
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TATTOO: TOOL-GROUNDED THINKING PRM
FOR TEST-TIME SCALING IN TABULAR REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Process Reward Models (PRMs) have recently emerged as a powerful framework
for enhancing the reasoning capabilities of large reasoning models (LRMs), particu-
larly in the context of test-time scaling (TTS). However, their potential for supervis-
ing LRMs on tabular reasoning domains remains underexplored. Through detailed
empirical analyses, we identify that existing PRMs, though widely adopted for
supervising text-only reasoning steps, struggle with table-specific operations such
as sub-table retrieval and schema interaction, leading to critical performance bot-
tlenecks. To address this limitation, we propose TATTOO, a novel table-grounded
PRM framework that (i) reasons explicitly over tabular reasoning steps and (ii) inte-
grates tool-based verification to provide precise reward supervision. Concretely, we
first design a scalable data curation pipeline that constructs over 60k high-quality
step-level annotations by integrating table verification rationales with tool-based
executions. Building on the collected data, we train TATTOO with a dual-stage
paradigm: cold-start supervised fine-tuning to capture tool-use reasoning patterns,
followed by reinforcement learning with tool-grounded reward shaping to align our
model with table-based verification. We provide a comprehensive evaluation of the
policy improvement induced by our newly designed PRM. Across 5 challenging
tabular reasoning benchmarks covering numerical reasoning, fact-checking, and
data analysis, TATTOO improves downstream policy LRMs by 30.9% at inference,
surpasses strong PRM baselines such as Qwen-2.5-Math-PRM-72B with only 8B
parameters, and demonstrates strong generalizability across diverse TTS strategies.

1 INTRODUCTION

Tabular reasoning has become a fundamental capability for emerging large reasoning models (LRMs)
across various real-world applications, including numerical analysis (Akhtar et al., 2023; Sui et al.,
2024), fact-checking (Chen et al., 2019; Parikh et al., 2020), and question answering (Vakulenko
and Savenkov, 2017; Li et al., 2023a). Unlike free-form text, tables encode information in rows
and columns with an implicit relational semi-structure. Effective reasoning over tables therefore
requires both accurate interpretation of tabular content and step-by-step logical inference to produce
precise answers (Wang et al., 2024c; Zhang et al., 2025a). To support such multi-step reasoning,
recent studies such as Table-R1 series (Wu et al., 2025b; Yang et al., 2025b; Jin et al., 2025) have
incorporated reinforcement learning (RL) techniques (Schulman et al., 2017; Shao et al., 2024) to
better align LRMs with the demands of complex table understanding and reasoning.

On the other hand, process reward models (PRMs) (Setlur et al., 2024; Wang et al., 2024b; Yang
et al., 2024) have been developed to provide step-level supervision over model reasoning trajectories
during test-time scaling (TTS), offering fine-grained verification that enhances LRMs’ performance
at inference. However, despite growing computational budgets and increasing emphasis on advancing
LRMs’ tabular reasoning abilities (Ye et al., 2025; Muennighoff et al., 2025), a corresponding step-
level PRM to supervise the reasoning quality of these models in table domains is equally important
but remains notably absent. This gap motivates our study of a fundamental question:

How can we provide reliable step-level supervision to advanced LRMs in tabular reasoning?
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To investigate this question, we first revisit several general-domain advanced PRMs and evaluate
their effectiveness in supervising table-involved reasoning steps generated by LRMs. Our analysis
reveals that existing PRMs struggle to reliably verify two critical types of tabular CoT steps: ①
Table Retrieval, where PRMs fail to supervise whether LRMs extract the correct sub-region of the
input table relevant to the query; and ② Schema Interaction, where PRMs cannot detect attention
collapse (Dong et al., 2021), as LRMs often overlook long-range table dependencies due to inherent
locality bias. Beyond challenges arising from the tabular input modality, we also observe that current
PRMs frequently introduce supervision errors within their own evaluation process, stemming from
inaccurate table lookups or failed operations on tables. These shortcomings amplify bias and noise
during TTS, ultimately creating persistent performance bottlenecks.

Motivated by our preliminary analyses, we propose TATTOO, a new Table Thinking PRM with Tool
integration abilities to provide more reliable and precise supervision for tabular reasoning. Distinct
from prior PRMs that provide weak supervision over table-specific operations, TATTOO provides step-
level supervision tailored to different input steps, applying both table-grounded rewards for tabular
operation steps and inner-reasoning rewards for text-based reasoning steps. In addition, TATTOO
can leverage several external tools to interact with table contents, execute code-based operations,
and incorporate the results back into the step-by-step verification process. To build TATTOO, we
first design a scalable data curation pipeline that yields over 60k high-quality supervision instances
by integrating expert verification rationales with tool-based executions. We then train our PRM
under a dual-stage paradigm: supervised fine-tuning to capture step-level tool-use reasoning patterns,
followed by reinforcement learning with a newly designed reward shaping scheme to encourage
effective tool manipulation and faithful reasoning for accurate verification. Finally, we provide
theoretical intuition on the policy improvement induced by incorporating TATTOO during inference.

To demonstrate the effectiveness of TATTOO, we conduct extensive experiments on five challenging
tabular reasoning benchmarks, covering table-based question answering, numerical reasoning, fact-
checking, and data analysis. Across all benchmarks, incorporating 8B-size TATTOO improves
downstream policy models by 30.9%. In addition, TATTOO consistently outperforms strong PRM
baselines such as Qwen-2.5-Math-PRM-72B (Zhang et al., 2025b) and GenPRM-32B (Zhao et al.,
2025) with up to 9x parameter efficiency. In-depth analyses further demonstrate that incorporating our
dual-stage training paradigm yields a 10.2% improvement over standard PRM training, and TATTOO
exhibits strong generalizability across diverse TTS strategies, including Beam Search and DVTS.

2 PRELIMINARY

Table Understanding with LRMs. We denote T = (H,R) as a semi-structured table, where H is
the set of column headers defining the schema-level semantics, and R is the set of rows, with each row
composed of cell entries aligned with H . Given a table T and an associated natural language query q,
we define a reasoning model as a conditional generation policy π(τ | T, q), where τ = {a1, . . . , aL}.
Here, τ denotes the reasoning model’s generated reasoning trajectory, including both intermediate
reasoning steps {ai}L−1

i=1 and the final answer aL. In our problem setup, the intermediate reasoning
steps consist of both model inner-thinking reasoning traces and tool-integrated programs that operate
directly on the table to retrieve or compute intermediate results. The final answer can take different
formats depending on the query type, including textual or numerical values, boolean outputs (e.g.,
True/False), or executable programs (e.g., Python, SQL).

Reward Modeling for Tabular Reasoning. Given a table T , a query q, and a candidate response τ
generated by a policy LRM, a standard step-level verifier (i.e., PRM) parameterized by θ computes
a scoring function Rθ(·) that assigns step-level rewards ri evaluating the correctness of each step
ai ∈ τ . The trajectory-level reward rτ for each response τ is then obtained by aggregating these
step-level rewards. Formally, we have:

ri = Rθ(ai | T, q, τ<i), with rτ = A(r1, r2, · · · , rL), (1)

where A(·) denotes an aggregation function such as MEAN and SUM (Liu et al., 2025). The rewards
provided by the PRM Rθ can be further leveraged by a test-time compute strategy ϕ (e.g., Best-of-N
(Brown et al., 2024), Beam Search (Snell et al., 2024)) to guide resampling, refinement, and candidate
selection among the responses generated by the policy model.
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Figure 1: Best-of-N performance of DeepSeek-R1-Distill-Qwen-14B
across 3 table tasks on TableBench with different types of step verifiers.

Table Retrieval 
Schema Interaction

Inner-thinking
Others

Figure 2: Error Distribu-
tion over 4 step categories
across 500 incorrect cases
after Best-of-N selection.

3 WHY TABLE REASONING REQUIRES VERIFIERS BEYOND CURRENT PRMS?

We begin by revisiting existing general-domain PRM methods to assess their effectiveness in super-
vising LRMs on tabular reasoning tasks and to identify potential performance bottlenecks. To this
end, we conduct a pilot study guided by two key questions:

RQ1 - Beyond free-form text inputs, can common general-domain PRMs combined with TTS
strategies also enhance the performance of LRMs on tabular reasoning tasks?
RQ2 - When step-level reward supervision is crucial for tabular reasoning performance, how can
PRMs effectively supervise and guide the quality of each reasoning step generated by LRMs?

For brevity, we defer detailed experimental setups to Appendix F. To investigate RQ1, we evaluate
various step-level verification methods, including two advanced PRMs (Qwen2.5-Math-PRM-72B
(Zhang et al., 2025b) and Skywork-PRM-7B (He et al., 2024a)), majority voting (Liu et al., 2025),
and LLM-as-a-judge (Zheng et al., 2023) with the Best-of-N TTS strategy. We choose DeepSeek-R1-
Distill-Qwen-14B (Guo et al., 2025) as the common LRM and evaluate on TableBench (Wu et al.,
2024), which includes three fundamental table tasks (Fact Checking, Numerical Reasoning, and Data
Analysis). As shown in Figure 1, we observe that for small values of N , incorporating step-level
verifiers into Best-of-N generally improves LRM’s performance over single-shot generation, with
PRMs providing the largest gains. However, once the number surpasses a threshold (N ≥ 8),
accuracy across all three table tasks converges to a bottleneck. For example, the performance of
Qwen2.5-Math-PRM-72B on fact-checking is 79.19%, 79.82%, and 79.84% for N = {8, 16, 32},
indicating that further increases in N yield negligible gains, even though with PRM incorporation.

Observation 1 (Limitation on TTS): Existing PRMs yield modest improvements on tabular
reasoning, but their efficacy quickly saturates, failing to fully exploit additional test-time compute.

Error Analysis. Building on the observation, we further investigate the underlying causes of the
performance bottleneck by conducting an error analysis on LRM’s generation and PRM’s supervision
processes. Specifically, we sample 500 erroneous Best-of-N responses (N= 32) selected by the
PRM from LRM outputs, and ask human experts to classify them into 13 well-defined tabular error
types (see Appendix C). We then connect these errors with 4 reasoning-step categories reflecting the
typical flow of LRMs’ reasoning process: (i) Table Retrieval Steps, locating relevant rows/columns
regarding the input query; (ii) Schema Interaction Steps, reasoning over the retrieved table contents,
(iii) Inner-thinking Steps, models’ inner reasoning independent of table contents, and (iv) Others,
initial setup or final output steps that are irrelevant to core reasoning process. Figure 2 presents
the error distribution across 4 reasoning step categories. We find that most errors arise in Table
Retrieval (47.7%) and Schema Interaction (34.3%), implying that PRMs perform reasonably well
on independent reasoning but fall short when reasoning steps involve table-specific operations. For
better demonstration, we provide representative examples for each category in Table 1.

Why do PRMs fail on table-involved reasoning steps? Next, we take a closer look at why PRMs
lose their supervisory effectiveness when reasoning steps involve table operations. For Table Retrieval
Steps, we conduct a contrastive experiment focusing particularly on the table contents retrieved by
LRMs within their responses. We randomly sampled 500 responses and constructed two variants by (i)
retaining the original LRM-retrieved sub-table, and (ii) replacing it with a randomly selected sub-table
region from the original input table. Figure 3 (left) shows the output rewards of Qwen2.5-Math-PRM-
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Table 1: Representative error cases in 3 different reasoning step categories. Each example highlights
the erroneous model step in red, the corresponding error description, and the PRM’s (mis)judgment
reward, illustrating where existing PRMs fail to detect mistakes.

Category Wrong Model Answer Error Description & PRM output

Table Retrieval

<think> Step 1: I need to figure out the average prominence of
mountain peaks in the Democratic Republic of the Congo that have
an elevation of at least 3000 meters.
Step 2: First, I’ll review the provided table. My main focus is on
the ‘country’ and ‘elevation (m)’ columns. (Wrong Step)
. . . </think>
Final Answer is \boxed{2306.65}

The model initially retrieves the wrong part of the table
(columns ‘Country’ and ‘Elevation (m)’), which leads to
errors in all subsequent reasoning steps.

PRM → {correct} ✗ Fail to detect the error

Schema Interaction

<think> Step 1: Let me start by looking at the table provided
. . . The retrieved columns are . . .
Step 4: I’ll go through each row and note down the episodes:
Episode 1: Rating - 5.1, Episode 2: Rating - 5.2 . . . (Wrong Step)
Step 5: Adding the rating together is 5.1 + 5.2 + . . . </think>
Final Answer is: \boxed{11.52}

The model identifies the correct column for the answer,
but fails to extract all elements, omitting the last
cell. This omission leads to incorrect reasoning in all
subsequent steps.

PRM → {correct} ✗ Fail to detect the error

Inner-thinking

<think> Step 1: Based on the table contents, I need to count
podiums per season. 2008: (1 + 1 + 1)/3 = 1, 2009: 6, 2010:
0, 2011: (2 + 0)/2 = 1 . . .
Step 4: Then I will average across seasons. Final average is (1 +
6 + 0 + 1)/4 = 2 (Wrong Step)
</think>
Final Answer is: \boxed{2}

The model incorrectly does the calculation by averaging
the season-level means, giving each season equal weight,
instead of averaging across all team-seasons.

PRM → {incorrect} ✓ Detect the error

Table Retrieval Step

Schema Interaction Step

With Table Prefix
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Figure 3: Left: PRM’s rewards on 500 reasoning steps with the real-retrieved/randomly-replaced
sub-table. Middle: Layer-wise average attention mass vs. relative step distance in tabular reasoning.
Attention concentrates on nearby steps, with sharp decay as distance increases. Right: Best-of-N
results on DeepSeek-R1-Distill-Qwen-14B for numerical reasoning with/without the table prefix.

72B on both variants. The nearly identical distributions between real and random sub-tables indicate
that current PRMs fail to distinguish retrieval correctness, suggesting that they are unable to assess
whether the LRMs’ retrieved portion of the table corresponds to the query.

Takeaway 1 (Table Retrieval): Existing PRMs are insensitive to table retrieval correctness in
the reasoning steps and fail to recognize whether the retrieved content corresponds to the query.

For Schema Interaction Steps, we found in prior experiments that in the logic flow of LRMs’
trajectories, table retrieval steps typically occur at the beginning, as the model must first extract
relevant information from the table to answer the query. In contrast, schema interaction steps
frequently occur far sentences from the beginning table retrieval steps, since LRMs tend to perform
intermediate reasoning before revisiting their retrieved contents when needed. Figure 3 (middle)
illustrates the attention distribution of the LRM between the schema interaction step (step 8) and
the table retrieval step (step 0). Due to the auto-regressive nature of LRMs, the schema interaction
step attends primarily to nearby steps while assigning little attention to the earlier retrieval step. This
inherent locality bias causes the model to frequently misinterpret or discard previously retrieved
contents, even when the retrieval step has already extracted the correct information. Moreover, current
PRMs fail to supervise such misinterpretations, as their evaluations are highly localized to the current
step rather than capturing dependencies on distant prior steps (Zou et al., 2025; Feng et al., 2025b).

Takeaway 2 (Schema Interaction): Schema interaction steps under-attend to distant table
retrieval contents due to locality bias. PRMs miss these failures since they can’t look ahead and
capture long-range dependencies among distant steps.
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Table Prefix is the Key. To explore potential solutions to the limitation above, we begin with a
simple input modification for PRMs: prepending the retrieved table contents as a prefix to each
schema interaction step. This grants PRMs direct access to the retrieval context, alleviating the need
for long-range dependencies. We evaluate this modification and report the results in Figure 3 (right).
Incorporating the table prefix indeed improves PRM supervision and leads to stronger downstream
LRM performance. However, directly applying the prefix remains challenging, as current PRMs
cannot automatically identify schema interaction steps, and the table prefixes obtained from LRMs
are not guaranteed to be correct without proper supervision.

Motivation for TATTOO. Our analyses above highlight the need for a principled step-level verifier
capable of providing robust supervision over both table-grounded operations and models’ inner
reasoning. Motivated by this, we propose a new process reward model specifically designed to
support LRMs in tabular reasoning.

4 BUILDING A TABLE-GROUNDED STEP VERIFIER

We introduce TATTOO, a generative PRM that provides reward supervision over both table operations
and model inner thinking steps. Our method builds on two key components: (i) a large-scale data
curation pipeline that synthesizes reasoning and tool usage for PRM training, and (ii) a dual-stage
training paradigm that learns step-level verification with tool use optimization.

4.1 TABLE-AWARE AND TOOL-INTEGRATED SUPERVISION

Table-Aware Reward. To align with the LRM’s reasoning process on table tasks, we separate
the supervision of table operations from model’s inner reasoning part and decompose TATTOO’s
step-level reward (Eq. 1) into two components:

ri =

{
ri,rea, if ai ∈ inner-thinking,
ri,tab, if ai ∈ table retrieval or schema interaction,

and rτ =
1

L

L∑
i=1

ri, (2)

where ri,rea captures the correctness of the model inner-reasoning process, ri,tab reflects the accuracy
of table-grounded operations, and rτ denotes the trajectory-level reward.

Tool Integration in Verification. A major limitation of current PRMs is their inability to supervise
table-involved reasoning steps (as shown in Section 3). Meanwhile, recent studies (Feng et al.,
2025a; Qian et al., 2025) have shown that LLM agents can autonomously use tools to interact with
external environments and iteratively refine their reasoning. In a similar spirit to address current
PRM’s limitation, we incorporate several external table-oriented tools into TATTOO’s verification
process to enable more reliable step supervision. We next describe how we curate a training set with
tool-augmented, table-aware rewards and use it to train TATTOO.

4.2 TATTOO DATA CURATION PIPLINE

We design a large-scale data curation pipeline that simulates real-world scenarios of PRM tool use
and step verification at scale. As illustrated in Figure 4, there are three main stages:

1 Reasoning Trajectory Generation. We begin by collecting trajectory responses from expert
LRMs (e.g., DeepSeek-R1 (Guo et al., 2025) and Claude-Opus-4.1 (Anthropic, 2025)) on table-based
questions drawn from diverse benchmarks, including TableInstruct (Wu et al., 2024), HybridQA (Chen
et al., 2020), ToTTo (Parikh et al., 2020), and WikiTQ (Pasupat and Liang, 2015b). We generate
multiple responses per query and apply dual verification with human annotators and expert LLMs to
filter out low-quality data, yielding a high-quality trajectory pool Tpool for subsequent labeling.

2 Verification Synthesis & Reward Assignment. We next provide step-level verification rationales
and reward labels for each candidate response in Tpool. (i) For table retrieval steps, we extract the
sub-table in each step and use LLM-as-a-judge to assess its relevance to the query, assigning table
reward ri,tab ∈ {−1, 1} based on retrieval correctness. (ii) For schema interaction steps, we prepend
the accurate sub-table as a table prefix to each collected verification rationale (according to our
table-prefix analysis in Section 3) and assign ri,tab ∈ {−1, 1} based on the correctness of the specific
table-based operations or reasoning. (iii) For inner-thinking steps, which involve no table contents,
we apply LLM-as-a-judge and follow established labeling strategies (Zhao et al., 2025; Khalifa et al.,
2025) to assign ri,rea ∈ {−1, 1} based on reasoning quality.
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Figure 4: Overview of TATTOO framework. We first curate 60k high-quality instances by collecting
expert verification rationales with tool integration (Section 4.2). We then train our PRM through a
dual-stage training paradigm to achieve tool-grounded step-by-step reward supervision (Section 4.3).

3 Tool Use Synthesis. To train TATTOO to leverage tools for more accurate verification, we further
augment the collected verification rationales with tool invocations, execution results, and feedback
at the step level. Specifically, inside the rationale contents, we replace manual reasoning for table
lookups or calculations with the corresponding tool call and its execution output. We primarily employ
two types of table tools: (i) Computation tools: code snippets (e.g., Python, SQL) for arithmetic
and aggregation over table inputs; (ii) Table Lookup tools: DataFrame APIs (e.g., Polars) or Lookup
Utilities (e.g., CSV/Excel readers) for retrieving specific rows, columns, or cells during verification.

Finally, we construct over 60k high-quality training instances with complete verification rationales
and step-level rewards. This dataset is then used to train TATTOO to integrate tool use with reasoning
for robust step supervision. We leave additional data curation details in Appendix D.

4.3 TOOL-GROUNDED DUAL-STAGE TRAINING

With the training data recipe in place, we train TATTOO via a dual-stage paradigm: supervised
fine-tuning to capture tool-integrated verification patterns, followed by RL-based policy optimization
with a newly designed reward shaping scheme to further refine our PRM’s step-level rationales and
ensure accurate verification.

Table-Aware Verification with Tools via SFT. We first finetune our PRM Rθ on the curated dataset
(Section 4.2). Specifically, given a training instance (T, q, τ) consisting of a table T , a query q, and
an LRM-generated trajectory τ = (a1, . . . , aL), we train the PRM to output, for each step ai ∈ τ , a
verification rationale vi together with its corresponding step-level reward ri. By formulating PRM
training as language modeling, Rθ is optimized auto-regressively to (i) identify accurate sub-table
regions, (ii) learn to dynamically incorporate the retrieved table prefix into each schema interaction
step, and (iii) generate verification rationales with tool-integration patterns.

Tool-Grounded Reward Shaping in RL. Prior generative PRM approaches (Liu et al., 2025; Khalifa
et al., 2025; Zhao et al., 2025) typically conclude PRM training after the SFT stage. In contrast, we
draw inspiration from recent advances in agentic RL (Jaech et al., 2024; Guo et al., 2025) and further
apply policy optimization to more tightly align the PRM’s verification process with effective tool
utilization. Specifically, we optimize Rθ with a modified GRPO (Shao et al., 2024) by providing
dense, tool-grounded supervision signals during policy optimization. During RL rollouts of each
training instance (T, q, τ), we replace the original rule-based GRPO supervision signal with a denser
per-step reward signal si, defined as:

si = 1{r̂i = ri}︸ ︷︷ ︸
label-matching

− λcal

(
− logRθ(ri | T, q, τ)

)
︸ ︷︷ ︸

confidence calibration

+ λtool · support(v̂i)︸ ︷︷ ︸
tool-grounding

, (3)

where r̂i is the PRM’s predicted step-reward and ri is the ground-truth step-reward for the input step
ai ∈ τ ; v̂i denotes the verification rationale generated by the PRM at step i, and support(v̂i) ∈ {0, 1}
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measures whether the rationale correctly incorporates tool outputs; and λcal, λtool are tunable
coefficients. Besides enforcing correctness with the label-matching term, the confidence calibration
term stabilizes training by encouraging higher probability on the ground-truth label, and the tool-
grounding term encourages rationales that effectively incorporate tool outputs.

The tool-grounding term encourages the PRM to incorporate correct tool-execution outputs into the
generated verification rationale. Specifically, support(·) evaluates whether the rationale contains and
correctly leverages executed tool results. When a tool call fails during an RL rollout, support(·) is
automatically set to 0, and the error message is fed back into the model’s context. This prevents the
PRM from reinforcing erroneous tool-based reasoning and trains it to down-weight steps associated
with unstable or invalid tool calls.

We then aggregate the per-step signals si into a trajectory-level training reward, normalize it within
each sampled group to compute group-relative advantages, and update the PRM Rθ under the GRPO
objective.

4.4 INFERENCE-TIME POLICY IMPROVEMENT – AN INTUITIVE VIEW

To intuitively elucidate the role of TATTOO and its table-aware rewards on LRM’s tabular reasoning
process (Eq. 2), we provide a theoretical analysis on the policy improvement induced by TATTOO.

Recall that the goal of our PRM is to improve the generated trajectory τ sampled from a policy LRM
π, i.e., τ ∼ π(· | T, q). By combining the input table and query, we represent (T, q, a1, . . . , ai−1)
as the current state si. At step i, the policy LRM π samples an action ai ∼ π(· | si). We define the
Q-value of policy π as the expected future success, measured by the final answer aL correctness, i.e.,

Qπ(si, ai) = Qπ
(
(T, q, a1, . . . , ai−1), ai

)
= Eai+1,...,aL∼π(·|si) [1aLis correct] . (4)

The value of policy π at state si is defined as the expectation of Q-values under π’s next action
distribution: V π(si) = Eai∼π(·|si)[Q

π(si, ai)]. We now analyze the policy improvement afforded by
TATTOO’s table-aware reward ri supervision under one step of a natural policy gradient updating.

Theorem 4.1 (Policy Improvement (Lower Bound)). Given the current policy π, after one natural
policy gradient update step guided by the PRM reward ri defined in Eq.2, we obtain the revised
policy π′(ai | si) ∝ exp(Qπ(si, ai) + ri(si, ai)). The resulting expected policy improvement over
the state distribution ρ then satisfies:

Esi∼ρ

[
V π′

(si)− V π(si)
]
≳ Esi∼ρVarai∼π(·|si) [ri,tab(si, ai)]︸ ︷︷ ︸

distinguishability from table reward ri,tab

+ Esi∼ρVarai∼π(·|si) [ri,rea(si, ai)]︸ ︷︷ ︸
distinguishability from inner-reasoning reward ri,rea

+Esi∼ρEai∼π(·|si) [ri,tab(si, ai)A
π(si, ai)]︸ ︷︷ ︸

alignment between ri,tab and Aπ

+Esi∼ρEai∼π(·|si) [ri,rea(si, ai)A
π(si, ai)]︸ ︷︷ ︸

alignment between ri,rea and Aπ

,

(5)

where Aπ(si, ai) = Qπ(si, ai)− V π(si) denotes the advantage of policy π.

Theorem 4.1 (proof in Appendix E) explains that our decomposable reward design ri enables each
component to additively contribute to policy improvement, provided that the reward components are
each individually aligned with the policy advantage function. In this way, the table-aware rewards
provided by TATTOO help ensure targeted supervision on both inner reasoning and table-involved
operations generated by LRMs. Below, we further empirically evaluate the effectiveness of TATTOO
across various downstream tabular reasoning tasks.

5 EMPIRICAL EVALUATIONS

Baselines and Models. We compare TATTOO against various types of step-level verification methods,
including advanced PRMs, majority voting (Liu et al., 2025), and LLM-as-a-judge (Zheng et al.,
2023). The setups for these baselines are aligned with our preliminary analyses in Section 3. For PRM
approaches, we include both discriminative (Qwen-PRM series (Zhang et al., 2025b), Math-Shepherd-
PRM (Wang et al., 2024b), and Skywork-PRM (He et al., 2024a)) and generative (ThinkPRM (Khalifa
et al., 2025) and GenPRM (Zhao et al., 2025)). Regarding the policy reasoning models, we evaluate
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Table 2: Main results of TATTOO on 5 different tabular reasoning tasks. We report the best-of-N
(with N = {4, 8, 16, 32}) performance using DeepSeek-R1-Distill-Qwen-14B as the policy model
and compare against various step verifiers. The best and second-best results are highlighted. TATTOO
consistently achieves state-of-the-art TTS performance with significantly fewer parameters.

Verifer (Best-of-N) Params TB-NR TB-FC TB-DA WTQ MMQA

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32

Majority Vote - 65.5 65.9 66.8 66.5 76.2 77.3 77.3 77.4 23.5 24.5 26.0 26.1 64.7 65.3 67.3 67.0 18.4 19.4 20.4 20.1
LLM-as-a-judge - 66.7 66.9 67.1 66.9 77.2 78.3 78.4 78.6 23.5 27.4 28.0 28.4 65.2 66.4 68.1 68.1 19.6 21.3 22.5 22.7
Skywork-PRM-7B 7B 66.1 69.5 70.3 70.1 76.8 78.4 78.6 78.3 24.1 27.5 28.9 29.1 65.9 67.5 68.4 68.6 21.4 24.6 25.1 25.3
Math-Shepherd-PRM-7B 7B 67.2 70.6 71.5 71.8 76.2 76.9 76.8 77.1 22.7 24.8 26.4 25.9 66.8 68.7 69.6 69.3 22.0 25.2 25.9 26.1
Qwen2.5-Math-PRM-7B 7B 66.9 70.1 71.7 72.5 75.4 77.2 77.9 77.4 23.2 25.4 26.3 26.6 65.2 68.5 69.6 69.7 23.5 25.2 27.1 27.3
ThinkPRM 14B 69.2 70.7 73.5 73.8 75.8 75.4 76.3 76.9 21.6 22.7 23.1 22.8 64.3 66.1 65.7 65.9 22.4 22.7 23.6 23.0
GenPRM 32B 71.5 73.5 73.7 74.2 76.3 78.5 79.2 79.4 25.3 27.9 30.2 30.7 69.8 72.5 73.3 73.1 23.8 25.4 26.2 26.4
Qwen2.5-Math-PRM-72B 72B 70.4 73.8 74.9 75.3 77.8 79.2 79.8 79.8 25.5 31.5 32.0 32.4 69.2 71.8 73.0 72.6 24.4 26.8 28.7 28.6
TATTOO 8B 71.2 74.2 76.4 78.1 77.4 79.6 81.2 82.0 27.7 31.9 33.6 34.3 69.8 72.3 73.5 74.9 25.1 27.2 29.1 30.5

our proposed method on DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025). Further details on the
baselines and policy models setups are provided in Appendix F.1.

Datasets. We evaluate on four representative and challenging benchmarks spanning diverse tabular
reasoning tasks, including (i) TableBench (TB) (Wu et al., 2024), a complex tabular reasoning
benchmark with 886 questions covering tasks of numerical reasoning (NR), fact checking (FC),
and data analysis (DA). (ii) WTQ (Pasupat and Liang, 2015b), a benchmark for complex question
answering over Wikipedia tables. (iii) MMQA (Wu et al., 2025a), a multi-table understanding
benchmark covering table retrieval, multi-hop & multi-table QA and text-to-SQL generation. We
leave the additional dataset descriptions in Appendix F.2.

Implementation Details. We train TATTOO on the off-the-shelf Qwen-3-8B model (Yang et al.,
2025a) using our 60k curated training instances (Section 4.2). All training and inference experiments
are conducted on 8×A100-80G GPUs. To evaluate TATTOO under different TTS strategies, we adopt
three representative methods, including Best-of-N (Brown et al., 2024), Beam Search (Snell et al.,
2024), and Diverse Verifier Tree Search (DVTS) (Beeching et al., 2024). Additional implementation
details on training setup and configurations of TATTOO are provided in Appendix F.3.

5.1 MAIN RESULTS

Table 2 reports the Best-of-N performance of incorporating TATTOO on the DeepSeek-R1-Distill-
Qwen-14B model across five tabular reasoning tasks. Notably, TATTOO consistently outperforms
strong baselines such as GenPRM-32B and Qwen2.5-Math-PRM-72B despite using only 8B pa-
rameters. On TB-DA, TATTOO achieves the largest accruacy performance across each level of N,
rising from 27.7% at N=4 to 34.3% at N=32. Moreover, while existing PRMs often suffer from
performance bottlenecks beyond a certain response threshold (as observed in Section 3), TATTOO
continues to scale effectively, yielding consistent gains as the response group size increases. For
example, on TB-NR, Qwen2.5-Math-PRM-72B saturates after N=16 (74.9% → 75.3%), whereas
TATTOO continues to improve from 74.2% at N=8 to 78.1% at N=32. These results demonstrate that
TATTOO provides stronger reward supervision on LRMs’ reasoning trajectories, therefore yielding
better performance improvement compared with other step-verification baselines.

Figure 5: Performance of TATTOO on two additional TTS strategies, Beam Search and Diverse
Verifier Tree Search (DVTS). We report the average accuracy across all 5 tabular reasoning tasks.
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Table 3: In-depth analysis of TATTOO on three table datasets. We evaluate the contributions of SFT
and RL training stages, and assess the impact of reward shaping components during RL optimization.

Training Variants TB-NR TB-FC TB-DA

4 8 16 32 4 8 16 32 4 8 16 32

TATTOO (SFT only) 67.9 69.1 72.0 73.7 71.5 73.0 74.6 75.2 23.3 25.6 26.2 26.4

TATTOO 71.2 74.2 76.4 78.1 77.4 79.6 81.2 82.0 27.7 31.9 33.6 34.3
w/o tool-grounding 68.5 71.1 72.7 74.6 73.2 75.6 75.5 76.3 26.2 28.1 28.7 30.3
w/o confidence caliboration 71.1 73.7 74.3 76.2 76.4 76.7 78.4 80.5 27.4 29.5 31.3 33.2
rule-based (GRPO) 67.0 68.4 70.4 73.1 71.6 74.0 74.9 75.8 25.5 27.4 28.0 28.6

Generalizability on Other TTS Strategies. Beyond best-of-N , we also evaluate TATTOO under two
additional TTS strategies (Beam Search and DVTS) and compare with the strongest PRM baselines.
Figure 5 reports the average performance across the five tabular reasoning tasks. Under each TTS
strategy, TATTOO consistently yields steady improvements as the number of responses N increases,
whereas other baseline PRMs often plateau. For example, in beam search, TATTOO improves from
45.0% to 54.8%, while GenPRM saturates around 51% and Skywork-PRM remains below 46%.
These results highlight the strong generalizability of TATTOO across diverse TTS strategies.

5.2 IN-DEPTH ANALYSES ON TATTOO

Mastery of RL with Bootstrapping from SFT. To examine the respective roles of SFT and RL
in TATTOO’s dual-stage training paradigm, we compare against a variant TATTOO (SFT only),
which is trained solely on the first SFT stage. As shown in Table 3, under the Best-of-N evaluation,
the second-stage RL policy optimization consistently improves performance over the SFT-only
initialization. Specifically, we observe that the average accuracy across all three tasks improves from
72.3% (SFT only) to 78.5% after RL training, yielding a total gain of 10.2%. This demonstrates that
bootstrapping from SFT provides a solid initialization, while RL optimization further enhances our
PRM’s reasoning and tool-use effectiveness during the verification process.

Figure 6: Training dynamics of TATTOO
and ablated variants. We report the train-
ing reward across 280 training steps.

Reward Shaping during RL Training. Next, we ana-
lyze the effectiveness of each supervised component in
our per-step reward signal si design (Eq. 3), with the
ablation results reported in Table 3. Removing the tool-
grounding term yields the largest drop (e.g., ↓4.0% on
TB-DA at N=32), highlighting its critical role in encour-
aging effective tool use during RL training. In addition,
excluding confidence calibration reduces performance by
1.6% on average, showing its complementary effect in
stabilizing reward signals. We also compare TATTOO
with the original rule-based group-relative reward from
GRPO, which yields only marginal improvement over
SFT. Finally, Figure 6 visualizes the training dynamics
of TATTOO and other variants during RL optimization.

Additional Experiments. Additional experiments, including ablations on the training coefficients
and case studies on TATTOO’s effective tool usage, are provided in Appendix G.

6 RELATED WORKS

Reasoning over tables poses a unique challenge for LLMs, requiring them to bridge natural language
understanding with structured reasoning over rows, columns, and cell values (Jin et al., 2022;
Zhang et al., 2025a). Recent works (Tang et al., 2020; Iida et al., 2021; Deng et al., 2022) have
investigated tabular reasoning on several downstream tasks, including table QA (Pasupat and Liang,
2015b; Chen et al., 2020), table fact verification (Chen et al., 2019; Parikh et al., 2020), text-to-
SQL (Mohammadjafari et al., 2024), etc. Early-stage tabular reasoning methods, such as TAPAS
(Herzig et al., 2020) and TaBERT (Yin et al., 2020), encode table data into transformer-based encoder
representations. Later methods leverage the capabilities of LLMs to apply either prompt engineering
(Sui et al., 2023; Wang et al., 2024c) or supervised fine-tuning techniques (Su et al., 2024; Zhang
et al., 2023) for enhanced tabular reasoning. More recent works, including the Table-R1 series (Wu
et al., 2025b; Yang et al., 2025b; Jin et al., 2025) and Reasoning-Table (Lei et al., 2025), leverage RL
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to acquire higher-quality reasoning paths during reasoning over tables. We leave additional related
works on Process Reward Models and Tool Integration with RL in Appendix B.

7 CONCLUSION

We introduced TATTOO, a novel tool-augmented thinking PRM tailored for tabular reasoning. By
diagnosing why existing verifiers fail on table retrieval and schema interaction, we built a scalable
pipeline with expert rationales, table prefixes, and tool-augmented verification, and trained our model
via SFT followed by RL with reward shaping. TATTOO achieves comparable performance across
five table benchmarks, surpassing strong PRMs with up to 9× parameter efficiency and generalizing
across multiple TTS strategies. Our results underscore the importance of table-grounded reward
supervision and point toward future directions in reward modeling for structured reasoning tasks.

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal information, or proprietary datasets.
All datasets used in our experiments are publicly available table reasoning benchmarks, such as
TabFact, FeTaQA, and WikiTableQuestions. We provide detailed descriptions of data processing
steps in Section 5 and the Appendix D. The goal of our method is to improve process reward
modeling for table reasoning, which we believe contributes positively to advancing trustworthy
and interpretable reasoning with structured data. Nevertheless, we acknowledge that stronger table
reasoning capabilities could be misused for generating misleading or biased tabular summaries if
applied irresponsibly.

A potential limitation is that automated verification may propagate errors if tools or training labels
are noisy. To mitigate this, our data curation pipeline integrates a retry-and-recovery procedure
for all tool executions, and we filtered out cases where the tool outputs remained unstable after
multiple attempts. Moreover, we explicitly evaluated TaTToo’s robustness under controlled tool-error
conditions: across tasks, tool-error rates were low (1.9–5.8%), and TaTToo correctly assigned reward
labels in 74–89% of error cases, demonstrating resilience to noisy or failed tool calls. Nonetheless,
improving automated auditing mechanisms remains an important direction. Potential extensions
include adaptive retry strategies, tool-aware correction of erroneous reasoning steps, and cross-tool
consistency checks to detect unreliable tool outputs. While these directions are promising, the current
version of TaTToo already incorporates concrete safeguards and empirical validation to ensure stable
behavior in the presence of mild tool noise.

We encourage responsible use and adherence to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made careful efforts to ensure reproducibility. The main text describes our model architecture,
training procedure, and evaluation protocols in detail (Sections 4–5). Additional hyperparameters,
implementation details, and ablation study configurations are included in the Appendix F. All
datasets are publicly available, and preprocessing steps are documented in Section 5. Theoretical
analyses, including formal definitions of preference-based reward modeling and proofs of consistency
guarantees, are provided in Appendix E. To further facilitate replication, we release our source code
through an anonymized link https://anonymous.4open.science/r/iclr_TaTToo_
code-C13F. Together, these resources ensure that our results can be independently verified.
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Appendix

A THE USE OF LLMS

LLMs were used in this work in two main capacities. First, they served as the base models whose
outputs were ranked and evaluated by our proposed TablePRM framework. We tested across a
variety of publicly available pre-trained models, including Qwen and LLaMA families, to ensure
robustness and generality, as described in Section 5 and Appendix F. Second, during the construction
of preference pairs for supervision, we used LLM-generated responses as candidates, which were then
compared and ranked according to factual consistency with gold tables. In addition, LLMs were used
in a limited capacity for writing assistance, specifically to improve phrasing and readability of the
manuscript. They did not contribute to research design, methodological innovations, or experimental
results; all scientific contributions are the responsibility of the authors.

B ADDITIONAL RELATED WORK

Table Question Answering. The evolution of Table Question Answering (Table QA) research (Jin
et al., 2022) has been propelled by the creation of sophisticated evaluation resources that facilitate
semantic parsing capabilities (Yang et al., 2020; Li et al., 2023b; 2024). Foundational works, including
WTQ (Pasupat and Liang, 2015a) and TabFact (Chen et al., 2019), established initial evaluation
paradigms through Wikipedia-derived HTML table QA pairs. Structured supervision has also been
explored in alternative benchmarks such as WikiSQL (Zhong et al., 2017) and Spider (Yu et al., 2018),
where logical expressions serve as explicit annotations to encourage systematic reasoning. More
recent studies such as MultiTableQA (Wu et al., 2024), MT-RAIG (Seo et al., 2025), and MMQA
(Wu et al., 2025a) has shifted towards multi-hop reasoning.

PRMs for Test-time Scaling. Process Reward Models (PRMs) (Lightman et al., 2024; Uesato
et al., 2022; Zhang et al., 2024) deliver fine-grained, step-level feedback to guide model reasoning,
assigning intermediate rewards to individual reasoning steps rather than only judging final answers
(Guan et al., 2025; Chen et al., 2025). Prominent PRMs, including Math-Shepherd (Wang et al.,
2024b), Skywork-PRM (He et al., 2024a), and the Qwen2.5-Math-PRM family (Zhang et al., 2025b),
are trained using a mix of human annotations and synthesized supervision to score model-generated
solution steps across domains such as math (Maxwell-Jia, 2024), scientific reasoning (Rein et al.,
2023), and programming (He et al., 2024b); more recently, Think-PRM proposes a generative verifier
to produce long-chain CoT evaluations (Khalifa et al., 2025). PRMs have been incorporated into
training-time optimization as reward signals via step-verified online RL and verifier-guided self-
training (Li and Li, 2024; Guan et al., 2025; Cui et al., 2025), and into inference-time scaling by
coupling step-level scoring with search/decoding strategies (Zhao et al., 2025; Khalifa et al., 2025),
including beam search, reward-guided tree search, and Best-of-N sampling.

Discriminative vs. Generative PRM. In general, PRMs can be categorized as discriminative and
generative evaluators (Zhong et al., 2025). A discriminative PRM treats verification as classification,
directly predicting the correctness of each reasoning step with a scalar score. It is typically trained on
step-level labels using cross-entropy loss, making it heavily reliant on step-level reward annotations. A
generative PRM instead frames verification as conditional generation. It is trained with the standard
language modeling objective to first generate rationales and then verify each step’s correctness via a
judgment token (e.g., [correct, incorrect]).
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C DETAILED ERROR ANALYSIS

Figure 7: Error distribution over 500 incorrect LRM responses after Best-of-N. The errors are grouped
into 13 predefined types, with the majority arising from table retrieval and schema interaction.

In Section 3, we perform a fine-grained error analysis on 500 erroneous responses sampled after
Best-of-N selection with Qwen2.5-Math-PRM-72B, to better understand the limitations of LRMs and
PRMs. Each response is inspected and categorized by human experts into 13 predefined error types,
covering both reasoning and table-specific mistakes. Figure 7 illustrates the overall error distribution.

Error Type Distribution. The most frequent errors are unit mismatch (15.0%), row mis-selection
(14.8%), and miscalculation (11.2%). Other common issues include column mis-selection (10.4%),
partial aggregation (9.6%), and missing or incomplete context (7.6%). Less frequent but still notable
categories include output format errors, incorrect grouping, double counting, misinterpretation, and
contradictory steps. A small portion of errors is grouped under others and logical errors. This diverse
distribution highlights that model failures are not restricted to arithmetic slips but extend to schema
understanding and structural reasoning.

Mapping to Reasoning-Step Categories. To reveal deeper patterns, we align the 13 error types
with four reasoning-step categories reflecting the typical flow of LRMs:

• Table Retrieval Step: Includes row/column mis-selection, unit mismatch, and partial aggregation.
These account for 47.7% of total errors, indicating difficulty in locating and extracting the correct
table region.

• Schema Interaction Step: Covers miscalculation, grouping mistakes, double counting, and
misinterpretation of table semantics. This represents 34.3% of errors, reflecting challenges in
reasoning over structured contents once retrieved.

• Inner-Thinking Step: Logical errors or contradictory reasoning steps independent of table contents.
These contribute 12.0% of total errors, suggesting LRMs remain relatively competent in pure logical
chains compared to table-centric operations.

• Others: Errors arising from context omission or improper output formatting.

Key Findings. The analysis confirms that most model weaknesses lie in table-related operations,
including table retrieval and schema interaction, rather than general logical reasoning. PRMs, when
supervising such steps, face greater challenges since they must not only validate the correctness of
reasoning but also verify alignment between the retrieved sub-table and the query.
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D TATTOO DATA CURATION PIPLINE

We design a large-scale data curation pipeline that simulates real-world scenarios of PRM tool use
and step verification at scale. As illustrated in Figure 4, there are three main stages:

Reasoning Trajectory Generation. We begin by collecting trajectory responses from expert LRMs
(e.g., DeepSeek-R1 (Guo et al., 2025) and Claude-Opus-4.1 (Anthropic, 2025)) on table-based
questions drawn from diverse benchmarks, including TableInstruct (Wu et al., 2024), HybridQA (Chen
et al., 2020), ToTTo (Parikh et al., 2020), and WikiTQ (Pasupat and Liang, 2015b).

We generate multiple model responses per query, capturing both correct and incorrect reasoning
patterns. We then adopt a dual-verification procedure (Feng et al., 2025a), where both human
annotators and expert LLMs are employed to examine and filter out low-quality or incomplete CoT
data. Through this, we receive a high-quality set of LRMs’ output responses Tpool for subsequent
data labeling.

Verification Synthesis & Reward Assignment. Our next step is to provide step-level verification
rationales and assign PRM step-reward labels for each candidate response in Tpool. To this end, we
first identify the table retrieval and schema interaction steps within each response in Tpool:

Table retrieval steps - We first extract the retrieved sub-table from each step. Then we apply LLM-as-
a-judge to evaluate whether retrieved contents are accurate and provide complete rationales for the
judgment. We assign step-level table reward ri,tab ∈ {−1, 1} (in Eq. 1) based on the correctness of
the retrieval, while setting ri,rea to 0. This reward supervision explicitly trains PRMs to recognize if
the retrieved sub-table aligns with the input query, addressing the limitation shown in Takeaway 1.

Schema interaction steps - We collect the sub-table retrieved from the preceding table retrieval step
and use it as a table prefix. If the retrieval is incorrect, we manually replace it with the correct
sub-table corresponding to the query. We then prepend this table prefix to the verification rationale
generated by LLM-as-a-judge. Finally, we assign the PRM’s step-level table reward ri,tab ∈ {−1, 1}
based on the correctness of the schema interaction, and ri,rea to 0. By explicitly attaching the retrieved
sub-table to each schema interaction step, we mitigate the dependencies issue noted in Takeaway 2.

Other steps without table operations involved - We directly query an expert LLM (DeepSeek-R1) to
generate verification rationales. We assign the PRM’s step-level reasoning reward ri,rea ∈ {−1, 1}
based on the correctness of the reasoning, while setting the table reward ri,tab to 0.

Tool Use Synthesis. To help PRMs learn to leverage tools for more accurate verification, we augment
the collected verification rationales by incorporating tool invocation, execution, and feedback into
the verification steps. Specifically, whenever the model’s inner reasoning involves a calculation or
table lookup operation, we replace it with the corresponding tool call and its execution result. We
primarily employ two types of tools:

Computation tools - Applying Python or SQL code snippets for arithmetic or aggregation operations.
E.g., if a step verifies the sum of a table column, we replace the model’s manual calculation with a
code snippet that executes the summation and returns the result.

Table lookup tools - Locating and extracting specific rows, columns, or cells from the table. E.g.,
if a step requires referencing a sub-table cell value during the verification, we replace the model’s
self-extraction with an explicit lookup tool call that retrieves the corresponding entry.

By integrating verification processes with code snippets and real-time interpreter feedback, we
construct roughly 60k data for TATTOO’s verification reasoning and tool usage.
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E PROOF OF THEOREM 4.1

Notational conventions. We use si for a state, ai for an action, π for the current policy, and π′ for
the updated policy. The advantage is defined as

Aπ(si, ai) = Qπ(si, ai)− V π(si). (6)

The PRM signal at a step is the overall process reward, defined in Eq.2. For a fixed si, we
write Eπ[·] ≡ Eai∼π(·|si)[·], Varπ[·] ≡ Varai∼π(·|si)[·], and Covπ(ri,rea(si, ai), ri,rea(si, ai)) ≡
Covai∼π(·|si)(ri,rea(si, ai), ri,rea(si, ai)) Expectations over states use the subscript explicitly, e.g.,
Esi∼ρ[·]. We use dπ

′

ρ for the state distribution induced by the policy π′ starting from the initial
distribution ρ. Finally, X ≳ Y means there exists a universal constant c > 0, independent of
(π, π′, si), such that X ≥ c Y .

We start the proof by introducing two standard lemmas that will be used repeatedly; both are
well-known results in the RL literature, and we omit their proofs here for brevity.
Lemma E.1 (Performance Difference Lemma (PDL)). For any pair of policies π and π′ defined
over the same Markov decision process with initial state distribution ρ, the following identity holds:

Esi∼ρ

[
V π′

(si)− V π(si)
]

= Esi∼dπ′
ρ
Eai∼π′(·|si)

[
Aπ(si, ai)

]
.

See proof of Lemma 6.1 in (Kakade and Langford, 2002).
Lemma E.2 (Natural policy gradient (NPG) update form). Fix a step size γ > 0. If the NPG
update is guided by the signal Aπ(si, ai) + ri(si, ai), then

π′(ai | si) ∝ π(ai | si) exp
(
γ
(
Aπ(si, ai) + ri(si, ai)

))
,

Zπ(si) ≜
∑
ai

π(ai | si)
[
exp

(
γ
(
Aπ(si, ai) + ri(si, ai)

))]
,

so that
π′(ai | si)
π(ai | si)

=
exp

(
γ
(
Aπ(si, ai) + ri(si, ai)

))
Zπ(si)

.

(7)

See proof of Lemma F.2 in (Setlur et al., 2024). Next, we restate Theorem 4.1 in the following
proposition.
Proposition E.3 (Full-strength policy improvement lower bound). Let π′ be the NPG update in
Lemma E.2. We can have:

Esi∼ρ

[
V π′

(si)− V π(si)
]

≳ Esi∼ρ

[
Varπ

[
ri,rea(si, ai)

]︸ ︷︷ ︸
distinguishability (reasoning reward)

+ Varπ
[
ri,tab(si, ai)

]︸ ︷︷ ︸
distinguishability (table reward)

+2 Covπ
(
ri,rea(si, ai), ri,tab(si, ai)

)︸ ︷︷ ︸
alignment between ri,rea and ri,tab

+Eπ

[
ri,tab(si, ai)A

π(si, ai)
]︸ ︷︷ ︸

alignment of ri,tab with Aπ

+Eπ

[
ri,rea(si, ai)A

π(si, ai)
]︸ ︷︷ ︸

alignment of ri,rea with Aπ

]
.

(8)

Proof of Proposition E.3. We now combine the performance difference lemma with the NPG update
to derive a variance–alignment lower bound, while first retaining the covariance term between the
reward components. By Lemma E.1, we have

Esi∼ρ

[
V π′

(si)− V π(si)
]
= Esi∼dπ′

ρ
Eai∼π′(·|si)

[
Aπ(si, ai)

]
. (9)

Exponential tilting and a log-partition bound. Let us define the log-partition at state si by

logZπ(si) = logEai∼π(·|si) exp
(
γ
(
Aπ(si, ai) + ri(si, ai)

))
.

From Lemma E.2, we have

Aπ(si, ai) =
1

γ
log

π′(ai | si)
π(ai | si)

− ri(si, ai) +
1

γ
logZπ(si).
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Averaging over ai ∼ π′(· | si), using Eπ′ [log π′

π ] ≥ 0, Jensen’s inequality on logZπ(si) and
Eπ[A

π(si, ai)] = 0 gives

Eai∼π′(·|si)[A
π(si, ai)] ≥ −Eai∼π′(·|si)[ri(si, ai)] + Eai∼π(·|si)[ri(si, ai)]. (10)

Plugging this into equation 9 yields the basic inner-product lower bound

Esi∼ρ

[
V π′

(si)− V π(si)
]
≥ Esi∼dπ′

ρ
⟨π′(· | si)− π(· | si), ri(si, ·)⟩ . (11)

Using first-order expansion of the exponential tilt implies

⟨π′(· | si)− π(· | si), ri(si, ·)⟩ ≳
(
Varπ

[
ri(si, ai)

]
+ Eπ

[
ri(si, ai)A

π(si, ai)
])

, (12)

Combining equation 11 and equation 12, and weakening dπ
′

ρ to ρ (componentwise monotonicity)
gives

Esi∼ρ

[
V π′

(si)− V π(si)
]
≳ Esi∼ρ

[
Varπ

[
ri(si, ai)

]
+ Eπ

[
ri(si, ai)A

π(si, ai)
]]
. (13)

Variance decomposition with covariance. Next, using ri = ri,rea + ri,tab, we have

Varπ
[
ri(si, ai)

]
= Varπ

[
ri,rea(si, ai)

]
+Varπ

[
ri,tab(si, ai)

]
+ 2Covπ

(
ri,rea(si, ai), ri,tab(si, ai)

)
.

(14)

Substituting into equation 13 complete our proof of Proposition E.3 (equation 8).

Covariance elimination under our reward design. By construction in our setup (see Section 4.2),
for each state–action pair (si, ai), the two components of the PRM signal, i.e., table reward and
reasoning reward, are mutually exclusive. Formally, we have

ri,tab(si, ai) ∈ {−1, 0, 1}, ri,rea(si, ai) ∈ {−1, 0, 1}, and ri,tab(si, ai) ri,rea(si, ai) = 0.

Policy-gradient updates are invariant to adding any per-state baseline, so we may center each
component without loss, i.e.,

r̃i,rea(si, ai) = ri,rea(si, ai)−Eπ

[
ri,rea(si, ai)

]
, r̃i,tab(si, ai) = ri,tab(si, ai)−Eπ

[
ri,tab(si, ai)

]
.

Mutual exclusivity yields Eπ

[
r̃i,rea(si, ai) r̃i,tab(si, ai)

]
= 0, hence Covπ

(
r̃i,rea, r̃i,tab

)
= 0 and

Varπ
[
r̃i(si, ai)

]
= Varπ

[
r̃i,rea(si, ai)

]
+Varπ

[
r̃i,tab(si, ai)

]
, r̃i ≜ r̃i,rea + r̃i,tab.

Plugging these centered quantities into the bounds of Proposition E.3 (which is NPG-invariant under
per-state centering) gives exactly Theorem 4.1’s inequality:

Esi∼ρ

[
V π′

(si)− V π(si)
]

≳ Esi∼ρ

[
Varπ

[
ri,rea(si, ai)

]
+Varπ

[
ri,tab(si, ai)

]
+ Eπ

[
ri,tab(si, ai)A

π(si, ai)
]
+ Eπ

[
ri,rea(si, ai)A

π(si, ai)
]]
,

(15)

which completes the proof of Theorem 4.1. □

Remarks. (i) Proposition E.3 is strictly more general; Theorem 4.1 follows as a corollary under
mutual exclusivity plus per-state centering (baseline invariance). (ii) Mutual exclusivity alone
yields Eπ[ri,rea ri,tab] = 0, but per-state centering is what ensures Covπ(ri,rea, ri,tab) = 0. (iii) The
alignment term necessarily uses the composite signal ri because the NPG step is guided by Aπ + ri.
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F EXPERIMENTAL SETUPS

F.1 POLICY MODEL CONFIGURATIONS

In our experiments, we adopt an LRM DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025) as the
downstream policy model. During inference, we configure the model with a temperature of 0.7, a
maximum generation length of 16,384 tokens, and top-p sampling with p = 0.95. We evaluate the
LRM on several inference-time scaling strategies:

Best-of-N (BoN). The policy model generates N candidate responses independently. A verifier
(PRM) scores each response, and the final output is selected based on a voting or scoring method.

Beam Search. Given beam width N and branching factor M , the model generates N initial steps.
The verifier then selects the top N/M continuations, and the model expands each with M new
candidates. This process repeats until termination, enabling guided exploration of high-quality
reasoning paths.

Diverse Verifier Tree Search (DVTS). DVTS is a variant of beam search where the search process
is divided into multiple subtrees. Each subtree is explored independently using verifier-guided
expansions, with candidates selected at every step based on PRM scores.

Majority Voting. After generating multiple responses, the final answer is determined by simple
majority over identical outputs, regardless of intermediate step scores. This method provides a
baseline aggregation mechanism.

LLM-as-a-Judge. Instead of relying solely on PRMs, a separate LLM is prompted to compare and
evaluate candidate responses directly, selecting the most plausible or logically consistent output.

F.2 EVALUATION DATASET DETAILS

TableBench (Wu et al., 2024). TableBench is a comprehensive benchmark specifically designed to
evaluate the reasoning abilities of LLMs over tabular data. It consists of 3,681 unique tables drawn
from diverse domains such as finance, sports, politics, and science, with each table containing on
average 16.7 rows and 6.7 columns. The dataset emphasizes numerical reasoning, with over 65%
of table cells containing numerical values. TableBench questions are organized into four major
categories: fact-checking, numerical reasoning, data analysis, further divided into 18 subcategories,
yielding a total of 886 carefully annotated samples. Each question typically requires 6.3 reasoning
steps, making the dataset significantly more complex than prior TableQA corpora.

WikiTableQuestions (WTQ) (Pasupat and Liang, 2015b). The WikiTableQuestions dataset
introduces question answering over semi-structured HTML tables, aiming to test both compositional
reasoning and domain generalization. It comprises 22,033 natural language questions paired with
2,108 Wikipedia tables, where the training and test tables are disjoint to ensure generalization to
unseen schemas. The tables are semi-structured and heterogeneous, often containing multi-part
cell values (e.g., “Beijing, China”) that require normalization into multiple semantic types such as
numbers or dates. Questions range from simple lookups to highly compositional queries involving
comparison, aggregation, arithmetic, and superlatives. Each table contains at least 8 rows and 5
columns, and the question collection was conducted with quality control through multiple annotators.

MMQA (Wu et al., 2025a) MMQA is a large-scale benchmark for evaluating LLMs on multi-table
and multi-hop question answering. The benchmark includes a total of 3,312 relational tables across
138 domains, where each instance consists of two or three interlinked tables. The dataset features
5,000 multi-table samples, annotated with natural language questions, SQL queries, gold answers,
and explicit primary/foreign key relations. To ensure annotation quality, foreign and primary keys
were labeled by human experts with inter-annotator agreement exceeding 80%. MMQA questions
span four main categories, including numerical, list, count, and select, with an average length of
77–85 tokens, reflecting their compositional complexity.
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F.3 TRAINING DETAILS

We train TATTOO using the off-the-shelf Qwen-3-8B model (Yang et al., 2025a) on our curated
60k dataset. For supervised fine-tuning, we adopt the LLaMA-Factory framework (Zheng et al.,
2024). The training setup uses a learning rate of 1× 10−5, a weight decay of 1× 10−4, a maximum
sequence length of 20,000, and is run for 3 epochs. For the RL training stage, we adopt the VeRL
framework (Sheng et al., 2024) to further optimize the SFT checkpoint via policy optimization. The
model is trained with a batch size of 32, generating 8 samples per question as the group size, and is
run for 3 epochs. During inference, we use the OpenR framework (Wang et al., 2024a) to deploy
our trained TATTOO-8B, which serves as a verifier to guide the downstream LRM under different
test-time scaling strategies.

G ADDITOINAL EXPERIMENTS

G.1 ABLATION STUDY ON TATTOO

Table 4: Ablation on confidence calibration λcal.

N=32 TB-NR TB-FC TB-DA

0.3 76.8 80.9 33.1
0.5 77.3 81.3 33.6
0.8 78.1 82.0 34.3
1.0 78.5 81.4 33.8

Table 5: Ablation on tool-grounding λtool.

N=32 TB-NR TB-FC TB-DA

0.1 75.2 76.3 30.8
0.5 75.9 76.9 32.2
1.0 78.1 82.0 34.3
1.3 77.5 81.2 34.6

Ablations on λcal and λtool. In Eq. 3, we use λcal and λtool as tunable coefficients to balance
the contributions of the corresponding reward terms in GRPO. To examine their influence, we
separately train our verifier model (initialized from the same SFT checkpoint) by varying λcal ∈
{0.3, 0.5, 0.8, 1.0} and λtool ∈ {0.1, 0.5, 1.0, 1.5} during RL, and then evaluate on TableBench with
N = 32. As shown in Table 4 and 5, performance improves as λcal increases, peaking at 0.8–1.0. For
λtool, accuracy rises steadily and is strongest around 1.0–1.3. These results empirically confirm the
effectiveness of confidence calibration and tool-grounding in enhancing TTS.

G.2 CASE STUDY ON TATTOO

As shown in Figure 9, we present a case study on TATTOO illustrating the difference between
the verification processes at the two training stages on a specific instance in Figure 9 (Appendix
G.2). When facing the same step (Step 3), the SFT-stage relies on inner text reasoning to verify the
calculation, but introduces numerical errors that lead to incorrect justification of the step’s correctness.
In contrast, the RL-stage learns to leverage the computation tool with concise Python code, ensuring
accurate calculations and thereby providing more reliable reward supervision on the policy model’s
responses. In addition, we randomly sample 500 trajectories from both stages of TATTOO on the
same set of inputs and observe a 26.3% improvement in the tool-integration ratio after RL training,
indicating our model learns to utilize tools better for step-level verification during RL rollouts.

G.3 PERFORMANCE GAIN OF TATTOO WITH INCREASING NUMBER OF RESPONSES

Figure 8 presents the best-of-N performance on TB-NR. We observe that baseline PRMs such
as Qwen2.5-Math-PRM-72B and GenPRM-32B quickly saturate beyond N=16, achieving only
marginal improvements at larger N . Skywork-PRM-7B shows even weaker scalability, plateauing
below 71%. In contrast, TATTOO continues to improve steadily as N increases, reaching 78.3%
at N=32, the highest among all models despite having significantly fewer parameters (8B). These
results highlight the scalability advantage of TATTOO, demonstrating its ability to leverage larger
response pools more effectively than existing PRMs.
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Figure 8: Performance of TATTOO and baseline PRMs on TB-NR under Best-of-N test time scaling.
While baseline models plateau as N increases, TATTOO continues to scale effectively, yielding
consistent accuracy gains.

H LIMITATIONS AND BROADER IMPACTS

While reinforcement learning with reward shaping enhances our PRM’s ability to capture fine-
grained tabular reasoning signals, it introduces more computational overhead. Compared to SFT-only
training, the RL stage requires additional rollouts, reward evaluations, and optimization steps, which
can increase training cost and resource demands. This overhead may hinder reproducibility and
accessibility in low-resource environments, motivating future work on more efficient reward objectives
and lightweight reward modeling strategies. In addition, our current framework is limited to text–table
reasoning, and extending it to multimodal settings (e.g., integrating charts or image-based tables)
remains an important direction for future work.

From a broader perspective, this work highlights the potential for process reward models to enhance
structured reasoning in domains such as fact-checking, scientific analysis, and decision support. At
the same time, reliance on automated verification carries risks: if tools or training data contain errors,
these may be amplified rather than corrected. We encourage future research to explore mechanisms
for auditing verifier reliability, reducing the energy footprint of RL training, and ensuring equitable
performance across diverse application domains.
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I TATTOO ON STRONGER POLICY MODELS

To further validate TaTToo, we evaluate our method using three strong downstream policy models:
Qwen3-32B (thinking mode) (Yang et al., 2025a), Qwen3-30B-A3B (thinking mode) (Yang et al.,
2025a), and gpt-oss-20b (Agarwal et al., 2025). We utilize the same Best-of-N Test-Time Selection
(TTS) setup described in section 5. We compare TaTToo against three strong baselines: Skywork-
PRM (He et al., 2024a), the Qwen-PRM series (Zhang et al., 2025b), and GenPRM (Zhao et al.,
2025), and evaluate performance on the TB-DA (Wu et al., 2024), WTQ (Pasupat and Liang, 2015b),
and MMQA (Wu et al., 2025a) tasks. The results are detailed in Tables 6, 7, and 8.

Across all three stronger policy models, incorporating TaTToo consistently leads to better downstream
performance compared with larger-size baseline PRMs. This aligns with our observations in section 5
and further demonstrates TaTToo’s supervision effectiveness across policy models of varying sizes.

Table 6: Main results of TATTOO on 3 different tabular reasoning tasks. We report the best-of-N
(with N = {4, 8, 16, 32}) performance using Qwen32B (thinking) as the policy model and compare
against various step verifiers. The best and second-best results are highlighted.

Verifier (Best-of-N) Params TB-DA WTQ MMQA

4 8 16 32 4 8 16 32 4 8 16 32

Skywork-PRM-7B 7B 34.6 35.8 35.6 35.3 78.5 80.1 81.4 81.9 37.2 38.6 39.1 39.4
GenPRM 32B 38.1 38.5 39.2 38.7 81.2 82.9 84.0 84.6 39.4 40.5 41.8 42.7
Qwen2.5-Math-PRM-72B 72B 37.4 38.3 39.4 39.1 82.3 84.2 86.1 86.7 42.2 43.8 44.2 44.8
TATTOO 8B 38.3 39.5 40.5 41.3 83.8 86.5 87.3 88.6 41.7 43.8 44.7 46.3

Table 7: Main results of TATTOO on 3 different tabular reasoning tasks. We report the best-of-N
(with N = {4, 8, 16, 32}) performance using Qwen3-30B-A3B (thinking) as the policy model and
compare against various step verifiers. The best and second-best results are highlighted.

Verifer (Best-of-N) Params TB-DA WTQ MMQA

4 8 16 32 4 8 16 32 4 8 16 32

Skywork-PRM-7B 7B 29.4 31.1 31.9 32.2 70.2 72.0 73.9 75.0 29.4 30.9 32.0 33.1
GenPRM 32B 30.9 33.7 34.2 33.9 71.6 73.4 75.8 77.3 30.7 32.5 33.6 35.0
Qwen2.5-Math-PRM-72B 72B 34.8 35.3 35.6 37.2 72.5 74.6 77.1 78.9 31.9 33.8 35.0 36.5
TATTOO 8B 34.4 35.8 37.6 39.1 73.8 75.8 78.3 80.4 33.1 34.7 36.2 38.0

Table 8: Main results of TATTOO on 3 different tabular reasoning tasks. We report the best-of-N
(with N = {4, 8, 16, 32}) performance using gpt-oss-20b as the policy model and compare against
various step verifiers. The best and second-best results are highlighted.

Verifier (Best-of-N) Params TB-DA WTQ MMQA

4 8 16 32 4 8 16 32 4 8 16 32

Skywork-PRM-7B 7B 27.2 28.3 27.9 28.1 71.0 72.8 74.2 74.5 33.4 38.1 38.5 38.8
GenPRM 32B 29.0 30.2 31.1 31.0 73.5 75.6 77.8 78.0 37.2 39.3 39.6 40.1
Qwen2.5-Math-PRM-72B 72B 33.1 34.7 34.9 35.5 74.2 76.5 78.7 79.3 39.5 40.5 43.4 43.9
TATTOO 8B 32.8 34.4 36.2 37.9 76.0 78.1 80.4 82.2 39.2 42.1 44.0 45.7
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Table 9: Comparison of TATTOO with Output-Reward-Model (ORM) baselines.

Method (Best-of-16) TB-NR TB-FC TB-DA WTQ MMQA

Discriminative ORM 66.4 72.0 26.8 68.1 25.3
Generative ORM 70.6 75.9 28.5 69.2 26.6
TaTToo 76.4 81.2 33.6 73.5 29.1

J COMPARISON WITH ORM BASELINES

To evaluate the efficacy of our approach, we compare TaTToo against two distinct Outcome Reward
Model (ORM) baselines, both implemented on the same Qwen3-8B backbone. The comparison is
reported in the table 9. We detail the training and implementation settings for these ORM baselines
below. For the policy model and all additional configurations, we follow exactly the same setup
as outlined in our main experiments. First, following (Mahan et al., 2024) and our established
experimental settings, we employ a Generative ORM trained via a dual-stage process (SFT followed
by RL) using our curated dataset. In this configuration, the model is optimized to generate a rationale
chain before producing a final output-level reward token (“correct” or “incorrect”) for each complete
instance. Second, adhering to the methodologies of (Hosseini et al., 2024; Cobbe et al., 2021), we
implement a Discriminative ORM by training a classification head directly on the backbone model.
This baseline is designed to classify whether a candidate answer’s final solution is correct or incorrect
without generating any intermediate rationales.

From the table 9, We can tell TaTToo provides significantly stronger supervision than both ORM
baselines. This performance advantage indicates that TaTToo’s process-level supervision delivers
denser and richer reward modeling signals, which in turn contribute positively to the performance
of the downstream policy model. Furthermore, when comparing the two baselines, the Generative
ORM consistently outperforms the Discriminative ORM. This gap suggests that the inclusion of
generative rationales offers more informative supervision than binary correctness labels alone. Since
the Generative ORM effectively leverages the reasoning paths within our training data, this result
further highlights the rich verification rationales and high-quality supervision signals provided by our
curated dataset.
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K COMPARISON WITH RAW QWEN3-8B AS A STEP-LEVEL VERIFIER

Table 10: Comparison between TaTToo and a directly prompted Qwen3-8B verifier. TaTToo
consistently improves step-level supervision quality across all datasets.

Method TB-NR TB-FC TB-DA

4 8 16 4 8 16 4 8 16

Raw Qwen3-8B 66.5 67.3 67.1 75.9 76.5 77.0 22.6 24.8 26.2
TaTToo (ours) 71.2 74.2 76.4 77.4 79.6 81.2 27.7 31.9 33.6

To isolate the effect of our curated training data and dual-stage training pipeline, we compare TaTToo
with a baseline that directly prompts the raw Qwen3-8B model to act as a step-level verifier. The raw
model receives the table, question, and full reasoning chain and is instructed to produce, for each
step, a brief justification and a binary correct/incorrect label, matching TaTToo’s evaluation
protocol. As shown in Table10, TaTToo substantially outperforms this baseline, particularly on
multi-step schema-interaction and tool-grounded cases, demonstrating that simply prompting a strong
LRM is insufficient for reliable table verification. Instead, TaTToo’s curated dataset, schema-aware
prefixing, and tool-grounded RL training yield significantly more accurate step-level supervision and
consistently higher downstream performance under Best-of-N test-time scaling.

L INTEGRATING TATTOO WITH RL-TRAINED TABLE-R1

Table 11: Performance of Table-R1-Zero with and without TaTToo under the Best-of-N setting.
TaTToo consistently improves the RL-trained table reasoner across all tasks.

Method TB-NR TB-FC TB-DA WTQ MMQA

Table-R1-Zero 34.8 61.6 16.4 77.3 24.2
Table-R1-Zero + TaTToo (BoN-4) 39.6 64.7 18.3 80.9 26.8
Table-R1-Zero + TaTToo (BoN-8) 45.1 69.0 20.1 82.6 28.4
Table-R1-Zero + TaTToo (BoN-16) 48.2 72.3 23.5 84.5 30.3

To demonstrate that TaTToo is complementary to RL-based table-reasoning methods, we further
evaluate its performance when paired with Table-R1-Zero (Yang et al., 2025b), a 7B table-specialist
policy model trained with program-based reinforcement learning. Under the Best-of-N test-time
sampling strategy (N ∈ {4, 8, 16}), we apply TaTToo as the verifier following the same evaluation
protocol described in Section 5 and compare Table-R1-Zero alone against Table-R1-Zero augmented
with TaTToo across all five tasks. As shown in Table 11, incorporating TaTToo consistently improves
accuracy and yields larger gains as N increases, indicating that TaTToo reliably identifies higher-
quality trajectories during test-time scaling. These results further confirm that TaTToo is architecture-
agnostic and serves as a flexible verifier that enhances diverse table-reasoning systems, including
RL-trained approaches such as Table-R1.
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M EFFECIENCY ANALYSES ON TATTOO

Table 12: Computational cost breakdown of TaTToo training stages.

TaTToo Training Stage Training Data Size # of Training Steps GPU Setup Total Hours Total Cost

SFT 50K ∼2400 8×A100 5.4 $25.9
RL 10K ∼280 8×A100 8.3 $39.8

To ensure computational efficiency, our design prioritizes concise data curation. As detailed in
Section 4.2, we implement a progressive filtering strategy that yields a high-quality training set
of approximately 60,000 examples. This dataset size is significantly more compact than standard
Process Reward Model (PRM) corpora; for comparison, the baseline Qwen-PRM models utilized
in our experiments required roughly 800,000 training samples (Lightman et al., 2023; Zhang et al.,
2025b). Leveraging this compact dataset alongside a lightweight backbone allows the complete
TaTToo training process to conclude in fewer than 8 GPU hours. Beyond efficiency, the resulting
PRM demonstrates robust generalization capabilities. Once trained, TaTToo provides effective step-
level supervision across a diverse spectrum of tabular reasoning tasks, including question answering,
fact-checking, and data analysis, while still remaining compatible with various Test-Time Selection
(TTS) strategies such as Best-of-N and Beam Search. This versatility underscores TaTToo’s broad
applicability across the tabular reasoning domain.

To quantify the accessibility of our method, we analyze the training overhead of TaTToo. We present
a detailed cost breakdown for the 8B model, encompassing both the Supervised Fine-Tuning (SFT)
and Reinforcement Learning (RL) stages. To provide a tangible economic metric, we evaluate the
total GPU computational cost based on a standardized pricing rate of $4.8 per 8-GPU hours.

While the RL stage utilizes only approximately one-fifth of the data and one-ninth of the training
steps relative to the SFT phase, it incurs a higher computational cost due to the overhead associated
with rollout sampling and tool executions. However, the absolute duration of the RL stage remains
limited. As demonstrated in Table 12, given the substantial performance improvements observed over
the SFT-only baseline, this additional computational expenditure represents a favorable efficiency-
effectiveness tradeoff. Overall, the complete TaTToo training pipeline requires approximately 14
GPU hours, translating to a cost of roughly $65. This resource requirement is considerably lower
than that of training larger PRM baselines, such as those with 32B or 72B parameters.
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Case Study on TATTOO

(i) Before RL Training
Okay, I need to verify step by step for the provided answer and determine if each step is correct or not.

[Step 0 Evaluation]
For step 0, let me first check whether it retrieves the correct information from the input table . . . . . .
[Step 3 Evaluation]
Looking at step 3 and the table data provided, I need to verify whether the summarization calculation on the
column "capacity in persons / hour” is correct. Let me add each part together:

350 + 500 + 970 + 10000 + 2000 + 2800 + 650 + 650 + 1000 + 1000 + 720 + 820 + 1000 = 16,920
(wrong PRM calculation)

Since the provided step 3 gives a final calculation result of 22,460, which is not equal to 16,920. Step 3 is
incorrect due to the wrong summarization on the overall carrying capacity.

The step is \boxed{-1(incorrect)} (✗ Wrong Step Reward)

(ii) After RL Training
Alright, I am given a complete table, a question, and a corresponding answer. I need to check the correctness
of each step of the answer. Let me verify step by step:

[Step 0 Evaluation]
I start by checking if Step 0 pulls the proper information from the table ...
...
[Step 3 Evaluation]
To verify Step 3, I need to check the summarization (sum) over the "capacity in persons / hour” column. I will
write Python code to verify this using the input table.

Code Sandbox

table = {
"columns": ["name or route", "capacity in persons / hour"],
"data": [

["betten betten village", 350],
["betten village bettmeralp", 500],
# ...
["trainerlift", 820],
["lager 1", 1000],
# ...

],
}
capacity_index = table["columns"].index("capacity in persons / hour")
total_capacity = sum(row[capacity_index] for row in table["data"])

print("Total capacity in persons/hour: ", total_capacity)

Code Interpreter

Total capacity in persons/hour: 22460

Since the computed total of 22,460 aligns with the result in step 3, this step is correct.

The step is \boxed{1(correct)} (✓ Correct Step Reward)

Figure 9: Case study on TATTOO before and after RL training. Applying RL training enhances our
PRM’s dynamic utilization of tool calls, which in turn provides more reliable supervision over the
input reasoning trajectories of LRMs.
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