
Under review as a conference paper at ICLR 2022

ON EXPLORING NODE-FEATURE AND GRAPH-
STRUCTURE DIVERSITIES FOR NODE DROP GRAPH
POOLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph pooling is essential in learning effective graph-level representations. One
mainstream type of graph pooling is node drop pooling, which preserves the nodes
in graphs with top-k calculated significance scores. However, despite being com-
monly adopted, current node drop pooling methods generally ignore node di-
versity from the perspectives of node features and graph structures. Therefore,
they still obtain graph-level representations suboptimally. To address the issue
mentioned above, we propose a novel plug-and-play scheme, termed MID, us-
ing a Multidimensional score space with two score operations, i.e., flIpscore and
Dropscore, to explore the node-feature and graph-structure diversities in graphs.
Specifically, the multidimensional score space depicts the significance of nodes
through multiple criteria; the flipsscore encourages the maintenance of dissimi-
lar features, thus preserving the node-feature diversity; and the dropscore forces
the model to notice diverse graph structures instead of being stuck in significant
local structures. What is more, we evaluate our proposed MID by applying it to
a variety of popular node drop pooling methods, including TopKPool, SAGPool,
GSAPool, and ASAP. Extensive experiments on seventeen real-world graph clas-
sification datasets demonstrate that our proposed scheme efficiently and consis-
tently brings over 2.8% improvements in average when using different backbone
models and datasets. The datasets include FRANKENSTEIN, IMDB-B, IMDB-
M, REDDIT-B, COLLAB from the social domain and D&D, PROTEINS, NCI1,
MUTAG, PTC-MR, NCI109, ENZYMES, MUTAGENICITY, HIV, BBBP, TOX-
CAST, TOX21 from the biochemical domain.1

1 INTRODUCTION

Graph Neural Networks (GNNs) have achieved excellent performance on a wide range of graph-
based tasks, including node classification (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković
et al., 2018), link prediction (Zhang & Chen, 2018; Cai & Ji, 2020), and graph classification (Errica
et al., 2020; You et al., 2020; Qiu et al., 2020; Rong et al., 2020a; Sun et al., 2021). In node classifi-
cation and link prediction, GNNs propagate information between nodes through graph convolutions,
whereas, in graph classification, information of all nodes is integrated together to generate graph-
level representations through graph pooling.

Earlier graph pooling directly adopts global pooling, including average pooling and max pooling,
which ignore the node correlation, hampering the overall performance (Duvenaud et al., 2015;
Vinyals et al., 2016; Zhang et al., 2018). Later, graph pooling utilizes hierarchical architectures
to model the node correlations (Ma et al., 2019; Wang & Ji, 2020; Gao et al., 2021a) and can be
roughly classified into two types: node clustering pooling and node drop pooling. Node clustering
pooling requires clustering nodes into new nodes, which is time-and space-consuming (Ying et al.,
2018; Bianchi et al., 2020; Yuan & Ji, 2020). In contrast, drop node pooling only preserves the rep-
resentative nodes by calculating the significance of nodes and is more fit for large-scale graphs (Gao
& Ji, 2019; Lee et al., 2019; Zhang et al., 2020a; Gao et al., 2021b).

1Code will be made publicly available at http://github.com/xxx/xxx.

1

http://github.com/xxx/xxx

Under review as a conference paper at ICLR 2022

A
B

C
D

E

F

G
-0.8

0.9
0.7

0.4

0.5

-0.6
-0.2

A
B

C
D

E

F

G

Score

Generator

A
B

C
D

E

F

G

A
B

C
D

: Nodes

Node

Selector

Graph

Coarsor

: Dropped Nodes 0.4 : Scores for Nodes : Modules

Figure 1: Our modularized scheme for node drop pooling.

In this paper, we focus on node drop pooling. We have reviewed previous node drop pooling methods
and conclude that despite efficiency, current node drop pooling methods still obtain suboptimal
graph-level representations because they ignore the diversities in graphs, including the node-feature
diversity and the graph-structure diversity, when selecting top-k significance nodes. Specifically,
current node drop pooling methods monotonically calculate the significance of nodes. Node-feature
Diversity: Analytically, current drop node pooling methods tend to highlight nodes with similar
features, and thus performing less satisfactorily when multiple dissimilar nodes contribute to the
graph-level representations. Graph-structure Diversity: Furthermore, nodes that are connected
would share similar information through GNNs (McPherson et al., 2001; Wu et al., 2019). Current
node drop pooling methods are probably stuck into the nodes of local structures, while ignoring the
rest of representative graph structures.

To explore the diversity, we propose a novel plug-and-play scheme, termed MID, consisting of
Multidimensional score space with flIpscore and Dropscore operations. Analytically, multidimen-
sional score space depicts the significance of nodes using vectors instead of scalars, and thus could
comprehensively describe the attributes of nodes; flipscore reverses the negative confidence scores
as positive ones, encouraging the drop node pooling to highlight nodes with dissimilar features;
dropscore randomly drops several nodes only during training when selecting the top-k scores, prob-
ably deleting nodes in local structures and forcing the node drop pooling to notice diverse graph
structures. Experimentally, we apply our MID to four typical node drop pooling methods. The
results on seventeen real-world graph classification datasets demonstrate the ability and generaliz-
ability of MID. Specifically, MID consistently brings over 2.8% improvements in average across
different backbone models and datasets. Ablation experiments further demonstrate the contribution
of individual components of MID to explore the diversity of graphs.

The main contributions of this paper are summarized as follows: 1) We have reviewed and summa-
rized the previous node drop pooling methods. Accordingly, we design a new modularized scheme
for node drop pooling. 2) We propose a novel play-and-plug scheme, MID, which contains multidi-
mensional score space, flipscore operation, and dropscore operation. MID could be applied in most
node drop pooling models and improve their performance with relatively low computational cost. 3)
We conducted extensive experiments for four typical drop node pooling methods with and without
MID on seventeen real-world and two synthetic datasets for graph classification. The experimental
results comprehensively demonstrate the capability of our MID.

2 RELATED WORK OF GRAPH POOLING

Graph pooling could be divided into global pooling and hierarchical pooling. Global pooling per-
forms the mean or sum on all node features to obtain the graph-level representation, which results
in a loss of information since they ignore the structures of graphs (Duvenaud et al., 2015). Later,
hierarchical pooling models were proposed, which could be roughly divided into node clustering
pooling, node drop pooling, and other pooling. 1) Node clustering pooling considers the graph
pooling problem as a node clustering problem to map the nodes into a set of clusters (Ying et al.,
2018; Noutahi et al., 2019; Wang et al., 2020; Bianchi et al., 2020; Yuan & Ji, 2020; Baek et al.,
2021). One limitation of these methods is their time and storage complexity caused by the com-
putation of the soft clustering. Besides, according to (Mesquita et al., 2020), clustering-enforcing
regularization is usually innocuous. 2) Node drop pooling uses learnable scoring functions to delete
nodes with lower significance scores (Zhang et al., 2018; Gao & Ji, 2019; Lee et al., 2019; Huang
et al., 2019; Ranjan et al., 2020; Zhang et al., 2020c; Khasahmadi et al., 2020; Li et al., 2020a;
Zhang et al., 2020a; Gao et al., 2021b; Tang et al., 2021). Node drop pooling is more efficient and

2

Under review as a conference paper at ICLR 2022

Table 1: Summary of node drop pooling models in our framework.

Models Score Generator Node Selector Graph Coarsor

SortPool (Zhang et al., 2018) S = X[:,−1] idx = top(S, dk × ne) X ′ = Xidx � Sidx; A′ = Aidx,idx

TopKPool (Gao & Ji, 2019) S = Xp/ ‖p‖2 idx = top(S, dk × ne) X ′ = Xidx � Sidx; A′ = Aidx,idx

SAGPool (Lee et al., 2019) S = σ
(
D̃−

1
2 ÃD̃−

1
2XΘatt

)
idx = top(S, dk × ne) X ′ = Xidx � Sidx; A′ = Aidx,idx

AttPool (Huang et al., 2019) S = fatt (X) idx = top(S, dk × ne) X ′ = Xidx � Sidx; A′ = Aidx,idx

ASAP (Ranjan et al., 2020) S = LEconv(X,A) idx = top(S, dk × ne) X ′ = Xc
idx � Sidx; A′ = Ac

idx,idx

HGP-SL (Zhang et al., 2020c) S =
∥∥∥(I− (D)

−1
A
)

X
∥∥∥
1

idx = top(S, dk × ne)
X ′ = Xc

idx � Sidx; A′ = Ac
idx,idx;

Ei(p, q) = σ
(−→a [Xk

i (p, :)‖Xi(q, :)
]>)

+ λ ·Ai(p, q)

GSAPool (Zhang et al., 2020a)
S1 = σ(GNN(X,A))

S2 = σ(MLP(X))

S = αS1 + (1− α)S2

idx = top(S, dk × ne)
X ′ = AXW � Sidx,

A′ = Aidx,idx

RepPool (Li et al., 2020a) S = σ
(
D−1AXp/ ‖p‖

)
idx = top(S, dk × ne)

B = XWb(Xidx)
T

X′ = (softmax(B�M))T
(
X�

(
s1T

d

))
A′ = (softmax(B�M))TA(softmax(B�M))

Ipool (Gao et al., 2021b) S =
∣∣∣(I − 1

t

∑t
1 D
−1A

)
X
∣∣∣
2

idx = top(S, dk × ne)
idx = top(S̃, dk × ne)

X ′ = Xidx � Sidx,

(A′)ij = λ (A+ I)idx[i],idx[j]

likely applied to large-scale networks than node clustering pooling. However, one major issue of
node drop pooling is the inevitable information loss (including the diversity). 3) Other pooling.
In addition, numerous graph pooling methods have emerged recently (Murphy et al., 2019; Studer
et al., 2020; Ma et al., 2020; Li et al., 2020b; Zhang et al., 2021; Pang et al., 2021; Du et al., 2021;
Wu et al., 2021; Nadgeri et al., 2021).

3 METHOD

This section first reviews current node drop pooling methods. Then, we present the details of our
MID and explain how MID improves the node drop pooling.

Notation. Let G = (V, E) denote a graph with nodeset V and edgeset E . The node features are
denoted as X ∈ Rn× c with n nodes and the c dimensional features. The adjacency matrix is
defined as A ∈ {0, 1}n× n. More notations are introduced in Table 5 in Appendix.

3.1 REVIEW OF NODE DROP POOLING

We first summarize previous node drop pooling methods to give an in-depth analysis. Specifically,
we design a new modularized framework to describe the process of node drop pooling, which is
shown in Figure 1. We deconstruct node drop graph pooling with three disjoint modules: 1) Score
generator. Given an input graph, the score generator calculates the significance scores for each
node. 2) Node selector. Node selector selects the nodes with the top-k significance scores. 3)
Graph coarser. With the selected nodes, a coarsened graph from the original graph is obtained by
learning the feature matrix and the adjacency matrix. The process can be formulated as follows:

S(l) = SCORE(X(l),A(l)); idx(l+1) = TOPk(S
(l));

X(l+1),A(l+1) = COARSOR(X(l),A(l),S(l), idx(l+1)),
(1)

where functions SCORE, TOPk, and COARSOR are specially designed for the score generator,
node selector, and graph coarsor by each method, respectively. TOPk preserves the top-k nodes.
S(l) ∈ Rn× 1 indicates the significance scores, idx(l+1) indicates the preserving node indexes. l
and l + 1 indicate the layer numbers.

Accordingly, nine typical node drop pooling models are presented in Table 1. As we can observe,
all node drop pooling methods only improve the processes of score generator and graph coarsor.
However, a simple node selector tend to highlight nodes with similar features during training, thus
ignoring the node-feature diversity and graph-structure diversity in graphs.

3

Under review as a conference paper at ICLR 2022

Rankscore

A
B

C
D

E

F

G
-0.8

0.9
0.7

0.4

0.5

-0.6
-0.2A

B

C
D

E

F

G

0.9

0.7

0.5

0.4

-0.2

-0.6

-0.8

B

C
D

A
B

C
D

E

F

G

-0.8

0.6
0.4

0.1

-0.2

0.2

-0.8…
… -0.3

… 0.2

… 0.7

…-0.6

…0.5 0.9 … 0.8

0.9 … 0.8
0.8 … 0.7

0.6 0.8…

0.6 … 0.2

0.4 … 0.3

0.1…0.5

0.2…0.2

BC

G

A

C

F

0.9 … 0.8

…

0.4 … -0.3

-0.2 … 0.2

0.6 -0.8…
-0.8 … 0.7

…−∞ −∞−∞−∞

Input Graph

Generate Scores

Base

MID

Output Graph

Output Graph

Output Graph

Flipscore

Rankscore

Dropscore

Rankscore

Coarsen

Coarsen

Coarsen: Nodes

: Selected nodes

: Single Score 0.5

0.1…0.5 : Multi Scores

Multidimensional

Score Space

Figure 2: Architecture of our proposed method.

3.2 OUR PROPOSED MID

In contrast to the previous models, we mainly focus on the node selector module. We propose
MID, which is a play-and-plug scheme for improving node drop pooling. As shown in Figure 2,
MID consists of 1) a multidimensional score space, 2) a flipscore operation, and 3) a dropscore
operation. When the above three components are appropriately integrated, MID can alleviate the
problems of node-feature diversity and graph-structure diversity. In the following subsections, we
discuss and justify each component analytically in detail.

3.2.1 THE MULTIDIMENSIONAL SCORE SPACE

We first extend the original one-dimensional score space to a multidimensional score space, therefore
depicting comprehensive information of nodes:

S
(l)
multi = SCORE(X(l),A(l)), (2)

where S
(l)
multi ∈ Rn× h is the significance score matrix. For each node, there are h different

scalars, and the final significance score is the sum of all scalars in one vector. Let S
(l)
multi =

{s(l)1 ‖s
(l)
2 ‖..., ‖s

(l)
h }, then the new features of the nodes is defined as: {(X(l) � s

(l)
1)‖(X(l) �

s
(l)
2)‖..., ‖(X(l) � s(l)h)}. Here, ‖ indicates the concatenation.

ENZYMES MUTAG PROTEINS NCI109
0.3

0.4

0.5

0.6

A
U
C
 o
f s
co
re
s

SAG-base
SAG-multi

Figure 3: Score Correctness.

Intuition Previous methods mainly use a scalar quantity to
represent the importance of each node. However, due to the
complexity of a graph, a scalar is not enough to capture the
significance of a node from different views. Therefore, we
extend the importance score for each node from a scalar to a
multidimensional vector to evaluate the significance of nodes
from multi-views.

Analytical Verification Motivated by the previous
study (Knyazev et al., 2019), we calculated the score correctness on four benchmark datasets
with SAGPool (Lee et al., 2019) model to verify whether our method evaluates the importance of
the nodes more accurately. As shown in Figure 3, we import AUC to evaluate the score correctness.
The details of metrics and experimental settings are described in Appendix G.1. It is obvious that
models with a multidimensional score space consistently generate more accurate scores for nodes,
which confirms that using a multidimensional vector to provide the significance of nodes can
improve the evaluation.

4

Under review as a conference paper at ICLR 2022

3.2.2 THE FLIPSCORE OPERATION

After getting a multidimensional score space, we entail the scores generated by models to extract as
many diverse nodes as possible. Specifically, we apply an L1-norm to the score vector:

SL1
= ‖Smutli‖1 , (3)

where SL1
is the resulting score matrix, and ‖·‖1 is the L1-norm of the argument. Note that the

flipscore operation will not influence the node updating of graph coarsor. We adopt this operation in
the training, validation, and test phases.

Intuition The generated scores of most previous models range from -1 to 1 by using Tanh (Lee
et al., 2019; Gao & Ji, 2019; Zhang et al., 2020a). In a monotonous manner, previous methods
tend to highlight similar and significant nodes instead of representative and significant nodes. In
contrast, our flipscore operation could highlight nodes with extremely different scores in original
space, encouraging node drop pooling to capture nodes with dissimilar features. Intuitively, dis-
similar features lead to more information gain, which experimentally contributes to better graph
classification (Zhang et al., 2020c; Gao et al., 2021b).

layer 1 layer 2 layer 2 layer 4
0.00

0.01

0.02

0.03

In
fo
rm

at
io
n
G
ai
n

SAG-base
SAG-flip
GSA-base
GSA-flip

Figure 4: Information gain.

Analytical Verification To verify whether the flipscore op-
eration encourages the models to explore diverse features,
we compute information gain after one aggregation and pool-
ing operation by Kullback–Leibler divergence (Kullback &
Leibler, 1951) following the previous study (Hou et al., 2020).
The details of experiment settings and results are described in
Appendix G.2. As shown in Figure 4, we conducted experi-
ments on the MUTAG dataset by using SAGPool (Lee et al.,
2019) and GSAPool (Zhang et al., 2020a) models. As the
layer number increases, information gain gradually decreases.
Adding our flipscore operation significantly improves the information gain, confirming that flipscore
operation promotes models to maintain more diverse node features.

3.2.3 THE DROPSCORE OPERATION

Dropscore operation is proposed to force node drop pooling models to notice as many substructures
of graphs as possible. Specifically, dropscore operation randomly drops out several nodes with a
certain rate in the graph during training only when selecting top-k scores:

Sdrop = Idps×neSmulti, (4)

where Sdrop is the resulting score matrix, Idps×ne is a matrix generated by randomly dropping dps×
ne none-zero elements of a unit matrix with n dimensions, d·e is the operation of rounding up and
ps is the score dropping rate. We adopt this operation in the training phase.

Intuition Note that through GNNs, nodes that are directly connected tend to share similar infor-
mation (McPherson et al., 2001; Wu et al., 2019). Therefore, models generate similar scores for
nearby nodes, which is also observed in the previous study (Knyazev et al., 2019). Under this con-
dition, models may be stuck into significant local structures and select redundant nodes, ignoring
significant nodes from other substructures and losing structure information. Specifically, we devise
dropscore operation, which randomly drops out a certain rate of nodes during training, expecting that
models do not focus on one local substructure by deleting several nodes in the local substructure.

(a) Base (b) Drop
Figure 5: Visualization of node selec-
tion results with and without dropscore
operation. Selected nodes are red.

Case Study To investigate whether the dropscore tech
can assist models to cover more significant substructures,
we conduct experiments on the NCI1 dataset by using
the SAGPool model (Lee et al., 2019). The details of
experimental settings and results are described in Ap-
pendix G.3. We observe that SAGPool is likely to select
nodes concentrated in the same area as shown in Figure 5.
Therefore, important information of other parts might be

5

Under review as a conference paper at ICLR 2022

neglected. After adopting our drop scores operation, except for the performance improvements, se-
lected nodes are distributed in different substructures covering the whole graph, confirming that our
method encourages models to maintain more diverse structure information.

4 THEORETICAL ANALYSIS

In this subsection, we present the theoretical analysis regarding the propositions of the trapped scores
and the graph permutation equivariance, and then prove that our proposed MID could promote the
backbone pooling models to be more powerful in distinguishing different graphs. Note that all
detailed proofs are provided in Appendix F.

4.1 TRAPPED SCORES

In Figure 5, we find that scores, which are generated by pooling models, tend to be stuck in the
local structure, we refer the scores as trapped scores. In the following, we prove that, under some
conditions, the selected nodes (correspond to trapped scores) of most node drop pooling models are
stuck in the local structure. Moreover, the finding of the proposition could be applied to other cases,
e.g., SAGPool (Lee et al., 2019), GASPool (Zhang et al., 2020a), and ASAP (Ranjan et al., 2020).
Proposition 1. Consider a graph G with the adjacency matrix A, xv is the feature for node v.
Assume that linked nodes in the same local structure have similar features. Let x1,x2 be node
features and s1, s2 be the significance scores, and then, the distance between s1 and s2 approximates
to zero, i.e., ‖s1 − s2‖2 → 0, as long as ‖x1 − x2‖2 → 0.

Note that the assumption that linked nodes in the same local structure have similar features is com-
mon in most real-world networks (McPherson et al., 2001), and the scores s1, s2 are vectors involv-
ing different elements. We use ‖ · ‖2 to denote the L2 norm.

4.2 GRAPH PERMUTATION EQUIVARIANCE

Graph pooling generates isomorphic pooled graphs after graph permutation, which is defined as
graph permutation equivariancce (Ranjan et al., 2020). We show that our proposed MID would not
break the graph permutation equivariant property of backbone models, e.g., TopKPool (Gao & Ji,
2019), SAGPool (Lee et al., 2019), GASPool (Zhang et al., 2020a), and ASAP (Ranjan et al., 2020).
Proposition 2. Suppose the backbone graph pooling model is graph permutation equivariant, and
the model combined with our MID is still graph permutation equivariant.

4.3 CONNECTION WITH WEISFEILER-LEHMAN GRAPH ISOMORPHISM TEST

Weisfeiler-Lehman (WL) test of graph isomorphism (Weisfeiler & Leman, 1968) provides an ef-
fective solution to distinguish different graphs. According to previous studies (Xu et al., 2019), a
GNN can have as large discriminative power as the WL test if the aggregation scheme is an injective
function. The overall model for graph classification consists of two phases: graph convolution and
graph pooling. If we make the pooling function injective, then the model can be as powerful as the
WL test in distinguishing different graphs. In the following, we demonstrate that the proposed MID
could promote the backbone pooling models to be more powerful in distinguishing different graphs.
We first introduce the theorem from Xu et al. (2019).
Theorem 1 (Non-isomorphic Graphs to Different Embeddings). Let A : G → Rd be a GNN.
If the aggregation function and the graph-level readout function are injective, A can distinguish
any two non-isomorphic graphs G1 and G2, which are decided by the Weisfeiler-Lehman test of
isomorphism.

According to the Theorem 1, the key of the expressive power is the injectiveness of function, which
means the outputs of the function are more unique. Our next corollary shows that our proposed MID
enables the outputs of backbone pooling models to be more powerful.
Corollary 1 (Expressive power on Node Drop Pooling Models). Assume the feature space X is
a countable set. Let X ∈ X be the matrix of node features, A be the adjacency matrix, ps be the
score dropping ratio, and h be the score dimension. The output of POOL-MID(X,A, ps, h) with

6

Under review as a conference paper at ICLR 2022

Table 2: MID performance across four backbone models and seventeen datasets in graph classifica-
tion task. The reported results are mean and standard deviation over 10 different runs. Red: the best
performance. Blue: the second best performance. Hyphen(-) denotes out-of-resources.

Social Domain in TU Datasets (5) OGB Datasets (4)
FRAN. IMDB-B IMDB-M REDDIT-B COLLAB HIV BBPB Tox21 ToxCast

Set2set 61.79±0.23 73.10±0.48 50.15±0.58 90.03±0.45 79.88±0.50 73.42±2.34 64.43±2.16 73.42±0.67 59.76±0.65
SortPool 62.42±0.57 72.49±0.78 49.62±0.36 87.00±1.03 80.21±0.35 71.88±1.83 64.33±3.10 68.90±0.78 59.28±0.99
DiffPool 63.95±0.81 72.99±0.65 51.03±0.48 – 79.24±0.57 75.05±1.71 64.77±2.43 75.82±0.69 65.79±0.87
EdgePool 58.09±2.04 72.13±0.72 51.05±0.53 89.12±1.22 81.22±0.94 72.15±1.56 68.56±1.43 74.54±0.79 62.57±1.36
MinCutPool 62.32±0.55 73.05±0.80 50.22±0.81 86.69±0.48 78.78±0.61 73.91±1.10 66.47±1.90 78.78±0.61 63.66±1.56
HaarPool – 73.46±0.55 50.37±0.55 – – – – – –
MemPool 62.05±0.45 71.20±0.82 49.91±0.76 – – 73.75±1.90 66.47±1.90 72.05±0.93 61.85±0.36
GMT 63.15±0.25 73.10±0.44 50.50±0.54 88.88±0.44 80.74±0.54 76.41±2.32 66.88±1.59 76.56±0.90 64.53±0.92

SAGPool 60.62±0.66 71.87±0.59 50.42±0.45 87.42±0.62 79.07±0.28 70.19±3.66 64.29±2.96 69.39±1.88 59.09±1.38
SAGPool + MID 61.33±0.28 73.08±0.30 51.05±0.69 91.62±0.30 79.93±0.65 74.51±1.31 66.54±2.33 73.06±0.66 60.23±0.64

TopKPool 64.63±0.67 71.47±0.71 49.55±0.58 85.37±1.04 77.45±0.56 71.24±2.97 65.93±2.60 68.69±2.02 58.63±1.56
TopKPool + MID 66.30±0.55 72.55±0.73 50.38±0.51 83.20±0.96 78.86±0.52 75.11±2.42 66.64±2.33 71.24±2.14 60.50±1.47

ASAP 60.57±0.62 72.25±0.83 48.55±0.64 – – 71.60±1.71 61.93±3.18 70.00±1.50 60.32±1.34
ASAP + MID 61.55±0.95 73.12±0.56 49.47±0.48 – – 72.50±2.16 64.03±1.86 71.04±0.92 61.04±0.42

GSAPool 60.41±0.53 72.41±0.57 50.72±0.57 87.46±0.77 78.97±0.33 71.47±2.43 64.49±3.31 69.18±2.05 59.60±1.17
GSAPool + MID 61.26±0.37 73.06±0.20 50.93±0.20 88.88±0.42 79.44±0.30 74.49±1.42 67.27±1.86 72.61±1.14 61.90±0.80

Biochemical Domain in TU Datasets (8)
D&D PROTEINS NCI1 MUTAG PTC-MR NCI109 ENZYMES Mutagen.

Avg. rank

Set2set 72.65±0.47 73.14±0.97 71.70±0.73 70.50±1.99 54.53±1.69 69.78±0.43 42.92±2.05 79.86±0.43 7.9
SortPool 77.50±0.50 74.16±0.53 72.88±0.93 70.56±2.73 52.62±2.11 71.77±0.67 36.17±2.58 77.03±0.51 9.6
DiffPool 67.95±2.44 72.86±1.00 77.04±0.73 82.50±2.54 55.26±3.84 75.38±0.66 51.27±2.89 79.80±0.24 5.6
EdgePool 76.97±0.44 74.82±0.56 76.53±0.50 73.00±0.87 58.09±2.04 75.58±0.50 31.18±1.99 80.78±0.17 5.1
MinCutPool 74.69±0.52 74.28±0.76 71.15±0.98 85.17±1.41 54.68±2.45 71.68±0.46 25.33±1.47 75.39±0.39 7.9
HaarPool - - - 74.89±0.69 55.97±1.26 - 20.57±1.05 - 7.6
MemPool 72.96±0.84 71.99±0.65 67.65±0.67 69.17±2.04 53.26±2.67 65.50±1.16 44.73±2.21 74.96±0.22 10.9
GMT 78.48±0.48 75.08±0.85 76.23±0.49 83.04±1.01 55.41±1.30 74.49±0.52 37.38±1.52 79.94±0.35 3.5

SAGPool 76.15±0.73 73.42±0.93 70.89±0.80 67.67±3.56 54.38±1.96 70.26±0.99 36.30±2.51 74.20±0.75 11.4
SAGPool + MID 76.97±0.72 74.52±0.52 74.08±0.40 72.72±1.96 56.24±1.22 75.21±0.66 39.88±1.93 79.75±0.17 5.5

TopKPool 72.12±1.22 72.72±1.16 73.82±0.65 77.06±2.25 55.59±2.43 72.94±0.67 29.77±1.74 76.51±1.13 10.9
TopKPool + MID 74.65±1.68 73.07±0.80 78.50±0.50 80.38±2.26 56.76±1.76 77.55±0.49 30.37±1.94 81.39±0.35 6.1

ASAP 75.91±1.01 71.25±0.79 73.86±0.74 79.33±4.02 55.68±1.45 73.15±0.70 20.10±1.13 77.31±0.62 10.9
ASAP + MID 77.57±0.79 72.14±0.67 75.30±0.43 82.33±3.40 56.76±1.88 75.60±0.63 21.67±1.25 78.94±0.50 7.9

GSAPool 75.91±0.77 73.64±0.89 71.33±0.92 68.83±1.54 53.59±2.69 70.01±1.60 34.93±2.04 76.56±0.77 10.6
GSAPool + MID 76.70±0.56 75.04±0.42 75.72±0.92 71.72±1.04 55.47±2.25 75.34±0.37 42.48±2.52 79.88±0.20 5.6

our method MID could be more unique than the output of backbone pooling models POOL(X,A).
Then, the backbone pooling models with MID could approximately be as powerful as the WL test.

Note that POOL(X,A) involves TopKPool (Gao & Ji, 2019), SAGPool (Lee et al., 2019),
GASPool (Zhang et al., 2020a), and ASAP (Ranjan et al., 2020). And POOL-MID(X,A, p, h)
refers to the backbone pooling models combined with our proposed MID. Corollary 1 indicates that
our proposed MID could promote the backbone pooling models to be more powerful in distinguish-
ing different graphs.

5 EXPERIMENT

Datasets. We choose 13 datasets from TU datasets (Morris et al., 2020), including 8 datasets on
the Biochemical domain and 5 datasets on the Social domain. Besides, we select 4 relatively large

7

Under review as a conference paper at ICLR 2022

1 4 8 12 16 20 24

Score Dimension

0

0.1

0.2

0.3

0.4

0.5

0.6

S
co

re
 D

ro
p

 R
a

ti
o

0.8 5.3 11.4 11.4 13.6 9.8 14.4

1.5 6.1 5.3 9.8 15.2 9.1 10.6

3.8 0.8 0.8 7.6 15.2 9.8 10.6

-0.8 1.5 0.8 2.3 6.1 6.1 7.6

1.5 -1.5 2.3 1.5 2.3 1.5 5.3

1.5 3.8 -1.5 3.0 0.8 2.3 8.3

3.0 4.5 0.8 6.1 3.8 5.3 9.1

(a) MUTAG

1 4 8 12 16 20 24

Score Dimension

0.2 -4.0 0.7 -7.7 5.5 1.2 4.4

0.7 0.2 2.3 -4.0 6.0 1.8 2.8

-2.4 -1.4 -0.3 -7.2 3.4 -0.3 -1.9

0.2 -4.0 -1.9 -0.9 -3.0 -4.0 -3.0

0.2 1.2 0.2 -8.8 -2.4 -4.6 0.2

-0.9 -3.0 -1.9 -4.6 -8.2 -3.5 -0.3

0.2 -2.4 -0.9 -1.4 -1.4 6.5 -3.0

(b) PTC-MR

1 4 8 12 16 20 24

Score Dimension

0.9 4.7 4.5 5.1 6.1 5.8 6.2

1.9 3.8 7.1 6.7 7.6 7.6 4.7

-0.3 4.0 3.9 5.2 7.3 7.7 6.3

1.2 3.8 2.0 3.4 6.7 4.0 5.9

-2.0 0.3 2.1 4.0 2.0 3.9 2.3

-6.1 -1.6 -2.0 0.0 -0.4 -1.6 0.4

-6.4 -5.3 -7.4 -0.7 -3.9 -3.0 -2.4

(c) NCI1

1 4 8 12 16 20 24

Score Dimension

1.5 3.3 2.5 1.5 2.6 2.3 3.3

0.7 4.4 2.2 2.8 2.5 3.2 2.5

1.4 2.9 1.5 1.2 3.0 2.3 1.5

1.1 4.3 2.9 1.5 1.7 3.0 1.9

2.5 3.4 3.0 2.5 3.6 1.5 1.2

2.8 5.0 2.1 1.7 0.7 1.4 1.9

2.2 4.6 1.7 3.7 2.5 3.4 1.2

(d) IMDB-BINARY

Low

High

A
ccu

ra
cy

 G
a
in

 (%
)

Figure 7: Parameter sensitivity of score drop ratio ps and score dimension h on four datasets.

datasets from the OGB datasets (Hu et al., 2020). The above seventeen real-world datasets vary in
content domains and dataset sizes. The dataset statistics are summarized in Table 10 in Appendix.

Models. Four representative node drop graph pooling methods are selected, including 1) Top-
KPool, 2) SAGPool, 3) ASAP, and 4) GSAPool. Besides, we further present eight graph pooling
methods for comparision, including 5) Set2set, 6) SortPool, 7) DiffPool, 8) EdgePool, 9) Min-
CutPool, 10) HaarPool, 11) MemPool, and 12) GMT. The detailed descriptions of all models are
explained in Appendix I.

Implementation Details. We use the same experimental settings on the 17 benchmark datasets
following (Xu et al., 2019; Baek et al., 2021). We evaluate the model performance on TU datasets
for 10-fold cross validation (Zhang et al., 2018; Xu et al., 2019; Baek et al., 2021), using accuracy for
evaluation. We evaluate the performance on OGB datasets with their original data split settings (Hu
et al., 2020) with ROC-AUC for evaluation metric. For a fair comparison, we fix the pooling ratio
in each pooling layer for node drop pooling with and without MID. In addition, we follow the
parameter settings for some comparing models if the settings are provided in the corresponding
papers. Experimental details are described in Appendix J.

Overall Results. The accuracy results of our methods in Table 2 are averaged over 10 runs with 10
different seeds through a 10-fold cross validation. We highlight the best performance per backbone
model and dataset. It is observed that MID consistently improves the accuracy of node drop pool-
ing models on all datasets, except for only a single exception of TopKPool on REDDIT-BINARY.
Specifically, MID achieves improvements over all 4 node drop pooling models (averaged across
datasets): 3.96% (SAGPool), 3.97% (TopKPool), 0.94% (ASAP) and 3.46% (GSAPool).

10 20 30 40 50 60 70 80 90
Pooling Ratio(%)

0.65

0.70

0.75

C
la
ss
ifi
ca
tio

n
A
cc
ur
ac
y DD-base

DD-MID
MU.-base
MU.-MID

1 2 3 4 5 6
Network Layers

0.60

0.65

0.70

0.75

FR.-base
FR.-MID

MU.-base
MU.-MID

Figure 6: Model performance varying with the
pooling ratio and number of model layers.

Parameter Sensitivity. We further study how
the number of neural network layers l and graph
pooling ratio k would affect the graph clas-
sification performance on D&D and MUTAG
datasets with the SAGPool model. As shown
in Figure 6 (a), our method performs better in
all cases. In addition, the accuracy range of our
proposed MID is relatively smaller, suggesting
that our method learns the nodes that are essen-
tial for graph-level representation learning regardless of the pooling ratio. Then, in Figure 6 (b), we
can observe that the performance of baseline models drops when layers go deeper (especially from
5 layers to 6 layers). In contrast, the performance of our method keeps growing. Afterward, we
study the effects of two new parameters, the dimension of the score h and the score dropping rate
ps, introduced by our proposed method with the SAGPool model. In this parameter sensitivity study,
h was searched within the range of {4, 8, 12, 16, 20}, while in the experiments, the search space is
only {5, 9}. ps was searched within the range of {0.1, 0.2, ..., 0.9}, while in all other experiments,
the search space was only {0.1, 0.2} for all datasets. As shown in Figure 7, Biochemical datasets
(subfigure a, b, and c) prefer a relatively high score dimension and a relatively low score drop ratio,
while social datasets (subfigure d) are at the opposite ends.

8

Under review as a conference paper at ICLR 2022

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.6

0.7

0.8

C
la

ss
if

ic
a

ti
o
n

 A
cc

u
ra

cy

(a) DD
(Avg # edges 715.66)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.65

0.70

0.75

0.80

(b) PROTEINS
(Avg # edges 72.82)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.65

0.70

0.75

0.80

(c) NCI1
(Avg # edges 32.30)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.6

0.8

(d) MUTAG
(Avg # edges 19.79)

Figure 8: The robustness of our method against edge perturbations using graph classification results
of different drop edge ratios. Solid lines denote the mean, and shaded areas denote the variance.

Table 3: Ablation study results.

NCI1 IMDB-B

SAG. TopK. SAG. TopK.

Base 70.89 73.82 71.87 71.47
MID 76.06 78.78 76.10 73.90
w/o flip 74.76 77.22 75.90 73.80
w/o drop 74.96 78.39 74.92 72.22
w/o multi 71.97 76.15 74.51 73.50

Ablation Study. We conduct ablation studies to verify that
each component of our method contributes to the improvement
of performance. For convenience, we name the models with-
out multidimensional score space, flipscore, and dropscore as
w/o multi, w/o flip, and w/o drop, respectively. Note that
except for the selected component, the rest remains the same
as the complete model. We can observe that all variants with
some components removed exhibit clear performance drops
compared to the complete model in Table 3, indicating that
each component contributes to the improvements.

Robustness Analysis. We validate the robustness of our method against edge perturbations, which
are perturbing the structure by randomly removing the edges in the pooling layer. As shown in Fig-
ure 8, we present the classification accuracies of two backbone models with respect to different per-
turbation rates on four benchmark datasets. We observe that our method consistently outperforms
backbone models across all perturbation rates and all datasets. Especially in D&D and PROTEINS
datasets whose edge numbers are large, the performance of our method does not degrade signifi-
cantly with the increase of the perturbation rate compared to the backbone models.

Table 4: Training time per epoch.

SAGPool TopKPool

Base 0.8358 (1x) 0.7985 (1x)
MID-1 0.8487 (1.01x) 0.8005 (1.00x)
MID-5 0.9881 (1.18x) 0.9688 (1.21x)
MID-9 1.2020 (1.44x) 1.2052 (1.51x)

Efficiency Analysis. Our method is a plug-in method.
Therefore, it is essential to take the efficiency into ac-
count. The efficiency of our method is mainly influenced
by the dimension of score h. The flipscore and dropscore
operations rarely influence the time cost. Table 4 reports
the average per-epoch training time on all 13 datasets
from TU datasets, including different samples and graph
sizes under different values of h and with training epochs
fixed to 10 for 10 different random seeds. We name the models with h-dimension score as MID−h.
We observe that the additional time consumption keeps relatively small with the increase of the score
dimension h, which validates that our MID is practically efficient. In addition, from Figure 7, we
observe that increasing h can significantly improve the model’s classification accuracy at the cost
of its training efficiency. In practice, we can adjust the values of h to balance the trade-off between
performance and efficiency.

6 CONCLUSION

In this work, we propose an efficient scheme, MID, which improves node drop pooling by exploring
node-feature diversity and graph-structure diversity. Specifically, we first build a multidimensional
score space to depict more comprehensive semantic information. Then, two operations on the mul-
tidimensional scores, flipscore and dropscore, are devised to reserve the feature diversity by high-
lighting dissimilar features and to maintain the structure diversity by covering more substructures.
Extensive experiments on seventeen benchmark datasets involving different domains, samples, and
graph sizes have verified that MID can generally and consistently improve the performance of cur-
rent node drop pooling models (e.g., TopKPool, SAGPool, GSAPool, and ASAP).

9

Under review as a conference paper at ICLR 2022

REFERENCES

Jinheon Baek, Minki Kang, and Sung Ju Hwang. Accurate learning of graph representations with
graph multiset pooling. In International Conference on Learning Representations, 2021.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural
networks for graph pooling. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 874–883. PMLR, 13–18 Jul 2020.

Lei Cai and Shuiwang Ji. A multi-scale approach for graph link prediction. Proceedings of the AAAI
Conference on Artificial Intelligence, 34:3308–3315, Apr. 2020.

Frederik Diehl. Edge contraction pooling for graph neural networks. arXiv preprint
arXiv:1905.10990, 2019.

Jinlong Du, Senzhang Wang, Hao Miao, and Jiaqiang Zhang. Multi-channel pooling graph neural
networks. In Zhi-Hua Zhou (ed.), Proceedings of the Thirtieth International Joint Conference
on Artificial Intelligence, IJCAI-21, pp. 1442–1448. International Joint Conferences on Artificial
Intelligence Organization, 8 2021. doi: 10.24963/ijcai.2021/199. Main Track.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 2, NIPS’15, pp. 2224–2232, Cambridge, MA, USA,
2015. MIT Press.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair comparison of graph neu-
ral networks for graph classification. In International Conference on Learning Representations,
2020.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural network for semi-supervised learning on graphs.
In NeurIPS’20, 2020.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning,
pp. 2083–2092. PMLR, 2019.

Hongyang Gao, Yi Liu, and Shuiwang Ji. Topology-aware graph pooling networks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2021a.

Xing Gao, Wenrui Dai, Chenglin Li, Hongkai Xiong, and Pascal Frossard. ipool–information-
based pooling in hierarchical graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2021b.

Zhangyang Gao, Haitao Lin, Stan Li, et al. Lookhops: light multi-order convolution and pooling for
graph classification. arXiv preprint arXiv:2012.15741, 2020.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Yifan Hou, Jian Zhang, James Cheng, Kaili Ma, Richard T. B. Ma, Hongzhi Chen, and Ming-Chang
Yang. Measuring and improving the use of graph information in graph neural networks. In
International Conference on Learning Representations, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

10

Under review as a conference paper at ICLR 2022

Jingjia Huang, Zhangheng Li, Nannan Li, Shan Liu, and Ge Li. Attpool: Towards hierarchical
feature representation in graph convolutional networks via attention mechanism. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6480–6489, 2019.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman. Zinc:
A free tool to discover chemistry for biology. Journal of Chemical Information and Modeling, 52
(7):1757–1768, 2012. doi: 10.1021/ci3001277. PMID: 22587354.

Amir Hosein Khasahmadi, Kaveh Hassani, Parsa Moradi, Leo Lee, and Quaid Morris. Memory-
based graph networks. In International Conference on Learning Representations, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.

Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention and generalization
in graph neural networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In International Confer-
ence on Machine Learning, pp. 3734–3743. PMLR, 2019.

Juanhui Li, Yao Ma, Yiqi Wang, Charu Aggarwal, Chang-Dong Wang, and Jiliang Tang. Graph
pooling with representativeness. In 2020 IEEE International Conference on Data Mining (ICDM),
pp. 302–311. IEEE, 2020a.

Maosen Li, Siheng Chen, Ya Zhang, and Ivor W. Tsang. Graph cross networks with vertex infomax
pooling. In NeurIPS, 2020b.

Yao Ma, Suhang Wang, Charu C Aggarwal, and Jiliang Tang. Graph convolutional networks with
eigenpooling. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 723–731, 2019.

Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. Path integral based convolution
and pooling for graph neural networks. In NeurIPS, 2020.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual Review of Sociology, 27(1):415–444, 2001. doi: 10.1146/annurev.soc.27.1.415.

Diego Mesquita, Amauri Souza, and Samuel Kaski. Rethinking pooling in graph neural networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 2220–2231. Curran Associates, Inc., 2020.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. arXiv preprint
arXiv:2007.08663, 2020.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pool-
ing for graph representations. In Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 4663–4673. PMLR,
09–15 Jun 2019.

Abhishek Nadgeri, Anson Bastos, Kuldeep Singh, Isaiah Onando Mulang, Johannes Hoffart,
Saeedeh Shekarpour, and Vijay Saraswat. Kgpool: Dynamic knowledge graph context selection
for relation extraction. ACL, 2021.

Emmanuel Noutahi, Dominique Beaini, Julien Horwood, Sébastien Giguère, and Prudencio Tossou.
Towards interpretable sparse graph representation learning with laplacian pooling. arXiv preprint
arXiv:1905.11577, 2019.

11

Under review as a conference paper at ICLR 2022

Yunsheng Pang, Yunxiang Zhao, and Dongsheng Li. Graph pooling via coarsened graph infomax.
SIGIR ’21, pp. 2177–2181. Association for Computing Machinery, 2021. ISBN 9781450380379.
doi: 10.1145/3404835.3463074.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1e2agrFvS.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training,
pp. 1150–1160. Association for Computing Machinery, New York, NY, USA, 2020. ISBN
9781450379984.

Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. Asap: Adaptive structure aware pooling for
learning hierarchical graph representations. In Proceedings of the AAAI Conference on Artificial
Intelligence, pp. 5470–5477, 2020.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying WEI, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. In Advances in Neural Informa-
tion Processing Systems, volume 33, pp. 12559–12571. Curran Associates, Inc., 2020a.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In International Conference on Learning Repre-
sentations, 2020b.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Linda Studer, Jannis Wallau, Rolf Ingold, and Andreas Fischer. Effects of graph pooling layers on
classification with graph neural networks. In 2020 7th Swiss Conference on Data Science (SDS),
pp. 57–58, 2020. doi: 10.1109/SDS49233.2020.00021.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Yuanxing Ning, Philip S. Yu, and Lifang He. Sugar:
Subgraph neural network with reinforcement pooling and self-supervised mutual information
mechanism. In Proceedings of the Web Conference 2021, WWW ’21, pp. 2081–2091. Association
for Computing Machinery, 2021. ISBN 9781450383127. doi: 10.1145/3442381.3449822.

Haoteng Tang, Guixiang Ma, Lifang He, Heng Huang, and Liang Zhan. Commpool: An inter-
pretable graph pooling framework for hierarchical graph representation learning. Neural Net-
works, 2021.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks.
In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’09, pp. 807–816. Association for Computing Machinery, 2009. ISBN
9781605584959.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Clément Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and
equivariant graph neural networks with structural message-passing. In NeurIPS,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a32d7eeaae19821fd9ce317f3ce952a7-Abstract.html.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
In 4th International Conference on Learning Representations, ICLR 2016, 2016.

Yu Guang Wang, Ming Li, Zheng Ma, Guido Montufar, Xiaosheng Zhuang, and Yanan Fan. Haar
graph pooling. In International conference on machine learning, pp. 9952–9962. PMLR, 2020.

Zhengyang Wang and Shuiwang Ji. Second-order pooling for graph neural networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 2020.

12

https://openreview.net/forum?id=S1e2agrFvS
https://proceedings.neurips.cc/paper/2020/hash/a32d7eeaae19821fd9ce317f3ce952a7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a32d7eeaae19821fd9ce317f3ce952a7-Abstract.html

Under review as a conference paper at ICLR 2022

William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite rankings.
ACM Transactions on Information Systems (TOIS), 28(4):1–38, 2010.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. NTI, Series, 2(9):12–16, 1968.

Chuhan Wu, Fangzhao Wu, Yongfeng Huang, and Xing Xie. User-as-graph: User modeling with
heterogeneous graph pooling for news recommendation. In Zhi-Hua Zhou (ed.), Proceedings of
the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21, pp. 1624–1630.
International Joint Conferences on Artificial Intelligence Organization, 8 2021. doi: 10.24963/
ijcai.2021/224. URL https://doi.org/10.24963/ijcai.2021/224. Main Track.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Proceedings of the 36th International Conference on
Machine Learning, pp. 6861–6871. PMLR, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure Leskovec. Hi-
erarchical graph representation learning with differentiable pooling. In Advances in Neural Infor-
mation Processing Systems, volume 31. Curran Associates, Inc., 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In Advances in Neural Information Processing Systems,
volume 33, pp. 5812–5823. Curran Associates, Inc., 2020.

Hao Yuan and Shuiwang Ji. Structpool: Structured graph pooling via conditional random fields. In
Proceedings of the 8th International Conference on Learning Representations, 2020.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pp. 818–833. Springer, 2014.

Liang Zhang, Xudong Wang, Hongsheng Li, Guangming Zhu, Peiyi Shen, Ping Li, Xiaoyuan Lu,
Syed Afaq Ali Shah, and Mohammed Bennamoun. Structure-feature based graph self-adaptive
pooling. In Proceedings of The Web Conference 2020, pp. 3098–3104, 2020a.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Proceedings
of the 32nd International Conference on Neural Information Processing Systems, pp. 5171–5181.
Curran Associates Inc., 2018.

Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018.

Xikun Zhang, Chang Xu, and Dacheng Tao. On dropping clusters to regularize graph convolu-
tional neural networks. In Computer Vision – ECCV 2020, pp. 245–260, Cham, 2020b. Springer
International Publishing. ISBN 978-3-030-58589-1.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi Yu, and Can Wang.
Hierarchical graph pooling with structure learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2020c.

Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Zhao Li, Chengwei Yao, Dai Huifen, Zhi Yu,
and Can Wang. Hierarchical multi-view graph pooling with structure learning. IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2021. doi: 10.1109/TKDE.2021.3090664.

13

https://doi.org/10.24963/ijcai.2021/224

Under review as a conference paper at ICLR 2022

A NOTATIONS

The notations used in this paper are explained in Table 5.

Table 5: Commonly used notations and their descriptions.

Notation Description Notation Description

G A graph E The set of edges in a graph

V The set of nodes in a graph X/X l The matrix of node features (in
layer l)

S/Sl The matrix of scores generated by
the pooling models (in layer l)

idx/idxl The preserving node indexes (in
layer l)

n Number of nodes in a graph c The dimension of a node feature

k The pooling ratio ps The score dropping rate

h The dimension of a score for a node � Dot product

‖·‖1 Manhattan norm (L1 norm) ‖ Vector concatenation

‖ · ‖2 Euclidean Distance (L2 norm) d·e The operation of rounding up

B RELATED WORK OF GRAPH NEURAL NETWORKS

There have been numerous researches on Graph Neural Networks (GNNs) to solve graph-based
tasks. Typical GNNs include graph convolution networks (Kipf & Welling, 2017; Hamilton et al.,
2017) and graph attention networks (Veličković et al., 2018) to pass messages between nodes
through convolutions and attentions, respectively. GNNs utilize a neighborhood aggregation scheme
to learn a node representation vector xv for each node v. The framework consists of two functions,
AGGREGATE and COMBINE:

x(l)v = COMBINE(l)
({
x(l−1)v ,AGGREGATE(l)

({
x
(l−1)
v′ : v′ ∈ Nv

})})
, (5)

where l is the round of aggregation, and Nv denotes the set of neighbors of a node v.

C EXPLANATION OF NODE-FEATURE AND GRAPH-STRUCTURE DIVERSITIES

As shown in Figure 9, the input graph contains three types of node features highlighted in different
colors and two kinds of graph structures, triangular structure (e.g., nodes E, D and F) and dumbbell-
shaped structure (e.g., nodes B and C).

I

A

JK

D

E F

Feature Diversity

: Nodes in different colors carry different features

SimplenessInput Graph

G

H

B

C

I

JK

I

A

D

I

A

G

Structure Diversity

I

A
B

: Dropped Nodes : Dropped Edges

Feature Diversity +

Structure Diversity

Figure 9: Illustration of node-feature diversity and graph-structure diversity. Nodes highlighted in
the same color carry similar feature while nodes in different colors carry dissimilar features.

14

Under review as a conference paper at ICLR 2022

Suppose we only maintain three nodes, and blue nodes obtain higher significance scores using pre-
vious node drop pooling methods. Therefore, after pooling the graph, the reserved nodes may have
four possible results shown in the right part: 1) nodes I, J, and K, which contain only one type of
feature and one type of structures; 2) nodes I, A, and D, which contain all types of features; 3) nodes
I, A, G, which include all kinds of structures; and 4) nodes I, A, and B, which cover all types of
features and all kinds of structures, respectively. According to the analysis in Section 3, current
node drop pooling models tend to preserve the nearby nodes, i.e., the nodes of Simpleness, resulting
in losing the node-feature diversity and graph structure diversity. We expect that our method MID
could promote models to capture more diversity information, i.e., preserving the nodes I, A, and B,
when pooling the graph.

D DISCUSSION OF DROPSCORE

Dropout (Srivastava et al., 2014) is first proposed to regularize fully connected networks by ran-
domly setting feature dimensions to be zeros. To mitigate over-fitting and over-smoothing, DropE-
dge (Rong et al., 2020b) generates the dropout to graph convolution networks (GCNs) by randomly
removing a certain number of edges from an input graph in each training epoch. Then, DropN-
ode (Feng et al., 2020) also uses the dropout trick by randomly selecting and dropping the en-
tire nodes to improve the generalization ability of GCNs. To better regularize GCNs, DropClus-
ter (Zhang et al., 2020b) consider spatial and depth-wise correlations when dropping entries. Drop-
score is different from the above-mentioned methods. Specifically, dropscore randomly drops out
several nodes with a certain rate during training only when selecting top-k scores, aiming to promote
models to cover as many substructures of a graph as possible. Except for the drop nodes, dropscore
will not influence the feature represenation of the rest nodes and the process of graph coarsor.

E ADDITIONAL ANALYSIS AND EXPERIMENTAL RESULTS

E.1 GRAPH RECONSTRUCTION

We further validate our method on the graph reconstruction task, which reveals how much meaning-
ful information is reserved during pooling.

0.1 0.2 0.3 0.4 0.5

0.7

0.8

0.9

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

E
x

a
ct

 M
a

tc
h

0.1 0.2 0.3 0.4 0.5

0.7

0.8

0.9

V
a

li
d

it
y

0.1 0.2 0.3 0.4 0.5

Compression Ratio

0.70

0.75

0.80

0.85

C
la

ss
if

ic
a

ti
o

n
 A

cc
u

ra
cy

(a) Classification Accuracy

0.1 0.2 0.3 0.4 0.5

Compression Ratio

0.00

0.02

0.04

E
x

a
ct

 M
a

tc
h

(b) Exact Match

0.1 0.2 0.3 0.4 0.5

Compression Ratio

0.8

0.9

1.0

V
a

li
d

it
y

(c) Validity

Figure 10: Reconstruction results on the ZINC dataset with different pooling ratios. Solid lines
denote the mean, and the shaded areas denote the variance.

Datasets. We conduct experiments on a real-world dataset, ZINC (Irwin et al., 2012), which con-
tains 12K molecular graphs.

Models. We evaluate our method MID by applying it to TopKPool and SAGPool models. Following
MinCutPool and GMT (Bianchi et al., 2020; Baek et al., 2021), we use two graph convolution
layers both before the pooling operation and the unpooling operation as illustrated in the Figure.

15

Under review as a conference paper at ICLR 2022

The pooling operations are TopKPool and SAGPool, and the unpooling operation is proposed in the
graph U-Net (Gao & Ji, 2019).

Experimental Settings. We perform all experiments 10 times with 10 random seeds from 42 to
51, and then report the average results with the standard deviation. We strictly follow the dataset
splitting provided by (Dwivedi et al., 2020) and use the early stopping with the patience as 50 on
the validation loss. We set the maximum number of epochs as 500, the batch size as 128, the hidden
dimension as 32, and the pooling ratio of all models as 10%, 20%, 30%, 40%, and 50%. The rest
hyperparameters remain the same as those of the graph classification task.

Performance Measure. We use three metrics suggested by (Baek et al., 2021) as follows: a) Clas-
sification accuracy refers to the classification accuracy of atom types of all nodes. b) Exact match
indicates the number of reconstructed molecules that are the same as the original molecules. c)
Validity means the number of reconstructed molecules that are chemically valid.

Results. The detailed results are shown in Figure 10. We can observe that the models using MID
significantly improve the performance in the validity metric, which means MID enables the models
to capture more meaningful nodes in the original molecules. Besides, our method improves the
performance of backbone models in the Accuracy and Exact match metrics. In a nutshell, our
method MID makes the models more powerful to capture significant semantic information for the
reconstruction of the original graph.

E.2 NODE CLASSIFICATION

We also validate our method on the graph classification task by using the architecture proposed by
graph U-Net (Gao & Ji, 2019). As our method MID aims to maintain more dissimilar features, we
conduct our experiments on four heterophily datasets.

Table 6: Node classification results on four benchmark heterophily datasets.

Texas Wisconsin Actor Cornell
Hom ratio rhom 0.11 0.21 0.22 0.3
Nodes |V| 183 251 7,600 183
Edges |E| 295 466 26,752 280
Classes |Y| 5 5 5 5

SAGPool-base 59.81 ± 0.36 53.78 ± 1.25 29.67 ± 0.16 58.51 ± 0.93
SAGPool-MID 61.16 ± 0.44 55.35 ± 1.12 29.73 ± 0.14 59.70 ± 1.07

Datasets. We conduct experiments on four benchmark heterophily datasets: Texas, Wisconsin,
Actor, and Cornell (Pei et al., 2020; Tang et al., 2009). We summarize the statistics of datasets in
Table 6. The edge homophily ratio rhom is defined as the fraction of edges in a graph that connects
nodes with the same class label :

rhom =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
, (6)

where yu and yv are the class labels for nodes u and v, respectively.

Models. We evaluate our MID by applying it to the SAGPool model, and the architecture that we
use for node classification is the graph U-Net (Gao & Ji, 2019).

Experimental Settings. We perform all experiments 10 times with 10 random seeds from 42 to
51, and then report the average results with the standard deviation. We strictly follow the dataset
splitting provided by (Pei et al., 2020). We set the maximum number of epochs as 200, the batch
size as 128, the hidden dimension as 128, and the pooling ratio as 50%.

Performance Measure. We use classification accuracy to evaluate the performance.

Results. The detailed results are shown in Table 6. We can observe that the SAGPool model
combined with MID outperforms backbone models across all datasets.

16

Under review as a conference paper at ICLR 2022

E.3 GENERALIZATION IMPROVEMENT

We are concerned about MID’s ability to be generalized to larger and more complex graphs. There-
fore, we test MID on graphs whose sizes are larger than the graph sizes during training following
the previous study (Knyazev et al., 2019).

Table 7: Generalization study results.

COLOR TRIANGLES
test-origin test-large test-origin test-large

nodes train 4-25 4-25 4-25 4-25
nodes test 4-25 25-200 4-25 25-100

SAG.-base 58.98±3.43 9.68±0.60 44.73±0.63 19.44±1.18
SAG.-MID 72.19±1.59 11.24±2.51 59.28±2.05 22.36±0.97
TopK.-base 70.38±5.22 30.24±22.75 45.00±1.06 17.88±1.75
TopK.-MID 99.96±0.03 82.64±15.21 47.30±2.16 23.85±1.14

Datasets. We conduct experiments on two synthetic datasets, COLORS and TRIANGLES (Knyazev
et al., 2019).

Models. We evaluate our method MID by applying it to TopKPool and SAGPool models. The
architecture of the models is the same as the one in the graph classification task.

Experimental Settings. As shown in Tabel 8, we strictly follow the experimental settings suggested
by (Knyazev et al., 2019).

Table 8: Dataset statistics and model hyperparameters for our generalized experiments.

COLORS TRIANGELS

num graphs 5,500 40,000
classes 11 10
train graphs 500 30,000
val graphs 2,500 5,000
test graphs origin 2,500 5,000
test graphs large 2,500 5,000
nodes train/val 4-25 4-25
nodes test origin 4-25 4-25
nodes test large 25-200 25-100

Convolution layers 2 3

Convolution layer type
GIN Aggregator
2 layer MLP with 64 hid. units

GIN aggregator
2 layer MLP with 64 hid. units

Pooling layers 1 2

Pooling layer type
SAGPool
min score 0.05, 64 hid. units

SAGPool
min score 0.001, 64 hid. units

READOUT layer global sum global max
Linear layers 1 1
seeds 20: [42-61] 10 : [42-51]

Training params
epochs: 100, dropout: 0.5, batch size: 32
lr: 1e-3, weigh decay: 1e-4

epochs: 100, dropout: 0.5, batch size: 32
lr: 1e-3, weigh decay: 1e-4

Performance Measure. We use the regression accuracy between the predicted labels and ground-
truth labels as our performance measure.

Results. The results in Table 7 demonstrate that our method significantly improves the performance
across all cases and datasets. Furthermore, when our method is combined with the TopKPool model

17

Under review as a conference paper at ICLR 2022

on the COLOR dataset, the accuracy does not degrade significantly when being generalized to graphs
with larger sizes during the test.

E.4 ROBUSTNESS ANALYSIS

We present additional experiment results of robustness analysis in Section 5. As shown in Figure 11,
backbone models combined with our method MID consistently perform better. In most cases, the
gap gradually gets bigger with the increase of the drop edge ratios.

0 0.1 0.2 0.3 0.6 0.9

0.6

0.7

0.8

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy

0 0.1 0.2 0.3 0.6 0.9

0.65

0.70

0.75

0.80

0 0.1 0.2 0.3 0.6 0.9

0.65

0.70

0.75

0.80

0 0.1 0.2 0.3 0.6 0.9

0.6

0.8

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.6

0.7

0.8

C
la

ss
if

ic
a
ti

o
n

 A
cc

u
ra

cy

(a) DD
(Avg # edges 715.66)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.700

0.725

0.750

0.775

(b) PROTEINS
(Avg # edges 72.82)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.60

0.65

0.70

0.75

0.80

(c) NCI1
(Avg # edges 32.30)

0 0.1 0.2 0.3 0.6 0.9

Drop Edge Ratio

0.6

0.7

0.8

(d) MUTAG
(Avg # edges 19.79)

Figure 11: The robustness of our method against edge perturbations. Graph classification results on
four benchmark datasets by varying the drop edge ratio. Solid lines denote the mean, and shaded
areas denote the variance.

E.5 PARAMETER ANALYSIS

We present more results of parameter analysis.

1 4 8 12 16 20 24

Score Dimension

0

0.1

0.2

0.3

0.4

0.5

0.6

S
co

re
 D

ro
p

 R
a

ti
o

0.0 0.0 -3.6 -1.2 3.0 0.0 -1.8

-3.6 -1.8 -1.8 -1.8 -3.0 2.4 -3.6

-4.8 1.2 -4.2 -1.2 3.0 -1.2 -1.2

-3.0 -2.4 -4.8 -4.2 -3.0 1.2 -6.5

-2.4 -5.4 -2.4 -4.2 -5.4 -5.4 -3.6

-7.7 0.6 -4.8 -4.8 -6.5 -5.4 -3.0

-13.7 0.0 -6.5 -3.6 -3.6 -0.6 -2.4

(a) MUTAG

1 4 8 12 16 20 24

Score Dimension

-2.6 5.4 -1.6 4.9 3.8 2.2 -2.1

-10.6 3.8 -4.2 -3.7 4.9 3.3 -3.7

-7.4 2.7 -4.8 -0.5 -2.1 -3.2 0.1

-6.4 -3.2 -6.4 2.7 0.6 7.5 -7.4

-7.4 0.6 -0.5 -3.7 -2.1 0.1 -5.3

-1.0 0.6 1.7 -4.8 -3.2 9.1 -4.2

5.4 -6.4 -3.7 -0.5 -1.0 3.3 -5.3

(b) PTC-MR

1 4 8 12 16 20 24

Score Dimension

1.9 4.6 6.7 7.8 6.2 5.3 4.0

4.6 7.2 8.3 7.3 6.6 6.5 7.9

4.7 5.7 6.3 7.3 6.7 6.9 5.8

2.0 4.7 4.6 7.1 4.5 6.3 5.9

0.7 2.9 3.7 2.4 5.3 2.8 4.0

-5.6 0.3 2.4 1.6 2.9 3.7 1.8

-8.2 -2.2 -1.1 -0.6 0.6 0.6 1.2

(c) NCI1

1 4 8 12 16 20 24

Score Dimension

2.5 -0.6 0.8 0.0 -2.1 -0.8 1.1

0.8 -0.7 3.5 0.1 2.4 1.7 -0.3

2.7 0.8 2.0 0.3 0.3 -1.3 -0.7

2.9 2.0 1.1 2.8 -0.4 1.1 1.8

2.9 1.0 0.1 1.3 1.1 3.1 2.4

0.4 3.5 2.5 0.6 -0.6 2.4 1.8

0.1 3.4 1.1 3.2 2.7 3.5 2.2

(d) IMDB-BINARY

Low

High

A
ccu

ra
cy

 G
a
in

 (%
)

Figure 12: Parameter sensitivity of score drop ratio p and score dimension h on four datasets with
the TopKPool model.

F PROOFS

In this section, we present the detailed proofs for all theoretical analysis in Section 4.

18

Under review as a conference paper at ICLR 2022

F.1 PROOFS OF TRAPPED SCORES

We prove theoretically that, under some conditions, the selected nodes of most node drop pooling
models are stuck in the local structure.

Proposition. 1. Consider a graph G with the adjacency matrix A, xv is the feature for node v.
Assume that linked nodes in the same local structure have similar features. Let x1,x2 be node
features and s1, s2 be the significance scores, then, the distance between s1 and s2 approximates to
zero, i.e., ‖s1 − s2‖ → 0, as long as ‖x1 − x2‖ → 0.

Proof. Take the TopKPool model as an example. TopKPool model predicts scores through:

S = X
p

‖p‖
, (7)

where p is a learnable vector. Given two features x1 and x2 for nodes u and v, the scores of two
nodes are:

s1 = x1
pT

‖p‖
, s2 = x2

pT

‖p‖
. (8)

Then, we have:

‖s1 − s2‖ =
∥∥∥∥x1

pT

‖p‖
− x2

pT

‖p‖

∥∥∥∥ ≤ ‖x1 − x2‖. (9)

Therefore, based on Eq. (9) and ‖x1 − x2‖ → 0, we get:

‖s1 − s2‖ → 0. (10)

F.2 PROOFS OF GRAPH PERMUTATION EQUIVARIANCE

Graph pooling should generate isomorphic pooled graphs after graph permutation, which is defined
as graph permutation equivariance. We first give a definition of graph permutation and graph per-
mutation equivariance.

Definition 1. Given a permutation matrix P ∈ {0, 1}n×n and it further satisfies P1 = 1 and
PT1 = 1 which means there exists exactly one nonzero entry per row and column of P , a pool-
ing function f(X,A), then graph permutation is f

(
PX,PAPT

)
, which consists of node-feature

permutation f (PX,A) and graph-structure permutation f
(
X,PAPT

)
.

Definition 2. Graph permutation equivariance is f(PX,PAP>) = P>f(X,A).

We first introduce a theorem from Vignac et al. (2020).

Theorem 2 (Permutation Equivariance of Graph Neural Networks). Give a GNN function φ,
then we have:

φ(PX,PAP>) = P>φ(X,A). (11)

Proof. The detailed proofs of Theorem 2 can be found in Vignac et al. (2020).

Then, we show that our MID would not break the graph permutation equivariant property of back-
bone models. We take SAGPool as an example to prove Proposition 2.

Proposition. 2. Suppose the backbone graph pooling model is graph permutation equivariant, the
model combined with our MID is still graph permutation equivariant.

19

Under review as a conference paper at ICLR 2022

Proof. The SAGPool model predict scores through a GNNs layer:

S = σ
(
D̃−

1
2 ÃD̃−

1
2 XΘ

)
, (12)

where S is the scores for nodes, σ is the activation function (tanh), Ã is the adjacency matrix with
self-connections (Ã = A + I), D̃ is the degree matrix, and Θ is the matrix of parameters.

According to Theorem 2 and Eq. 12, we have:

Ŝ = P>S, (13)

where Ŝ = σ(D̃−
1
2 PÃP>D̃−

1
2 PXΘ). Then, selecting top dk × ne nodes according to Ŝ denoted

by indices idx. And using Eq. (13) and Xp = X̂(idx), Ap = Â(idx), we can write:

Xp → P[idx, idx]Xp,

Ap → P[idx, idx]Ap(P[idx, idx])T
(14)

We see that graph permutation does not change the output features. Our method MID as formulated
in Eq. (15) only makes changes in selecting top dk×ne nodes and is not affected by the input order.

Smulti = SCORE(X,A), SL1 = ‖Smutli‖1 , Sdrop = Idps×neSmulti. (15)

Therefore, from Eq. (14) and Eq. (15), we conclude that our method MID would not break the graph
permutation equivariant property of backbone models.

F.3 CONNECTION WITH WEISFEILER-LEHMAN GRAPH ISOMORPHISM TEST

Weisfeiler-Lehman (WL) test of graph isomorphism (Weisfeiler & Leman, 1968) provides an ef-
fective solution to distinguish different graphs. According to previous studies (Xu et al., 2019), a
GNN can have as large discriminative power as the WL test if the aggregation scheme is an injective
function. The overall model for graph classification consists of two phases: graph convolution and
graph pooling. If we make the pooling function injective, then the model can be as powerful as the
WL test in distinguishing different graphs. In the following, we demonstrate that the proposed MID
could promote the backbone pooling models to be more powerful in distinguishing different graphs.
We first introduce the theorem from Xu et al. (2019).

Theorem. 1. (Non-isomorphic Graphs to Different Embeddings) Let A : G → Rd be a GNN.
If the aggregation function and the graph-level readout function are injective, A can distinguish
any two non-isomorphic graphs G1 and G2, which are decided by the Weisfeiler-Lehman test of
isomorphism.

Proof. The detailed proofs of Theorem 1 can be found in Appendix B of (Xu et al., 2019).

According to the Theorem 1, the key of the expressive power is the injectiveness of function, which
means the outputs of the function are more unique. Our next corollary shows that our proposed MID
enables the outputs of backbone pooling models to be more powerful.

Corollary. 1. (Expressive power on Node Drop Pooling Models) Assume the feature space X is
a countable set. Let X ∈ X be the matrix of node features, A be the adjacency matrix, ps be the
score dropping ratio, and h be the score dimension. The output of POOL-MID(X,A, ps, h) with
our method MID could be more unique than the output of backbone pooling models POOL(X,A).
Then, the backbone pooling models with MID could approximately be as powerful as the WL test.

Proof. According to our analysis in Section 3, scores generated by modern node drop pooling mod-
els tend to be stuck in the local structures, which would cause the models failing to distinguish two
different graphs. As shown in Figure 13 (a) and (b), if modern pooling models keep nodes A, B, C

20

Under review as a conference paper at ICLR 2022

Graph 1
C

A
B

D

E
F

G

C

A
B

D

E
F

G
H

C

A
B

D

E
F

G

C

A
B

D

E
F

G
H

C

A
B

D

C

A
B

D

Graph 2

C

A
B

E

C

B

D

E

Base Pooling Base Pooling + Our

(a)

(b) (d)

(c)

≠=

: Nodes : Dropped Nodes A : Dropped Scores : Reserved Nodes : Coarsen Graph

Figure 13: Our method enable the pooled graph of backbone pooling methods to be more unique.

and D in the pooled graph both in Graph 1 and Graph 2, then the outputs of the above two graphs
are the same, which indicates that models can not distinguish the two different graphs.

Then, we consider the models combined with our method MID. Specifically, the dropscore operation
of MID, Sdrop = Idps×neSmulti, could help make the outputs of two graphs more distinguishable. As
shown in Figure 13 (c) and (d), even if models generate the same top-k scores for nodes in two
graphs, our dropscore operation will randomly drop out certain rate of nodes, which increases the
probability that the output of two graphs are different. Therefore, it confirms that our method MID
makes the outputs of backbone pooling models more unique.

Moverover, we know that outputs of backbone pooling models combined with our MID are more
unique, which means that the pooling function of backbone models combined with MID are more
convergent to injective. According to the Theorem 1, the key of expressive power is the injectiveness
of function. Therefore, our MID prompts models to be more approximately as powerful as the WL
test.

G DETAILED CASE STUDY DESCRIPTION FOR EACH COMPONENT

G.1 MULTIDIMENSION SCORE SPACE

Datasets. We select five benchmark datasets (MUTAG, ENZYMES,NCI, PROTEINS, and
NCI109).

Models. We apply SAGPool with or without multidimension score space.

Experimental Settings. We use a random splitting with the fixed seed 777. Other experimental
settings keep the same with the graph classification task in Section 5.

Performance Measure. To evaluate score correctness of models with pooling, we follow the idea
from (Knyazev et al., 2019; Zeiler & Fergus, 2014). After training a model, we remove node i and
compute an absolute difference from prediction y for the original graph:

αWS
i =

|yi − y|∑N
j=1 |yj − y|

, (16)

where αWS
i is the ground truth score and yi is a model’s prediction for the graph without node i.

After obtaining the ground truth scores and calculated scores from the first pooling layer in the test
dataset, we calculate the score correctness by Rank-Biased Overlap which is a method to quantify
the similarity between two ranked lists (Webber et al., 2010). It returns a lower-bound estimate and
an upper bound estimate. The higher the values are, the better they are.

21

Under review as a conference paper at ICLR 2022

Results. The detailed results are shown in Table 9. We can observe that the multidimension score
space operation consistently improves the attention correctness, while the flipscore operation only
performs better in some situations.

G.1.1 SORE DIMENSION ANALYSIS

According to our analysis in Section 3, the multidimension score space operation would enlarge the
dimension of embedding vectors. Therefore, we give an in-depth study on how the parameter, em-
bedding dimension, affects the performance in the graph classification task. For a fair comparison,
we design three experiments: 1) Repeat vectors. Raising the embedding dimension in base models
by repeating the embedding vectors in the pooling layer. 2) MLP. Raising the embedding dimension
in base models through adding one Multi-layer perceptron layer between the graph convolution layer
and the pooling layer. 3) Multi-head. Fixing the embedding dimension as 128 with multidimension
score space. Specifically, we first equalize the embedding vectors Xl into h parts, Xl

1,X
l
2, ...,X

l
h.

Then the new features of nodes are calculated by:

{X(l)
1 � s

(l)
1 ‖X

(l)
2 � s

(l)
2 ‖..., ‖X

(l)
h � s

(l)
h }, (17)

where ‖ indicates the concatenation.

128 384 640 896 1152
Hidden Dimensions

0.70

0.72

0.74

0.76

C
la
ss
ifi
ca
tio

n
A
cc
ur
ac
y

(a) Repeat Vectors

MUTAG
DD

NCI1

128 384 640 896 1152
Hidden Dimensions

0.72

0.74

0.76

(b) MLP

MUTAG
DD

NCI1

128/1 128/2 128/4 128/8 128/16
Hidden Dimensions

0.72

0.74

0.76

(c) Multi-head

MUTAG
DD

NCI1

Figure 14: Accuracy results varying with different hidden dimensions. 128/2 means that the dimen-
sion of the embedding vector is 128, and the dimension of score, h, is 4.

Datasets. We select three benchmark datasets (MUTAG, DD, and NCI1), and the samples of these
datasets are 188, 1,178, and 4,110, respectively.

Models. We choose SAGPool model as a baseline model for Repeat vectors and MLP experi-
ments. When we conduct the Multi-head experiment, we only apply the multidimension score space
operation.

Experimental Settings. The experimental settings are kept the same as those of graph classification
task in Section 5.

Performance Measure. We use classification accuracy between the predicted labels and ground-
truth labels as our performance measure. The model performance is evaluated on the test split of the
10 random splitting for all datasets and reported as the average and the standard deviation of the 10
scores.

Results. The detailed results are shown in the Figure 14. We can observe that raising the hidden
dimensions in MUTAG, DD, and NCI1 datasets could not contribute to the improvement of the
accuracy. On the contrary, the accuracy decades when the dimension increases. And in Figure 14
(c), results demonstrate that our multidimension score space operation contributes to the accuracy
improvement even if we do not raise the hidden dimensions.

G.2 THE FLIPSCORE OPERATION

Datasets. We conduct our experiments on the MUTAG dataset.

22

Under review as a conference paper at ICLR 2022

Table 9: Score correctness.

MUTAG ENZYMES NCI1 PROTEINS NCI109

Lower Upper Lower Upper Lower Upper Lower Upper Lower Upper

Base 0.4069 0.4667 0.3012 0.3035 0.4198 0.4261 0.5956 0.8284 0.4341 0.5262
Flip 0.7405 0.8004 0.2872 0.2895 0.4255 0.4318 0.5773 0.8102 0.4967 0.5888
Multi 0.6521 0.7119 0.4120 0.4143 0.5554 0.5605 0.6769 0.9097 0.6097 0.7017

Models. We apply SAGPool and GSAPool models with or without multidimension score space.
The architecture of the model is shown in Figure 17.

Experimental Settings. We use a random splitting with the fixed seed 777. Other experimental
settings keep the same with the graph classification task in Section 5.

Performance Measure. According to the previous study (Gao et al., 2020; Hou et al., 2020), the
information gain can be calculated by KL-divergence:

DKL

(
S(k)‖C(k)

)
=

∫
Xk

S(k)(x) · log S
(k)(x)

C(k)(x)
dx. (18)

According to the proof (The detailed proof can be found in (Gao et al., 2020; Hou et al., 2020)),
DKL is positively correlated to :

λ =

∥∥∥∑v∈V
(∑

v′∈Nv
(xv − xv′)

)2∥∥∥
1

|E| · d
. (19)

Then, we calculated the pooling information gain by function 19, but only calculated the value of
selected nodes. We refer to it as information gain during one-time pooling operation.

G.3 THE DROPSCORE OPERATION

Datasets. We select five benchmark datasets (NCI1, ENZYMES, PROTEINS, IMDB-BINARY,
COLLAB), including different graph sizes and different domains (social and bio-chemical).

Models. We apply SAGPool model with or without our method. The architecture of the model is
shown in Figure 17.

Experimental Settings. We use a random splitting with the fixed seed 777, and the pooling ratio is
set as 40%. We report the selected nodes in the first pooling layer of test set in the last epoch. For
convenience, we set the batch size of test set as 1. Other experimental settings keep the same with
the graph classification task in Section 5.

Results. The detailed results are shown in the Figure 15. The selected nodes are highlighted in
red. We can observe our dropscore operation encourages models to cover more substructures in the
graph.

H DATASET STATISTICS

The detailed statistics of datasets are shown in Table 10.

23

Under review as a conference paper at ICLR 2022

N
C
I1

(a) Base (b) Drop (c) Base (d) Drop

E
N
Z
Y
M
E
S

PR
O
T
E
IN
S

IM
D
B
-B
IN
A
R
Y

C
O
L
L
A
B

Figure 15: Detailed visualization of node selection results at first layer in SAGPool and SAGPool
with dropscore operation. Selected nodes are highlighted in red.

I BASELINE AND BACKBONE MODELS

I.1 BACKBONES

1) TopKPool (Gao & Ji, 2019). This method select top-k nodes according to scores generated by a
learnable function, which only considers the node features.

2) SAGPool (Lee et al., 2019). This method selects the important nodes by dropping unimportant
nodes with lower scores that are generated by another graph convolutional layer, which involves the
nodes features and graph structures. Particularly, this method has two variants. .1) SAGPool(G) is
the global node drop method that drops unimportant nodes one time at the end of their architecture.
.2) SAGPool(H) is the hierarchical node drop method that drops unimportant nodes sequentially
with multiple graph convolutional layers. We Use SAGPool(H) in this paper.

3) ASAP Ranjan et al. (2020). This method clusters the neighboring nodes, and then drops the
lower score clusters using a spetial scoring function.

24

Under review as a conference paper at ICLR 2022

Table 10: Statistics and properties of benchmark datasets

graphs # classes Avg # nodes Avg # edges

TU Datasets

DD 1,178 2 284.32 715.66
PROTEINS 1,113 2 39.06 72.82
NCI1 4,110 2 29.87 32.30
MUTAG 188 2 17.93 19.79
PTC-MR 344 2 14.30 14.69
NCI109 4,127 2 29.68 32.13
ENZYMES 600 6 32.63 124.20
Mutagenicity 4,337 2 30.32 30.77
FRANKENSTEIN 4,337 2 16.90 17.88
REDDIT-B 2,000 2 429.63 497.75
IMDB-B 1,000 2 19.77 96.53
IMDB-M 1,500 3 13.00 65.94
COLLAB 5,000 3 74.49 2457.78

OGB Datasets

HIV 41,127 2 25.51 27.52
Tox21 7,831 12 18.57 19.3
ToxCast 8,576 617 18.78 19.3
BBBP 2,039 2 24.06 26.0

4) GSAPool (Zhang et al., 2020a). This method generate scores from two perspectives: 1) Us-
ing MLP to capture the significant node features, 2) Using GNN to capture the significant graph
structures. Then the model linearly combines the two scores.

I.2 BASELINES

5) Set2set (Vinyals et al., 2016). This method uses a recurrent neural network to encode a set of all
nodes, with content-based attention over them. And the readout layer is unnecessary in this method.

6) SortPool (Zhang et al., 2018) This method drops unimportant nodes by sorting the final channel
of their features, which are directly generated from the previous GNN layers. Motivated by WL
colors, this method regards the last layer’s output of GNN as most refined WL colors.

7) DiffPool (Ying et al., 2018). This method clusters similar nodes into the few new nodes through
graph convolutional layers to coarsen the graph.

8) MinCutPool (Bianchi et al., 2020). This method clusters the node through the spectral clustering
with GNNs, to coarsen the nodes and the adjacency matrix of a graph.

9) HaarPool (Wang et al., 2020). This method compresseses the node features with a nonlinear
transformation in a Haar wavelet domain.

10) EdgePool (Diehl, 2019). This method calculates the scores for edges, and then gradually merges
the nodes connected by the high score edges.

11) MemPool (Khasahmadi et al., 2020). This method proposes an efficient memory layer to
jointly learn node representations and coarsen the graph.

12 GMT (Baek et al., 2021). Graph Multiset Transformer first condenses all nodes into the impor-
tant nodes by GMPool, and then considers interactions between nodes in a set.

J EXPERIMENTAL SETTINGS

Source Code. Except for HaarPool and HGP-SL models, where we use the source codes pro-
vided by authors, for the rest of the models, we use the PyTorch Geometric library (Fey & Lenssen,
2019).

25

Under review as a conference paper at ICLR 2022

Xl Al

Al+1Xl+1

GCN

S Xl′ Al′

⊙
Top-rank

maskSidx idx

pl / pl

a) TopKPool

Xl Al

Al+1Xl+1

GCNGCN

S Xl′ Al′

⊙
Top-rank

maskSidx idx

b) SAGPool

Al+1

Xl Al

Xl+1

GCNGCN

Xl′ Al′

⊙
Top-rank mask

Sidx
idx

c) GSAPool

FNN

S1 S2
α

1 −
α

Sum

Xl Al

Al+1Xl+1

MASTER2TOKEN

⊙
Top-rank

Sidx

idx

d) ASAP

Xl
c Al

c

LEConv

S

C

⊗
mask

Cidx

Figure 16: Backbone models

Hardware Environments. Each experiment was run on a single GPU (NVIDIA V100 with a 16
GB memory size) and experiments were run on the server at any given time.

Software Environments. All models are implemented with Python 3.7. It requires PyTorch 1.9.0
or above (which further requires CUDA 10.2 or above) and PyTorch-Geometric 1.7.3 or above.

26

Under review as a conference paper at ICLR 2022

Graph

Convolution

Graph

Pooling

Graph

Convolution

Graph

Convolution

Graph

Pooling

Graph

Pooling

MLP

Readout

Readout

Readout

+

Graph

Convolution

Graph

Convolution

Graph

Convolution

Graph

Pooling
MLP

(a)

(b)

Figure 17: The illustration of model architectures.

J.1 GRAPH CLASSIFICATION WITH TU DATASETS

Datasets. We select 13 benchmark datasets from TU datasets containing different domains, sam-
ples, and graph sizes. D&D, PROTEINS,NCI1, MUTAG, PRC-MR, NCI109, ENZYNMES, and
Mutagenicity datasets are on Biochemical domain, and FRANKENSTEIN, REDDIT-BINARY,
IMDB-BINARY, IMDB-MULTI, and COLLAB are on Social domain. The detailed statistics and
properties are described in Table 10.

Models. We apply 4 representative backbone models with or without our method(TopK, SAG-
Pool, ASAP, and GSAPool). Following the architecture design of these methods, we adopt the
architecture shown in Figure 17 Bottom for all 4 models. Also, We run 8 baseline models(Set2set,
SortPool, DiffPool, MinCutPool, EdgePool, HaarPool, MemPool, and GMT). Among them, Diff-
Pool, MinCutPool, EdgePool, and HaarPool use the hierarchical architecture(Figure 17 Bottom),
while Set2set, SortPool, GMT use the global architecture(Figure 17 Top). The specific of each part
in architecture for all models are described in Table 11.

Implementation Details. For all experiments on TU datasets, we evaluate the model performance
with a 10-fold cross validation setting, where the dataset split is based on the conventionally used
training/test splitsZhang et al. (2018); Xu et al. (2019); Baek et al. (2021). We use the early stop-
ping criterion, where we stop the training if there is no further improvement on the validation loss
during 50 epochs. We then report the average performances on the test sets, by performing overall
experiments 10 times with different seeds from 42 to 51. We optimize the network with Adam op-
timizer (Kingma & Ba, 2014). Also, we set the pooling ratio as 50% in each pooling layer for both
baselines and our models. The detailed hyperparameter settings for each model on each dataset are
shown in Table 11.

Performance Measure. We use classification accuracy between the predicted labels and ground-
truth labels as our performance measure. The model performance is evaluated on the test split of the
10 folds for all TU datasets, and reported as the average and the standard deviation of the 100 scores
with 10 different seeds.

J.2 GRAPH CLASSIFICATION WITH OGB DATASETS

Datasets. We select 4 benchmark datasets from OGB datasets(HIV, Tox21, ToxCast, BBBP). The
detailed statistics and properties are described in Table 10.

Models. We apply 4 representative backbone models with or without our method(TopK, SAG-
Pool, ASAP, and GSAPool). Following the architecture design of these methods, we adopt the
architecture shown in Figure 17 Bottom for all 4 models. Also, We run 8 baseline models(Set2set,
SortPool, DiffPool, MinCutPool, EdgePool, HaarPool, MemPool, and GMT). Among them, Diff-

27

Under review as a conference paper at ICLR 2022

Table 11: Hyperparameter settings for TU expriments. The layer is the type of graph convolution;
batch is the training batch size; drop is the ratio of dropout between linear layers; lr is the learning
rate; weight is the weight decay; patience is the training patience.
Model Dataset Hyperparameter

Layer batch hidden drop lr weight epochs patience Other

TopKPool All GCN 128 128 0.5 5E-04 1E-04 5E+05 50 Readout: mean+max

SAGPool All GCN 128 128 0.5 5E-04 1E-04 5E+05 50 Readout: mean+max

GSAPool All GCN 128 128 0.5 5E-04 1E-04 5E+05 50
Readout: mean+max,
alpha: 0.4,
feature fusion type: GAT,

Set2Set All GCN 128 128 0.5 5E-04 1E-04 5E+05 50 1 layer LSTM

SortPool All GCN 128 128 0.5 1E-04 1E-04 5E+05 50 K=30,
Conv1d(self.nhid, 32, 5)

DiffPool All DenseSAGEConv 128 64 0 5E-04 1E-04 5E+05 50

Loss = Total,
BatchNorm1d
Readout Mean
max nodes =100

EdgePool All GCN 128 128 0.5 5E-04 1E-04 5E+05 50 edge drop : 0.2
Readout: mean + max

MInCutPool All GCNConv
DenseGraphConv 128 32 0.5 5E-04 1E-04 5E+05 50 Readout : mean

MemPool

DD

GATConv
DeepGCNLayer

60 120

0.5 5E-04 1E-04 5E+05 50

BatchNorm1d,
heads=5,
num clusters=10,
LeakyReLU,
2 mempooling

PROTEINS 20 80
ENZYMES 20 100
COLLAB 64 100
REDDIT-B 32 16 heads=1
Others 128 128 heads=5

HaarPool

NCI09 GCN 100 256 0.6 0.01 1E-04 150 50
Linear2(nhid,nhid//2)
Conv: 3
Haarpool:1

PROTEINS GCN 60 120 0.5 1E-03 1E-04 20 20
Linear2(nhid,nhid//2)
Conv: 3
Haarpool:3

MUTAG GCN 60 60 0.5 0.01 1E-04 30 15
Linear1(nhid,3*nhid)
Conv: 1
Haarpool: 1

NCI1 GCN 100 256 0.5 1E-03 1E-04 150 50

Linear2(nhid,nhid*4)
Linear3(nhid*,nhid*8)
Conv: 2
Haarpool:1

DD GCN 60 120 0.5 1E-03 1E-04 20 20
Linear2(nhid,nhid//2)
Conv: 3
Haarpool:1

ENZYMES GCN 60 60 0.5 0.01 1E-04 30 15
PTC-MR GCN 60 60 0.5 0.01 1E-04 30 15
Mutagenicity GCN 100 256 0.5 0.01 1E-04 50 50
Others GCN 100 128 0.5 0.01 1E-04 150 50

ASAP All GraphConv 64

[16,

64,

128]

0.5 0.01 1E-04 5E+05 50 Readout: mean+max
4 layer

HGP-SL All GCN 64 128 0 0.01 0.001 1000 100

Readout: mean+max
Lamb =1.0,
sample neighbor= True
sparse attention = True
structure learning = True

Pool, MinCutPool, EdgePool, and HaarPool use the hierarchical architecture(Figure 17 Bottom),
while Set2set, SortPool, GMT use the global architecture(Figure 17 Top). The specific of each part
in architecture for all models are described in Table 11.

Implementation Details. For all experiments on OGB datasets, we evaluate the model perfor-
mance with a 10-fold cross validation setting, where the dataset split is based on the conventionally
used training/validation/test splitsHu et al. (2020). We then report the average performances on the
test sets, by performing overall experiments 10 times with different seeds from 42 to 51. We op-
timize the network with Adam optimizer (Kingma & Ba, 2014). Also, we set the pooling ratio as
25% in each pooling layer for both baselines and our models. For all experiments on OGB datasets
except the HIV, batch size is set to 128. Since the HIV dataset contains a large number of graphs

28

Under review as a conference paper at ICLR 2022

compared to others (See Table in the main paper), the batch size is set to 512 for fast training. The
detailed hyperparameter settings for each model on each dataset are shown in Table 11.

Performance Measure. We use classification accuracy between the predicted labels and ground-
truth labels as our performance measure. The model performance is evaluated on the test split of
the 10 folds for all OGB datasets, and reported as the average and the standard deviation of the 100
scores with 10 different seeds.

29

	Introduction
	Related Work of Graph Pooling
	Method
	Review of Node Drop Pooling
	Our Proposed MID
	The Multidimensional Score Space
	The Flipscore Operation
	The Dropscore Operation

	Theoretical Analysis
	Trapped Scores
	Graph Permutation Equivariance
	Connection with Weisfeiler-Lehman Graph Isomorphism Test

	Experiment
	Conclusion
	Notations
	Related Work of Graph Neural Networks
	Explanation of Node-feature and Graph-structure Diversities
	Discussion of Dropscore
	Additional Analysis and Experimental Results
	Graph Reconstruction
	Node Classification
	Generalization Improvement
	Robustness Analysis
	Parameter Analysis

	Proofs
	Proofs of Trapped Scores
	Proofs of Graph Permutation Equivariance
	Connection with Weisfeiler-Lehman Graph Isomorphism Test

	Detailed Case Study Description for Each component
	Multidimension Score Space
	Sore Dimension Analysis

	The Flipscore Operation
	The Dropscore Operation

	Dataset Statistics
	Baseline and Backbone Models
	Backbones
	Baselines

	Experimental Settings
	Graph Classification with TU Datasets
	Graph Classification with OGB Datasets

