧𝑠 ) and 𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 ). The greater the re-
constructed likelihoods of 𝑋̃𝑖+1,𝑖 and𝑋𝑖 are the greater the weight is.
Thus, the estimation of the latent vector is close to the value with a
high reconstructed likelihood of 𝑋̃𝑖+1,𝑖 and 𝑋𝑖 . As shown in Fig.1(b),
this estimation looses the boundary of the latent vector, as it not
only considers the reconstructed likelihood of newly observed data,
but also considers the one for historical data, which contributes to
dealing with the unseen distributions.

3.3 Functions𝑀𝑥 and𝑀𝑧

LARA proposes a adjusting function𝑀𝑧 to make𝑀𝑧 (𝑍𝑖+1,𝑖 ) approx-
imate to 𝑍𝑖+1,𝑖+1, which is estimated by 𝑍𝑖+1. Moreover, considering
each distribution has its specialized features. LARA also uses a ad-
justing function𝑀𝑥 to make𝑀𝑥 (𝑋̃𝑖+1,𝑖 ) approximate to 𝑋𝑖+1.

This subsection solves two questions: 1) what formations of𝑀𝑧

and 𝑀𝑥 are the best; and 2) could we ensure accuracy with low
retraining overhead? To solve them, the formulation of the adjusting
errors of𝑀𝑧 and𝑀𝑥 are firstly given. Then, the formations of𝑀𝑧

and 𝑀𝑥 with the lowest adjusting error are explored and proven.
We surprisingly find that the best formations are simple and require
light overhead.
Assumption 1. The 𝑝 (𝑋̃𝑖,𝑖 |𝑍𝑖,𝑖 ) and 𝑝 (𝑍𝑖,𝑖 |𝑋𝑖 ) follow Gaussian
distribution, which is the same as the assumption in the paper
firstly presenting VAE [12].
Assumption 2. The 𝑝 (𝑍𝑖+1,𝑖 , 𝑍𝑖+1,𝑖+1) and 𝑝 (𝑋̃𝑖+1,𝑖 , 𝑋̃𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 )
follow Gaussian joint distributions, which is reasonable since each
marginal distributions follow Gaussian distribution.
Quantifying adjusting errors of𝑀𝑧 and𝑀𝑥 .We formulate the
mapping error 𝔈𝑧 and 𝔈𝑥 for 𝑀𝑧 and 𝑀𝑥 in Eq.(4)-Eq.(5), where
𝑓 (𝑋𝑖+1) and 𝑓 (𝑍𝑖+1,𝑖 ) are the probability density functions for 𝑋𝑖+1
and 𝑍𝑖+1,𝑖 respectively:

𝔈𝑧 =

∫
E[(𝑀𝑧 (𝑍𝑖+1,𝑖 ) − 𝑍𝑖+1,𝑖+1)2 |𝑋𝑖+1] 𝑓 (𝑋𝑖+1)𝑑𝑥, (4)

𝔈𝑥 = E[(𝑀𝑥 (𝑋̃𝑖+1,𝑖 ) − 𝑋̃𝑖+1,𝑖+1)2 |𝑍𝑖+1,𝑖 ] . (5)

The 𝔈𝑧 actually accumulates the square error for each given 𝑋𝑖+1
and is a global error, while 𝔈𝑥 is a local error.
Theorem 1. When the Assumptions 1 and 2 hold, the optimal
formations of𝑀𝑧 and𝑀𝑥 to minimize 𝔈𝑧 and 𝔈𝑥 are as follows:

𝑀𝑧 (𝑍𝑖+1,𝑖 ) = 𝜇𝑖+1 + Σ𝑖+1,𝑖Σ𝑖,𝑖−1 (𝑍𝑖+1,𝑖 − 𝜇𝑖 ), (6)

𝑀𝑥 (𝑋̃𝑖+1,𝑖 ) = 𝜇̃𝑖+1 + Σ̃𝑖+1,𝑖 Σ̃
−1
𝑖,𝑖 (𝑋̃𝑖+1,𝑖 − 𝜇̃𝑖 ), (7)
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where 𝜇𝑖+1 and 𝜇𝑖 stand for the expectation of 𝑍𝑖+1,𝑖+1 and 𝑍𝑖+1,𝑖
respectively. 𝜇̃𝑖+1 and 𝜇̃𝑖 stand for the expectation of 𝑋̃𝑖+1,𝑖+1 and
𝑋̃𝑖+1,𝑖 respectively. Σ𝑖+1,𝑖 denotes the correlation matrix of 𝑍𝑖+1,𝑖+1
and 𝑍𝑖+1,𝑖 . Σ𝑖,𝑖 denotes the correlation matrix of 𝑍𝑖+1,𝑖 and 𝑍𝑖+1,𝑖 .
Σ̃𝑖+1,𝑖 denotes the correlation matrix of 𝑋̃𝑖+1,𝑖+1 and 𝑋̃𝑖+1,𝑖 . Σ̃𝑖,𝑖 de-
notes the correlationmatrix of 𝑋̃𝑖+1,𝑖 and 𝑋̃𝑖+1,𝑖 . All of these symbols
are trainable parameters of𝑀𝑧 and𝑀𝑥 .

Proof of Theorem 1. The proof is given in the Appendix B.
As Theorem 1 shows, the linear formations can achieve the least

adjusting error and require light retraining overhead.

3.4 The principles of retraining loss function
Considering that the formations of𝑀𝑧 and𝑀𝑥 are so simple, it is
possible to make the retraining problem convex and its gradient
Lipschitz continuous by sophisticatedly designing the loss function.
There are two benefits to formulate the retraining problem as a
convex and gradient-Lipschitz continuous one: preventing over-
fitting (i.e. there is no suboptimal point) and guaranteeing a fast
convergence rate 𝑂 ( 1

𝑘
), where 𝑘 is the iteration steps [2, 31].

Thus, we explore the requirements that the loss function should
satisfy to ensure the convexity and gradient-Lipschitz continuous-
ness and find that the convexity of the retraining process is not
related to the model structure, but only to the design of the loss
function. In the following, the retraining loss function is formally
defined in Definition 1 and then Theorem 2 is proposed.
Definition 1. As the trainable parameters in retraining stage are
only involved in𝑀𝑧 and𝑀𝑥 , we define the loss function asL(P𝑥 ,P𝑧) =
L𝑥 (𝑀𝑥 (𝑋̃𝑖+1,𝑖 ; P𝑥 ), 𝑋𝑖+1) +L𝑧 (𝑀𝑧 (𝑍𝑖+1,𝑖 ; P𝑧), 𝑍𝑖+1,𝑖+1), where the
L𝑥 (𝑎, 𝑏) andL𝑧 (𝑎, 𝑏) are functions evaluating the distance between
𝑎 and 𝑏. Besides, P𝑥 and P𝑧 stand for trainable parameters in𝑀𝑥

and𝑀𝑧 respectively.
Theorem 2. If the two loss functionsL𝑥 (𝑀𝑥 (𝑋̃𝑖+1,𝑖 ; P𝑥 ), 𝑋𝑖+1) and
L𝑧 (𝑀𝑧 (𝑍𝑖+1,𝑖 ; P𝑧), 𝑍𝑖+1,𝑖+1) are convex and gradient-Lipschitz con-
tinuous for𝑀𝑥 (𝑋̃𝑖+1,𝑖 ; P𝑥 ) and𝑀𝑧 (𝑍𝑖+1,𝑖 ; P𝑧) respectively,L(P𝑥 ,P𝑧)
is convex for P𝑥 and P𝑧 , and its gradient is Lipschitz continuous.
Proof of Theorem 2. The proof of Theorem 2 is given in Appendix.

According to Theorem 2, the convexity of the loss function is
only concerned with the convexity of L𝑥 and L𝑧 for its parameters,
without concerning the structures of 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 and𝐷𝑒𝑐𝑜𝑑𝑒𝑟 . Thus, it
is easy to find proper formations of L𝑥 and L𝑧 to ensure convexity.
According to Occam’s razor principle [32], LARA chooses one of
the simplest formations satisfied the requirements in Theorem 2
as shown in Eq.(8). L𝑥 and L𝑧 can be substituted with any other
formation satisfied theorem 2.

L𝑥 = (𝑋𝑖+1 −𝑀𝑥 (𝑋̃𝑖+1,𝑖 ))2, L𝑧 = (𝑍𝑖+1,𝑖+1 −𝑀𝑧 (𝑍𝑖+1,𝑖 ))2 . (8)

3.5 Limitation
The ruminate block helps to refresh the general knowledge learned
by the old model, but may degrade the accuracy of LARA when
the new distribution is very different from the old distribution.
We further discuss the impact of distance between old and new
distributions on LARA’s accuracy in Sec. 4.8.

4 EXPERIMENT
Extensive experiments made on four real-world datasets demon-
strate the following conclusions:

1) LARA trained by few samples can achieve the highest F1 score
compared with the SOTA methods and is competitive against the
SOTA models trained with the whole subset (Sec. 4.2).
2) Both𝑀𝑧 and𝑀𝑥 improve the performance of LARA. Besides, the
linear formations are better than other nonlinear formations (Sec.
4.3), which is consistent with the mathematical analysis.
3) Both the time and memory overhead of LARA are low (Sec. 4.4).
4) LARA is hyperparameter-insensitive (Sec. 4.5).
5) The experimental results are consistent with the mathematical
analysis of the convergence rate (Sec. 4.6).
6) LARA achieves stable performance increase when the amount
of retraining data varies from small to large, while other methods’
performances suddenly dip down due to overfit and only rebound
with a large amount of retraining data (Sec. 4.7).
7) LARA significantly improves the anomaly detection performance
for all the distribution-shift distances explored in Sec. 4.8.

4.1 Experiment setup
Baseline methods. LARA is a generic framework that can be
applied to cost-effectively retrain various existing VAEs. In our
experiments, LARA is applied to enable two state-of-the-art (SOTA)
VAE-based detectors, Donut [34] and OmniAnomaly [28], denoted
by LARA-I and LARA-II respectively. We compare LARA with a
transfer-learning-basedmethod called ProS [13], a signal-processing-
based method called Jumpstarter [17], a classical deep learning
method called VAE [12] and the SOTAVAEmethods Donut [34] and
omniAnomaly [28], Multi-Scale Convolutional Recurrent Encoder-
Decoder (MSCRED) [36], AnomalyTransformer [35] and Deep Vari-
ational Graph Convolutional Recurrent Network (DVGCRN) [4].
For more details of these baselines, please refer to the Appendix F.

Datasets. We use one cloud server monitoring dataset and two
web service monitoring datasets. Moreover, to verify the general-
ization performance, we use one of the most widely recognized
anomaly detection benchmark, Soil Moisture Active Passive (SMAP)
dataset.

• Server Machine Dataset (SMD) [28] is a 5-week-long dataset. It is
collected from a large Internet company. This dataset contains 3
groups of entities. SMD has the data from 28 different machines,
forming 28 subsets. In this dataset, the data distributions of the
training data and retraining data are the most different.
• Datasets provided by JumpStarter (J-D1 and J-D2) [17] are col-
lected from a top-tier global content platform. The datasets consist
of the monitoring metrics of its 60 different services, forming 60
subsets. In this dataset, the data distributions of the training data
and retraining data are the most similar.
• Soil Moisture Active Passive (SMAP) [11] is consisted of real space-
craft telemetry data and anomalies from the Soil Moisture Active
Passive satellite.

Evaluation metrics. We use the widely-used metrics for anom-
aly detection: precision, recall and F1 score.
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Table 2: Average precision, recall and F1 score results of LARA and baselines. ‘‡’ indicates outdated models that are trained on
old distribution data only, while ‘†’ indicates the outdated models are further retrained with small new distribution data.

SMD J-D1 J-D2 SMAP
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Donut‡ 0.793 0.811 0.782 0.806 0.729 0.734 0.919 0.898 0.905 0.356 1.000 0.432
Anomaly Transformer ‡ 0.304 0.654 0.415 0.331 0.852 0.471 0.842 0.986 0.907 0.297 1.000 0.456
OmiAnomaly‡ 0.760 0.778 0.740 0.847 0.834 0.815 0.911 0.898 0.901 0.809 1.000 0.869
DVGCRN‡ 0.578 0.562 0.530 0.152 0.569 0.213 0.333 0.867 0.420 0.480 1.000 0.571
ProS‡ 0.344 0.613 0.407 0.363 0.818 0.429 0.678 0.929 0.781 0.333 0.992 0.428
VAE‡ 0.576 0.602 0.575 0.312 0.716 0.382 0.716 0.807 0.738 0.376 0.992 0.459
MSCRED‡ 0.508 0.643 0.484 0.735 0.859 0.756 0.894 0.926 0.909 0.820 1.000 0.890
LARA-I‡ 0.613 0.885 0.697 0.815 0.650 0.682 0.828 0.969 0.891 0.400 1.000 0.493
LARA-II‡ 0.833 0.665 0.719 0.876 0.795 0.793 0.915 0.955 0.932 0.733 0.995 0.802
Donut† 0.742 0.795 0.764 0.950 0.650 0.727 0.906 0.913 0.904 0.502 1.000 0.578
Anomaly Transformer† 0.297 0.644 0.407 0.324 0.852 0.462 0.847 0.986 0.910 0.295 1.000 0.453
OmiAnomaly† 0.769 0.887 0.814 0.827 0.834 0.800 0.945 0.973 0.958 0.714 0.995 0.781
DVGCRN† 0.573 0.562 0.521 0.103 0.790 0.166 0.311 0.775 0.371 0.360 1.000 0.437
ProS† 0.504 0.533 0.415 0.375 0.732 0.373 0.758 0.803 0.769 0.574 0.992 0.620
VAE† 0.482 0.614 0.488 0.420 0.732 0.441 0.686 0.823 0.711 0.252 0.992 0.351
MSCRED† 0.313 0.796 0.378 0.969 0.859 0.895 0.942 0.926 0.933 0.793 1.000 0.857
LARA-I† 0.925 0.902 0.913 0.878 0.928 0.893 0.952 0.924 0.936 0.788 1.000 0.863
LARA-II† 0.921 0.952 0.934 0.931 0.969 0.947 0.942 0.988 0.964 0.908 0.995 0.944

Table 3: Compared few-shot LARA with baselines trained with the whole new-distribution dataset.

SMD J-D1 J-D2 SMAP
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

JumpStarter 0.943 0.889 0.907 0.903 0.927 0.912 0.914 0.941 0.921 0.471 0.995 0.526
Donut 0.809 0.819 0.814 0.883 0.628 0.716 0.937 0.910 0.921 0.837 0.859 0.848
Anomaly Transformer 0.894 0.955 0.923 0.524 0.938 0.673 0.838 1.000 0.910 0.941 0.994 0.967
omniAnomaly 0.765 0.893 0.818 0.914 0.834 0.855 0.918 0.982 0.947 0.736 0.995 0.800
DVCGRN 0.482 0.611 0.454 0.214 0.599 0.256 0.412 0.867 0.444 0.410 1.000 0.478
ProS 0.495 0.623 0.418 0.210 0.760 0.306 0.566 0.886 0.688 0.287 0.992 0.395
VAE 0.541 0.728 0.590 0.353 0.550 0.392 0.686 0.823 0.711 0.416 0.992 0.473
MSCRED 0.813 0.955 0.874 0.890 0.859 0.850 0.956 0.926 0.940 0.865 0.991 0.916
LARA-I† 0.925 0.902 0.913 0.878 0.928 0.893 0.952 0.924 0.936 0.788 1.000 0.863
LARA-II† 0.921 0.952 0.934 0.931 0.969 0.947 0.942 0.988 0.964 0.908 0.995 0.944

4.2 Prediction accuracy
All of the datasets used in experiments consist of multiple subsets,
which stand for different cloud servers for the web (SMD), different
web services (J-D1, J-D2), and different detecting channels (SMAP).
Different subsets have different distributions. Thus, the data distri-
bution shift is imitated by fusing the data from different subsets.
When verifying the model performances on shifting data distribu-
tion, the models are trained on one subset while they are retrained
and tested on another one.When using a small amount of retraining
data, the models are retrained by 1% of data in a subset. When using
enough amount of retraining data, the models are retrained by the
whole subset. For each method, we show the performance without
retraining, retraining with few samples in Tab.2. Moreover, we also
compare the performance of few-shot LARA with the baselines
trained with the whole new distribution dataset, which is shown
in Tab.3. We obtain precision, recall and F1 score for best F1 score
of each subset and compute the average metrics of all subsets. The

"Prec" and "Rec" in Tab.2 stand for precision and recall respectively.
For baseline method A, A‡ denotes that A is trained on the old
distribution and tested on the new distribution without retraining.
A† denotes that the A is trained on the old distribution and tested
on the new distribution with retraining via a small amount of data
from the new distribution and A denotes that the model is trained
on new distribution with enough and much data and tested on new
distribution. As JumpStarter is a signal method of sampling and
reconstruction, retraining is not applicable to JumpStarter. Besides,
transfer between old distribution and new distribution is also not
applicable for JumpStarter. Thus, Jumpstarter is not shown in Tab.2.
All of the methods retraining with small-amount data use 1% data
of each subset from new distribution: 434 time slots of data for SMD
dataset, 80 time slots of data for J-D1 dataset, 74 time slots of data
for J-D2 dataset, 43 time slots of data for SMAP dataset.

As Tab.2 shows, LARA† achieves the best F1 score on all of the
datasets, when compared with baselines retrained with a small
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Table 4: Ablation study results. The best results are in bold, and the second-best results are underlined.

SMD J-D1 J-D2 SMAP
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

remove𝑀𝑧 0.855 0.973 0.892 0.913 0.861 0.879 0.842 0.975 0.901 0.751 1.000 0.833
remove𝑀𝑥 0.764 0.829 0.786 0.812 0.826 0.818 0.858 0.976 0.904 0.632 1.000 0.694
replace with MLP 0.917 0.933 0.925 0.466 0.929 0.530 0.848 0.990 0.904 0.600 1.000 0.674
replace with SA 0.875 0.733 0.797 0.477 0.884 0.519 0.863 0.978 0.905 0.602 1.000 0.685
LARA 0.921 0.952 0.934 0.931 0.969 0.947 0.942 0.988 0.964 0.978 0.990 0.983

amount of data. Moreover, LARA† also achieves competitive F1
scores when compared with the baselines trained by the whole
subset of new distribution, as shown in Tab.3.

Besides, LARA exhibits strong anti-overfitting characteristics,
which is also demonstrated in Sec. 4.7. When retrained by small-
amount data, LARA† dramatically improves the F1 score even with
43 time slots of data, while the F1 score of some baselines reduces
dramatically after retraining with small-amount data due to over-
fitting.

There is an interesting phenomenon shown in Tab.2. Some meth-
ods show better performance when transferred to new distribution
without retraining than those trained and tested on new distribu-
tion. This verifies that there is some general knowledge among
different distributions and it makes sense to utilize a part of an old
model.

As LARA-II† achieves better performance compared with LARA-
I†, in the following, we look into LARA-II† and analyze its perfor-
mance from different aspects.

4.3 Ablation study
We verify the effectiveness of𝑀𝑧 and𝑀𝑥 by separately eliminating
them and comparing their performance with LARA. Moreover,
to verify the optimality of the linear formation which is proven
mathematically in Sec. 3.3, we substitute the linear layer with multi-
layer perceptrons (MLP) and self attention (SA) and compare their
performance with LARA. The ablation study results are shown
in Tab.4. It is clear that 1) removing either 𝑀𝑧 or 𝑀𝑥 can lead to
large F1 score drop on all four datasets, and 2) the linear formation
performs better than the non-linear formations, which is consistent
with the mathematical analysis in Sec. 3.3.

4.4 Time and memory overhead
We use an Intel(R) Xeon(R) CPU E5-2620 @ 2.10GHz CPU and a K80
GPU to test the time overhead. For the neural network methods,
we use the profile tool to test the memory overhead for retraining
parts of a model. As for JumpStarter, which is not a neural network,
we use htop to collect its maximized memory consumption. We
show the result in Fig.3(a). From it, we can conclude that LARA
achieves the least retraining memory consumption and relatively
small time overhead. There are only two methods whose time over-
head is lower than LARA: VAE and ProS. But the F1 score of VAE
is low. When the distance between source and target domains is
large, the F1 score of ProS is low. Moreover, it is also interesting
to look into the ratios of retraining time and memory overhead to
the training ones, which is shown in Fig.3(b). Since Jumpstarter

is not a neural network and the retraining process is not applica-
ble to Jumpstarter, the ratio of Jumpstarter is omitted. As Fig.3(b)
shows, LARA achieves the smallest retraining memory ratios and
the second smallest retraining time ratios.

4.5 Hyperparameter sensitivity
There are two important hyperparameters in LARA: 𝑛, the number
of restored historical data for each data sample from new distribu-
tion and 𝑁 , the number of samples when calculating expectation
by statistical mean. We test the F1 score of LARA by setting 𝑛 and
𝑁 as the Cartesian product of 𝑛 from 1 to 5 and 𝑁 from 2 to 10.
We show the result in Fig.3(c). Within the search space, the maxi-
mum F1 score is only 0.06 higher than the minimum F1 score. With
occasional dipping down, the F1 score basically remains at a high
level for different hyperparameter combinations. This verifies the
hyperparameter insensitivity of LARA.

4.6 Convergence rate
To verify the convergence rate of LARA, which is analyzed theo-
retically in Sec. 3.4, the loss for each iteration step is divided by

1√
𝑘
, 1
𝑘
, 1
𝑘1.5 , 1

𝑘1.75 and 1
𝑘2 respectively, which is shown in Fig.3(d).

The 𝑘 denotes the iteration steps. As shown in Fig.3(d), when the
loss is divided by 1√

𝑘
, 1
𝑘
and 1

𝑘1.5 , the quotients remain stable as the

iteration step grows. Thus, the convergence rate is 𝑂 ( 1
𝑘
), which is

consistent with mathematical analysis.

4.7 Impact of retraining data amount
We use a subset in SMD to explore the impact of retraining data
amount on the performance of LARA†. We firstly use data from one
subset to train all of the models. After that, we use different ratios
of data from another subset to retrain the models and test them
on the testing data in this subset. We show the result in Fig.3(e).
When the retraining ratio is 0, there is no retraining. As the figure
shows, LARA significantly improves the F1 score even with 1% data
from new distribution, while the F1 score of other many methods
dramatically dips down due to overfitting. After the first growth of
the F1 score of LARA, its F1 score remains stable and high, while
the F1 score of many other methods only rapidly grows after using
enough data.

4.8 Impact of transfer distance between old and
new distributions

When training a model on dataset A and testing it on dataset
B, the closer the distributions of A and B are, the higher the
model’s accuracy is. Inspired by this insight, we have defined a
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Retraining
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Figure 3: Due to space constraints, we use the first two letters as the shorthand for each methods. (a) As the memory overhead
of JumpStarter, AnomalyTransformer and MSCRED are dramatically larger than the others, to show the memory overhead of
other methods clearly, we separately divide the memory overhead of them by 10. (b) The ratios of retraining memory and time
overhead to training memory and time overhead. (d) The ratio of loss to iteration steps varies with the number of iteration
steps. (e) The x-label is the proportion of retraining data in new distribution data. (f) In the legend, we use pre, rec, F1 to denote
the precision, recall and F1 score before retraining and use pre∗, rec∗, F1∗ to denote them after retraining.

directed transfer distance to quantify the distance to transfer a
specific model C from dataset A to dataset B (trained on A and
tested on B) as 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒A→B (C). This can be quantified by com-
paring the F1 score degradation when testing on B after training
on A, with testing and training both on B. Let 𝐹1 𝑠𝑐𝑜𝑟𝑒∗ denote
the F1 score for both training and testing on training and test-
ing set of B and 𝐹1 𝑠𝑐𝑜𝑟𝑒 denote the F1 score for training on A
and testing on test set of B without any retraining. Intuitively,
the 𝐹1 𝑠𝑐𝑜𝑟𝑒∗ represents the performance that model C should
have achieved on Dataset B and provides a benchmark for the
measurement. We compare the 𝐹1 𝑠𝑐𝑜𝑟𝑒 with the benchmark and
get our transfer distance: 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒A→B (C) = 𝐹1 𝑠𝑐𝑜𝑟𝑒∗−𝐹1 𝑠𝑐𝑜𝑟𝑒

𝐹1 𝑠𝑐𝑜𝑟𝑒
.

Different from traditional distance definition, this distance is asym-
metrical (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒A→B (C) is different from 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒B→A (C))
and can be negative (for 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒A→B (C), when the data quality
of datasetA is better than that of dataset B’s training set, and their
distributions are very similar, the transfer distance can be negative).
Then we show how the transfer distance between old and new
distributions impacts the F1 score of LARA in Fig.3(f). Intuitively,
when the distance is zero, LARA works best and there is little ac-
curacy difference before and after retraining. Besides, the larger
the distance is, the greater the accuracy difference before and after

retraining is. As Fig.3(f) shows, LARA can significantly improve the
anomaly detection performance in the range of transfer distance
explored in the experiments.

5 CONCLUSION
In this paper, we focus on the problem of web-service anomaly
detection, when the normal pattern is highly dynamic, the newly
observed retraining data is insufficient and the retraining overhead
is heavy. To solve these problems, we propose LARA, which is
light and anti-overfitting when retraining with little data from the
new distribution. There are three distinct characteristics of LARA:
it is formulated as a convex problem, a ruminate block, and two
light adjusting functions of the latent vector and reconstructed
data. The convexity prevents overfitting and guarantees a fast con-
verging rate, which also contributes to a light retraining overhead.
The ruminate block makes better use of historical data without
storing them. The adjusting functions are mathematically and ex-
perimentally proven to achieve the least adjusting errors. Extensive
experiments conducted on four real-world datasets demonstrate the
anti-overfitting and light properties of LARA. It is shown that LARA
retrained with 43 time slots of data is competitive with training the
state-of-the-art model with sufficient data.
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A IMPLEMENTATION DETAILS
All of methods retraining with small-amount data on SMD dataset
use 434 data samples. All of methods retraining with small-amount
data on J-D1 dataset use 80 data samples. All of methods retraining
with small-amount data on J-D2 dataset use 74 data samples. All
of methods retraining with small-amount data on SMAP dataset
use 43 data samples. We mainly use grid search to tune our hyper-
parameters. The searching range for 𝑛 is from 1 to 5. The search-
ing range for 𝑁 is from 1 to 10. The searching range of learning
rate is 0.001,0.002,0.005,0.008,0.01. The searching range for batch
size is 50,100,400. The searching range of input window length is
40,50,80,100. The searching range of hidden layer is 1,2,3,5.

Hyperparameters. The hyperparameters are listed in Tab.5,
where 𝑁 stands for the number of samples when estimating the ex-
pectation in Eq.3 and 𝑛 stands for the number of restored historical
data for each newly-observed data sample.

B PROOF OF THEOREM 1
Proof of Theorem 1. In the following, we take𝑀𝑧 as an example to
prove the formation in Eq.(9) is optimal. Then, the formation of𝑀𝑥

can be inferred in the similar way but given 𝑍𝑖+1,𝑖 in each step. We
9
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Table 5: The default hyperparmeter values for LARA.

Hyperparameter Value Hyperparameter Value
Batch size 100 𝑛 3

Learning rate 0.001 𝑁 10

firstly use the following lemmas 1 and 2 to show that the optimal
formation of𝑀𝑧 (𝑍𝑖+1,𝑖 ) is E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ). Then, if Assumption
2 holds, we can substitute the E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) with the Gaussian
conditional expectation and then get the Eq.(9).

𝑀𝑧 (𝑍𝑖+1,𝑖 ) = 𝜇𝑖+1 + Σ𝑖+1,𝑖Σ𝑖,𝑖−1 (𝑍𝑖+1,𝑖 − 𝜇𝑖 ) (9)

Lemma 1. The 𝔈𝑧 can be further transformed into E[A2] +
E[B2], where A and B are 𝑀𝑧 (𝑍𝑖+1,𝑖 ) − E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) and
E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) − 𝑍𝑖+1,𝑖+1 respectively.

Proof of Lemma 1. According to the definition of expectation, the
mapping error can be transformed intoE𝑥 (E𝑍𝑖+1,𝑖 ,𝑍𝑖+1,𝑖+1 ((𝑀𝑧 (𝑍𝑖+1,𝑖 )−
𝑍𝑖+1,𝑖+1)2 |𝑥)). For clarity, we use the subscript of E to denote the
variable for this expectation. Furthermore, the two-layer nested
expectations can be reduced to the form of a unified expectation
E𝑍𝑖+1,𝑖 ,𝑍𝑖+1,𝑖+1 (𝑀𝑧 (𝑍𝑖+1,𝑖 )−𝑍𝑖+1,𝑖+1)2.We plus andminus𝐸 (𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 )
at the same time and then we get E𝑍𝑖+1,𝑖 ,𝑍𝑖+1,𝑖+1 (A−B)2. We expand
the E𝑍𝑖+1,𝑖 ,𝑍𝑖+1,𝑖+1 (A − B)2 and then get E[A2] − 2E[(A)(B)] +
E[B2]. We take a further look at the middle term E((A)(B)) and
find it is equal to zero, as shown in the next paragraph. Thus, the
Lemma 1 holds.

Now we prove that the E[(A)(B)] is equal to 0. Since there are
two variables in E[(A)(B)] : the 𝑍𝑖+1,𝑖+1 and the 𝑍𝑖+1,𝑖 , we can
transform theE[(A)(B)] intoE𝑍𝑖+1,𝑖 [E𝑍𝑖+1,𝑖+1 [(A)(B)|𝑍𝑖+1,𝑖 ]].When
𝑍𝑖+1,𝑖 is given, the first multiplier in the inner expectation is a
constant and can be moved to the outside of the inner expecta-
tion. Then we get E[(A)(B)] = E𝑍𝑖+1,𝑖 [A · E𝑍𝑖+1,𝑖+1 [B|𝑍𝑖+1,𝑖 ]].
Recalling B = E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) − 𝑍𝑖+1,𝑖+1, when 𝑍𝑖+1,𝑖 is given,
E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) is a constant and can be moved to the outside
of the inner expectation. Then we get E[(A)(B)] = E𝑍𝑖+1,𝑖 [A ·
(E[𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ] −E[𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ])]. Thus, E[(A)(B)] is equal
to 0.

Lemma2.𝑀𝑧 (𝑍𝑖+1,𝑖 ) = E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ) is the optimal solution
to minimize 𝔈𝑧 .

Proof of Lemma 2. According to Lemma 1, 𝔈𝑧 = E[(𝑀𝑧 (𝑍𝑖+1,𝑖 ) −
E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ))2]−E[B2]. Only the first term involves𝑀𝑧 . Since
the first term is greater than or equal to 0, when𝑀𝑧 (𝑍𝑖+1,𝑖 ) takes the
formation ofE(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ),E[(𝑀𝑧 (𝑍𝑖+1,𝑖 )−E(𝑍𝑖+1,𝑖+1 |𝑍𝑖+1,𝑖 ))2]
reaches its minimum value of 0.

C PROOF OF THEOREM 2
Proof sketch of Theorem 2.We take a further look at the formation
of𝑀𝑧 and𝑀𝑥 . They can be transformed into affine functions of P𝑧

and P𝑥 . According to Stephen Boyd [2], when the inner function
of a composite function is an affine function and the outer function
is a convex function, the composite function is a convex function.
Thus, if L𝑥 and L𝑧 are convex functions, L(P𝑥 ,P𝑧) is convex.
Moreover, as the affine function is gradient Lipschitz continuous,
if the L𝑥 and L𝑧 are gradient Lipschitz continuous, L(P𝑥 ,P𝑧) is
gradient Lipschitz continuous by using the chain rule for deviation.

D PROOF OF RUMINATE BLOCK
Proof of Ruminate block. Since the 𝑋𝑖 [ 𝑗] is reconstructed from
𝑋𝑖+1 [ 𝑗], it is assumed that they have the approximately same latent
vector. It is also assumed that the reconstructed data can approxi-
mate the original data. The proof is shown in Eq.10-Eq.11, where
𝑝 (𝑧) follows the normal distribution which is also assumed by [12].

E(𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) =
∫
𝑧

𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑝 (𝑧 )𝑧∫
𝑧
𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑝 (𝑧 )𝑑𝑧

𝑑𝑧

=
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑧 ]
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 ) ]

(10)

E(𝑍𝑖+1 [ 𝑗]𝑇𝑍𝑖+1 [ 𝑗] |𝑋𝑖+1 [ 𝑗]) =
∫
𝑧

𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑝 (𝑧 )𝑧𝑇 𝑧∫
𝑧
𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑝 (𝑧 )𝑑𝑧

𝑑𝑧

=
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 )𝑧𝑇 𝑧 ]
E𝑧∼𝑝 (𝑧) [𝑝 (𝑋̃𝑖+1,𝑖 [ 𝑗 ] |𝑧 )𝑝 (𝑋𝑖 |𝑍𝑖+1,𝑖 ) ]

(11)

E MULTI-RUN EXPERIMENTS FOR
DIFFERENT SEEDS

Random seeds introduce significant uncertainty in the training of
neural networks. To verify that the results in Tab.2 are not obtained
occasionally, we make multi-run experiments for 10 randomly cho-
sen seeds on SMD. The average precisions, recalls and F1 scores
are shown in Tab.6. Since Jumpstarter is not a neural network, the
multi-seed experiments are not applicable to it. It is proven that the
average metrics of multi-run experiments are similar to the results
in Tab.2.

F INTRODUCTION OF THE BASELINES
• Donut [34] is one of the prominent time series anomaly detection
methods, which improves the F1 score by using modified ELBO,
missing data injection and MCMC imputation.
• OmniAnomaly [28] is one of widely-recognized anomaly detec-
tion methods. It uses a recurrent neural network to learn the normal
pattern of multivariate time series unsupervisely.
• MSCRED [36] is another widely-recognized anomaly detection
method, which uses the ConvLSTM and convolution layer to en-
code and decode a signature matrix and can detect anomalies with
different lasting length.
• DVGCRN [4] is a recent method and has reported high F1 score
on their datasets. It models channel dependency and stochasticity
by an embedding-guided probabilistic generative network. Fur-
thermore, it combines Variational Graph Convolutional Recurrent
Network (VGCRN) to model both temporal and spatial dependency
and extend the VGCRN to a deep network.
• ProS [13] aims at improving the anomaly detection performance
on target domains by transferring knowledge from related domains
to deal with target one. It is suitable for semi-supervised learn-
ing and unsupervised one. For fairness, we use its unsupervised
learning as the others are unsupervised.
• JumpStarter [17] also aims to shorten the initialization time when
distribution changes. It mainly uses a Compressed Sensing tech-
nique. Moreover, it introduces a shape-based clustering algorithm
and an outlier-resistant sampling algorithm to support multivariate
time series anomaly detection.
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Table 6: Average precision, recall and F1 score for 10 seeds on SMD.

LARA MSCRED Omni ProS VAE JumpStarter DVGCRN AnomalyTrans Donut
precision 0.882 0.859 0.791 0.246 0.200 - 0.762 0.849 0.770
recall 0.971 0.967 0.904 1.000 0.754 - 0.698 0.962 0.894
F1 0.923 0.908 0.837 0.334 0.298 - 0.709 0.901 0.819

• AnomalyTransformer [35] is one of the latest and strongest anom-
aly detection methods. It proposes an Anomaly-Attention mecha-
nism and achieves high F1 scores on many datasets.
• VAE [12] is one of the classic methods for anomaly detection
and is the root of lots of nowadays outstanding methods. It uses
stochastic variational inference and a learning algorithm that scales
to large datasets.
• Variants of LARA. LARA is used to retrain two deep VAE-based
methods: Donut [34] and OmniAnomaly [28], which are denoted

by LARA-I and LARA-II respectively. To verify the improvement
of our retraining approach, we design a controlled experiment. We
use LARA-X‡ to denote that LARA-X is trained on old distribution
and tested on new distribution without retraining, where X can be
I or II. We use LARA-X† to denote that LARA-X is trained on old
distribution and tested on new distribution with retraining with a
small amount of data.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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