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Abstract

In this paper, we introduce a novel Face-to-Face001
spoken dialogue model. It processes audio-002
visual speech from user input and generates003
audio-visual speech as the response, marking004
the initial step towards creating an avatar chat-005
bot system without relying on intermediate006
text. To this end, we newly introduce Multi-007
Dialog, the first large-scale multimodal (i.e.,008
audio and visual) spoken dialogue corpus con-009
taining 387 hours of approximately 10,000 di-010
alogues, recorded based on the open domain011
dialogue dataset, TopicalChat. The MultiDia-012
log contains parallel audio-visual recordings of013
conversation partners acting according to the014
given script with emotion annotations, which015
we expect to open up research opportunities in016
multimodal synthesis. Our Face-to-Face spo-017
ken dialogue model incorporates a textually018
pretrained large language model and adapts it019
into the audio-visual spoken dialogue domain020
by incorporating speech-text joint pretraining.021
Through extensive experiments, we validate022
the effectiveness of our model in facilitating a023
face-to-face conversation. All the data will be024
open-sourced.025

1 Introduction026

Spoken Dialogue System (SDS), often referred to027

as a conversational agent, engages in natural speech028

conversations with humans by recognizing speech029

from user input and providing contextually appro-030

priate and accurate responses with speech. With031

spoken language as the primary interface, it has nu-032

merous applications for human-computer interac-033

tions such as customer service and voice assistants.034

However, when people communicate face-to-035

face, we utilize not only audio but also visual in-036

formation of the conversing partner to process spo-037

ken words and non-verbal cues (i.e., facial expres-038

sions, gestures, and emotions) (Petridis et al., 2018;039

Hong et al., 2023). This multimodal information040

enhances understanding of the speech content and 041

the speaker’s intent. Furthermore, having a visual 042

counterpart to audio can simulate a real face-to- 043

face conversation experience, making the user feel 044

more connected and engaged. 045

In this paper, we explore an audio-visual spo- 046

ken dialogue system to facilitate direct face-to-face 047

conversation for the first time. Central to the devel- 048

opment of dialogue systems is the large amount of 049

high-quality dialogue data. Current dialogue sys- 050

tems are predominantly text-based, driven by the 051

abundance of text dialogue datasets (Lowe et al., 052

2015; Li et al., 2017; Zhang et al., 2018; Rashkin 053

et al., 2018; Budzianowski et al., 2018; Zhou et al., 054

2018; Reddy et al., 2019; Lambert et al.; Ding et al., 055

2023; Köpf et al., 2023). Recently, several audio 056

dialogue datasets have been released (Lee et al., 057

2023; Si et al., 2023; Nguyen et al., 2023a) which 058

augment existing text dialogue data (Li et al., 2017; 059

Budzianowski et al., 2018) with speech. How- 060

ever, those with visual components remain limited 061

in scale, comprising less than 15 hours in total 062

(Busso et al., 2008; Poria et al., 2018). Addressing 063

this data gap, we introduce MultiDialog, the first 064

large-scale audio-visual spoken dialogue corpus. It 065

consists of 387 hours of audio-visual recordings 066

of approximately 10,000 dialogues, derived from 067

open-domain text dialogue dataset, TopicalChat 068

(Gopalakrishnan et al., 2023) which is an exten- 069

sive multi-turn dialogue corpus collected from real 070

conversations covering 9 broad topics. The pro- 071

posed MultiDialog consists of emotion annotations 072

for each utterance and simultaneous recordings of 073

both the listener and speaker, presenting opportu- 074

nities for diverse research; from face-to-face dia- 075

logue system to talking face synthesis (Park et al., 076

2022; Zhang et al., 2023b), listener’s face synthesis 077

(Song et al., 2023; Zhou et al., 2023), and emotion- 078

conditioned face synthesis (Goyal et al., 2023). 079

Based on the MultiDialog dataset, we propose 080

the first audio-visual spoken dialogue model that 081
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Dataset # Dialogues # Turns Length (hrs) Audio Text Video Emotion

IEMOCAP (Busso et al., 2008) 151 10,039 12 ✓ ✓ ✓ ✓

DSTC2 (Henderson et al., 2014) 1,612 23,354 32 ✓ ✓ ✗ ✗

MELD (Poria et al., 2018) 1,433 13,000 13.7 ✓ ✗ ✓ ✓

DailyTalk (Lee et al., 2023) 2,514 23,774 21.7 ✓ ✓ ✗ ✗

Expresso (Nguyen et al., 2023a) 391 2,400 47 ✓ ✓ ✗ ✓

SpokenWOZ (Si et al., 2023) 5,700 203,074 249 ✓ ✓ ✗ ✗

MultiDialog 9,920 198,400 387 ✓ ✓ ✓ ✓

Table 1: Comparison of MultiDialog dataset with publicly available multimodal dialogue datasets.

can directly process audio-visual speech as user082

input and generate audio-visual speech as the out-083

put response. Motivated by the recent success of084

the direct spoken dialogue model using discretized085

speech tokens (Nguyen et al., 2023b; Zhang et al.,086

2023a), we introduce audio-visual (AV) speech to-087

kens extracted by quantizing audio-visual speech088

features from a self-supervised model (Shi et al.,089

2021). Utilizing the AV speech tokens as pseudo090

texts, we integrate AV speech into a pretrained091

large-language model (LLM) (Zhang et al., 2022)092

through joint speech-text pretraining. The response093

is also returned in AV speech tokens, and it is syn-094

thesized into a talking face video for direct face-to-095

face interaction between the systems.096

Our contributions are in three folds: (1) We intro-097

duce the first direct Face-to-Face dialogue model098

which processes multimodal speech from user in-099

put and generates multimodal speech as the output100

response, facilitating a face-to-face conversation101

system. (2) To build a face-to-face dialogue sys-102

tem, we propose the first large-scale multimodal103

(i.e.,audio, visual, and text) dialogue corpus, Mul-104

tiDialog consisting of approximately 400 hours of105

audio-visual conversation streams. (3) We demon-106

strate that speech-text joint pretraining leveraging107

a pre-trained large language model improves upon108

direct initialization in retaining knowledge of the109

original large language model.110

2 Related Work111

2.1 Spoken Dialogue Dataset112

In recent years, the development of speech dia-113

logue datasets has played a pivotal role in under-114

standing human behavior and building spoken dia-115

logue systems that emulate real-life conversations.116

Early speech datasets focus on analyzing human117

behavior such as emotion and intent in speech, es-118

tablishing the foundation for spoken dialogue sys-119

tems. IEMOCAP (Busso et al., 2008) and MELD120

(Poria et al., 2018), comprising audio and video121

recordings of dialogues, are designed to study emo- 122

tional dynamics in conversations. In addition to 123

understanding emotions, DSTC2 (Henderson et al., 124

2014) presents telephone-based speech dialogues 125

for dialogue state tracking to predict user’s goals. 126

Building upon datasets that study human behavior 127

in speech, recent spoken dialogue datasets were 128

built to model realistic dialogue systems. Expresso 129

(Nguyen et al., 2023a) introduces speech dialogues 130

spanning 26 expressive styles for natural speech 131

synthesis. DailyTalk (Lee et al., 2023) and Spoken- 132

WOZ (Si et al., 2023) datasets introduce speech- 133

text conversations for spoken dialogues. While ex- 134

isting works have contributed to advancing spoken 135

conversation systems, dialogue datasets are limited 136

in scale and solely consist of audio and text, thereby 137

constraining the development of audio-visual spo- 138

ken dialogue systems incorporating visual cues. To 139

address these limitations, we expand the spoken 140

dialogue in scale and to the visual modality and in- 141

troduce a large-scale multimodal spoken dialogue 142

dataset. A summary of existing multimodal dia- 143

logue datasets and MultiDialog is in Table 1. 144

2.2 Spoken Dialogue Models 145

Audio Language Model, driven by transformer- 146

based architecture, has made remarkable strides in 147

speech processing. By treating continuous speech 148

as a discrete set of representations, speech can 149

be effectively modeled as text, allowing the ap- 150

plication of Natural Language Processing (NLP) 151

techniques. While it has made notable progress 152

in speech synthesis (Lakhotia et al., 2021; Borsos 153

et al., 2023; Wang et al., 2023a; Hassid et al., 2023; 154

Nachmani et al., 2023), speech translation (Bar- 155

rault et al., 2023; Dong et al., 2023; Rubenstein 156

et al., 2023), and speech recognition (Wang et al., 157

2023b), spoken dialogue system is a relatively un- 158

explored field of research due to the scarcity of 159

spoken dialogue datasets. Several works made an 160

effort to tackle data issues by leveraging the power 161

of large language models (LLMs). SpeechGPT 162
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MultiDialog Statistics
# dialogues 9,920
# turns 108,624
# utterances 217,248
avg # turns/dialogue 11.0
avg length/turns (s) 12.8
avg length/dialogue (s) 140.2
total length (hr) 387
# speakers 12
# dialogues/speaker 826.7

Table 2: Datailed statistics of MultiDialog

(Zhang et al., 2023a) first converts speech into dis-163

crete speech tokens, and then designs a three-stage164

training pipeline on paired speech data, speech in-165

struction data, and chain-of-modality instruction166

data. AudioGPT (Huang et al., 2023) instructs167

LLMs to generate commands for controlling exter-168

nal tools before inputting them into the LLMs. d-169

GSLM (Nguyen et al., 2023b) models two-channel170

conversations to produce natural turn-taking con-171

versations.172

There are Multimodal Large Language Models173

(MM-LLM) (Wu et al., 2023; Gong et al., 2023)174

capable of processing both visual input and output.175

However, they are visual grounding dialogue sys-176

tems that use visual information as supplementary177

for tasks such as image captioning and image edit-178

ing. In contrast, we aim to build an audio-visual179

spoken dialogue system (i.e., facial movement re-180

lated to the speech) to enhance the understanding181

of speech content and enrich the communication182

experience, emulating a real face-to-face conversa-183

tion.184

3 MultiDialog Dataset185

3.1 Preparation186

To obtain audio-visual recordings of dialogues, we187

gathered 12 fluent English speakers, with vary-188

ing gender, age, and nationality. The participants,189

aged 20 to 25, came from six different countries,190

with six female and six male actors. We derived191

dialogue scripts from the open-domain dialogue192

dataset, TopicalChat (Gopalakrishnan et al., 2023)193

which is a rich knowledge-grounded dataset col-194

lected from real human-human conversations. It195

spans eight broad topics including fashion, politics,196

books, sports, general entertainment, music, sci-197

ence & technology, and movies. It is annotated for198

eight emotions: Disgusted, Angry, Fearful, Happy,199

Sad, Surprised, Neutral, and Curious to dive deeper.200

The conversation partners don’t have explicitly de- 201

fined roles as ‘speaker’ or ‘listener’ so they inter- 202

act naturally similar to how people engage in real- 203

world conversations. Due to the topical variety, 204

emotion annotation, and representation of natural 205

human conversations, we chose TopicalChat as the 206

foundation for constructing a multimodal dialogue 207

dataset. 208

3.2 Recording 209

Data was recorded in a professional recording stu- 210

dio with a green screen and minimal background 211

noise, shown in Appendix A.2. During a recording 212

session, two conversation partners sat side-by-side 213

and were recorded with a separate camera and a 214

microphone. The camera position was adjusted 215

according to the individual’s height to capture the 216

upper body, starting from the shoulders. The par- 217

ticipants were asked to act according to a given 218

script conveying the desired emotion annotation 219

for each utterance. We specifically provided emo- 220

tion instructions for visual cues based on the Facial 221

Action Coding System (Ekman and Friesen, 1978) 222

(i.e., happy: cheek raiser, lip corner puller) and 223

for audio cues based on prosody (i.e., happy: high 224

pitch, normal loudness). For recordings, we com- 225

bined the emotion labels ‘Neutral’ and ‘Curious 226

to dive deeper’ into a single label ‘Neutral’ due to 227

the lack of visually apparent difference between 228

the two. Moreover, when the turn passes to an- 229

other participant, they naturally react while listen- 230

ing. Participants were instructed to press a button 231

to proceed to the next utterance, which recorded the 232

start and end times of each turn for post-processing. 233

The audio streams were recorded in a mono WAV 234

format at 48kHz and the video streams in full HD 235

at 30fps. 236

3.3 Post-Processing 237

To refine the data, we had an annotator go through 238

the audio-visual recordings to check if there were 239

any misalignments between the audio and visual 240

streams. We asked the annotator to manually adjust 241

the misalignments by sliding the start time. Addi- 242

tionally, we filtered out recordings without either 243

audio or visual streams. Then, we segmented the 244

recordings into conversations and turns based on 245

the recorded timesteps of each turn. The MultiDia- 246

log dataset consists of approximately 400 hours of 247

audio-visual videos of 10,000 dialogues between 6 248

pairs of conversation partners. The final statistics 249

of our dataset are shown in Table 2. 250
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Audio-Visual Spoken Dialogue LM

OPT

AV-HuBERT

Quantizer

Length Predictor

<𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈> <𝑆𝑆> 4 634 78111128 …

Token-based
Face Decoder

Token-based
Speech Decoder

<𝐴𝐴𝐴𝐴> <𝑆𝑆> 33 84 718918 …

Iterative 
Sampling 

“It is very necessary for 
communication purpose”

Transcription:

“How do you feel about 
internet these days?”  

Transcription:

Target IdentityTarget Identity

<𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈> Start of User Input Token
<𝐴𝐴𝐴𝐴> Start of AI Response Token
<𝑆𝑆> Start of AV Speech Token

AV Speech Token

Initialized 

Figure 1: Overview of the proposed framework for multimodal spoken dialogue language modeling. With the
AV speech tokens as the pseudo-texts, it can process audio-visual face video from the user input and generate
corresponding response as audio-visual face video.

4 Audio-Visual Spoken Dialogue System251

Based on the proposed MultiDialog dataset, we252

introduce an audio-visual spoken dialogue system253

that directly understands the audio-visual of the254

user’s face video and generates appropriate re-255

sponses with audio-visual face video. It consists of256

three main parts: 1) Encoding audio-visual speech257

into discrete representations, namely audio-visual258

(AV) speech tokens. 2) Conducting multimodal259

spoken dialogue language modeling using the AV260

speech tokens as pseudo texts. 3) Projecting the261

output AV speech tokens into the audio and visual262

space for direct face-to-face dialogue.263

4.1 Audio-Visual Speech Encoding264

By integrating both audio and visual modalities,265

we can improve the dialogue system’s understand-266

ing of the speech content. This is because speech267

not only comprises auditory signals but also visual268

cues from the movements of the speaker’s mouth.269

This visual information complements auditory sig-270

nals, particularly in noisy environments, resulting271

in more robust performance (Afouras et al., 2018).272

To this end, we adopt a unified approach to273

model both the audio and visual of talking face274

input into audio-visual speech tokens. Motivated275

by the recent success of utilizing discrete speech276

tokens extracted from self-supervised speech mod- 277

els (Schneider et al., 2019; Baevski et al., 2020; 278

Hsu et al., 2021; Chung et al., 2021; Babu et al., 279

2021) in speech processing (Lakhotia et al., 2021; 280

Lee et al., 2021; Maiti et al., 2023; Kim et al., 281

2023), we tokenize the audio and visual streams 282

into audio-visual speech tokens (a.k.a. AV speech 283

tokens). Specifically, we employ one of the mul- 284

timodal speech models, AV-HuBERT (Shi et al., 285

2021), a state-of-the-art self-supervised framework 286

for understanding speech by both seeing and hear- 287

ing. It is trained on raw audio-visual face videos 288

to predict discrete clusters from speech (Hassid 289

et al., 2023). The audio-visual speech features are 290

extracted and quantized into discrete tokens as in 291

(Lakhotia et al., 2021; Popuri et al., 2022; Kim 292

et al., 2024). By combining the visual cues and 293

the auditory information, the audio-visual speech 294

tokens extract both linguistic and phonetic infor- 295

mation. Then, we treat the AV speech tokens as 296

pseudo text to train our Audio-Visual Spoken Dia- 297

logue LM. 298

4.2 Audio-Visual Spoken Dialogue Language 299

Modeling 300

As shown in Fig. 1, our audio-visual spoken dia- 301

logue language model is trained with the AV speech 302

tokens on our MultiDialog dataset. Previous work 303
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(Hassid et al., 2023) showed that initializing a304

speech language model with a textually pretrained305

language model (LLM) leads to better performance306

and faster convergence. Accordingly, we use a pre-307

trained LLM, OPT-1.3B (Zhang et al., 2022) to308

initialize our model and combine the vocabulary of309

AV speech tokens with the original text vocabulary,310

as in (Zhang et al., 2023a; Nachmani et al., 2023;311

Maiti et al., 2023). This allows us to jointly model312

the probability of both AV speech tokens and text313

tokens t, where the loss can be represented as,314

L = −
N∑
i=1

log p(ti | t1, ..., ti−1), (1)315

which is the negative log-likelihood of predicting316

the next token in the sequence of length N tokens.317

Motivated by the joint speech-text training318

used in speech processing tasks such as speech319

translation, audio speech recognition, and text-320

to-speech synthesis (Cheng et al., 2023; Maiti321

et al., 2023; Dong et al., 2023; Wang et al.,322

2023b), we newly introduce a joint speech-text323

pre-training scheme tailored for spoken dialogue324

language modeling. In our setting, each dialogue325

D = [T ai
1 , T user

1 , T ai
2 , T user

2 , . . . , T ai
k , T user

k ] con-326

sists of k rounds of turns T between two speakers327

which we randomly designate as the AI and the328

User. The goal of this pre-training is to effectively329

transform the text-based LLM into the AV speech330

token-based LLM, enabling it to produce relevant331

AV speech responses from the AI side given a con-332

versation context. It proceeds in the following two333

stages:334

The first stage is instructing the LLM to inter-335

pret and generate AV speech tokens. We segment336

the dialogue into turns T and prepare paired AV337

speech tokens and text tokens. We then concate-338

nate the pair with their respective modality prefix339

tokens, <speech> and <text>, to indicate the begin-340

ning of text and AV speech tokens. Adding the341

reversed order of concatenation, we construct both342

audio-visual speech recognition (AVSR) and text-343

to-speech generation (TTS) training objectives as344

shown in Fig. 2(a) and (b). Only the embedding345

layer and the projection layer are trained in this346

first stage, which guides the LLM to understand347

and generate AV speech tokens while fully retain-348

ing the given LLM knowledge needed for dialogue349

generation.350

The second stage is jointly learning the text and351

AV speech token-based dialogue. We select either352

(a) AV Speech to Text Token (AVSR) 
• <Speech> 7 495 123 495 7 21 495 21 495 ... 118 
<Text> Are you a football fan? 

(b) Text to AV Speech Token (TTS) 
• <Text> I know. I think because the league prefers 
offense over defense nowadays. <Speech> 7 381 17 
338 21 123 57 123 329 ... 11 

(c) Mixed Text and AV Speech Token Dialogue 
• <User> <Text> do you like drama? <AI> <Speech> 7 
278 123 7 21 278 123 21 7 ... 212 <User> <Text> 
Yeah. Do you like Jim Carrey? <AI> <Speech> 7 278 
123 278 123 278 161 7 406 ... 2 <User> <Text> Yes 
as they do not project positivity <AI> <Text> Yes. 
Do you listen to radio dramas?

(d) AV Speech Token Dialogue 
• <User> <Text> 7 123 381 123 7 402 437 21 413 ... 38 
<AI> <Speech> 7 278 123 7 21 278 123 21 7 ... 212 
<User> <Text> 7 445 123 7 123 329 57 437 161 ... 2 
<AI> <Speech> 7 278 123 278 123 278 161 7 406 ... 2 
<User> <Text> 7 17 7 437 23 437 7 437 161 ... 225  
<AI> <Text> 7 278 123 278 123 21 7 437 380 ... 385

Figure 2: Constructed data based on the MultiDialog
dataset used for training the audio-visual speech dia-
logue model. (a-c) are joint pretraining of the audio-
visual speech and text tokens and (d) is used to finetune
the model.

one of the speakers as the AI which the model aims 353

to predict and indicate the start of the response 354

with additional speaker prefix tokens, <User> and 355

<AI>. The Speaker prefix token is followed by 356

modality prefix tokens, <Speech> and <Text>, to 357

indicate whether the utterance is in AV speech or 358

text as shown in Fig. 2(c). During the pretraining, 359

we evenly mix the use of AV speech tokens and 360

text which allows the model to utilize both token 361

knowledge to generate dialogue response. We pre- 362

train the entire model at this stage and we later 363

finetune on pure AV speech token-based dialogue 364

as in Fig. 2(d). 365

4.3 Audio-Visual Generation 366

The generated AV speech tokens are projected to 367

audio and visual to generate the response as a talk- 368

ing face video. As shown in Fig. 1, the audio-visual 369

generator consists of a length predictor, a token- 370

based speech decoder, and a token-based face de- 371

coder. Since our language model is trained with 372

duplicate reduced AV speech tokens, we train a 373

length predictor to first restore them back to their 374

original length. The token-based speech decoder 375

and token-based face decoder are adapted from an 376

off-the-shelf audio generator (Kong et al., 2020) 377

and a talking face generator (Prajwal et al., 2020) 378

respectively, where we train them to process AV 379

speech tokens as the input instead of raw audio. 380

Additionally, we incorporate speaker identity infor- 381

mation by extracting the speaker embedding (Jia 382
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Evaluation Prompt 
• <User> Hi, how are you doing today? <AI> 
• <User> Hi, how are you doing today? <AI> I am good, 
thanks. I'm wondering if you are a football fan like 
me? I know a lot of people are sad the season is 
over, especially since fantasy football is such a 
hit. <User> I like football, but I don't get much 
chance to watch. usually I try to catch the SB. <AI>

• <User> Hi, how are you doing today? <AI> I am good, 
thanks. I'm wondering if you are a football fan like 
me? I know a lot of people are sad the season is 
over, especially since fantasy football is such a 
hit. <User> I like football, but I don't get much 
chance to watch. usually I try to catch the SB. <AI> 
What is the SB? I know if fantasy football it's all 
about the picks and people plan for weeks. <User> 
Super Bowl. Sorry, should have made that clear. I've 
never played fantasy sports. What's the goal? How do 
you win? What do you win? <AI>  

Figure 3: Evaluation prompt of multimodal dialogue
language modeling. It is written in text for illustration
but the actual prompt is given as audio and visual.

et al., 2018) from a target identity sample audio.383

Also, the target identity’s face and pose prior are384

utilized as in (Prajwal et al., 2020), to enable the385

generation of talking face video with desired iden-386

tity.387

5 Experimental Setup388

5.1 Evaluation Metrics389

We evaluate the semantic quality and the generation390

quality of both audio and video. For the semantic391

quality, we first generate transcriptions from the392

synthesized audio-visual output using an off-the-393

shelf ASR model (Shi et al., 2021), and employ394

standard metrics used for text-based dialogue gen-395

eration: log-perplexity (PPL), BLEU, METEOR,396

F1, D-1, and D-2. The log-perplexity is calculated397

using Dialo-GPT model (Zhang et al., 2019) and it398

is calculated for each utterance and averaged across399

the test set. To measure the generation quality of400

video, we adopt metrics used for TFG. This in-401

cludes Fréchet Inception Distance (FID) (Heusel402

et al., 2017) to measure visual quality, and LSE-403

C and LSE-D (Prajwal et al., 2020) to measure404

the audio-visual synchronization. To evaluate the405

acoustic quality, we compute speaker similarity406

(SIM) between the given target sample and gen-407

erated speech using the WavLM-Base model for408

speaker verification (Chen et al., 2021). Please re-409

fer to the appendices for a detailed explanation of410

each metric.411

5.2 Implementation Details412

To encode AV speech tokens, we crop the video into413

the mouth region of size 96×96 using a face detec-414

tor (Deng et al., 2020) and a facial landmark detec-415

tor (Bulat and Tzimiropoulos, 2017), and resample416

the audio to 16kHz. We take English-trained AV- 417

HuBERT (Shi et al., 2021) and finetune it to predict 418

corresponding target clusters from HuBERT tok- 419

enizer (Hassid et al., 2023) which operates at 25Hz 420

with 500 clusters. We train it for 100k steps on 421

6 A6000 GPUs with a maximum token length of 422

2,000. 423

We initialize the model with a pre-trained lan- 424

guage model, OPT-1.3B (Zhang et al., 2022). We 425

first pretrain the input embedding layer and the 426

projection layer on AVSR and TTS objectives for 427

200K steps. Then, we continue training the entire 428

model on a mixture of text and AV speech token 429

dialogue for 5K steps, followed by finetuning for 430

additional 3K steps on AV speech token dialogue 431

only. We use a max token length of 700 on 4 A6000 432

GPUs. 433

The audio-visual generator is trained using 434

ground truth AV speech tokens. The token-based 435

speech decoder and length predictor are jointly 436

trained for 450K steps with a batch size of 32. For 437

training the token-based face decoder, we employ 438

the reprogramming strategy in (Choi et al., 2023) 439

and train an adapter layer consisting of two lay- 440

ers of transformer encoder to bridge between the 441

AV speech tokens and the corresponding audio fea- 442

tures of the TFG model (Prajwal et al., 2020). It 443

is trained for 250K steps with a batch size of 256. 444

We additionally incorporate a face enhancer (Wang 445

et al., 2021) to upsample the generated face video 446

into high resolution. 447

5.3 Baselines 448

Since there is no previous method that can directly 449

perform audio-visual spoken dialogue synthesis, 450

we compare with the recently proposed spoken dia- 451

logue systems, Speech-GPT (Zhang et al., 2023a) 452

and d-GSLM (Nguyen et al., 2023b). They support 453

only audio speech at both input and output. Addi- 454

tionally, we build a cascade system by integrating 455

a series of off-the-shelf pre-trained models: AVSR 456

(Anwar et al., 2023), LM (Tang et al., 2022), TTS 457

(Casanova et al., 2022), and TFG (Prajwal et al., 458

2020). Please note the objective of the comparisons 459

with the cascaded method is not to achieve state-of- 460

the-art performance, but rather to assess the extent 461

to which the performance of the proposed system 462

can be attained through the direct strategy. For a 463

fair comparison, we finetune SpeechGPT and d- 464

GSLM on our MultiDialog dataset and we use a 465

dialogue language model (Tang et al., 2022) trained 466

on TopicalChat as the LM of the cascade system. 467
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Method Input
Modality

Output
Modality

Semantic Evaluation

PPL ↓ BLEU ↑ METEOR ↑ F1 ↑ D-1 ↑ D-2 ↑
• Ground Truth

GT AV Speech Token – – 1054.643 76.326 0.565 0.474 0.947 0.996

• Cascaded System

AVSR + LM + TTS + TFG AV AV 1157.586 47.287 0.075 0.100 0.959 0.977

• Spoken Dialogue System

SpeechGPT (Zhang et al., 2023a) A A 930.401 20.536 0.0640 0.0542 0.743 0.876

d-GSLM (Nguyen et al., 2023b) A A 1085.265 8.197 0.065 0.064 0.883 0.876

• Audio-Visual Spoken Dialogue System

Scratch AV AV 1898.864 13.305 0.058 0.064 0.945 0.955

+ LLM initialized AV AV 1237.757 17.098 0.059 0.058 0.936 0.963

+ AVSR/TTS Pretraining AV AV 1068.904 22.090 0.062 0.066 0.943 0.965

+ Mixed Text-AV Speech Pretraining AV AV 1248.001 24.094 0.063 0.065 0.945 0.957

Table 3: Comparison of the semantic quality between state-of-the-art spoken dialogue systems. Note that our
proposed method is the only method that supports both audio and visual at the input and output of the dialogue
system without relying on intermediate text.

6 Results468

6.1 Semantic Evaluation469

To accurately assess the semantic quality of the470

generated response, we employ the evaluation strat-471

egy used for text-based dialogue language models.472

We conduct evaluations on the test set of MultiDia-473

log, where the model is prompted to sequentially474

generate a response for each turn in the conversa-475

tions. Sample evaluation prompts are illustrated476

in Figure 3. The generated response is then tran-477

scribed into text and compared against the ground478

truth response to evaluate its semantic quality. As479

shown in Table 3, compared with the state-of-the-480

art spoken dialogue systems, SpeechGPT (Zhang481

et al., 2023a) and d-GSLM (Nguyen et al., 2023b),482

our proposed method performs the best in BLEU,483

D-1, and D-2 which demonstrates that our method484

can generate contextually coherent and diverse re-485

sponse. SpeechGPT has the highest PPL because486

it is trained on an extensive amount of speech data487

and PEFT-finetuned (Hu et al., 2021) on the Mul-488

tiDialog, which allows it to generate more fluent489

speech but fails to match with the reference re-490

sponse as indicated by the lower BLEU score. Also,491

it requires generating text transcription of the input492

to generate the response in text first. Notably, our493

proposed method stands as the first approach to494

directly recognize and generate response in audio-495

visual speech video, without requiring intermediate496

text generation.497

6.2 Ablation on the Pretraining Scheme498

We analyze the pretraining scheme used for our499

audio-visual spoken dialogue model in the lower500

Method FID ↑ LSE-C ↑ LSE-D ↓ SIM ↑
• Cascade System

AVSR + LM + TTS + TFG 30.581 7.041 7.640 0.433

• Spoken Dialogue System

SpeechGPT (Zhang et al., 2023a) - - - 0.194

d-GSLM (Nguyen et al., 2023b) - - - 0.211

• Audio-Visual Spoken Dialogue System

Proposed 30.323 7.298 7.390 0.624

Table 4: Evaluation of the audio and visual generation
quality. Note that we evaluate the reconstructed audio
and visual output of selected 300 videos from the test
set.

section of Table 3. The results demonstrate that 501

initializing the model with a textually pretrained 502

LLM yields improved semantic quality, which is 503

further enhanced by AVSR/TTS pretraining. Sim- 504

ply training the embedding layer and projection 505

layer to predict corresponding AV speech tokens 506

and text tokens improves the response. However, 507

when incorporating mixed text-AV speech token 508

pretraining, we observe an overall enhancement in 509

semantic quality, albeit with a slight decrease in 510

the PPL score, which we attribute to the model’s in- 511

creased complexity and adaptability to multimodal 512

inputs. 513

6.3 Audio and Visual Evaluation 514

We evaluate the audio and visual generation quality 515

in Table 4. Our token-based speech decoder, en- 516

riched with speaker embedding, achieves the high- 517

est speaker similarity score (SIM). When assessing 518

visual quality, we compared it with the cascaded 519

system, which generates audio-visual videos from 520

TFG (Prajwal et al., 2020). While our FID score is 521

comparable, our approach exhibits superior audio- 522

visual synchronization, due to the utilization of dis- 523
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<User>: Do you watch the NFL? <AI>: I sure do. How about yourself? <User>: Me too. Did you know women can 
play in the NFL too?

<AI>: I did not know that, that is really
cool!

<User>: Boy, I miss football season. I 
love ESPN’s Monday night football 
offerings. What about you? 

<AI>: I don't really watch it though 
sometimes I inadvertently end up 
watching Thursday Night Football

<User>:  Ah, yes. … Did you know ABC is the 
only one of the 4 major broadcast networks 
without a prime-time NFL game?

<AI>: That is right. I find it interesting that 
football can burst click for 75 million 
dollars back in the end.

(a)

(b)

<User>:Hi are you a football fan? <AI>: Yes. I like a football.

(d)

<User>:Are you a fan of drama films? <AI>: Yes, friend. What about yourself?

(e)

<User>: I was unaware that the top 
bowlers in the 60s made as much as top 
football stars.

<AI> Yeah, most football players had regular 
jobs when they weren't playing so I guess 
it's not unrealistic for top bowlers to make 
more than them during the 1960s 

<User>:  Yeah, crazy. ESPN won an Emmy for 
the creation of the superimposed yellow line 
that represents the 1st down marker.

<AI>: I never heard of those, but I can't 
imagine that.

(c)

Figure 4: Audio-visual dialogue generation results of the proposed method, where the last turn is the generated
audio-visual response. Note that we have randomly sampled three video frames from each turn for illustration. (a-c)
are conversations with four turns and (d-e) are with two turns, The generated response is in italics and we provide
ASR transcriptions below.

Method Input
Modality

SNR (dB)

-5 0 5 clean

Proposed
A 11.340 14.751 21.143 23.089

AV 13.853 18.144 21.186 24.094

Table 5: Dialogue response generation performance
(BLEU) with different input modalities under acoustic
noise corruption with different SNR levels (dB).

cretized audio-visual tokens, which provide clearer524

alignment between the audio and visual compo-525

nents.526

In Figure 5, we show the generated audio-visual527

response between the two partners along with tran-528

scriptions generated with ASR (Shi et al., 2021).529

Given a conversation context, our model generates530

the next response that is contextually coherent and531

adequate. For example, in Figure 5 (a), it answers532

the question asked by the user in the previous turn533

and responds accordingly about the chatting topic,534

NFL. Please refer to the demo for more demonstra-535

tions of the generated response.536

6.4 Robustness to Acoustic Noise537

In Table 5, we analyze the effectiveness of incorpo-538

rating additional visual modality into the dialogue539

system. Following (Shi et al., 2021), we corrupt the540

input speech with random noise of varying SNR541

levels. Compared with audio-only input, audio-542

visual input enhances the robustness of the system543

as indicated by less degradation of the performance544

under noisy conditions. It further demonstrates that 545

our system is applicable for real use in unstable 546

speech input scenario. 547

7 Conclusion and Limitation 548

We introduce a novel Face-to-Face spoken dia- 549

logue model that directly processes audio-visual 550

speech from the user input and generates audio- 551

visual speech response. This is the first step to- 552

ward creating a talking face avatar chatbot sys- 553

tem, without intermediate text in the generation 554

process. In addition, we release MultiDialog, the 555

largest multimodal dialogue dataset to date with 556

tri-modality (i.e., audio, visual, and text) spoken 557

dialogue data. As it is an extensive dataset that 558

captures real human-human conversation covering 559

broad topics, we believe it brings diverse research 560

opportunities for multimodal synthesis. The limi- 561

tation of our work is that although our dataset pro- 562

vides emotion labels for each utterance, we have 563

not yet made use of them in this work. We can 564

further incorporate emotion knowledge by recog- 565

nizing the emotion from the user’s face to gener- 566

ate more emotion-aware response which can be re- 567

flected in the speech content and facial expression. 568

Also, since our data provides parallel recordings 569

of the speaker and the listener, we can simultane- 570

ously model the generation of both faces to enable 571

smooth and continuous conversation. 572
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madan, and Milica Gašić. 2018. Multiwoz–a619
large-scale multi-domain wizard-of-oz dataset for620
task-oriented dialogue modelling. arXiv preprint621
arXiv:1810.00278.622

Adrian Bulat and Georgios Tzimiropoulos. 2017. How623
far are we from solving the 2d & 3d face alignment624
problem? (and a dataset of 230,000 3d facial land-625
marks). In International Conference on Computer626
Vision.627

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe 628
Kazemzadeh, Emily Mower, Samuel Kim, Jean- 629
nette N Chang, Sungbok Lee, and Shrikanth S 630
Narayanan. 2008. Iemocap: Interactive emotional 631
dyadic motion capture database. Language resources 632
and evaluation, 42:335–359. 633

Edresson Casanova, Julian Weber, Christopher D 634
Shulby, Arnaldo Candido Junior, Eren Gölge, and 635
Moacir A Ponti. 2022. Yourtts: Towards zero-shot 636
multi-speaker tts and zero-shot voice conversion for 637
everyone. In International Conference on Machine 638
Learning, pages 2709–2720. PMLR. 639

Sanyuan Chen, Chengyi Wang, Zhengyang Chen, 640
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki 641
Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, 642
Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian 643
Wu, Michael Zeng, and Furu Wei. 2021. Wavlm: 644
Large-scale self-supervised pre-training for full stack 645
speech processing. 646

Yong Cheng, Yu Zhang, Melvin Johnson, Wolfgang 647
Macherey, and Ankur Bapna. 2023. MuΘ2 slam: 648
Multitask, multilingual speech and language models. 649
In International Conference on Machine Learning, 650
pages 5504–5520. PMLR. 651

Jeongsoo Choi, Minsu Kim, Se Jin Park, and Yong Man 652
Ro. 2023. Reprogramming audio-driven talking 653
face synthesis into text-driven. arXiv preprint 654
arXiv:2306.16003. 655

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng 656
Chiu, James Qin, Ruoming Pang, and Yonghui Wu. 657
2021. W2v-bert: Combining contrastive learning 658
and masked language modeling for self-supervised 659
speech pre-training. In 2021 IEEE Automatic Speech 660
Recognition and Understanding Workshop (ASRU), 661
pages 244–250. IEEE. 662

Jiankang Deng, Jia Guo, Evangelos Ververas, Irene Kot- 663
sia, and Stefanos Zafeiriou. 2020. Retinaface: Single- 664
shot multi-level face localisation in the wild. In Pro- 665
ceedings of the IEEE/CVF conference on computer 666
vision and pattern recognition, pages 5203–5212. 667

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi 668
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun, 669
and Bowen Zhou. 2023. Enhancing chat language 670
models by scaling high-quality instructional conver- 671
sations. arXiv preprint arXiv:2305.14233. 672

Qianqian Dong, Zhiying Huang, Chen Xu, Yunlong 673
Zhao, Kexin Wang, Xuxin Cheng, Tom Ko, Qiao 674
Tian, Tang Li, Fengpeng Yue, et al. 2023. Polyvoice: 675
Language models for speech to speech translation. 676
arXiv preprint arXiv:2306.02982. 677

Paul Ekman and Wallace V Friesen. 1978. Facial ac- 678
tion coding system. Environmental Psychology & 679
Nonverbal Behavior. 680

Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, 681
Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, 682
Ping Luo, and Kai Chen. 2023. Multimodal-gpt: A 683

9

http://arxiv.org/abs/2110.13900
http://arxiv.org/abs/2110.13900
http://arxiv.org/abs/2110.13900
http://arxiv.org/abs/2110.13900
http://arxiv.org/abs/2110.13900


vision and language model for dialogue with humans.684
arXiv preprint arXiv:2305.04790.685

Karthik Gopalakrishnan, Behnam Hedayatnia, Qin-686
lang Chen, Anna Gottardi, Sanjeev Kwatra, Anu687
Venkatesh, Raefer Gabriel, and Dilek Hakkani-688
Tur. 2023. Topical-chat: Towards knowledge-689
grounded open-domain conversations. arXiv preprint690
arXiv:2308.11995.691

Sahil Goyal, Sarthak Bhagat, Shagun Uppal, Hitkul692
Jangra, Yi Yu, Yifang Yin, and Rajiv Ratn Shah.693
2023. Emotionally enhanced talking face generation.694
In Proceedings of the 1st International Workshop695
on Multimedia Content Generation and Evaluation:696
New Methods and Practice, pages 81–90.697

Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai Gat,698
Alexis Conneau, Felix Kreuk, Jade Copet, Alexan-699
dre Defossez, Gabriel Synnaeve, Emmanuel Dupoux,700
et al. 2023. Textually pretrained speech language701
models. arXiv preprint arXiv:2305.13009.702

Matthew Henderson, Blaise Thomson, and Jason D703
Williams. 2014. The second dialog state tracking704
challenge. In Proceedings of the 15th annual meet-705
ing of the special interest group on discourse and706
dialogue (SIGDIAL), pages 263–272.707

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,708
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans709
trained by a two time-scale update rule converge to a710
local nash equilibrium. Advances in neural informa-711
tion processing systems, 30.712

Joanna Hong, Minsu Kim, Jeongsoo Choi, and713
Yong Man Ro. 2023. Watch or listen: Robust audio-714
visual speech recognition with visual corruption mod-715
eling and reliability scoring. In Proceedings of the716
IEEE/CVF Conference on Computer Vision and Pat-717
tern Recognition, pages 18783–18794.718

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,719
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-720
rahman Mohamed. 2021. Hubert: Self-supervised721
speech representation learning by masked prediction722
of hidden units. IEEE/ACM Transactions on Audio,723
Speech, and Language Processing, 29:3451–3460.724

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan725
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,726
and Weizhu Chen. 2021. Lora: Low-rank adap-727
tation of large language models. arXiv preprint728
arXiv:2106.09685.729

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-730
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,731
Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al. 2023.732
Audiogpt: Understanding and generating speech,733
music, sound, and talking head. arXiv preprint734
arXiv:2304.12995.735

Ye Jia, Yu Zhang, Ron Weiss, Quan Wang, Jonathan736
Shen, Fei Ren, Patrick Nguyen, Ruoming Pang, Igna-737
cio Lopez Moreno, Yonghui Wu, et al. 2018. Trans-738
fer learning from speaker verification to multispeaker739

text-to-speech synthesis. Advances in neural infor- 740
mation processing systems, 31. 741

Minsu Kim, Jeongsoo Choi, Dahun Kim, and Yong Man 742
Ro. 2023. Many-to-many spoken language transla- 743
tion via unified speech and text representation learn- 744
ing with unit-to-unit translation. arXiv preprint 745
arXiv:2308.01831. 746

Minsu Kim, Jeong Hun Yeo, Jeongsoo Choi, Se Jin 747
Park, and Yong Man Ro. 2024. Multilingual visual 748
speech recognition with a single model by learning 749
with discrete visual speech units. arXiv preprint 750
arXiv:2401.09802. 751

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. 2020. 752
Hifi-gan: Generative adversarial networks for effi- 753
cient and high fidelity speech synthesis. Advances in 754
Neural Information Processing Systems, 33:17022– 755
17033. 756

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, 757
Sotiris Anagnostidis, Zhi-Rui Tam, Keith Stevens, 758
Abdullah Barhoum, Nguyen Minh Duc, Oliver Stan- 759
ley, Richárd Nagyfi, et al. 2023. Openassistant 760
conversations–democratizing large language model 761
alignment. arXiv preprint arXiv:2304.07327. 762

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu, 763
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh 764
Nguyen, Jade Copet, Alexei Baevski, Abdelrahman 765
Mohamed, et al. 2021. On generative spoken lan- 766
guage modeling from raw audio. Transactions of the 767
Association for Computational Linguistics, 9:1336– 768
1354. 769

Nathan Lambert, Nazneen Rajani Lewis Tunstall, and 770
Tristan Thrush. Huggingface h4 stack exchange 771
preference dataset. 2023. URL https://huggingface. 772
co/datasets/HuggingFaceH4/stack-exchange- 773
preferences. 774

Ann Lee, Hongyu Gong, Paul-Ambroise Duquenne, 775
Holger Schwenk, Peng-Jen Chen, Changhan Wang, 776
Sravya Popuri, Yossi Adi, Juan Pino, Jiatao Gu, et al. 777
2021. Textless speech-to-speech translation on real 778
data. arXiv preprint arXiv:2112.08352. 779

Keon Lee, Kyumin Park, and Daeyoung Kim. 2023. 780
Dailytalk: Spoken dialogue dataset for conversational 781
text-to-speech. In ICASSP 2023-2023 IEEE Interna- 782
tional Conference on Acoustics, Speech and Signal 783
Processing (ICASSP), pages 1–5. IEEE. 784

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, 785
and Bill Dolan. 2016. A diversity-promoting ob- 786
jective function for neural conversation models. In 787
Proceedings of the 2016 Conference of the North 788
American Chapter of the Association for Computa- 789
tional Linguistics: Human Language Technologies, 790
pages 110–119, San Diego, California. Association 791
for Computational Linguistics. 792

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang 793
Cao, and Shuzi Niu. 2017. Dailydialog: A manually 794
labelled multi-turn dialogue dataset. arXiv preprint 795
arXiv:1710.03957. 796

10

https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014


Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle797
Pineau. 2015. The ubuntu dialogue corpus: A large798
dataset for research in unstructured multi-turn dia-799
logue systems. arXiv preprint arXiv:1506.08909.800

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee-weon Jung,801
Xuankai Chang, and Shinji Watanabe. 2023. Voxtlm:802
unified decoder-only models for consolidating speech803
recognition/synthesis and speech/text continuation804
tasks. arXiv preprint arXiv:2309.07937.805

Eliya Nachmani, Alon Levkovitch, Julian Salazar,806
Chulayutsh Asawaroengchai, Soroosh Mariooryad,807
RJ Skerry-Ryan, and Michelle Tadmor Ramanovich.808
2023. Lms with a voice: Spoken language809
modeling beyond speech tokens. arXiv preprint810
arXiv:2305.15255.811

Tu Anh Nguyen, Wei-Ning Hsu, Antony d’Avirro,812
Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal Re-813
mez, Jade Copet, Gabriel Synnaeve, Michael Hassid,814
et al. 2023a. Expresso: A benchmark and analy-815
sis of discrete expressive speech resynthesis. arXiv816
preprint arXiv:2308.05725.817

Tu Anh Nguyen, Eugene Kharitonov, Jade Copet, Yossi818
Adi, Wei-Ning Hsu, Ali Elkahky, Paden Tomasello,819
Robin Algayres, Benoit Sagot, Abdelrahman Mo-820
hamed, et al. 2023b. Generative spoken dialogue821
language modeling. Transactions of the Association822
for Computational Linguistics, 11:250–266.823

Se Jin Park, Minsu Kim, Joanna Hong, Jeongsoo Choi,824
and Yong Man Ro. 2022. Synctalkface: Talking825
face generation with precise lip-syncing via audio-lip826
memory. In Proceedings of the AAAI Conference on827
Artificial Intelligence, volume 36, pages 2062–2070.828

Stavros Petridis, Themos Stafylakis, Pingehuan Ma,829
Feipeng Cai, Georgios Tzimiropoulos, and Maja Pan-830
tic. 2018. End-to-end audiovisual speech recognition.831
In 2018 IEEE international conference on acoustics,832
speech and signal processing (ICASSP), pages 6548–833
6552. IEEE.834

Sravya Popuri, Peng-Jen Chen, Changhan Wang, Juan835
Pino, Yossi Adi, Jiatao Gu, Wei-Ning Hsu, and Ann836
Lee. 2022. Enhanced direct speech-to-speech transla-837
tion using self-supervised pre-training and data aug-838
mentation. In Proc. Interspeech.839

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-840
jumder, Gautam Naik, Erik Cambria, and Rada Mi-841
halcea. 2018. Meld: A multimodal multi-party842
dataset for emotion recognition in conversations.843
arXiv preprint arXiv:1810.02508.844

Matt Post. 2018. A call for clarity in reporting bleu845
scores. arXiv preprint arXiv:1804.08771.846

KR Prajwal, Rudrabha Mukhopadhyay, Vinay P Nam-847
boodiri, and CV Jawahar. 2020. A lip sync expert848
is all you need for speech to lip generation in the849
wild. In Proceedings of the 28th ACM international850
conference on multimedia, pages 484–492.851

Hannah Rashkin, Eric Michael Smith, Margaret Li, and 852
Y-Lan Boureau. 2018. Towards empathetic open- 853
domain conversation models: A new benchmark and 854
dataset. arXiv preprint arXiv:1811.00207. 855

Siva Reddy, Danqi Chen, and Christopher D Manning. 856
2019. Coqa: A conversational question answering 857
challenge. Transactions of the Association for Com- 858
putational Linguistics, 7:249–266. 859

Paul K Rubenstein, Chulayuth Asawaroengchai, 860
Duc Dung Nguyen, Ankur Bapna, Zalán Borsos, 861
Félix de Chaumont Quitry, Peter Chen, Dalia El 862
Badawy, Wei Han, Eugene Kharitonov, et al. 2023. 863
Audiopalm: A large language model that can speak 864
and listen. arXiv preprint arXiv:2306.12925. 865

Steffen Schneider, Alexei Baevski, Ronan Collobert, 866
and Michael Auli. 2019. wav2vec: Unsupervised 867
pre-training for speech recognition. arXiv preprint 868
arXiv:1904.05862. 869

Bowen Shi, Wei-Ning Hsu, Kushal Lakhotia, and Ab- 870
delrahman Mohamed. 2021. Learning audio-visual 871
speech representation by masked multimodal cluster 872
prediction. In International Conference on Learning 873
Representations. 874

Shuzheng Si, Wentao Ma, Haoyu Gao, Yuchuan Wu, 875
Ting-En Lin, Yinpei Dai, Hangyu Li, Rui Yan, Fei 876
Huang, and Yongbin Li. 2023. Spokenwoz: A large- 877
scale speech-text benchmark for spoken task-oriented 878
dialogue agents. In Thirty-seventh Conference on 879
Neural Information Processing Systems Datasets and 880
Benchmarks Track. 881

Luchuan Song, Guojun Yin, Zhenchao Jin, Xiaoyi Dong, 882
and Chenliang Xu. 2023. Emotional listener portrait: 883
Realistic listener motion simulation in conversation. 884
In 2023 IEEE/CVF International Conference on Com- 885
puter Vision (ICCV), pages 20782–20792. IEEE. 886

Tianyi Tang, Junyi Li, Wayne Xin Zhao, and Ji-Rong 887
Wen. 2022. Mvp: Multi-task supervised pre-training 888
for natural language generation. arXiv preprint 889
arXiv:2206.12131. 890

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, 891
Long Zhou, Shujie Liu, Zhuo Chen, Yanqing Liu, 892
Huaming Wang, Jinyu Li, et al. 2023a. Neural codec 893
language models are zero-shot text to speech synthe- 894
sizers. arXiv preprint arXiv:2301.02111. 895

Tianrui Wang, Long Zhou, Ziqiang Zhang, Yu Wu, Shu- 896
jie Liu, Yashesh Gaur, Zhuo Chen, Jinyu Li, and 897
Furu Wei. 2023b. Viola: Unified codec language 898
models for speech recognition, synthesis, and trans- 899
lation. arXiv preprint arXiv:2305.16107. 900

Xintao Wang, Yu Li, Honglun Zhang, and Ying Shan. 901
2021. Towards real-world blind face restoration with 902
generative facial prior. In The IEEE Conference on 903
Computer Vision and Pattern Recognition (CVPR). 904

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat- 905
Seng Chua. 2023. Next-gpt: Any-to-any multimodal 906
llm. arXiv preprint arXiv:2309.05519. 907

11



Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan,908
Pengyu Wang, Yaqian Zhou, and Xipeng Qiu. 2023a.909
Speechgpt: Empowering large language models with910
intrinsic cross-modal conversational abilities. arXiv911
preprint arXiv:2305.11000.912

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur913
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-914
sonalizing dialogue agents: I have a dog, do you have915
pets too? arXiv preprint arXiv:1801.07243.916

Susan Zhang, Stephen Roller, Naman Goyal, Mikel917
Artetxe, Moya Chen, Shuohui Chen, Christopher De-918
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.919
Opt: Open pre-trained transformer language models.920
arXiv preprint arXiv:2205.01068.921

Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong922
Zhang, Xi Shen, Yu Guo, Ying Shan, and Fei Wang.923
2023b. Sadtalker: Learning realistic 3d motion coef-924
ficients for stylized audio-driven single image talking925
face animation. In Proceedings of the IEEE/CVF926
Conference on Computer Vision and Pattern Recog-927
nition, pages 8652–8661.928

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen,929
Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing930
Liu, and Bill Dolan. 2019. Dialogpt: Large-scale931
generative pre-training for conversational response932
generation. arXiv preprint arXiv:1911.00536.933

Kangyan Zhou, Shrimai Prabhumoye, and Alan W934
Black. 2018. A dataset for document grounded con-935
versations. arXiv preprint arXiv:1809.07358.936

Mohan Zhou, Yalong Bai, Wei Zhang, Ting Yao, and937
Tiejun Zhao. 2023. Interactive conversational head938
generation. arXiv preprint arXiv:2307.02090.939

A MultiDialog Dataset 940

A.1 Participant Recruitment 941

Prior to recording our dataset, we received an IRB 942

approval to collect facial video, speech, and text 943

data to build human multimodal dialogue technol- 944

ogy. We recruited students at a university who were 945

fluent in English and could fulfill the designated 946

portion of the dialogues. A recruitment notice in- 947

cluded general information about TopicalChat, the 948

dataset to be recorded, wage and responsibilities 949

of the participants, and potential effects and contri- 950

butions of building a multimodal dialogue dataset. 951

After receiving 25 applications, interviews were 952

conducted on all applicants. During the interview, 953

we notified that we will be collecting audiovisual 954

data of the participant during recording sessions, 955

which will be released to the research field in the 956

future. We also collected participant information 957

such as race, sex, nationality and age, agreement 958

to and assessed the English fluency, ability to read 959

and act out a given dialogue script with emotions, 960

and time availability of each participant. Two inter- 961

viewees in charge of the dataset collection selected 962

actors by ranking each participant on a scale of 1 to 963

5 on each criterion and considering the diversity of 964

participant demographic. Thus, six female and six 965

male actors from six different countries, and age 966

varying from 20 to 25 were selected. 967

After all participants were selected, we held an 968

orientation to guide participants on the recording 969

procedure. For a single recording session of three 970

hours, two participants were scheduled to film 50 971

to 60 conversations in TopicalChat. The number 972

of conversations to film in a session was calculated 973

based on a trial recording session, in which two 974

speakers filmed approximately 60 conversations 975

in a three-hour period, including breaks. Partici- 976

pants learned how to navigate through the dialogue 977

display program to start and end recording conver- 978

sations, and proceed to the next utterance. The dis- 979

play program showed the conversation script along 980

with the corresponding emotion for each utterance, 981

and the remaining number of conversations to film 982

in the current session. We notified each participant 983

to attach a microphone about 15 to 20 cm from 984

their mouth and adjust the camera to the shoulder 985

level before recording. Lastly, we collected consent 986

forms for providing personal information for com- 987

pensation and informed consent forms for human 988

subject research participants. 989

12



A.2 Recording Setup990

Fig. 5 shows the studio setup for recording sessions.991

Figure 5: Recording studio setup for MultiDialog
dataset992

A.3 Dataset Statistics993

Table 2 shows detailed statistics of MultiDialog.994

MultiDialog consists of 9,920 human-human con-995

versations, 106,624 turns, 218,248 utterances, to-996

talling to approximately 387 hours of audiovisual997

dialogue data. A single dialogue contains multiple998

turns, where each turn includes two utterances. An999

utterance is an instance of speech by one person fol-1000

lowed by silence or another person speaking. In our1001

dataset, a conversation averaged 11.0 turns, 21.91002

utterances, 140.2 seconds in length. 12 speakers1003

were paired to record an average of 826.7 dialogues1004

per person.1005

B Evaluation Metrics1006

BLEU (Post, 2018) evaluates the fluency and ad-1007

equacy of generated responses based on n-gram1008

overlap. A higher BLEU score indicates a more1009

natural and engaging dialogue model.1010

PPL (Bengio et al., 2000) measures how well a1011

language model predicts the generated response. A1012

lower perplexity indicates that the model is more1013

confident and accurate in predicting the next word,1014

suggesting higher quality in generating coherent1015

and contextually relevant responses.1016

DISTINCT-n (Li et al., 2016) evaluates the di-1017

versity of generated response by calculating the1018

percentage of unique n-grams in the set of re-1019

sponses. Specifically, D-1 measures the percentage1020

of unique unigrams in the generated text, while D-21021

measures the percentage of unique bigrams.1022

METEOR (Banerjee and Lavie, 2005) (Metric for 1023

Evaluation of Translation with Explicit Ordering) 1024

evaluates the quality of generated response by com- 1025

puting the alignment-based precision and recall 1026

between the generated output and the ground truth, 1027

considering synonyms and paraphrases. 1028

F1 (Banerjee and Lavie, 2005) combines the accu- 1029

racy of the generated response (precision) and the 1030

coverage of the relevant response (recall). It pro- 1031

vides a balanced measure of how well the model 1032

performs in generating relevant and accurate re- 1033

sponses. 1034

C Generation Results 1035

Please refer to the submitted demo video for more 1036

generation results. 1037
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