
Self-Supervised Pretext Tasks for Event Sequence Data
from Detecting Misalignment

Yimu Wang ∗

University of Waterloo
yimu.wang@uwaterloo.ca

He Zhao
RBC Borealis

he.zhao@borealisai.com

Ruizhi Deng
RBC Borealis

ruizhi.deng@borealisai.com

Frederick Tung
RBC Borealis

frederick.tung@borealisai.com

Greg Mori
RBC Borealis

greg.mori@borealisai.com

Abstract

Pretext training followed by task-specific fine-tuning has been a successful ap-
proach in vision and language domains. This paper proposes a self-supervised
pretext training framework tailored to event sequence data. We introduce novel
auxiliary tasks (pretext tasks) that encourage the network to learn the coupling
relationships between event times and types – a previously untapped source of
self-supervision without labels. These pretext tasks unlock foundational representa-
tions that are generalizable across different downstream tasks, including next-event
prediction for temporal point process models, event sequence classification, and
missing event interpolation. Experiments on popular public benchmarks demon-
strate the potential of the proposed method across different tasks and data domains.

1 Introduction

Self-supervised learning (SSL) has emerged as a transformational machine learning paradigm for
foundation models in vision (He et al., 2022), language (Brown et al., 2020), and time series (Yue
et al., 2022). The core to its success is designing effective auxiliary (pretext) tasks, e.g., reconstruction
of masked information (He et al., 2022; Devlin et al., 2018), which help extract general representations
from unlabelled data.

Event sequences are prevalent in many domains, including commerce, science, and healthcare, with
event data generated by human activities and natural phenomena such as online purchases, banking
transactions, earthquakes, disease outbreaks, and hospital patients’ medical observations. When
event data are plentiful, large-scale pretext training can enable the learning of general representations
without labels toward the building of foundational capabilities. For example, pretext training on
banking transactions could help produce representations that are useful for detecting financial crime,
for which labels are scarce. Nevertheless, self-supervised pretext tasks for event sequences remain
underexplored.

In this work, we present novel pretext training tasks for event sequences inspired by the coupling
relationship between event times and event types, and observations on alignment between different
pieces of event sequences. For example, in Figure 1, a user’s lunch break is usually aligned with noon

∗Work done during internship at RBC Borealis.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

12!"

time

1!" 2: 30!"

ANSWER A QUESTION NICE ANSWERLUNCH BREAK NICE ANSWER ANSWER A QUESTIONLUNCH BREAK

time

9: 40!" 10: 20!"

NICE QUEESTION POPULAR QUESTION

11!"11: 25!"3: 15!" 3: 30!"

UP-VOTE GURU

Figure 1: The figure shows an example of a valid event sequence of a person’s daily events and online activities
on the left side compared against a misaligned sequence on the right side. In the misaligned sequence, the
activity of a lunch break is misaligned with its time stamp of 9 pm. The person could not receive a NICE ANSWER
badge for his answer in an online forum before answering the question. The orange arrow highlights the causal
relation between the two events. It is also unlikely for this internet forum user to receive a NICE QUESTION
badge for answering a question.

times instead of bedtime. The user must answer a question in an internet forum before getting a badge
of NICE ANSWER. Receiving a NICE ANSWER badge before answering a question would break our
assumptions on the order of these two events even though they are closely associated. The user would
then receive a prestigious badge of GURU as the answer receives more up-votes but awarding the user
with a POPULAR QUESTION badge for his answer would create incoherence with the previous events.

To capture these alignment relationships from event sequences in a fully self-supervised manner, we
devise three approaches to create disordered or mixed-up sequences automatically during training.
The model is trained to detect these misaligned sequences with a binary classification task. This
pretext training unlocks representations that are generalizable across different downstream tasks,
including next-event prediction for temporal point process models, event sequence classification, and
missing event interpolation. In addition, we verify that the proposed pretext tasks are complementary
to masked autoencoding and contrastive learning pretext tasks that are popularly adopted in computer
vision and natural language processing.

2 Approach

We explore the effectiveness of verifying alignment (i.e., detecting disordered or mixed-up event
sequences) as a way to perform self-supervised model pre-training without downstream labels. Once
the general representations are learned, task-specific fine-tuning can be performed to adapt the model
to downstream tasks of interest such as next-event prediction, sequence classification, and missing
event interpolation.

2.1 Preliminaries

Definition of event sequences. Let X = {(t1,m1), ..., (tN ,mN)}, 0 < t1 < ... < tN denote an
event sequence, where N is the total number of events, {ti} are event arrival times and {mi} ∈
{1, ...,K} are categorical event types.

2.2 Alignment Verification as Auxiliary Task

We formulate the alignment verification pretext task as a binary classification problem, aiming to
tell apart correctly aligned (original) event sequences from misaligned (disordered or mixed-up)
sequences. To generate misaligned event sequences for pre-training, we take three approaches:

Misalignment 1: Shuffle. Randomly shuffling the event types both disrupts the consistency between
event types and event arrival times and breaks their correct order. We keep the event arrival times
intact so that they still follow the same distribution as the original sequences and the training focuses
on learning better contextual representations of event types.

Misalignment 2: Swap. Similarly, we can create a misalignment by mixing event types of a given
sequence with event times of another sequence. This can be done by randomly picking a different
event sequence in the same batch and swapping their type and time dimensions2.

2In implementation, we pad all sequences to the same length.

2

Algorithm 1 Methods for generating misaligned sequences in alignment verification
Misalignment 1: Shuffle (event sequence X):

1. Get the shuffled indices by ˜ind← shuffle([N]);
2. Return the event sequence shuffled along the type dimension
X̃ = {(t1,m ˜ind1

), . . . , (tN ,m ˜indN
)}.

Misalignment 2: Swap (event sequences Xa, Xb):
Return the swapped event sequences X̃a = {(t[a,1],m[b,1]), . . . , (t[a,N],m[b,N])} and
X̃b = {(t[b,1],m[a,1]), . . . , (t[b,N],m[a,N])}.

Misalignment 3: Crossover (event sequences Xa, Xb):
Assuming even lengths Na, Nb for ease of presentation
Return the combined event sequences
X̃a = {(t[a,1],m[a,1]), . . . , (t[a,Na/2],m[a,Na/2]), (t[a,Na/2] + t[b,Nb/2+1] − t[b,Nb/2],m[b,Nb/2+1]), . . .,
(t[a,Na/2] + t[b,Nb] − t[b,Nb/2],m[b,Nb])} and
X̃b = {(t[b,1],m[b,1]), . . . , (t[b,Nb/2],m[b,Nb/2]), (t[b,Nb/2] + t[a,Na/2+1] − t[a,Na/2],m[a,Na/2+1]), . . .,
(t[b,Nb/2] + t[a,Na] − t[a,Na/2],m[a,Na])}.

Misalignment 3: Crossover. The previous two approaches focus on creating misalignment on one
feature dimension, e.g., the event time. Here, we go one step further and adopt the crossover operator
from genetic algorithms (Reeves, 2010) to generate misaligned data with incoherence in the first
and second halves, by combining halves of two randomly selected sequences on both event type and
time. We ensure monotonicity in arrival time values by crossing over the time intervals from the other
sequence instead of the absolute arrival times t.

The three misalignment generation methods are summarized in Algorithm 1, and we apply them
collectively during pre-training: given an input event sequence, we use each method to generate one
misaligned sequence. We assign binary labels (i.e., 1 / 0) to the original and misaligned sequences,
and train a binary classifier on the aggregated representation. We average all the BCE losses as the
final alignment loss. To represent the entire sequence with one vector, we append a special [EOS]
token to the end of event sequences and use the output embeddings corresponding to [EOS] as the
aggregated representation. Details are presented in Appendix A.1.

3 Experiments
3.1 Downstream tasks, datasets and evaluation protocol

To show the generality of our pretext tasks, we fine-tune the pre-trained model on three representative
downstream tasks as described below.

The temporal point process (TPP) task models the probability distribution of event sequence data
though a (conditional) intensity function, λ(t), which gives the probability of the next event occurring
during the interval [t, t+ δt), conditioned on the history Ht. The output of the network is a set of
parameters to the intensity function. Following Mei et al. (2021), we model the intensity function
as a softplus function, 1/β ∗ log(1 + exp(β ∗ x)), where x = α ∗ t+ w ∗Ht + b. The learnable
parameters are {a,w, b}, where (a, w) fuse the time interval and the history vector information, and
b is a base (or bias) term. We model a separate intensity function, λk(t), for each event category k,
and take their sum as the overall intensity λ(t) =

∑K
k=1 λk(t). During fine-tuning, we minimize the

negative log-likelihood.

Event sequence classification aims at predicting a sequence-level label. During fine-tuning, we
minimize the binary cross-entropy loss (BCE).

Missing events imputation aims at reconstructing missing events, and simulating partial observability
in a noisy environment. During fine-tuning, we minimize the cross-entropy loss (CE) and root-mean-
square error (RMSE) for the missing values of event type and time.

Benchmark datasets & evaluation protocols. We evaluate our proposed method on four real-world
datasets: StackOverflow (Leskovec and Krevl, 2014), Mooc (Kumar et al., 2019), Reddit (Kumar
et al., 2018), and MIMIC-II (Lee et al., 2011). Details are presented in Appendix A.3. For TPP,
we report the negative log-likelihood (NLL) and root mean squared error (RMSE) for event time

3

Table 1: Results of TPP (NLL, RMSE, and accuracy) on Stack Overflow, MIMIC-II, Mooc, and Reddit datasets.

Method Stack Overflow MIMIC-II

↓NLL ↓RMSE ↑Accuracy ↓NLL ↓RMSE ↑Accuracy

ANHP Mei et al. (2021) 2.160.02 1.190.01 47.420.00 1.850.06 1.060.01 85.640.00

OURS 1.860.05 1.360.02 47.960.01 1.800.14 1.190.17 84.840.00

Method MOOC Reddit

↓NLL ↓RMSE ↑Accuracy ↓NLL ↓RMSE ↑Accuracy

ANHP Mei et al. (2021) −2.780.02 0.200.01 21.660.01 0.050.03 0.190.00 61.820.00

OURS −3.840.07 0.190.00 31.190.02 −0.150.03 0.190.00 58.190.00

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Imputation Ratio

15

20

25

Ac
cu

ra
cy

 (%
)

Baseline
Ours

0.10.20.30.40.50.60.70.80.9
Imputation Ratio

101
RM

SE
 (i

m
es

10
3) Baseline

Ours
Baseline OURS

AUC 0.736 0.748

Figure 2 & Table 2: Left: Accuracy (higher is better) and RMSE (lower is better) of missing events imputation
on the Mooc dataset. Baseline refers to OURS without pretext training. Right: AUC of sequence-level
classification on the Mooc dataset. Best in Bold.

prediction, and accuracy for event type prediction. For binary classification, we report the area under
the curve (AUC). For missing events imputation, we report accuracy and RMSE.

3.2 Empirical evaluation

Temporal point process. The experimental results on four real-world benchmark datasets are shown
in Table 1. ANHP (Mei et al., 2021) shares the same backbone as ours and does not use pretext
training. As the main performance metric for temporal point processes is NLL (TPP models produce
probability distributions), our method shows consistent improvements on four different datasets.
Meanwhile, our model achieves competitive scores in RMSE and accuracy (type prediction). The
results demonstrate the effectiveness of pretext training in predicting future events on real-world data.

To give more insights, we further experiment on 1) combining our approach with other SSL tasks,
and 2) few-shot pre-training/fine-tuning. See more results in Appendix A.4.

Sequence-level classification. The results of sequence-level classification are presented in Table 2.
Each sequence in Mooc is associated with a course withdrawal meta-label (binary) and the overall
label distribution is approximately balanced (57% positive vs. 43% negative). We use the same
transformer architecture trained from scratch without pretext training as our baseline. Pretext training
improves the AUC from 0.736 to 0.748. The result suggests that our alignment pre-training generalizes
beyond temporal point processes and can also benefit sequence-level classification tasks.

Imputation. The results of missing events imputation are shown in Figure 2 for the Mooc dataset.
Our model is fine-tuned on the imputation task using a 50% missing ratio and then tested on missing
ratios from 10% to 90%; the baseline model is trained from scratch on the imputation task using a 50%
missing ratio and then tested on missing ratios from 10% to 90%. We observe that pretext training
improves imputation performance at all tested missing ratios. Imputation performance decreases as
the missing ratio increases, reflecting the increasing difficulty of the task given less information.

4 Conclusion

Self-supervised learning enables the pre-training of generalizable representations, obviating the
need to train models from scratch for different downstream tasks. In this paper, we presented
alignment-based self-supervised pretext tasks for discrete event sequences. In vision and language, a
common paradigm is to pre-train on large data and then specialize to smaller domains, for example
via fine-tuning or prompt-tuning. Achieving this paradigm for event sequence data will require
complementary progress in making large-scale data available for pre-training foundation models.

4

References
Amos, I., Berant, J., and Gupta, A. (2024). Never train from scratch: Fair comparison of long-

sequence models requires data-driven priors. In International Conference on Learning Representa-
tions.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pages 1597–
1607. PMLR.

Chowdhury, R. R., Li, J., Zhang, X., Hong, D., Gupta, R. K., and Shang, J. (2023). Primenet:
Pre-training for irregular multivariate time series. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 7184–7192.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., and Song, L. (2016). Recurrent
marked temporal point processes: Embedding event history to vector. In Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages
1555–1564.

He, K., Chen, X., Xie, S., Li, Y., Dollár, P., and Girshick, R. (2022). Masked autoencoders are
scalable vision learners. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 16000–16009.

Huang, P.-Y., Sharma, V., Xu, H., Ryali, C., Li, Y., Li, S.-W., Ghosh, G., Malik, J., Feichtenhofer, C.,
et al. (2024). Mavil: Masked audio-video learners. Advances in Neural Information Processing
Systems, 36.

Kumar, S., Hamilton, W. L., Leskovec, J., and Jurafsky, D. (2018). Community interaction and
conflict on the web. In Proceedings of the 2018 World Wide Web Conference on World Wide Web,
pages 933–943. International World Wide Web Conferences Steering Committee.

Kumar, S., Zhang, X., and Leskovec, J. (2019). Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1269–1278. ACM.

Lee, J., Scott, D. J., Villarroel, M., Clifford, G. D., Saeed, M., and Mark, R. G. (2011). Open-access
MIMIC-II database for intensive care research. In 33rd Annual International Conference of the
IEEE Engineering in Medicine and Biology Society, EMBC 2011, Boston, MA, USA, August 30 -
Sept. 3, 2011, pages 8315–8318.

Leskovec, J. and Krevl, A. (2014). SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data.

Mei, H., Yang, C., and Eisner, J. (2021). Transformer embeddings of irregularly spaced events and
their participants. In International conference on learning representations.

Reeves, C. R. (2010). Genetic algorithms. Handbook of metaheuristics, pages 109–139.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing
systems, 30:5998–6008.

Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., and Xu, B. (2022). Ts2vec: Towards
universal representation of time series. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pages 8980–8987.

5

http://snap.stanford.edu/data

A Appendix

A.1 Pretext training details

The three misalignment generation methods are summarized in Algorithm 1 and visualized in Figure 3.
In our implementation, we adopt the transformer architecture in Mei et al. (2021) for representation
learning. Next, we briefly describe how event information is encoded under this setting.

Event time embeddings. Following recent advances, we use positional encodings (Vaswani et al.,
2017; Mei et al., 2021) to transform each event arrival time into a vector, et ∈ RDtime .

Event type embeddings. We simply encode categorical event types into a high dimensional vector,
em ∈ RDtype , with a learnable embedding layer, similar to Du et al. (2016).

The input representation of an event is the concatenation of e = [em, et].

Fine-tuning

Next Event
Prediction

1

2

3

Self-supervised pretext task:
Alignment verification

…
𝑡! 𝑡" 𝑡#𝑡$

…

Classification

Interpolation

Event type
 emb. (𝒆!")#

Event seq.
(𝑡% , 𝑚%)#

Event time
 emb. (𝒆!$)#

(𝒆)#

Shuffle
!! !" !# !$

"! "" "# "$

Event Sequence

!$!# !! !"

"! "" "# "$

Misaligned Event Sequence

Swap

Misaligned Event Sequence A

![",$] ![",&] ![",'] ![",(]

"[),$] "[),&] "[),'] "[),(]

Misaligned Event Sequence B

![),$] ![),&] ![),'] ![),(]

"[",$] "[",&] "[",'] "[",(]

Event Sequence A

![),$] ![),&] ![),'] ![),(]

"[),$] "[),&] "[),'] "[),(]

Event Sequence B

![",$] ![",&] ![",'] ![",(]

"[",$] "[",&] "[",'] "[",(]

Crossover

Misaligned Event Sequence A

![",$] ![",&] ![',(] ![',)]

"[",$] "[",&]
![",$] +
![&,'] −
![&,$]

![",$] +
![&,(] −
![&,$]

Misaligned Event Sequence B

![',$] ![',&] ![",(] ![",)]

"[',$] "[',&]
![&,$] +
![",'] −
![",$]

![&,$] +
![",(] −
![",$]

Event Sequence A

![",$] ![",&] ![",(] ![",)]

"[",$] "[",&] "[",(] "[",)]

Event Sequence B

![',$] ![',&] ![',(] ![',)]

"[',$] "[',&] "[',(] "[',)]

Figure 3: Overview of the pretext training and fine-tuning framework for event sequences. In the first stage,
event sequence embeddings are input to self-supervised pretext tasks involving detecting misaligned (disordered
or mixed-up) event sequences, to learn general representations without labels. The second stage performs
task-specific fine-tuning to support downstream tasks such as next-event prediction, sequence classification, and
missing event interpolation.

Aggregated embeddings for pretext. To represent the entire sequence with one vector, we append
a special [EOS] token to the end of event sequences and use the output embeddings corresponding
to [EOS], i.e., z, as the aggregated representation. The representation is input to an MLP classifier,
which is trained using a binary cross-entropy loss to predict whether the sequence is an original or
misaligned sequence.

A.2 Implementation details

We provide the details and hyper-parameters of the model architecture and training setting below.
With the hyper-parameter below, each experiment would take an average of two days on a single
Nvidia 1080ti GPU. Architecture details. We adopt the transformer encoder in Mei et al. (2021)
as our backbone for representation learning. This module is configured with three encoder layers
and each layer is multi-head attention implemented with four heads and feature dimensions as 64
(Dtime = Dtype = 32).

Pre-training details. During model pre-training, we directly use the downstream task data to
incorporate data-driven priors, c.f., Amos et al. (2024), and only optimize for the auxiliary task
(alignment verification) as described in Section. 2.2. The learning rate is fixed at 1e-4, the number of
epochs is 10, and the batch size is set to 4. Once pre-training is complete, the backbone acts as the

6

representation extractor and initial point for fine-tuning. At this stage, task-specific heads are added
for each task.

Fine-tuning details. For every downstream task, we fine-tune the model and task head for 300 epochs
with a batch size of 4 and a learning rate of 1e-4. The task heads are simple MLPs. For TPP, the task
head yields parameterized intensity functions in Section 3.1. For event sequence classification, the
head is applied on the embedding of [EOS] to predict the class probabilities. For imputation, the two
MLP heads predict time (scalar regression) and type (classification).

Evaluation protocol. To evaluate the downstream fine-tuning, we baseline against the same archi-
tecture as ours trained from scratch for the downstream task (without pretext training). For TPP,
we report the negative log-likelihood (NLL) and root mean squared error (RMSE) for event time
prediction, and accuracy for event type prediction. For binary classification, we report the area under
the curve (AUC). For missing events imputation, we report accuracy and RMSE.

A.3 Datasets

StackOverflow (SO, Link) (Leskovec and Krevl, 2014). It includes sequences of user awards within
two years. StackOverflow is a question-answering website where users are awarded based on their
proposed questions and their answers to questions proposed by others. This dataset contains a total of
6,633 sequences. There are 22 types of events: Nice Question, Good Answer, Guru, Popular Question,
Famous Question, Nice Answer, Good Question, Caucus, Notable Question, Necromancer, Promoter,
Yearling, Revival, Enlightened, Great Answer, Populist, Great Question, Constituent, Announcer,
Stellar Question, Booster and Publicist. The award time records when a user receives an award. With
this dataset, we can learn which type of awards will be given to a user and when.

Mooc (Kumar et al., 2019) (Link). It contains the interaction of students with an online course
system. An interaction is an event and can be of various types (97 unique types), e.g. watching a
video, solving a quiz etc.

Reddit (Kumar et al., 2018) (Link). On this social network website, users submit posts to subreddits.
In the dataset, the most active subreddits are selected, and posts from the most active users on those
subreddits are recorded. Each sequence corresponds to a list of submissions a user makes. The data
contains 984 unique subreddits that we use as classes in mark prediction.

MIMIC-II (Lee et al., 2011) (Link). The Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC-II) dataset is developed based on an electric medical record system. The dataset contains
a total of 650 sequences, each of which corresponds to an anonymous patient’s clinical visits in a
seven-year period. Each clinical event records the diagnosis result and the timestamp of that visit.
The number of unique diagnosis results is 75. According to the clinical history, a temporal point
process is supposed to capture the dynamics of when a patient will visit doctors and the diagnosis
result.

A.4 Additional experiments

Compatibility with standard pretext tasks. The next question investigated is how the proposed
pretext tasks are complementary to masked autoencoding (MAE) and contrastive learning (CL), which
are popular self-supervised learning strategies in computer vision and natural language processing.
Masked autoencoding (He et al., 2022; Devlin et al., 2018) randomly removes part of the data (e.g.,
pixels, words, or time series values) and trains the model to fill in the masked part through a high-level
understanding of the neighboring context. Contrastive learning aims to induce a representation
space in which different views of the same sequence are close together and different sequences are
far apart. To study these strategies in the context of event sequence data, we adopt MAE and CL
related techniques defined in recent work on sequential data self-supervised learning Chowdhury
et al. (2023); Huang et al. (2024). We pre-train our backbone model using all three tasks together and
evaluate on the temporal point process task. Implementation details can be found in Appendix A.5.

Figure 4 shows the study results. Across all four datasets, the top performing model on distribution
modelling (NLL) is the combined model. The result suggests that alignment verification is comple-
mentary to MAE and CL, and can teach the model to understand event sequence data in a manifold
different from previous pretext algorithms. The combined model also improves in accuracy while
results are mixed for RMSE.

7

https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U?resourcekey=0-OrlU87jyc1m-dVMmY5aC4w
https://drive.google.com/file/d/1pL1wDG1elgtUa0CPv4GP21xGII-Ymk0x/view
https://drive.google.com/file/d/1pL1wDG1elgtUa0CPv4GP21xGII-Ymk0x/view
https://drive.google.com/drive/folders/0BwqmV0EcoUc8UklIR1BKV25YR1U?resourcekey=0-OrlU87jyc1m-dVMmY5aC4w

SO MIMIC MOOC Reddit

−4

−2

0

2

Negative Log-likelihood ↓

Combined
Align Only
Baseline

SO MIMIC MOOC Reddit
0

20

40

60

80

100

Accuracy ↑

Combined
Align Only
Baseline

SO MIMIC MOOC Reddit
0

0.5

1

1.5

RMSE ↓

Combined
Align Only
Baseline

Figure 4: Experimental study combining the proposed alignment verification pretext task with masked re-
construction and contrastive learning on the temporal point process task. “Combined” refers to using masked
reconstruction, contrastive learning, and alignment verification together, “Align Only” to alignment verification
only and “Baseline” to the same backbone model without pretext training. Our proposed alignment pretext task
can be further improved when pre-trained in a combined fashion.

Table 3: Few-shot performance by varying the portion of pretext training or fine-tuning data. We use a subset
containing 25%, 50%, or 75% of the training or pretext training dataset and report fine-tuned TPP performance.

Methods pre-train
data %

fine-tune
data %

MOOC Reddit

NLL ↓ RMSE ↓ Acc ↑ NLL ↓ RMSE ↓ Acc ↑
Baseline - 100% −2.780.02 0.200.01 21.660.01 0.050.03 0.190.00 61.820.00

OURS

100% 25% −2.930.38 0.250.04 23.680.02 1.100.26 0.190.01 53.250.03
100% 50% −3.480.16 0.220.02 27.180.01 0.140.17 0.210.01 57.790.01
100% 75% −3.650.12 0.210.02 28.210.01 −0.070.10 0.190.00 58.750.00

25% 100% −3.420.15 0.190.01 25.480.01 −0.130.02 0.190.01 58.600.00
50% 100% −3.700.15 0.190.00 28.950.02 −0.150.03 0.190.00 58.120.00
75% 100% −3.830.06 0.190.01 29.790.01 −0.150.02 0.200.00 57.990.01

100% 100% −3.840.07 0.190.00 31.190.02 −0.150.03 0.190.00 58.190.00

Few-shot settings. It is often necessary to learn generalizable representations when limited training
data are available. Here, we examine the ability of our pretext training method to generalize well
in few-shot settings by employing a subset of the dataset during the pretext training and fine-tuning
stages respectively. Specifically, we utilize 25%, 50%, and 75% of the entire training dataset and
subsequently evaluate the model’s performance on the complete test dataset.

The experiment results are presented in Table 3. We find that fine-tuning our self-supervised
representations on a fraction of the training dataset can, in some cases, already outperform the
baseline network: our method using the full training data for pre-training and 25% of the training data
for fine-tuning outperforms the baseline trained on the full training data across all metrics on MOOC.
The result shows the few-shot learning potential of our method, making it valuable in scenarios with
limited training resources. When we vary the percentage of training data available for pre-training,
we find that the effectiveness of the self-supervised representations improves as more data is made
available for pre-training.

A.5 Masked autoencoding and contrastive learning details

In Figure 4, we demonstrate how the proposed pretext tasks are complementary to masked autoen-
coding and contrastive learning, which are popular self-supervised learning strategies in computer
vision and natural language processing. Masked autoencoding (He et al., 2022; Devlin et al., 2018)
randomly removes part of the data (e.g., pixels, words, or time series values) and train the model to
fill in the masked part through a high-level understanding of the neighboring context. Contrastive
learning aims to induce a representation space in which different views of the same sequence are close
together and different sequences are far apart. The implementation details of masked autoencoding
and contrastive learning for event sequence data are presented below.

8

Masked autoencoding details. We adopt a density-preserving masking strategy (Chowdhury et al.,
2023) motivated by the non-uniform nature of event arrival times. This approach randomly samples
intervals with constant time duration and masks all the events in the intervals. The underlying
hypothesis is that time intervals with dense events contain more contextual information than sparse
intervals, making the reconstruction of events easier in dense intervals. Therefore, an ideal masking
strategy would preserve the original density of event arrival times, i.e., masking more events when
event arrivals become more frequent. Following common practice (Devlin et al., 2018; He et al., 2022),
the masked events are replaced by a learnable [MASK] token. We feed the sequence consisting of (i)
visible (non-masked) event embeddings and (ii) mask tokens to our encoder, and extract embeddings
corresponding to the masked out locations. The embeddings are decoded to reconstruct the time and
type embeddings of the masked events and we use mean squared error (MSE) to supervise the training
of this pretext task. Denote the set of masked event indices by M . The masked reconstruction loss is

Lrec =
1

|M |
∑
i∈M

∥eti − ẽti∥22 + ∥emi − ẽmi ∥22, (1)

where ẽti and ẽmi denote the reconstructed event time and type embeddings of (ti,mi) respectively
and |M | is the number of masked events.

Contrastive learning details. For contrastive learning, we consider three augmentation techniques
to construct multiple views: subsequence sampling, random masking, and adding noise.

View 1: Subsequence. We randomly extract subsequences from the original data and treat them as
novel views, which is a strategy that has been found to be effective in time series (Yue et al., 2022;
Chowdhury et al., 2023). This method is conceptually intuitive: Subsequences of event data can be
seen as the counterparts of patches or croppings in vision research, representing a local division of
original data. We extract subsequences by taking events in a continuous time period in the original
sequences.

View 2: Masked events. We mask events to create novel views. We assume that masked data should
contain similar semantic information as the original data, and contrastive learning based on masked
data can further enhance the separation between similar and non-similar sequences.

View 3: Noisy data. We add multi-scale Gaussian noise to the event sequence embeddings and take
them as novel views. Compared to View 1 and 2, noise injection is a type of augmentation closer
to real-world data corruption. We take the following steps to inject noise into data: (i) Uniformly
sample the scale of noise, σ ∈ [0, 1], and (ii) sample Gaussian noise from N (0, σ). The sampled
noise is added to the embeddings.

We use all three augmentation methods for each data in the mini-batch and adapt the normalized
temperature-scaled cross-entropy loss (NT-Xent) (Chen et al., 2020) to fit our setting. Given a mini
batch of training data of size B, we use Si to denote the set consisting of the embedding of the ith
sample and the embeddings of all its three augmented views, and S =

⋃N
i=1 Si to denote the union

of all Sis. Denote P 2
Si

as the set of all combinations of two different embeddings from Si with
permutation (positive pairs), which is {(z, z′)|z, z′ ∈ Si and z ̸= z′}. Given k(= 3) augmented
views, the total number of positive pairs in P 2

Si
is k · (k + 1). We define the contrastive loss for the

ith sample li as

li = − 1

|P 2
Si
|

∑
(z,z′)∈P 2

Si

log
exp(z · z′/η)∑

z′′∈S−{z} exp(z · z′′/η)
. (2)

The overall contrastive loss Lcl is calculated as Lcl =
1
B

∑B
i=1 li.

When we combine the standard MAE and CL methods with our proposed alignment verification
pretext task, the overall loss objective is

L = λ1Lrec + λ2Lcl + λ3Lalign, (3)

where λ1 = λ2 = λ3 = 1 in our experiments.

A.6 Fine-grained analysis of masked autoencoding and contrastive learning.

To evaluate the effectiveness of the individual pretext tasks, i.e., masked reconstruction, contrastive
learning and alignment verification, we conduct systematic ablations as shown in Table 4. The

9

Table 4: Systematic study of the three pretext tasks on temporal point process prediction using {Stack Overflow,
MOOC and Reddit} datasets. “Rec”, “Cont”, and “Align” refer to masked reconstruction, contrastive learning,
and alignment verification, respectively.

Methods Rec Cont Align NLL ↓ RMSE ↓ Acc ↑
Baseline 2.16 1.19 47.42

OURS

1.86 1.13 49.68
1.84 1.16 49.80
1.86 1.36 47.96
1.83 1.13 49.28
1.84 1.23 49.81
1.82 1.07 49.75
1.81 1.05 49.69

Methods Rec Cont Align MOOC Reddit

NLL ↓ RMSE ↓ Acc ↑ NLL ↓ RMSE ↓ Acc ↑
Baseline - - - −2.78 0.20 21.66 0.05 0.19 61.82

OURS

−3.75 0.19 29.96 −0.11 0.18 58.25
−3.54 0.18 29.47 −0.21 0.19 59.65
−3.84 0.19 31.19 −0.15 0.19 58.20
−3.85 0.18 30.51 −0.25 0.19 59.91
−3.94 0.20 30.22 −0.26 0.19 59.37
−3.83 0.20 29.32 −0.23 0.19 58.82
−3.97 0.19 31.49 −0.25 0.18 59.19

baseline, which does not employ any pretext training, serves as a reference point for comparison,
achieving an NLL of 2.16, RMSE of 1.19 and accuracy of 47.42%. When applying each pretext task
individually, consistent improvements are observed on the main NLL metric. Applying pairs of pretext
tasks results in better NLL than applying the pretext tasks individually (e.g., using both contrastive
and alignment verficiation produces a lower NLL than applying only contrastive learning or only
alignment verification). The best pairing combines contrastive learning and alignment verification.
Finally, the overall best results are achieved when all three pretext tasks are employed together. The
results of this ablation study indicates taht the three proposed pretext tasks are complementary, and
that an integrated strategy combining all three pretext tasks provides the most effective pre-training.

10

	Introduction
	Approach
	Preliminaries
	Alignment Verification as Auxiliary Task

	Experiments
	Downstream tasks, datasets and evaluation protocol
	Empirical evaluation

	Conclusion
	Appendix
	Pretext training details
	Implementation details
	Datasets
	Additional experiments
	Masked autoencoding and contrastive learning details
	Fine-grained analysis of masked autoencoding and contrastive learning.

