
Differentially Private Sum-Product Networks

Xenia Heilmann 1 Mattia Cerrato 1 Ernst Althaus 1

Abstract

Differentially private ML approaches seek to learn
models which may be publicly released while
guaranteeing that the input data is kept private.
One issue with this construction is that further
model releases based on the same training data
(e.g. for a new task) incur a further privacy budget
cost. Privacy-preserving synthetic data genera-
tion is one possible solution to this conundrum.
However, models trained on synthetic private data
struggle to approach the performance of private,
ad-hoc models. In this paper, we present a novel
method based on sum-product networks that is
able to perform both privacy-preserving classifica-
tion and privacy-preserving data generation with a
single model. To the best of our knowledge, ours
is the first approach that provides both discrimi-
native and generative capabilities to differentially
private ML. We show that our approach outper-
forms the state of the art in terms of stability (i.e.
number of training runs required for convergence)
and utility of the generated data.

1. Introduction
In today’s data-driven world, a vast amount of data is col-
lected and processed each day. Data collection is not without
risk, as it centralizes sensitive information of many individ-
uals. The need for data protection is particularly present
when data is shared for commercial and scientific reasons,
or when models trained on these data are released to the
public.

One popular method for protecting sensitive information of
individuals is differential privacy (DP). It was introduced by
Dwork et al. (2014) and is a formally defined privacy require-
ment which is one of the most robust and widely accepted
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privacy definitions. DP provides strong anonymization guar-
antees, as it formalizes that randomized computations over
similar datasets have to yield similar outputs. Thus, in the
event that an adversary gains access to the outputs of a DP
algorithm, they cannot distinguish whether a specific dat-
apoint is contained in the input. While DP is applicable
to many use cases, it does have one limitation: Each DP
model trained on the same data adds to the privacy costs
and decreases the privacy guarantees for the input dataset.
Therefore, training several different DP models for differ-
ent tasks on the same data does not scale well in terms of
privacy.

The concept of generating synthetic private data has
emerged as a possible solution to this issue (Arnold & Ne-
unhoeffer, 2020; Bowen & Snoke, 2019). If DP synthetic
data is generated, it is then possible to use it to train any
number of models, without incurring additional expenses of
the privacy budget (due to the Post-processing Theorem –
see Theorem 2.6). One issue with the current state-of-the-art
methodologies is the utility-privacy tradeoff. Simply put,
it is challenging to generate data that is at the same time
differentially private, highly representative of the original
and useful to train ML models (Tao et al., 2021). Models
trained on DP synthetic data will display lower utility (e.g.
accuracy) compared to DP implementations of ML models
that are trained on the original non-private data.

In this paper we provide a method based on sum-product
networks (Poon & Domingos, 2011) that is able to both gen-
erate private synthetic data and perform classification in a
single training run. We refer to the methodology as differen-
tially private sum-product networks (DPSPNs). These mod-
els, when trained for a classification task, may be also em-
ployed to generate DP synthetic data or perform marginal in-
ference over the class labels, without any retraining or adap-
tation required. Our methodology relies on the flexibility
of sum-product networks (SPNs). SPNs are rooted acyclic
directed graphs representing multivariate probability distri-
butions and their structure may in general be learned from
data. Our contribution is a differentially private method
to perform structure and parameter learning in SPNs. We
show that DPSPNs have several advantages compared to the
state-of-the-art methodologies in this space. In terms of sta-
bility, we show in Section 5.2 that our method needs a lower
number of training runs to converge to an useful model com-
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pared to e.g. adversarial methods (Jordon et al., 2018). On
top of this, our experimentation shows that the generated
private data is competitive with current state-of-the-art meth-
ods in terms of privacy and utility, in both classification and
density estimation tasks.

This paper is structured as follows. First, we in short in-
troduce DP and SPNs before explaining our methology for
DPSPNs. We then give a small overview over related work
in the field of DP ML and private SPNs. Next, we show the
performance of our DPSPN models with extensive experi-
mental evaluation. We end with a short conclusion and an
outlook on future work.

2. Preliminaries
In the following, we introduce the differential privacy (DP)
concepts and properties based on Dwork et al. (2014). Fur-
thermore, we give an introduction to SPNs.

2.1. Differential Privacy

The first step towards defining DP, is to understand the
notion of neighboring datasets.

Definition 2.1 (Neighboring Datasets). Two datsets D1 and
D2 are neighboring datasets if they only differ by exactly
one datapoint.

With Definition 2.1 we can now formally define DP:

Definition 2.2 (ε-Differential Privacy). Let ε > 0 hold.
Then, a mechanism M : D → R is called ε-differential
private, if for any two neighboring datasets D1 and D2 and
for any R ⊆ R,

P [M(D1) ∈ R] ≤ eεP [M(D2) ∈ R]. (1)

Intuitively, Definition 2.2 guarantees that a mechanism M
behaves similarly on similar input datasets. More formally,
the probability of seeing the same output for two neighbor-
ing datasets, can only differ by at most eε. Changing one
datapoint in a dataset is therefore not likely to change the
output. As relaxation to ε-DP, we have

Definition 2.3 ((ε, δ)-Differential Privacy). Let ε > 0 and
0 < δ ≤ 1 hold. Then, a mechanism M : D → R is
called (ε, δ)-differential private, if for any two neighboring
datasets D1 and D2 and for any R ⊆ R,

P [M(D1) ∈ R] ≤ eεP [M(D2) ∈ R] + δ. (2)

Let us now move to important properties of DP, which are
especially relevant during training of algorithms satisfying
DP, where several iterations and therefore several accesses
to the same data are needed.

Theorem 2.4 (Basic Composition). Let M =
(M1, . . . ,Mk) be a sequence of ε-differentially pri-
vate mechanisms, where Mi is εi-differential private and
potentially chosen sequentially and adaptive. Then, M is
(
∑k

i=1 εi)-differential private.

This theorem applies when an algorithm accesses the same
dataset k times. An improved privacy guarantee is available
when assuming that a dataset is partitioned into t disjoint
subsets D1, . . . , Dt, and each mechanism is applied to ex-
actly one of these subsets (McSherry, 2009):

Theorem 2.5 (Parallel Composition). Let i ∈ [0, . . . , t] and
let Mi be a ε-differential private mechanism which takes
an arbitrary disjoint subset Di ⊂ D as input. Then, the
composition of M0, . . . ,Mt is ε-differential private.

One last property of DP is that applying any mapping to
a DP mechanism without additional accesses to the orig-
inal data preserves all DP bounds. This is especially im-
portant, as attackers cannot weaken privacy guarantees by
post-processing the DP-mechanism’s output. Furthermore,
this theorem sets the basis for generating synthetic DP data.

Theorem 2.6 (Post-processing Theorem). Let M : D → R
be ε-differential private (be (ε, δ)-differential private) and
let A : R → S be an arbitrary randomized mapping. Then,
A ◦M is ε-differential private (is (ε, δ)-differential private).

2.2. Sum-Product Networks

A sum-product network (SPN) is a rooted acyclic directed
graph representing a multivariate probability distribution
(Poon & Domingos, 2011). An SPN consists of three differ-
ent kind of nodes, namely leaf, sum and product nodes. Leaf
nodes represent probability distribution functions. In a sum
node, the weighted sum of the values of all child nodes is
calculated, where the weights are free parameters. Product
nodes compute the product of their children’s output. Start-
ing from the leaf nodes, layers of sum and product nodes
ensue until a root sum node is reached.

Learning an SPN requires learning its structure, the weights
leading to sum nodes as well as the leaf distribution func-
tions. Various algorithms are available for each step, and we
refer to Sánchez-Cauce et al. (2021) for a comprehensive
overview. SPNs may be employed on both discrete and
continuous data as well as in hybrid domains (Molina et al.,
2018). After learning, probabilistic inference can be per-
formed in time linear in the number of nodes of the network
(Poon & Domingos, 2011). Here, the nodes are evaluated
starting at the leaves and then propagated bottom up, so that
the output is found in the root node. Additionally, several
types of inference can be performed in time that is a poly-
nomial function of the number of edges in the graph (Poon
& Domingos, 2011; Sánchez-Cauce et al., 2021). These
include computing marginal and posterior probabilities, ap-

2



Differentially Private Sum-Product Networks

proximate most probable explanation (MPE), approximate
maximum a-posteriori (MAP), and approximate MAX.

SPNs can also be used for classification problems (Gens &
Domingos, 2012; Peharz et al., 2019) by employing MPE
on an adapted SPN structure. Another, rather new and
not yet well-researched potential of SPNs is synthetic data
generation (Kroes et al., 2023). Similar to other graphical
models, e.g. Bayesian Networks (Zhang et al., 2017), SPNs
can generate data by sampling over their learned distribution.
This is done by first taking a bottom-up pass to compute
marginal likelihoods and then sampling with respect to the
likelihoods through a top-down pass.

3. DPSPNs
In this section, we introduce our method for training an SPN
which fulfills ε-differential privacy (DPSPN). As already
mentioned, SPNs are extremely versatile in the tasks they
can accomplish. They support a wide range of inference
tasks and are able to generate synthetic data, by sampling
from their learned distribution. This makes them especially
useful in settings where collected privacy-sensitive data is
of interest for a wide range of different tasks. Here, we only
need to train one DPSPN model to accomplish e.g. private
classification and DP synthetic data generation at the same
time, instead of a generator and classifier as separate models.
This altogether results in better privacy guarantees as the
accesses to the privacy-sensitive data are reduced. Also,
no additional models trained on the same private data are
released decreasing the attack possibilities.

Furthermore, DPSPNs are applicable to discrete, contin-
uous, categorical and mixed domains. This makes them
preferable over other synthetic data generators, such as MST
(McKenna et al., 2021) which are restricted to either discrete
or continuous data, or use a preprocessing pipeline to embed
the data into a compatible domain.

3.1. Structure and Parameter Learning

Well-known SPN structure learners, such as LearnSPN
(Gens & Domingos, 2013) or MSPN (Molina et al., 2018)
employ a top-down approach to learn the structure and the
weights of an SPN at the same time. Our approach follows
the same construction, which we summarize in the follow-
ing. We learn differentially private SPNs (DPSPNs) by
performing the following two steps in an alternating order:
variable splitting and instance splitting. These two steps
respectively split the dataset vertically and horizontally, gen-
erating product and sum nodes. Variable splitting seeks
to identify sets of independent columns in the dataset and
induces a product node over them. Instance splitting groups
rows of data into disjoint clusters, while inducing a sum
node over them. A third final step, distribution learning, is

Algorithm 1 LearnDPSPN

1: Input: samples D = {vm = (vm1 , . . . , vmN )|vm ∼ V}Mm=1

over a set of random variables V = {V1, . . . , VN}; η: mini-
mum of instances to split; ε′: privacy parameter; t maximum
of privacy-consuming function calls; α: threshold for binary
random column splits

2: Output: an DPSPN S learned from D
3: if |V| = 1 then
4: {Dc}Cc=1 ← dp Kmeans(D, ε′)
5: if C > 1 and t > 1 then
6: S ←

∑C
c=1

|Dc|
|D| LearnDPSPN(Dc, η, ε

′, t− 1, α)

7: else
8: S ← learn dp histogram leaf(D, ε′)
9: end if

10: else if |D| < η or t = 1 then

11: S←
|V|∏
n=1

LearnDPSPN({vmn |vmn ∼ Vn}Mm=1, η, ε
′, t, α)

12: else
13: {Dc}Cc=1 ← dp Kmeans(D, ε′)
14: if C > 1 and t > 2 then
15: for Dc do
16: {Vk}Kk=1 ← binary random(Dc, α)
17: if K > 1 then
18: Dk ← {vm

k |vm
k ∼ Vk}Mm=1

19: Sc ←
∏K

k=1 LearnDPSPN(Dk, η, ε
′, t− 1, α)

20: else
21: Sc ← LearnDPSPN(Dc, η, ε

′, t− 1, α)
22: end if
23: end for
24: S ←

∑C
c=1

|Dc|
|D| Sc

25: else if C > 1 and t = 2 then
26: S ←

∑C
c=1

|Dc|
|D| LearnDPSPN(Dc, η, ε

′, t− 1, α)

27: else
28: S ← LearnDPSPN(D, η, ε′, t− 1, α)
29: end if
30: end if
31: RETURN S

performed when a predefined minimal number of instances
η is reached. Here, a leaf node is generated and the distribu-
tion of the remaining instances is estimated, usually via a
parametric distribution.

The general flow of this learning algorithm is not unlike well-
known SPN algorithms (Poon & Domingos, 2011; Molina
et al., 2018). Our approach, however, employs differentially
private variants of the three aforementioned steps.

Private Instance Splitting. As described above, instance
splitting in SPN learning may be thought of as a clustering
step. Previous research on private clustering (Su et al., 2016)
and SPN learning (Butz et al., 2018; Molina et al., 2018) has
shown that the K-means algorithm is a valid choice in this
setting. Thus, we employ a DP version of Lloyd’s algorithm
(Su et al., 2016) that bounds each dataset column’s range
in the interval [−r,+r]. After this preprocessing step, it
is possible to compute the sensitivity of the algorithm by
taking into account that the procedure computes count and
sum queries operations on every dimension d of the dataset
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for some number of iterations γ. The sensitivity of our
instance splitting procedure is therefore (dr + 1)γ, and
it may be made ε-differentially private via the Laplacian
mechanism, i.e. by summing Laplacian noise sampled from
Lap( (dr+1)γ

ε ) to the result of each query. We set K= 2 to
achieve deeper, simpler SPN structures as showed by Vergari
et al. (2015). We initialize the cluster centroids following
the recommendations of Su et al. (2016) which require data
bounds as input. These can be defined beforehand from
publicly available datasets or calculated during or before
the algorithm’s execution with an additional small privacy
cost (Google, 2023). One well-known issue with Lloyd’s
algorithm is the requirement for a well-defined metric space.
This assumption is broken when e.g. the dataset contains a
mix of continuous and discrete variables. Here, we rely on a
preprocessing solution put forward by Molina et al. (2018),
who propose to both rank the feature values and apply a
random linear projection followed by a non-linear function.
In the transformed data, finding an approximation of the
bounds for centroid initialization comes to no additional
privacy cost. We elaborate on these details in Appendix A.3.

After the clustering step is completed, instance splitting still
requires to induce a sum node while learning the parameters
of the connection between the sum node and its children.
Here, we straightforwardly set the weights as the size of
a cluster divided by the size of data samples given to the
K-means algorithm as input. Since this may be done with
no additional accesses to the dataset, Theorem 2.6 applies
and no further privacy budget is consumed.

Private Variable Splitting. Variable splitting requires find-
ing sets of independent variables/columns in the dataset.
After some investigation, we found that differentially pri-
vate versions for independency tests such as the G-test (Gens
& Domingos, 2013) require ample privacy budget without
providing much improvement in terms of resulting model
quality. One further observation that we gather from prior
literature on SPNs (Peharz et al., 2019) is that random struc-
tures are often competitive with optimal or near-optimal
structures. Thus, we chose to implement a binary random
variable splitting method as the basis for DPSPNs. This
method randomly partitions the variables into two random
subsets with a failure percentage of α. The failure percent-
age denotes with which probability the column splitting
method will not split the variables into subsets but fail. This
imitates the behavior of independency tests, as these can
also fail if no independence is found between the remain-
ing variables. The size of both variable partitions is then
drawn from a Beta distribution (Molina et al., 2019). This
leads to structures that are similar to the ones generated by
LearnSPN. We stress that our variable splitting procedure
is data-independent, and therefore comes at no cost of the
privacy budget. We show the performance of this method-
ology compared esp. with avoiding variable splits at all in

Algorithm 2 LearnDPSPN class

1: Input: samples D = {vm = (vm1 , . . . , vmN )|vm ∼ V}Mm=1

over a set of random variables V = {V1, . . . , VN}; η: mini-
mum of instances to split; ε′: privacy parameter; l: index of
the label; t maximum of privacy-consuming function calls, α:
threshold for binary random column splits

2: Output: an DPSPN S learned fromD which is able to classify
data

3: L ← {vml |vml ∼ Vl}Mm=1

4: for i in unique(L) do
5: Di ← {v ∈ D|vl = i}
6: Si ← LearnDPSPN(Di, η, ε′, t− 1, α)

7: wi ← |{vml ∈ L|vml = i}|+ Z with Z ∼ 1−e−ε′

1+e−ε′ e
−ε′|z|

8: end for
9: RETURN S ←

∑
i

wi∑
j wj
Si

Figure 2.

Private Distribution Learning. In general, leaf nodes
are generated once a minimal number of instances η is
reached. Here, the challenge was to find a distribution
learning method which can handle data from categorical,
discrete and continuous datasets. One such approach is
to build Laplacian-smoothed DP histograms of the data
(Dwork et al., 2014; Molina et al., 2018). Concretely, this
means that we add two-sided geometric distributed noise
Z ∼ 1−e−ε

1+e−ε e
−ε|z| to the counting function (which has sen-

sitivity 1) to ensure DP. To cope with potentially unseen
values in the data, we employ Laplacian smoothing.

Enabling Classification. As already mentioned, SPNs can
also be used for classification tasks. For DPSPNs, this can
be realised with only slight modifications to Algorithm 1.
In the root level we introduce a sum node with individual
DPSPNs as children where each DPSPN represents one
classification class in the data. The weight of the edges to
the sum node are then calculated as the class counts divided
by the size of the whole data, adding two-sided geometric
distributed noise (as for private distribution learning) to the
class counts to preserve differential privacy. Concretely, it is
that the the new root sum weights represent the class proba-
bilities and each sub-SPNs class conditional distributions.
At inference time, approximate most probable explanation
(MPE) is applied to find the class value. Here, one path
from leaves to root is needed to calculate the maximal con-
figurations for each node. Then, the algorithm backtracks to
find the class value which maximizes the probability of the
input. The modified method can be found in Algorithm 2.

Analysis of Privacy Costs. In the following, we summa-
rize the general structure of the DPSPN learning algorithm
(Algorithm 1) so to better understand the total privacy costs
involved in learning. After generating the root node, the
dataset is split into disjunct subsets which are fed into child
nodes via alternating, recursive calls of the variable splitting
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and instance splitting functions. Therefore, in each level of
the DPSPN we only access the whole dataset once. As all
functions called on the data are ε′-DP, we can then claim
that the resulting privacy guarantee of a DPSPN is ε′ ·layers
by exploiting Theorem 2.4. However, we need to also take
into account that during the process of finding the next node
several functions may be called. In the worst case, struc-
ture learners can cycle between trying to find variable and
instance splits. A failure can happen as for variable splits
we have a failure percentage of α and for instance splits
only one cluster could be returned. To control the privacy
guarantee and prevent extensive accesses to the same subset
of data, we have to limit this cycling. Therefore, we intro-
duce an upper bound t for the calls to privacy-consuming
functions (i.e. instance splitting and distribution learning).
In practice, we force the generation of leaf nodes after t− 1
function calls. We then have a maximal privacy guarantee
independent of the learned DPSPN, that can be calculated
before the training process starts. We now can state the
following theorem:

Theorem 3.1. Given a dataset D, t limiting the total
privacy-consuming operations on D and ε′ > 0 as input,
DPSPNs, as proposed in Algorithm 1 are ε-differential pri-
vate, with ε = ε′ · t.

For learning DPSPNs which are able to classify data, we
have a similar theorem based on Algorithm 2:

Theorem 3.2. Given a dataset D, t limiting the total
privacy-consuming operations on D and ε′ > 0 as input,
DPSPNs for classification, as proposed in Algorithm 2 are
ε-differential private, with ε = ε′ · t.

The formal proofs can be found in Appendix A.1 and A.2.
Here, note that in practice it can happen that t is not reached
before the algorithm ends which makes Theorem 3.1 and
3.2 an upper bound to the privacy costs.

DPSPNs can be learned on a wide range of datasets and
applied to a a variety of tasks. Thanks to the Post-processing
Theorem (Theorem 2.6), one can apply different inference
algorithms or generate DP synthetic data from a trained
DPSPN without incurring in any additional privacy loss.

4. Related Work
In this section we shortly introduce related work on DP
classification algorithms, DP synthetic data generation and
private SPNs.

With regard to classification, centralized non-private ML
models are often optimized with variants of stochastic gra-
dient decent (SGD), esp. those based on neural networks.
DP versions of these algorithms employ a noisy SGD vari-
ant (Abadi et al., 2016). Other classification models have
also been adapted to DP settings, e.g. Naı̈ve Bayes for

classification (Vaidya et al., 2013). In distributed settings
where privacy is relevant, the PATE framework (Papernot
et al., 2016) and its extensions (Jordon et al., 2018) have
proven influential. These methods are based on the teacher-
student framework and exploit parallel composition (see
Theorem 2.5) to enable strong privacy guarantees.

DP synthetic data has become a popular research area at
least since the National Institute of Standards and Technol-
ogy Public Safety Communication Research (NIST PSCR)
Division’s “Differential Privacy Synthetic Data Challenge”
(NIST, 2018) in 2018. There exist many algorithms tack-
ling DP synthetic data generation, ranging from Generative
Adversarial Networks (Jordon et al., 2018) to Bayesian Net-
works (Zhang et al., 2017). The challenge is to minimize
privacy costs while at the same time preserving the utility of
the generated data. While many models exist which can do
either DP inference or DP synthetic data generation, there is,
to the best of our knowledge, no work on DP models which
are able to generate data and train a classifier at the same
time. Currently, to enable both, two different DP models
trained on the same data would be of need. Our approach
is instead to learn a joint classification and data generation
SPN model, which only needs to be trained once.

To the best of our knowledge, previous work on privacy-
preserving SPNs is limited to the private inference protocol
CRYPTOSPN (Treiber et al., 2020). This method is based
on Yao’s garbled circuit (Yao, 1982) and implements a two-
party cryptographically secure inference protocol between
a client and a server. Thus, the client learns nothing about
the model beyond its outputs, while the server never holds
the client’s data in cleartext. CryptoSPN is a fast inference
method, but is only implemented as a two-party protocol.
In our work, we learn differentially private SPNs that may
thus be shared publicly with any party, enabling both private
inference and private synthetic data generation.

5. Experimental Evaluation
To show the potential of our proposed method, we conducted
extensive experiments on classification, density estimation
and DP synthetic data generation tasks.1 In this section we
intend to discuss the following research questions:

(Q1) How stable are DPSPNs?

(Q2) How does ε influence the classification performance of
DPSPNs?

(Q3) How does DPSPN-generated synthetic data compare
to existing DP methods for synthetic data generation?

(Q4) How do DPSPNs perform in density estimation?
1Code for all the experiments is available at https://

github.com/xheilmann/DPSPN.
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Figure 1. Distribution of test AUROC over 50 training runs for four classification dataset, mean over 5 models trained on DP synthetic
data.
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Figure 2. Comparison of AUROC performance for DPSPNs and generated synthetic data by DPSPNs (on which an MSPN was trained
afterwards) with and without binary random column splitting and different epsilon values. AUROC performance for MSPNs and generated
synthetic data by MPSPNs is given as baseline.

5.1. Experimental Setup

For both inference and generative tasks we use the same
learned DPSPN, so to showcase their flexibility. In order to
differentiate between the two tasks, however, we introduce
the following notation: We use DPSPNsyn to denote the
synthetically generated data by an DPSPN, which is then
used to train a predictive model or a non-private MSPN.
For classification tasks, we provide results for five datasets
with continuous, discrete and binary variables: cervical
cancer (mis, 2019), german-credit (Hofmann, 1994), dia-
betes (Semerdjian & Frank, 2017), bank (Moro et al., 2014)
and adult (Becker & Kohavi, 1996) (see Appendix B, Ta-
ble 3 for dataset statistics). We compare the performance
in terms of area under the receiver operating character-
istic (AUROC) and area under the precision-recall curve
(AUPRC) of the DPSPNs to MSPNs which use K-means for
row splitting, binary random column splits and histograms
as leaves. Here, datasets from hybrid domains are prepro-
cessed by the pipeline described in Appendix A.3. For
MSPNs, we applied random hyperparameter search to op-
timize the binary splitting criteria α and minimal instance
parameter η. For DPSPNs, we performed a grid search
over η = {0.1N, 0.2N, . . . , N} (with N defining the size
of the dataset) and α = {0.1, 0.3, 0.5, 0.7, 0.9} to give an
intuition to which hyperparameters to choose for unknown
datasets. Furthermore, we report the results with and with-
out binary random column splits. We also note that we
optimized DPSPN hyperparameters with the classification

AUROC score as an objective. Then, we reported the same
model’s performance in synthetic data generation.

To evaluate how well DPSPNs generate DP synthetic data,
we compared our method to PATE-GAN (Jordon et al.,
2018), MST (McKenna et al., 2021) and PrivBayes (Zhang
et al., 2017). The latter two we chose due to their participa-
tion in the NST PCR “Differential Privacy Synthetic Data
Challenge” (NIST, 2018) and the therefore resulting visibil-
ity. However, there are other DP synthetic data generators
available, e.g. AIM (McKenna et al., 2022), P3GM (Takagi
et al., 2022) or GS-WGAN (Chen et al., 2020). The MST
method won the NST PCR “Differential Privacy Synthetic
Data Challenge” (NIST, 2018) contest. MST uses graphi-
cal models based on sanitized marginals to model the data
distribution. For MST, we apply predefined parameters as
proposed by McKenna et al. (2021). However, the MST
method is restricted to generating discrete-valued data. We
did report AUROC and AUPRC scores for all five datasets
for this method, however bank and adult are the sole datasets
with only discrete values.

The PATE-GAN method is based on Generative Adversarial
Nets (GAN) and the Private Aggregation of Teacher Ensem-
bles (PATE) framework (Papernot et al., 2016). PATE-GAN
normalizes the training set into [0, 1]d before training starts.
To compare it with DPSPNs we therefore mapped the
generated data by PATE-GAN back to the original space,
rounding binary and discrete attributes to integers. We also
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Table 1. Mean performance on real test data of 5 different predictive models trained on synthetic DP data generated by 4 different methods
with varying ε. The performance of the original dataset is given as comparison.

AUROC AUPRC
ε dataset Orig. DPSPN MST PATE-GAN PrivBayes Orig. DPSPN MST PATE-GAN PrivBayes

0.1 adult 0.89 0.86 0.77 0.49 0.78 0.75 0.66 0.45 0.23 0.48
cancer 0.85 0.7 0.73 0.54 0.53 0.48 0.2 0.3 0.08 0.12
diabetes 0.76 0.61 0.51 0.61 0.52 0.39 0.28 0.24 0.28 0.25
german-credit 0.65 0.54 0.52 0.58 0.55 0.4 0.31 0.31 0.32 0.31
bank 0.86 0.65 0.55 0.54 0.64 0.87 0.65 0.55 0.54 0.63

1 adult 0.89 0.87 0.69 0.73 0.88 0.75 0.69 0.51 0.49 0.71
cancer 0.85 0.83 0.82 0.56 0.72 0.48 0.46 0.41 0.13 0.22
diabetes 0.76 0.66 0.51 0.63 0.59 0.39 0.38 0.25 0.34 0.28
german-credit 0.65 0.65 0.55 0.64 0.59 0.4 0.4 0.33 0.39 0.37
bank 0.86 0.71 0.56 0.57 0.71 0.87 0.7 0.55 0.58 0.7

10 adult 0.89 0.88 0.84 0.66 0.88 0.75 0.7 0.65 0.34 0.74
cancer 0.85 0.89 0.78 0.53 0.84 0.48 0.63 0.42 0.11 0.33
diabetes 0.76 0.66 0.51 0.6 0.63 0.39 0.38 0.25 0.29 0.31
german-credit 0.65 0.67 0.53 0.57 0.59 0.4 0.42 0.3 0.35 0.35
bank 0.86 0.76 0.59 0.57 0.7 0.87 0.77 0.59 0.56 0.7

optimized the number of teachers by choosing it in the set
{N/10, N/50, N/100, N/500, N/1000, N/5000, N/10000}
as given in the original paper by Jordon et al. (2018).

PrivBayes (Zhang et al., 2017) is another competitive
method for synthetic data generation that was included in
the NST PCR “Differential Privacy Synthetic Data Chal-
lenge” contest. The method is based on a Bayesian network.
For PrivBayes we used β = 0.3 and θ = 4 as input param-
eters and the vanilla encoding (Zhang et al., 2017, Section
5.1) to encode the input datasets.

All the methods described above are (ε, δ)−differential
private. DPSPNs however fulfill the stronger ε-
differential privacy. We conducted experiments for ε ∈
{0.1, 0.5, 1, 5, 10, 100} and kept a fixed δ = 10−6. Ad-
ditionally, for DPSPNs we set the maximum of privacy-
consuming function calls on the data t to 10.

5.2. Experimental Results

How stable are DPSPNs? DP methodologies often suf-
fer from notable variance in performance from one full
training cycle (training run) to another. The main reason
for this behavior is the noisiness of the initialization and
training process, which will necessarily include some form
of randomization. One possible solution is to start mul-
tiple training runs and only release the best-performing
model. Nonetheless, we argue that reducing the perfor-
mance variance, in other words improving the stability, of
an DP methodology is desirable. Firstly, we reason that the
discarded models may still be obtained by untrusted parties.
Furthermore, the party responsible for model training may
not be a trusted party itself, only accessing the data via e.g.
a private model training API which does not provide the
data in cleartext, only returning the resulting model. In

these scenarios, each training run subtracts from the privacy
budget and a more stable model will be clearly more de-
sirable. We show the stability of DPSPNs by plotting the
distribution of mean AUROC scores over five predictive
models trained on DPSPN-generated data. The results are
taken from 50 DPSPN training runs and may be found in
Figure 1 (results for the diabetes dataset can be found in the
Appendix Figure 6). We compare this distribution with ones
obtained by employing MST, PrivBayes and PATE-GAN
in the same experimental conditions. Here, one can see
that DPSPNs throughout all 50 training runs show a very
stable performance on all 5 datasets, with limited variance
and a higher expected performance. PrivBayes also has
a remarkably stable performance on datasets which have
only discrete variables (bank and adult). We observe that
PrivBayes outperforms DPSPNs in some runs on the adult
dataset, not showing the constant stable performance of
DPSPNs. Altogether, we conclude that training a single
DPSPN is sufficient to achieve good overall results.

Another facet of stable performance is a method’s perfor-
mance over different hyperparameter settings. A solution
here is to optimize hyperparameters on a publicly avail-
able dataset, or obtain good suggestions on how to choose
hyperparameters for unknown datasets. We report the per-
formance of various hyperparameter configurations for clas-
sification DPSPNs in the Appendix, Figure 4 due to space
limitations. We observe that the choice of hyperparameters
is not critical, and performance stays stable across different
values. For datasets on which density estimation is per-
formed, we observe however that the minimal number of
instances η should be in the interval {0.4N, . . . , 0.9N} to
yield good performance (see Appendix, Figure 5).

How does ε influence the classification performance of
DPSPNs? In Figure 2 we can see the trade-off between
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Figure 3. Utility summary charts for the bank dataset.

AUROC performance and privacy guarantee for DPSPNs
with and without binary random column splits (an r is added
to the method’s name for binary random column splits).
We show results for prediction tasks as well as DPSPN-
generated synthetic data on which an MSPN is then trained.
As a non-private baseline, we also include the performance
of MSPNs and synthetic data generated by MSPNs on which
an MSPN is trained afterwards. DPSPNs show a superior
performance over MSPNs trained on synthetic data gener-
ated by DPSPNs for all datasets except cancer. This vali-
dates that combining the discriminative and generative abil-
ities of DPSPNs improves the accuracy at inference time
and at the same time provides the flexibility to generate DP
synthetic data for application to other models (see Q3).

Furthermore, we can see that as ε increases, the AUROC per-
formance of both DPSPNs and their generated data reaches
the non-private baseline. It is however relevant to mention
that prior work has established that reasonable values for
ε are < 10, while values < 1 are preferable (Jayaraman &
Evans, 2019). Our results show that for ε > 1 AUROC per-
formance on some datasets has already reached or slightly
surpassed the baseline, suggesting that the privacy costs
are leveled with the benefit of injecting a certain amount
of noise into the models. Interestingly, binary random col-
umn splits only improve the AUROC performance for the
synthetically generated data for diabetes and german-credit.
This suggests that the choice of a variable splitting method
is of less importance than the choice of an instance splitting
mechanisms.

How does DPSPN-generated synthetic data compare to
existing DP methods for synthetic data generation? To
analyse how well our method compares to other DP gener-
ative methods, we generated synthetic data with DPSPN,
MST, PATE-GAN and PrivBayes. Here, to handle initializa-
tion randomness, the best model over 10 training runs was
used for data generation based on the evaluation methodol-
ogy of PATE-GAN (Jordon et al., 2021). However, we stress
that DPSPNs are not prone to initialization randomness and
we only adopt this methodology for a more robust compari-
son. The data was then used to train 5 different predictive

models – Logistic Regression, Random Forest, Neural Net-
work, Gaussian Naı̈ve Bayes, Gradient Boosting Classifier.
We report the mean AUROC and AUPRC performance of all
five models in Table 1. The best results are in bold, showing
an overall superior performance of DPSPNs over the other
methods. We also follow the recommendation for holistic
evaluation of synthetic generated data put forward by Bowen
& Snoke (2019) and Arnold & Neunhoeffer (2020) among
others. Beyond predictive performance on a classification
tasks, these contributions suggest to evaluate the generated
data in terms of fidelity to the original distribution. To this
end, various fidelity metrics may be computed, comparing
either the marginal distributions (via the χ2 and KS tests),
the joint (pMSE ratio, SPECKS) or even the correlation be-
tween different dataset columns (confidence interval overlap
of a regressor). A detailed introduction to these metrics can
be found in Appendix D. We follow the same evaluation
and visualization protocol introduced by Bowen & Snoke
(2019), reporting in Figure 3 the summary chart of DPSPNs
on the bank dataset. Further summary charts are available
in the Appendix (Figures 7 to 10). We observe that DP-
SPNs outperform other methods in terms of similarity of the
marginal distributions of the new variables when ε = 0.1.
However, other models based on graphical models such as
PrivBayes have greater joint distribution fidelity at higher ε
values.

How do DPSPNs perform in density estimation? We con-
ducted experiments on a set of binary datasets (see Appendix
B Table 4 for dataset statistics) commonly used to evaluate
the performance of SPNs (Gens & Domingos, 2013; Peharz
et al., 2019). Our purpose here is to investigate the gap be-
tween our DPSPNs and regular SPNs in a well-established
evaluation setting for these models. We applied the MSPN
algorithm with k-means for instance splitting to learn the
non-private SPNs. A comparison to other density estimation
models as well as different learning algorithms for SPNs
can be found in Peharz et al. (2019, Table 1). In Table 2, we
see that for most datasets the log-likelihood performance
of the DPSPN reaches the SPN baseline as ε increases. We
report further results in Appendix E Table 11, in which one
can observe the same trends.
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Table 2. SPN and DPSPN log-likelihood performance for the bi-
nary datasets and different epsilon values, average of 10 runs.

dataset SPN DPSPN
ε = 0.1 ε = 1 ε = 10

kdd -2.58 -2.72 -2.63 -2.61
nltcs -6.0 -6.93 -6.53 -6.4
tretail -11.13 -11.93 -11.37 -11.3
kosarek -11.66 -14.01 -12.62 -12.4
accidents -37.32 -44.87 -43.1 -42.26
pumsb star -38.75 -57.66 -54.64 -44.11
bnetflix -58.93 -62.31 -60.67 -59.23
tmovie -61.23 -95.59 -78.27 -76.25
c20ng -124.2 -139.8 -132.43 -131.86
cwebkb -160.68 -212.56 -179.23 -171.81

6. Future Work
Overall, we have shown that DPSPNs are very stable mod-
els. They are versatile in the tasks they can accomplish
and can generate DP synthetic data comparable to existing
state-of-the-art methods in terms of utility-privacy trade-off.
While we have mainly focused on classification and data
generation, there are still many tasks left unexplored, in par-
ticular those requiring approximation of higher-dimensional
distributions. As DPSPNs are learned in an iterative way,
further research could analyse an uneven distribution of the
privacy budget between the different functions or iteration
steps throughout the learning algorithm. Here, as the itera-
tion steps resemble the layers of the DPSPN, one idea could
be to allocate more privacy budget towards the lower lay-
ers for better representation of the data, allowing for more
noisiness and approximation in the top layers. Another
venue for further research is to extend our current method
to approximate DP, i.e. (ε, δ)-DP.
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A. Proofs.
A.1. Proof of Theorem 3.1.

Theorem. Given a dataset D, t limiting the total privacy-consuming operations on D and ε′ > 0 as input, DPSPNs, as
proposed in Algorithm 1 are ε-differential private, with ε = ε′ · t.

Proof. We know that K-means and histograms with input ε are ε-DP (Su et al., 2016; Dwork et al., 2014). Furthermore, the
binary random column splits do not increase the privacy costs. Left to show is that the overall privacy costs do not exceed
ε = ε′ · t with t limiting the total privacy-consuming operations on the data. We have the following possible operations:
K-means clustering (potentially followed by binary splitting) and generation of a histogram leaf. Now, to calculate the final
ε-costs we have to count how many times each operation is performed on the whole dataset. We know, that the leaf function
is only called once for each datapoint. For K-means we have to take into account that the top down learning approach
starts with the whole dataset generating the root node, followed by dataset splits which split the data into disjunct subsets.
Therefore, we have that in each layer of nodes, each node nj is generated from a disjunct subset of the data which makes
Theorem 2.5 applicable. Here, we also have to keep in mind that not every call to K-means returns more than one cluster. It
can happen, due to a bad initialization of the centroids that two or more clusters are only found after several calls of the
K-means algorithm.

Let us now concretely look at one child n0 of the root note. Let us denote the number of calls for generation of n0 with k0.
Then, with t given, we know that k0 < t has to hold (otherwise we directly generate a leaf node layer). With Theorem 2.4,
this gives us a privacy cost of k0 · ε′ for n0. Now, to generate a child node n1 of n0, we access subsets of the data on which
already k0 DP operations where performed. Thus, we now can only perform another k1 < (t − k0) DP operations. By
induction, we have that for node ni the privacy costs are (k0 + · · ·+ ki) · ε′ < t · ε′. When (k0 + · · ·+ ki) · ε′ = (t− 1) · ε′
holds, leaves are generated with one additional access to the data so that altogether the privacy cost add up to ε′ · t = ε.
With Theorem 2.5, this holds for all children of the root node giving us the upper bound for the privacy costs.

A.2. Proof of Theorem 3.2.

Theorem. Given a dataset D, t limiting the total privacy-consuming operations on D and ε′ > 0 as input, DPSPNs for
classification, as proposed in Algorithm 2 are ε-differential private, with ε = ε′ · t.

Proof. Let L denote the number of unique labels vl and D and D′ two neighboring datasets. We have that all Di = {v ∈
D|vl = i} with i ∈ {1, . . . , L} are disjoint by definition. Then, we know that the LearnDPSPN class() maximal differs
for one Dj ⊆ D and Dj′ ⊆ D′. We already know with Theorem 3.1 that LearnDPSPN() with input ε′ and t − 1 as
data operation limit is ε′ · (t− 1)-DP. We also know that adding noise sampled from the two-sided geometric distribution

Z ∼ 1−e−ε′

1+e−ε′ e
−ε′|z| to count functions is ε′-DP. Together with Theorem 2.4, we have that the operations in the loop fulfill

ε′ · (t − 1 + 1) = ε-DP (Ghosh et al., 2009). With Theorem 2.5, we then have that the whole loop satisfies ε′-DP. With
Theorem 2.6 we have that the last division does not increase the privacy-budget, so that altogether LearnDPSPN class() is
ε′-DP.

A.3. Transformation of Hybrid Data.

Furthermore, we want to discuss why the choice of the data bounds after the transformation pipeline for data from hybrid
domains (Molina et al., 2018) with N datapoints does not decrease the privacy guarantees and is valid. We first introduce
the pipeline which proceeds in the following steps:

1. At first the empirical compula tranformations (Póczos et al., 2012) is performed for each variable in the set of variables
V = {V1, . . . , VI} in the data:

CVi
←

{ 1

N

N∑
r=1

1{vri ≤ vni }|vni ∈ DVi

}N

n=1

Informally, this steps ranks the values of one variable by their value, while same values always get assigned the same
and highest possible rank. By division through N we have that ∀ci ∈ CVi : 0 < ci ≤ 1 and 1 is always in CVi .
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2. Then, a random linear projection into a k-dimensional space is performed, followed by a non-linear function (here
sinus)

ϕ(CVi)← sin(wCTVi
+ b), with (w, b) ∼ N (0k, sIk×k).

We choose s = 1
6 as proposed by Molina et al. (2018). Then, it follows as CTVi

is fixed, that

wCTVi
+ b ∼ N (0k, (

1

6
CTVi

+
1

6
)Ik×k).

For bound calculation without privacy loss we want a good approximation of the maximal and minimal value which
sin(wCTVi

+ b) can take on over all Vi. As said above we have that the values of CTVi
lie in the interval (0, 1], so that wCTVi

+ b

is upper and lower bounded by the distribution w1k + b ∼ N (0k, (
1
6 + 1

6 )Ik×k). It holds that 68% of the values drawn
from this normal distribution are in the interval [− 1√

3
,+ 1√

3
]. With the non-linearity of the sinus function we then have that

68% of values lie in [sin(− 1√
3
), sin( 1√

3
)]. This gives us as bound approximation −0.5458 as lower and 0.5458 as upper

bound. One can argue that these bounds are too tight as we only have 68% of the values in this interval. Yet, it is seldom
true that all vi ∈ Vi take on the same values (which would correspond in all entries of CTVi

being 1), so that one can expect to
have more than 68% of the values in the given interval.

B. Dataset Statistics.
In Table 3 and 4 the dataset statistics for the evaluated datasets are listed.

Table 3. Dataset statistics for the classification datasets.
dataset #datapoints discrete/binary continuous
adult 36632 14 0
diabetes 1723 1 16
cancer 502 29 5
german-credit 720 20 1
bank 8372 17 0

Table 4. Dataset statistics for the binary datasets.
dataset #variables #training set density
kdd 65 180092 0.008
nltcs 16 16181 0.332
tretail 135 22041 0.024
kosarek 190 33375 0.020
accidents 111 12758 0.291
pumsb star 163 12262 0.270
bnetflix 100 15000 0.541
tmovie 500 4524 0.059
c20ng 910 11293 0.049
cwebkb 839 2803 0.064
msnbc 17 291326 0.166
msweb 294 29441 0.010
plants 69 17412 0.180
book 500 8700 0.016
baudio 100 15000 0.199
ad 1556 2461 0.008
jester 100 9000 0.608
cr52 889 6532 0.036
dna 180 1600 0.253
bbc 1058 1670 0.078

C. Choice of Hyperparameters.
In Figure 4 and 5 we show the development of the AUROC score of DPSPNs with regard to the parameter η defining the
minimum of instances at which no further data splits are performed. Once the minimum of instances is reached, leaf nodes
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are generated. We choose η as a percentage of the dataset size N , with 0.1N as lowest and N as highest value, performing
10 runs with each configuration. For the classification datasets, we have in Figure 4 in the upper row the experimental results
without binary random column splits where we see that the choice of η is less important for increasing values of ε and
overall not critical. The same holds for the lower row, where the results for DPSPNs learned with binary random column
splits and fixed α are shown. For the 20 binary datasets, Figure 5 shows 10 datasets in the upper and 10 in the lower row,
sorted by log-likelihood performance. Here, we see that overall a choice of η ∈ {0.4N, . . . , 0.9N} is preferable.
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Figure 4. Influence of the parameter η (minimum of instances to split) for the classification datasets, no column splits and binary random
column splits and for different epsilon values.

D. Utility Metrics.
Our holistic evaluation of synthetic generated data is based on Bowen & Snoke (2019) and Arnold & Neunhoeffer (2020)
among others. Additional to evaluating the mean area under the receiver operating characteristic (AUROC) and the mean area
under the precision-recall curve (AUPRC) over 5 different predictive models (Logistic Regression, Random Forest, Neural
Network, Gaussian Naı̈ve Bayes, Gradient Boosting Classifier), we also evaluated data utility in terms of the following
metrics. As distributional distance metrics we applied the χ2 test for categorical variables and Kolmogorov-Smirnov (KS)
test for continuous variables. Each test was applied with conversion to p-values as scale-free distance measure and an
average of the p-values for each variable gives the final score. For joint distribution metrics, we have the propensity score
mean-squared error (pMSE) and the SPECKS (Synthetic data generation; Propensity score matching; Empirical Comparison
via the Kolmogorov-Smirnov distance) score. The latter, applies the Kolmogorov-Smirnov (KS) distance to the predicted
probabilities as the utility metric. Furthermore, we have two correlation metrics. The first, which is abbreviated with
Reg-Coef, measures the standardized difference in coefficient values between a regression model fit on the original data and
an regression model fit on the synthetic data. Here, we also calculate the confidence interval overlap (Reg-CI) for a single
estimate on average of the two regressors.
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Figure 5. Influence of the parameter η (minimum of instances to split) for the binary datasets, binary random column splits and for
different epsilon values.

E. Additional Results.
In Figure 6 we see how stable DPSPN, MST, PATE-GAN and PrivBayes (abbreviated as PrivBay) perform over 50 training
runs on the diabetes dataset. In Table 5 we give the concrete values on which the graphs in Figure 2 are generated. In Table 6
to 10 we list the individual results for DP synthetic data generated by DPSPN, MST, PATE-GAN and PrivBayes (abbreviated
as PrivBay)for 5 different predictive models – Logistic Regression, Random Forest, Neural Network, Gaussian Naı̈ve Bayes
and Gradient Boosting Classifier. We report the AUROC and AUPRC performance as well as mean performance. Figures 7
to 10 show additional visualizations of the utility of the generated DP data following the visualization protocol introduced
by Bowen & Snoke (2019). In Table 11 we report further results for density estimation by DPSPNs over binary datasets.

15



Differentially Private Sum-Product Networks

0.3 0.4 0.5 0.6 0.7
AUROC

0

5

10

15

de
ns

ity

diabetes mean AUROC
PrivBayes
MST
PATE-GAN
DPSPN

Figure 6. Distribution of test AUROC over 50 training runs for the diabetes dataset, mean over 5 models trained on DP synthetic data.

Figure 7. Utility summary charts for the adult dataset.

Figure 8. Utility summary charts for the german-credit dataset.
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Table 5. Development of AUROC performance of DPSPNs as well as MSPNs trained on synthetically generated data without random
columns splits and with binary random column splits, average of 10 runs.

AUROC
dataset epsilon MSPN DPSPN DPSPNrand MSPNsyn DPSPNsyn DPSPNsynrand
adult 0.1 0.81 0.73 0.73 0.81 0.73 0.73

0.5 0.81 0.8 0.8 0.81 0.8 0.8
1 0.81 0.81 0.81 0.81 0.8 0.81
5 0.81 0.82 0.82 0.81 0.81 0.81
10 0.81 0.82 0.82 0.81 0.81 0.81
50 0.81 0.83 0.83 0.81 0.81 0.81

100 0.81 0.84 0.83 0.81 0.81 0.81
cancer 0.1 0.85 0.52 0.53 0.76 0.57 0.59

0.5 0.85 0.55 0.52 0.76 0.65 0.62
1 0.85 0.56 0.57 0.76 0.64 0.61
5 0.85 0.67 0.66 0.76 0.68 0.69
10 0.85 0.7 0.69 0.76 0.73 0.75
50 0.85 0.7 0.7 0.76 0.8 0.8

100 0.85 0.7 0.7 0.76 0.8 0.8
diabetes 0.1 0.67 0.56 0.55 0.63 0.55 0.54

0.5 0.67 0.61 0.6 0.63 0.56 0.57
1 0.67 0.65 0.65 0.63 0.58 0.58
5 0.67 0.71 0.7 0.63 0.59 0.6
10 0.67 0.7 0.71 0.63 0.59 0.58
50 0.67 0.71 0.71 0.63 0.59 0.57

100 0.67 0.71 0.71 0.63 0.59 0.58
german-credit 0.1 0.64 0.53 0.53 0.6 0.53 0.52

0.5 0.64 0.56 0.56 0.6 0.56 0.55
1 0.64 0.59 0.59 0.6 0.58 0.55
5 0.64 0.65 0.64 0.6 0.58 0.58
10 0.64 0.65 0.64 0.6 0.58 0.57
50 0.64 0.63 0.63 0.6 0.58 0.58

100 0.64 0.63 0.63 0.6 0.57 0.58
bank 0.1 0.75 0.61 0.61 0.73 0.62 0.62

0.5 0.75 0.68 0.68 0.73 0.68 0.68
1 0.75 0.69 0.69 0.73 0.69 0.7
5 0.75 0.73 0.73 0.73 0.71 0.71
10 0.75 0.74 0.74 0.73 0.72 0.72
50 0.75 0.75 0.75 0.73 0.73 0.72

100 0.75 0.75 0.75 0.73 0.73 0.73

Table 6. Performance comparison of 5 different predictive models trained on synthetic, tested on real in terms of AUROC and AUPRC.
(1, 10−6) -differentially private for the cancer dataset.

model AUROC AUPRC
Orig. DPSPN MST PATE-GAN PrivBay Orig. DPSPN MST PATE-GAN PrivBay

Logistic Regression 0.88 1.0 0.98 0.82 0.8 0.61 0.97 0.59 0.24 0.24
Random Forests 0.98 0.98 0.98 0.44 0.62 0.68 0.71 0.71 0.06 0.14
Multi-layer Perceptron 0.48 0.46 0.38 0.5 0.47 0.06 0.05 0.05 0.08 0.05
Gaussian Naive Bayes 0.95 0.85 0.82 0.77 0.91 0.39 0.3 0.23 0.19 0.5
Gradient Boosting 0.98 0.89 0.95 0.27 0.81 0.68 0.27 0.45 0.09 0.16
Average 0.85 0.83 0.82 0.56 0.72 0.48 0.46 0.41 0.13 0.22

17



Differentially Private Sum-Product Networks

Table 7. Performance comparison of 5 different predictive models trained on synthetic, tested on real in terms of AUROC and AUPRC.
(1, 10−6) -differentially private for the diabetes dataset.

model AUROC AUPRC
Orig. DPSPN MST PATE-GAN PrivBay Orig. DPSPN MST PATE-GAN PrivBay

Logistic Regression 0.74 0.74 0.61 0.69 0.68 0.38 0.42 0.29 0.35 0.37
Random Forests 0.75 0.77 0.67 0.69 0.64 0.38 0.43 0.35 0.38 0.27
Multi-layer Perceptron 0.74 0.25 0.25 0.29 0.31 0.37 0.14 0.14 0.15 0.15
Gaussian Naive Bayes 0.76 0.76 0.4 0.73 0.69 0.43 0.44 0.18 0.42 0.36
Gradient Boosting 0.79 0.77 0.6 0.73 0.64 0.42 0.46 0.26 0.4 0.28
Average 0.76 0.66 0.51 0.63 0.59 0.39 0.38 0.25 0.34 0.28

Table 8. Performance comparison of 5 different predictive models trained on synthetic, tested on real in terms of AUROC and AUPRC.
(1, 10−6) -differentially private for the german-credit dataset.

model AUROC AUPRC
Orig. DPSPN MST PATE-GAN PrivBay Orig. DPSPN MST PATE-GAN PrivBay

Logistic Regression 0.72 0.75 0.56 0.69 0.67 0.49 0.5 0.32 0.44 0.47
Random Forests 0.67 0.67 0.59 0.63 0.59 0.4 0.4 0.4 0.37 0.35
Multi-layer Perceptron 0.48 0.52 0.52 0.58 0.52 0.27 0.29 0.31 0.31 0.31
Gaussian Naive Bayes 0.7 0.67 0.44 0.68 0.61 0.42 0.41 0.24 0.44 0.37
Gradient Boosting 0.69 0.64 0.62 0.61 0.58 0.4 0.38 0.37 0.38 0.35
Average 0.65 0.65 0.55 0.64 0.59 0.4 0.4 0.33 0.39 0.37

Table 9. Performance comparison of 5 different predictive models trained on synthetic, tested on real in terms of AUROC and AUPRC.
(1, 10−6) -differentially private for the adult dataset.

model AUROC AUPRC
Orig. DPSPN MST PATE-GAN PrivBay Orig. DPSPN MST PATE-GAN PrivBay

Logistic Regression 0.88 0.86 0.83 0.79 0.88 0.73 0.66 0.62 0.58 0.69
Random Forests 0.9 0.88 0.59 0.66 0.88 0.77 0.7 0.43 0.39 0.71
Multi-layer Perceptron 0.89 0.89 0.58 0.73 0.88 0.75 0.73 0.43 0.54 0.72
Gaussian Naive Bayes 0.85 0.83 0.82 0.72 0.85 0.68 0.61 0.62 0.42 0.67
Gradient Boosting 0.92 0.89 0.61 0.74 0.89 0.8 0.74 0.44 0.51 0.74
Average 0.89 0.87 0.69 0.73 0.88 0.75 0.69 0.51 0.49 0.71

Table 10. Performance comparison of 5 different predictive models trained on synthetic, tested on real in terms of AUROC and AUPRC.
(1, 10−6) -differentially private for the bank dataset.

model AUROC AUPRC
Orig. DPSPN MST PATE-GAN PrivBay Orig. DPSPN MST PATE-GAN PrivBay

Logistic Regression 0.83 0.66 0.67 0.71 0.67 0.83 0.67 0.6 0.69 0.67
Random Forests 0.92 0.75 0.48 0.51 0.69 0.94 0.71 0.49 0.53 0.68
Multi-layer Perceptron 0.83 0.63 0.52 0.39 0.73 0.82 0.61 0.54 0.43 0.72
Gaussian Naive Bayes 0.82 0.73 0.62 0.65 0.72 0.82 0.74 0.57 0.66 0.72
Gradient Boosting 0.92 0.77 0.49 0.6 0.72 0.93 0.76 0.53 0.59 0.7
Average 0.86 0.71 0.56 0.57 0.71 0.87 0.7 0.55 0.58 0.7

Table 11. SPN and DPSPN log-likelihood performance for the binary datasets and different epsilon values, average of 10 runs.
dataset SPN DPSPN

ε = 0.1 ε = 1 ε = 10
msnbc -6.36 -6.59 -6.5 -6.46
msweb -10.52 -11.73 -11.01 -10.72
plants -16.11 -22.34 -20.07 -19.18
book -34.88 -45.42 -36.92 -35.94

baudio -40.34 -44.99 -43.56 -43.44
ad -46.37 -102.33 -72.84 -68.44

jester -53.96 -58.67 -56.66 -55.35
cr52 -93.33 -123.26 -111.1 -111.19
dna -98.52 -105.55 -100.66 -100.44
bbc -246.99 -327.1 -269.9 -267.88
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Figure 9. Utility summary charts for the cancer dataset.

Figure 10. Utility summary charts for the diabetes dataset.
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